tile38/vendor/golang.org/x/net/http2/writesched_random.go
tidwall cfc65a13f6 Refactor repository and build scripts
This commit includes updates that affects the build, testing, and
deployment of Tile38.

- The root level build.sh has been broken up into multiple scripts
  and placed in the "scripts" directory.

- The vendor directory has been updated to follow the Go modules
  rules, thus `make` should work on isolated environments. Also
  some vendored packages may have been updated to a later
  version, if needed.

- The Makefile has been updated to allow for making single
  binaries such as `make tile38-server`. There is some scaffolding
  during the build process, so from now on all binaries should be
  made using make. For example, to run a development version of
  the tile38-cli binary, do this:
     make tile38-cli && ./tile38-cli
  not this:
     go run cmd/tile38-cli/main.go

- Travis.CI docker push script has been updated to address a
  change to Docker's JSON repo meta output, which in turn fixes
  a bug where new Tile38 versions were not being properly pushed
  to Docker
2019-11-18 10:33:15 -07:00

73 lines
1.9 KiB
Go

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import "math"
// NewRandomWriteScheduler constructs a WriteScheduler that ignores HTTP/2
// priorities. Control frames like SETTINGS and PING are written before DATA
// frames, but if no control frames are queued and multiple streams have queued
// HEADERS or DATA frames, Pop selects a ready stream arbitrarily.
func NewRandomWriteScheduler() WriteScheduler {
return &randomWriteScheduler{sq: make(map[uint32]*writeQueue)}
}
type randomWriteScheduler struct {
// zero are frames not associated with a specific stream.
zero writeQueue
// sq contains the stream-specific queues, keyed by stream ID.
// When a stream is idle or closed, it's deleted from the map.
sq map[uint32]*writeQueue
// pool of empty queues for reuse.
queuePool writeQueuePool
}
func (ws *randomWriteScheduler) OpenStream(streamID uint32, options OpenStreamOptions) {
// no-op: idle streams are not tracked
}
func (ws *randomWriteScheduler) CloseStream(streamID uint32) {
q, ok := ws.sq[streamID]
if !ok {
return
}
delete(ws.sq, streamID)
ws.queuePool.put(q)
}
func (ws *randomWriteScheduler) AdjustStream(streamID uint32, priority PriorityParam) {
// no-op: priorities are ignored
}
func (ws *randomWriteScheduler) Push(wr FrameWriteRequest) {
id := wr.StreamID()
if id == 0 {
ws.zero.push(wr)
return
}
q, ok := ws.sq[id]
if !ok {
q = ws.queuePool.get()
ws.sq[id] = q
}
q.push(wr)
}
func (ws *randomWriteScheduler) Pop() (FrameWriteRequest, bool) {
// Control frames first.
if !ws.zero.empty() {
return ws.zero.shift(), true
}
// Iterate over all non-idle streams until finding one that can be consumed.
for _, q := range ws.sq {
if wr, ok := q.consume(math.MaxInt32); ok {
return wr, true
}
}
return FrameWriteRequest{}, false
}