tidwall 6257ddba78 Faster point in polygon / GeoJSON updates
The big change is that the GeoJSON package has been completely
rewritten to fix a few of geometry calculation bugs, increase
performance, and to better follow the GeoJSON spec RFC 7946.

GeoJSON updates

- A LineString now requires at least two points.
- All json members, even foreign, now persist with the object.
- The bbox member persists too but is no longer used for geometry
  calculations. This is change in behavior. Previously Tile38 would
  treat the bbox as the object's physical rectangle.
- Corrections to geometry intersects and within calculations.

Faster spatial queries

- The performance of Point-in-polygon and object intersect operations
  are greatly improved for complex polygons and line strings. It went
  from O(n) to roughly O(log n).
- The same for all collection types with many children, including
  FeatureCollection, GeometryCollection, MultiPoint, MultiLineString,
  and MultiPolygon.

Codebase changes

- The pkg directory has been renamed to internal
- The GeoJSON internal package has been moved to a seperate repo at
  https://github.com/tidwall/geojson. It's now vendored.

Please look out for higher memory usage for datasets using complex
shapes. A complex shape is one that has 64 or more points. For these
shapes it's expected that there will be increase of least 54 bytes per
point.
2018-10-13 04:30:48 -07:00

125 lines
2.8 KiB
Go

// Copyright 2016 Apcera Inc. All rights reserved.
// A unique identifier generator that is high performance, very fast, and tries to be entropy pool friendly.
package nuid
import (
"crypto/rand"
"fmt"
"math"
"math/big"
"sync"
"time"
prand "math/rand"
)
// NUID needs to be very fast to generate and truly unique, all while being entropy pool friendly.
// We will use 12 bytes of crypto generated data (entropy draining), and 10 bytes of sequential data
// that is started at a pseudo random number and increments with a pseudo-random increment.
// Total is 22 bytes of base 62 ascii text :)
// Version of the library
const Version = "1.0.0"
const (
digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
base = 62
preLen = 12
seqLen = 10
maxSeq = int64(839299365868340224) // base^seqLen == 62^10
minInc = int64(33)
maxInc = int64(333)
totalLen = preLen + seqLen
)
type NUID struct {
pre []byte
seq int64
inc int64
}
type lockedNUID struct {
sync.Mutex
*NUID
}
// Global NUID
var globalNUID *lockedNUID
// Seed sequential random with crypto or math/random and current time
// and generate crypto prefix.
func init() {
r, err := rand.Int(rand.Reader, big.NewInt(math.MaxInt64))
if err != nil {
prand.Seed(time.Now().UnixNano())
} else {
prand.Seed(r.Int64())
}
globalNUID = &lockedNUID{NUID: New()}
globalNUID.RandomizePrefix()
}
// New will generate a new NUID and properly initialize the prefix, sequential start, and sequential increment.
func New() *NUID {
n := &NUID{
seq: prand.Int63n(maxSeq),
inc: minInc + prand.Int63n(maxInc-minInc),
pre: make([]byte, preLen),
}
n.RandomizePrefix()
return n
}
// Generate the next NUID string from the global locked NUID instance.
func Next() string {
globalNUID.Lock()
nuid := globalNUID.Next()
globalNUID.Unlock()
return nuid
}
// Generate the next NUID string.
func (n *NUID) Next() string {
// Increment and capture.
n.seq += n.inc
if n.seq >= maxSeq {
n.RandomizePrefix()
n.resetSequential()
}
seq := n.seq
// Copy prefix
var b [totalLen]byte
bs := b[:preLen]
copy(bs, n.pre)
// copy in the seq in base36.
for i, l := len(b), seq; i > preLen; l /= base {
i -= 1
b[i] = digits[l%base]
}
return string(b[:])
}
// Resets the sequential portion of the NUID.
func (n *NUID) resetSequential() {
n.seq = prand.Int63n(maxSeq)
n.inc = minInc + prand.Int63n(maxInc-minInc)
}
// Generate a new prefix from crypto/rand.
// This call *can* drain entropy and will be called automatically when we exhaust the sequential range.
// Will panic if it gets an error from rand.Int()
func (n *NUID) RandomizePrefix() {
var cb [preLen]byte
cbs := cb[:]
if nb, err := rand.Read(cbs); nb != preLen || err != nil {
panic(fmt.Sprintf("nuid: failed generating crypto random number: %v\n", err))
}
for i := 0; i < preLen; i++ {
n.pre[i] = digits[int(cbs[i])%base]
}
}