It is inefficient to repeatedly pick a single random element from a
ziplist.
For CASE4, which is when the user requested a low number of unique
random picks from the collectoin, we used thta pattern.
Now we use a different algorithm that picks unique elements from a
ziplist, and guarentee no duplicate but doesn't provide random order
(which is only needed in the non-unique random picks case)
Unrelated changes:
* change ziplist count and indexes variables to unsigned
* solve compilation warnings about uninitialized vars in gcc 10.2
Co-authored-by: xinluton <xinluton@qq.com>
Disable certificate validation, making it possible to connect to servers
without configuring full trust chain.
The use of this option is insecure and makes the connection vulnerable
to man in the middle attacks.
Without this fix, RM_ZsetRem can leave empty sorted sets which are
not allowed to exist.
Removing from a sorted set while iterating seems to work (while
inserting causes failed assetions). RM_ZsetRangeEndReached is
modified to return 1 if the key doesn't exist, to terminate
iteration when the last element has been removed.
Changes to HRANDFIELD and ZRANDMEMBER:
* Fix risk of OOM panic when client query a very big negative count (avoid allocating huge temporary buffer).
* Fix uneven random distribution in HRANDFIELD with negative count (wasn't using dictGetFairRandomKey).
* Add tests to check an even random distribution (HRANDFIELD, SRANDMEMBER, ZRANDMEMBER).
Co-authored-by: Oran Agra <oran@redislabs.com>
Fix errors of GEOSEARCH bybox search due to:
1. projection of the box to a trapezoid (when the meter box is converted to long / lat it's no longer a box).
2. width and height mismatch
Changes:
- New GEOSEARCH point in rectangle algorithm
- Fix GEOSEARCH bybox width and height mismatch bug
- Add GEOSEARCH bybox testing to the existing "GEOADD + GEORANGE randomized test"
- Add new fuzzy test to stress test the bybox corners and edges
- Add some tests for edge cases of the bybox algorithm
Co-authored-by: Oran Agra <oran@redislabs.com>
* Add bash temporarily to allow sentinel fd leaks test to run.
* Use vmactions-freebsd rdist sync to work around bind permission denied
and slow execution issues.
* Upgrade to tcl8.6 to be aligned with latest Ubuntu envs.
* Concat all command executions to avoid ignoring failures.
* Skip intensive fuzzer on FreeBSD. For some yet unknown reason, generate_fuzzy_traffic_on_key causes TCL to significantly bloat on FreeBSD resulting with out of memory.
This commit provides an optimization, in terms of time, for all GEORADIUS*
and GEOSEARCH* searches which utilize the default, sorted, COUNT clause.
This is commonly used for nearest-neighbor (top-K points closest to a given lat/lon)
searches. While the previous implementation appends all matching points to the
geoPoint array and performs pruning after-the-fact via a full sort and [0, count)-based
for-loop, this PR sorts only the required number of elements.
This optimization provides a 5-20% improvement in runtime depending on the
density of points of interest (POI) as well as the radius searched.
No performance degradation has been observed.
addReplyLongLongWithPrefix, has a check against negative length, and the code
flow removed in this commit bypasses the check.
addReplyAggregateLen has an assertion for negative length, but addReplyBulkLen
does not, so this commit fixes theoretical case of access violation (probably
unreachable though)
* The corrupt dump fuzzer found a division by zero.
* in some cases the random fields from the HRANDFIELD tests produced
fields with newlines and other special chars (due to \ char), this caused
the TCL tests to see a bulk response that has a newline in it and add {}
around it, later it can think this is a nested list. in fact the `alpha` random
string generator isn't using spaces and newlines, so it should not use `\`
either.
This commit fixes sentinel announces hostnames test error in certain linux environment
Before this commit, we only check localhost is resolved into 127.0.0.1, however in ubuntu
or some other linux environments "localhost" will be resolved into ::1 ipv6 address first if
the network stack is capable.
This commit enables tracking time of the background tasks and on replies,
opening the door for properly tracking commands that rely on blocking / background
work via the slowlog, latency history, and commandstats.
Some notes:
- The time spent blocked waiting for key changes, or blocked on synchronous
replication is not accounted for.
- **This commit does not affect latency tracking of commands that are non-blocking
or do not have background work.** ( meaning that it all stays the same with exception to
`BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely
on background threads ).
- Specifically for latency history command we've added a new event class named
`command-unblocking` that will enable latency monitoring on commands that spawn
background threads to do the work.
- For blocking commands we're now considering the total time of a command as the
time spent on call() + the time spent on replying when unblocked.
- For Modules commands that rely on background threads we're now considering the
total time of a command as the time spent on call (main thread) + the time spent on
the background thread ( if marked within `RedisModule_MeasureTimeStart()` and
`RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread)
To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on
a module that blocks the client and sleeps on the background for a given time.
- check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time
- check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout
- check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time
- check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
New commands:
`HRANDFIELD [<count> [WITHVALUES]]`
`ZRANDMEMBER [<count> [WITHSCORES]]`
Algorithms are similar to the one in SRANDMEMBER.
Both return a simple bulk response when no arguments are given, and an array otherwise.
In case values/scores are requested, RESP2 returns a long array, and RESP3 a nested array.
note: in all 3 commands, the only option that also provides random order is the one with negative count.
Changes to SRANDMEMBER
* Optimization when count is 1, we can use the more efficient algorithm of non-unique random
* optimization: work with sds strings rather than robj
Other changes:
* zzlGetScore: when zset needs to convert string to double, we use safer memcpy (in
case the buffer is too small)
* Solve a "bug" in SRANDMEMBER test: it intended to test a positive count (case 3 or
case 4) and by accident used a negative count
Co-authored-by: xinluton <xinluton@qq.com>
Co-authored-by: Oran Agra <oran@redislabs.com>