futriix/src/t_set.c
Binbin 439b0315c8
Fix SPOP/RESTORE propagation when doing lazy free (#12320)
In SPOP, when COUNT is greater than or equal to set's size,
we will remove the set. In dbDelete, we will do DEL or UNLINK
according to the lazy flag. This is also required for propagate.

In RESTORE, we won't store expired keys into the db, see #7472.
When used together with REPLACE, it should emit a DEL or UNLINK
according to the lazy flag.

This PR also adds tests to cover the propagation. The RESTORE
test will also cover #7472.
2023-06-16 08:14:11 -07:00

1681 lines
62 KiB
C

/*
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "server.h"
#include "intset.h" /* Compact integer set structure */
/*-----------------------------------------------------------------------------
* Set Commands
*----------------------------------------------------------------------------*/
void sunionDiffGenericCommand(client *c, robj **setkeys, int setnum,
robj *dstkey, int op);
/* Factory method to return a set that *can* hold "value". When the object has
* an integer-encodable value, an intset will be returned. Otherwise a listpack
* or a regular hash table.
*
* The size hint indicates approximately how many items will be added which is
* used to determine the initial representation. */
robj *setTypeCreate(sds value, size_t size_hint) {
if (isSdsRepresentableAsLongLong(value,NULL) == C_OK && size_hint <= server.set_max_intset_entries)
return createIntsetObject();
if (size_hint <= server.set_max_listpack_entries)
return createSetListpackObject();
/* We may oversize the set by using the hint if the hint is not accurate,
* but we will assume this is acceptable to maximize performance. */
robj *o = createSetObject();
dictExpand(o->ptr, size_hint);
return o;
}
/* Check if the existing set should be converted to another encoding based off the
* the size hint. */
void setTypeMaybeConvert(robj *set, size_t size_hint) {
if ((set->encoding == OBJ_ENCODING_LISTPACK && size_hint > server.set_max_listpack_entries)
|| (set->encoding == OBJ_ENCODING_INTSET && size_hint > server.set_max_intset_entries))
{
setTypeConvertAndExpand(set, OBJ_ENCODING_HT, size_hint, 1);
}
}
/* Return the maximum number of entries to store in an intset. */
static size_t intsetMaxEntries(void) {
size_t max_entries = server.set_max_intset_entries;
/* limit to 1G entries due to intset internals. */
if (max_entries >= 1<<30) max_entries = 1<<30;
return max_entries;
}
/* Converts intset to HT if it contains too many entries. */
static void maybeConvertIntset(robj *subject) {
serverAssert(subject->encoding == OBJ_ENCODING_INTSET);
if (intsetLen(subject->ptr) > intsetMaxEntries())
setTypeConvert(subject,OBJ_ENCODING_HT);
}
/* When you know all set elements are integers, call this to convert the set to
* an intset. No conversion happens if the set contains too many entries for an
* intset. */
static void maybeConvertToIntset(robj *set) {
if (set->encoding == OBJ_ENCODING_INTSET) return; /* already intset */
if (setTypeSize(set) > intsetMaxEntries()) return; /* can't use intset */
intset *is = intsetNew();
char *str;
size_t len;
int64_t llval;
setTypeIterator *si = setTypeInitIterator(set);
while (setTypeNext(si, &str, &len, &llval) != -1) {
if (str) {
/* If the element is returned as a string, we may be able to convert
* it to integer. This happens for OBJ_ENCODING_HT. */
serverAssert(string2ll(str, len, (long long *)&llval));
}
uint8_t success = 0;
is = intsetAdd(is, llval, &success);
serverAssert(success);
}
setTypeReleaseIterator(si);
freeSetObject(set); /* frees the internals but not robj itself */
set->ptr = is;
set->encoding = OBJ_ENCODING_INTSET;
}
/* Add the specified sds value into a set.
*
* If the value was already member of the set, nothing is done and 0 is
* returned, otherwise the new element is added and 1 is returned. */
int setTypeAdd(robj *subject, sds value) {
return setTypeAddAux(subject, value, sdslen(value), 0, 1);
}
/* Add member. This function is optimized for the different encodings. The
* value can be provided as an sds string (indicated by passing str_is_sds =
* 1), as string and length (str_is_sds = 0) or as an integer in which case str
* is set to NULL and llval is provided instead.
*
* Returns 1 if the value was added and 0 if it was already a member. */
int setTypeAddAux(robj *set, char *str, size_t len, int64_t llval, int str_is_sds) {
char tmpbuf[LONG_STR_SIZE];
if (!str) {
if (set->encoding == OBJ_ENCODING_INTSET) {
uint8_t success = 0;
set->ptr = intsetAdd(set->ptr, llval, &success);
if (success) maybeConvertIntset(set);
return success;
}
/* Convert int to string. */
len = ll2string(tmpbuf, sizeof tmpbuf, llval);
str = tmpbuf;
str_is_sds = 0;
}
serverAssert(str);
if (set->encoding == OBJ_ENCODING_HT) {
/* Avoid duping the string if it is an sds string. */
sds sdsval = str_is_sds ? (sds)str : sdsnewlen(str, len);
dict *ht = set->ptr;
void *position = dictFindPositionForInsert(ht, sdsval, NULL);
if (position) {
/* Key doesn't already exist in the set. Add it but dup the key. */
if (sdsval == str) sdsval = sdsdup(sdsval);
dictInsertAtPosition(ht, sdsval, position);
} else if (sdsval != str) {
/* String is already a member. Free our temporary sds copy. */
sdsfree(sdsval);
}
return (position != NULL);
} else if (set->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *lp = set->ptr;
unsigned char *p = lpFirst(lp);
if (p != NULL)
p = lpFind(lp, p, (unsigned char*)str, len, 0);
if (p == NULL) {
/* Not found. */
if (lpLength(lp) < server.set_max_listpack_entries &&
len <= server.set_max_listpack_value &&
lpSafeToAdd(lp, len))
{
if (str == tmpbuf) {
/* This came in as integer so we can avoid parsing it again.
* TODO: Create and use lpFindInteger; don't go via string. */
lp = lpAppendInteger(lp, llval);
} else {
lp = lpAppend(lp, (unsigned char*)str, len);
}
set->ptr = lp;
} else {
/* Size limit is reached. Convert to hashtable and add. */
setTypeConvertAndExpand(set, OBJ_ENCODING_HT, lpLength(lp) + 1, 1);
serverAssert(dictAdd(set->ptr,sdsnewlen(str,len),NULL) == DICT_OK);
}
return 1;
}
} else if (set->encoding == OBJ_ENCODING_INTSET) {
long long value;
if (string2ll(str, len, &value)) {
uint8_t success = 0;
set->ptr = intsetAdd(set->ptr,value,&success);
if (success) {
maybeConvertIntset(set);
return 1;
}
} else {
/* Check if listpack encoding is safe not to cross any threshold. */
size_t maxelelen = 0, totsize = 0;
unsigned long n = intsetLen(set->ptr);
if (n != 0) {
size_t elelen1 = sdigits10(intsetMax(set->ptr));
size_t elelen2 = sdigits10(intsetMin(set->ptr));
maxelelen = max(elelen1, elelen2);
size_t s1 = lpEstimateBytesRepeatedInteger(intsetMax(set->ptr), n);
size_t s2 = lpEstimateBytesRepeatedInteger(intsetMin(set->ptr), n);
totsize = max(s1, s2);
}
if (intsetLen((const intset*)set->ptr) < server.set_max_listpack_entries &&
len <= server.set_max_listpack_value &&
maxelelen <= server.set_max_listpack_value &&
lpSafeToAdd(NULL, totsize + len))
{
/* In the "safe to add" check above we assumed all elements in
* the intset are of size maxelelen. This is an upper bound. */
setTypeConvertAndExpand(set, OBJ_ENCODING_LISTPACK,
intsetLen(set->ptr) + 1, 1);
unsigned char *lp = set->ptr;
lp = lpAppend(lp, (unsigned char *)str, len);
lp = lpShrinkToFit(lp);
set->ptr = lp;
return 1;
} else {
setTypeConvertAndExpand(set, OBJ_ENCODING_HT,
intsetLen(set->ptr) + 1, 1);
/* The set *was* an intset and this value is not integer
* encodable, so dictAdd should always work. */
serverAssert(dictAdd(set->ptr,sdsnewlen(str,len),NULL) == DICT_OK);
return 1;
}
}
} else {
serverPanic("Unknown set encoding");
}
return 0;
}
/* Deletes a value provided as an sds string from the set. Returns 1 if the
* value was deleted and 0 if it was not a member of the set. */
int setTypeRemove(robj *setobj, sds value) {
return setTypeRemoveAux(setobj, value, sdslen(value), 0, 1);
}
/* Remove a member. This function is optimized for the different encodings. The
* value can be provided as an sds string (indicated by passing str_is_sds =
* 1), as string and length (str_is_sds = 0) or as an integer in which case str
* is set to NULL and llval is provided instead.
*
* Returns 1 if the value was deleted and 0 if it was not a member of the set. */
int setTypeRemoveAux(robj *setobj, char *str, size_t len, int64_t llval, int str_is_sds) {
char tmpbuf[LONG_STR_SIZE];
if (!str) {
if (setobj->encoding == OBJ_ENCODING_INTSET) {
int success;
setobj->ptr = intsetRemove(setobj->ptr,llval,&success);
return success;
}
len = ll2string(tmpbuf, sizeof tmpbuf, llval);
str = tmpbuf;
str_is_sds = 0;
}
if (setobj->encoding == OBJ_ENCODING_HT) {
sds sdsval = str_is_sds ? (sds)str : sdsnewlen(str, len);
int deleted = (dictDelete(setobj->ptr, sdsval) == DICT_OK);
if (deleted && htNeedsResize(setobj->ptr)) dictResize(setobj->ptr);
if (sdsval != str) sdsfree(sdsval); /* free temp copy */
return deleted;
} else if (setobj->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *lp = setobj->ptr;
unsigned char *p = lpFirst(lp);
if (p == NULL) return 0;
p = lpFind(lp, p, (unsigned char*)str, len, 0);
if (p != NULL) {
lp = lpDelete(lp, p, NULL);
setobj->ptr = lp;
return 1;
}
} else if (setobj->encoding == OBJ_ENCODING_INTSET) {
long long llval;
if (string2ll(str, len, &llval)) {
int success;
setobj->ptr = intsetRemove(setobj->ptr,llval,&success);
if (success) return 1;
}
} else {
serverPanic("Unknown set encoding");
}
return 0;
}
/* Check if an sds string is a member of the set. Returns 1 if the value is a
* member of the set and 0 if it isn't. */
int setTypeIsMember(robj *subject, sds value) {
return setTypeIsMemberAux(subject, value, sdslen(value), 0, 1);
}
/* Membership checking optimized for the different encodings. The value can be
* provided as an sds string (indicated by passing str_is_sds = 1), as string
* and length (str_is_sds = 0) or as an integer in which case str is set to NULL
* and llval is provided instead.
*
* Returns 1 if the value is a member of the set and 0 if it isn't. */
int setTypeIsMemberAux(robj *set, char *str, size_t len, int64_t llval, int str_is_sds) {
char tmpbuf[LONG_STR_SIZE];
if (!str) {
if (set->encoding == OBJ_ENCODING_INTSET)
return intsetFind(set->ptr, llval);
len = ll2string(tmpbuf, sizeof tmpbuf, llval);
str = tmpbuf;
str_is_sds = 0;
}
if (set->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *lp = set->ptr;
unsigned char *p = lpFirst(lp);
return p && lpFind(lp, p, (unsigned char*)str, len, 0);
} else if (set->encoding == OBJ_ENCODING_INTSET) {
long long llval;
return string2ll(str, len, &llval) && intsetFind(set->ptr, llval);
} else if (set->encoding == OBJ_ENCODING_HT && str_is_sds) {
return dictFind(set->ptr, (sds)str) != NULL;
} else if (set->encoding == OBJ_ENCODING_HT) {
sds sdsval = sdsnewlen(str, len);
int result = dictFind(set->ptr, sdsval) != NULL;
sdsfree(sdsval);
return result;
} else {
serverPanic("Unknown set encoding");
}
}
setTypeIterator *setTypeInitIterator(robj *subject) {
setTypeIterator *si = zmalloc(sizeof(setTypeIterator));
si->subject = subject;
si->encoding = subject->encoding;
if (si->encoding == OBJ_ENCODING_HT) {
si->di = dictGetIterator(subject->ptr);
} else if (si->encoding == OBJ_ENCODING_INTSET) {
si->ii = 0;
} else if (si->encoding == OBJ_ENCODING_LISTPACK) {
si->lpi = NULL;
} else {
serverPanic("Unknown set encoding");
}
return si;
}
void setTypeReleaseIterator(setTypeIterator *si) {
if (si->encoding == OBJ_ENCODING_HT)
dictReleaseIterator(si->di);
zfree(si);
}
/* Move to the next entry in the set. Returns the object at the current
* position, as a string or as an integer.
*
* Since set elements can be internally be stored as SDS strings, char buffers or
* simple arrays of integers, setTypeNext returns the encoding of the
* set object you are iterating, and will populate the appropriate pointers
* (str and len) or (llele) depending on whether the value is stored as a string
* or as an integer internally.
*
* If OBJ_ENCODING_HT is returned, then str points to an sds string and can be
* used as such. If OBJ_ENCODING_INTSET, then llele is populated and str is
* pointed to NULL. If OBJ_ENCODING_LISTPACK is returned, the value can be
* either a string or an integer. If *str is not NULL, then str and len are
* populated with the string content and length. Otherwise, llele populated with
* an integer value.
*
* Note that str, len and llele pointers should all be passed and cannot
* be NULL since the function will try to defensively populate the non
* used field with values which are easy to trap if misused.
*
* When there are no more elements -1 is returned. */
int setTypeNext(setTypeIterator *si, char **str, size_t *len, int64_t *llele) {
if (si->encoding == OBJ_ENCODING_HT) {
dictEntry *de = dictNext(si->di);
if (de == NULL) return -1;
*str = dictGetKey(de);
*len = sdslen(*str);
*llele = -123456789; /* Not needed. Defensive. */
} else if (si->encoding == OBJ_ENCODING_INTSET) {
if (!intsetGet(si->subject->ptr,si->ii++,llele))
return -1;
*str = NULL;
} else if (si->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *lp = si->subject->ptr;
unsigned char *lpi = si->lpi;
if (lpi == NULL) {
lpi = lpFirst(lp);
} else {
lpi = lpNext(lp, lpi);
}
if (lpi == NULL) return -1;
si->lpi = lpi;
unsigned int l;
*str = (char *)lpGetValue(lpi, &l, (long long *)llele);
*len = (size_t)l;
} else {
serverPanic("Wrong set encoding in setTypeNext");
}
return si->encoding;
}
/* The not copy on write friendly version but easy to use version
* of setTypeNext() is setTypeNextObject(), returning new SDS
* strings. So if you don't retain a pointer to this object you should call
* sdsfree() against it.
*
* This function is the way to go for write operations where COW is not
* an issue. */
sds setTypeNextObject(setTypeIterator *si) {
int64_t intele;
char *str;
size_t len;
if (setTypeNext(si, &str, &len, &intele) == -1) return NULL;
if (str != NULL) return sdsnewlen(str, len);
return sdsfromlonglong(intele);
}
/* Return random element from a non empty set.
* The returned element can be an int64_t value if the set is encoded
* as an "intset" blob of integers, or an string.
*
* The caller provides three pointers to be populated with the right
* object. The return value of the function is the object->encoding
* field of the object and can be used by the caller to check if the
* int64_t pointer or the str and len pointers were populated, as for
* setTypeNext. If OBJ_ENCODING_HT is returned, str is pointed to a
* string which is actually an sds string and it can be used as such.
*
* Note that both the str, len and llele pointers should be passed and cannot
* be NULL. If str is set to NULL, the value is an integer stored in llele. */
int setTypeRandomElement(robj *setobj, char **str, size_t *len, int64_t *llele) {
if (setobj->encoding == OBJ_ENCODING_HT) {
dictEntry *de = dictGetFairRandomKey(setobj->ptr);
*str = dictGetKey(de);
*len = sdslen(*str);
*llele = -123456789; /* Not needed. Defensive. */
} else if (setobj->encoding == OBJ_ENCODING_INTSET) {
*llele = intsetRandom(setobj->ptr);
*str = NULL; /* Not needed. Defensive. */
} else if (setobj->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *lp = setobj->ptr;
int r = rand() % lpLength(lp);
unsigned char *p = lpSeek(lp, r);
unsigned int l;
*str = (char *)lpGetValue(p, &l, (long long *)llele);
*len = (size_t)l;
} else {
serverPanic("Unknown set encoding");
}
return setobj->encoding;
}
/* Pops a random element and returns it as an object. */
robj *setTypePopRandom(robj *set) {
robj *obj;
if (set->encoding == OBJ_ENCODING_LISTPACK) {
/* Find random and delete it without re-seeking the listpack. */
unsigned int i = 0;
unsigned char *p = lpNextRandom(set->ptr, lpFirst(set->ptr), &i, 1, 0);
unsigned int len = 0; /* initialize to silence warning */
long long llele = 0; /* initialize to silence warning */
char *str = (char *)lpGetValue(p, &len, &llele);
if (str)
obj = createStringObject(str, len);
else
obj = createStringObjectFromLongLong(llele);
set->ptr = lpDelete(set->ptr, p, NULL);
} else {
char *str;
size_t len = 0;
int64_t llele = 0;
int encoding = setTypeRandomElement(set, &str, &len, &llele);
if (str)
obj = createStringObject(str, len);
else
obj = createStringObjectFromLongLong(llele);
setTypeRemoveAux(set, str, len, llele, encoding == OBJ_ENCODING_HT);
}
return obj;
}
unsigned long setTypeSize(const robj *subject) {
if (subject->encoding == OBJ_ENCODING_HT) {
return dictSize((const dict*)subject->ptr);
} else if (subject->encoding == OBJ_ENCODING_INTSET) {
return intsetLen((const intset*)subject->ptr);
} else if (subject->encoding == OBJ_ENCODING_LISTPACK) {
return lpLength((unsigned char *)subject->ptr);
} else {
serverPanic("Unknown set encoding");
}
}
/* Convert the set to specified encoding. The resulting dict (when converting
* to a hash table) is presized to hold the number of elements in the original
* set. */
void setTypeConvert(robj *setobj, int enc) {
setTypeConvertAndExpand(setobj, enc, setTypeSize(setobj), 1);
}
/* Converts a set to the specified encoding, pre-sizing it for 'cap' elements.
* The 'panic' argument controls whether to panic on OOM (panic=1) or return
* C_ERR on OOM (panic=0). If panic=1 is given, this function always returns
* C_OK. */
int setTypeConvertAndExpand(robj *setobj, int enc, unsigned long cap, int panic) {
setTypeIterator *si;
serverAssertWithInfo(NULL,setobj,setobj->type == OBJ_SET &&
setobj->encoding != enc);
if (enc == OBJ_ENCODING_HT) {
dict *d = dictCreate(&setDictType);
sds element;
/* Presize the dict to avoid rehashing */
if (panic) {
dictExpand(d, cap);
} else if (dictTryExpand(d, cap) != DICT_OK) {
dictRelease(d);
return C_ERR;
}
/* To add the elements we extract integers and create redis objects */
si = setTypeInitIterator(setobj);
while ((element = setTypeNextObject(si)) != NULL) {
serverAssert(dictAdd(d,element,NULL) == DICT_OK);
}
setTypeReleaseIterator(si);
freeSetObject(setobj); /* frees the internals but not setobj itself */
setobj->encoding = OBJ_ENCODING_HT;
setobj->ptr = d;
} else if (enc == OBJ_ENCODING_LISTPACK) {
/* Preallocate the minimum two bytes per element (enc/value + backlen) */
size_t estcap = cap * 2;
if (setobj->encoding == OBJ_ENCODING_INTSET && setTypeSize(setobj) > 0) {
/* If we're converting from intset, we have a better estimate. */
size_t s1 = lpEstimateBytesRepeatedInteger(intsetMin(setobj->ptr), cap);
size_t s2 = lpEstimateBytesRepeatedInteger(intsetMax(setobj->ptr), cap);
estcap = max(s1, s2);
}
unsigned char *lp = lpNew(estcap);
char *str;
size_t len;
int64_t llele;
si = setTypeInitIterator(setobj);
while (setTypeNext(si, &str, &len, &llele) != -1) {
if (str != NULL)
lp = lpAppend(lp, (unsigned char *)str, len);
else
lp = lpAppendInteger(lp, llele);
}
setTypeReleaseIterator(si);
freeSetObject(setobj); /* frees the internals but not setobj itself */
setobj->encoding = OBJ_ENCODING_LISTPACK;
setobj->ptr = lp;
} else {
serverPanic("Unsupported set conversion");
}
return C_OK;
}
/* This is a helper function for the COPY command.
* Duplicate a set object, with the guarantee that the returned object
* has the same encoding as the original one.
*
* The resulting object always has refcount set to 1 */
robj *setTypeDup(robj *o) {
robj *set;
setTypeIterator *si;
serverAssert(o->type == OBJ_SET);
/* Create a new set object that have the same encoding as the original object's encoding */
if (o->encoding == OBJ_ENCODING_INTSET) {
intset *is = o->ptr;
size_t size = intsetBlobLen(is);
intset *newis = zmalloc(size);
memcpy(newis,is,size);
set = createObject(OBJ_SET, newis);
set->encoding = OBJ_ENCODING_INTSET;
} else if (o->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *lp = o->ptr;
size_t sz = lpBytes(lp);
unsigned char *new_lp = zmalloc(sz);
memcpy(new_lp, lp, sz);
set = createObject(OBJ_SET, new_lp);
set->encoding = OBJ_ENCODING_LISTPACK;
} else if (o->encoding == OBJ_ENCODING_HT) {
set = createSetObject();
dict *d = o->ptr;
dictExpand(set->ptr, dictSize(d));
si = setTypeInitIterator(o);
char *str;
size_t len;
int64_t intobj;
while (setTypeNext(si, &str, &len, &intobj) != -1) {
setTypeAdd(set, (sds)str);
}
setTypeReleaseIterator(si);
} else {
serverPanic("Unknown set encoding");
}
return set;
}
void saddCommand(client *c) {
robj *set;
int j, added = 0;
set = lookupKeyWrite(c->db,c->argv[1]);
if (checkType(c,set,OBJ_SET)) return;
if (set == NULL) {
set = setTypeCreate(c->argv[2]->ptr, c->argc - 2);
dbAdd(c->db,c->argv[1],set);
} else {
setTypeMaybeConvert(set, c->argc - 2);
}
for (j = 2; j < c->argc; j++) {
if (setTypeAdd(set,c->argv[j]->ptr)) added++;
}
if (added) {
signalModifiedKey(c,c->db,c->argv[1]);
notifyKeyspaceEvent(NOTIFY_SET,"sadd",c->argv[1],c->db->id);
}
server.dirty += added;
addReplyLongLong(c,added);
}
void sremCommand(client *c) {
robj *set;
int j, deleted = 0, keyremoved = 0;
if ((set = lookupKeyWriteOrReply(c,c->argv[1],shared.czero)) == NULL ||
checkType(c,set,OBJ_SET)) return;
for (j = 2; j < c->argc; j++) {
if (setTypeRemove(set,c->argv[j]->ptr)) {
deleted++;
if (setTypeSize(set) == 0) {
dbDelete(c->db,c->argv[1]);
keyremoved = 1;
break;
}
}
}
if (deleted) {
signalModifiedKey(c,c->db,c->argv[1]);
notifyKeyspaceEvent(NOTIFY_SET,"srem",c->argv[1],c->db->id);
if (keyremoved)
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",c->argv[1],
c->db->id);
server.dirty += deleted;
}
addReplyLongLong(c,deleted);
}
void smoveCommand(client *c) {
robj *srcset, *dstset, *ele;
srcset = lookupKeyWrite(c->db,c->argv[1]);
dstset = lookupKeyWrite(c->db,c->argv[2]);
ele = c->argv[3];
/* If the source key does not exist return 0 */
if (srcset == NULL) {
addReply(c,shared.czero);
return;
}
/* If the source key has the wrong type, or the destination key
* is set and has the wrong type, return with an error. */
if (checkType(c,srcset,OBJ_SET) ||
checkType(c,dstset,OBJ_SET)) return;
/* If srcset and dstset are equal, SMOVE is a no-op */
if (srcset == dstset) {
addReply(c,setTypeIsMember(srcset,ele->ptr) ?
shared.cone : shared.czero);
return;
}
/* If the element cannot be removed from the src set, return 0. */
if (!setTypeRemove(srcset,ele->ptr)) {
addReply(c,shared.czero);
return;
}
notifyKeyspaceEvent(NOTIFY_SET,"srem",c->argv[1],c->db->id);
/* Remove the src set from the database when empty */
if (setTypeSize(srcset) == 0) {
dbDelete(c->db,c->argv[1]);
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",c->argv[1],c->db->id);
}
/* Create the destination set when it doesn't exist */
if (!dstset) {
dstset = setTypeCreate(ele->ptr, 1);
dbAdd(c->db,c->argv[2],dstset);
}
signalModifiedKey(c,c->db,c->argv[1]);
server.dirty++;
/* An extra key has changed when ele was successfully added to dstset */
if (setTypeAdd(dstset,ele->ptr)) {
server.dirty++;
signalModifiedKey(c,c->db,c->argv[2]);
notifyKeyspaceEvent(NOTIFY_SET,"sadd",c->argv[2],c->db->id);
}
addReply(c,shared.cone);
}
void sismemberCommand(client *c) {
robj *set;
if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
checkType(c,set,OBJ_SET)) return;
if (setTypeIsMember(set,c->argv[2]->ptr))
addReply(c,shared.cone);
else
addReply(c,shared.czero);
}
void smismemberCommand(client *c) {
robj *set;
int j;
/* Don't abort when the key cannot be found. Non-existing keys are empty
* sets, where SMISMEMBER should respond with a series of zeros. */
set = lookupKeyRead(c->db,c->argv[1]);
if (set && checkType(c,set,OBJ_SET)) return;
addReplyArrayLen(c,c->argc - 2);
for (j = 2; j < c->argc; j++) {
if (set && setTypeIsMember(set,c->argv[j]->ptr))
addReply(c,shared.cone);
else
addReply(c,shared.czero);
}
}
void scardCommand(client *c) {
robj *o;
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
checkType(c,o,OBJ_SET)) return;
addReplyLongLong(c,setTypeSize(o));
}
/* Handle the "SPOP key <count>" variant. The normal version of the
* command is handled by the spopCommand() function itself. */
/* How many times bigger should be the set compared to the remaining size
* for us to use the "create new set" strategy? Read later in the
* implementation for more info. */
#define SPOP_MOVE_STRATEGY_MUL 5
void spopWithCountCommand(client *c) {
long l;
unsigned long count, size;
robj *set;
/* Get the count argument */
if (getPositiveLongFromObjectOrReply(c,c->argv[2],&l,NULL) != C_OK) return;
count = (unsigned long) l;
/* Make sure a key with the name inputted exists, and that it's type is
* indeed a set. Otherwise, return nil */
if ((set = lookupKeyWriteOrReply(c,c->argv[1],shared.emptyset[c->resp]))
== NULL || checkType(c,set,OBJ_SET)) return;
/* If count is zero, serve an empty set ASAP to avoid special
* cases later. */
if (count == 0) {
addReply(c,shared.emptyset[c->resp]);
return;
}
size = setTypeSize(set);
/* Generate an SPOP keyspace notification */
notifyKeyspaceEvent(NOTIFY_SET,"spop",c->argv[1],c->db->id);
server.dirty += (count >= size) ? size : count;
/* CASE 1:
* The number of requested elements is greater than or equal to
* the number of elements inside the set: simply return the whole set. */
if (count >= size) {
/* We just return the entire set */
sunionDiffGenericCommand(c,c->argv+1,1,NULL,SET_OP_UNION);
/* Delete the set as it is now empty */
dbDelete(c->db,c->argv[1]);
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",c->argv[1],c->db->id);
/* todo: Move the spop notification to be executed after the command logic. */
/* Propagate this command as a DEL or UNLINK operation */
robj *aux = server.lazyfree_lazy_server_del ? shared.unlink : shared.del;
rewriteClientCommandVector(c, 2, aux, c->argv[1]);
signalModifiedKey(c,c->db,c->argv[1]);
return;
}
/* Case 2 and 3 require to replicate SPOP as a set of SREM commands.
* Prepare our replication argument vector. Also send the array length
* which is common to both the code paths. */
unsigned long batchsize = count > 1024 ? 1024 : count;
robj **propargv = zmalloc(sizeof(robj *) * (2 + batchsize));
propargv[0] = shared.srem;
propargv[1] = c->argv[1];
unsigned long propindex = 2;
addReplySetLen(c,count);
/* Common iteration vars. */
char *str;
size_t len;
int64_t llele;
unsigned long remaining = size-count; /* Elements left after SPOP. */
/* If we are here, the number of requested elements is less than the
* number of elements inside the set. Also we are sure that count < size.
* Use two different strategies.
*
* CASE 2: The number of elements to return is small compared to the
* set size. We can just extract random elements and return them to
* the set. */
if (remaining*SPOP_MOVE_STRATEGY_MUL > count &&
set->encoding == OBJ_ENCODING_LISTPACK)
{
/* Specialized case for listpack. Traverse it only once. */
unsigned char *lp = set->ptr;
unsigned char *p = lpFirst(lp);
unsigned int index = 0;
unsigned char **ps = zmalloc(sizeof(char *) * count);
for (unsigned long i = 0; i < count; i++) {
p = lpNextRandom(lp, p, &index, count - i, 0);
unsigned int len;
str = (char *)lpGetValue(p, &len, (long long *)&llele);
if (str) {
addReplyBulkCBuffer(c, str, len);
propargv[propindex++] = createStringObject(str, len);
} else {
addReplyBulkLongLong(c, llele);
propargv[propindex++] = createStringObjectFromLongLong(llele);
}
/* Replicate/AOF this command as an SREM operation */
if (propindex == 2 + batchsize) {
alsoPropagate(c->db->id, propargv, propindex, PROPAGATE_AOF | PROPAGATE_REPL);
for (unsigned long j = 2; j < propindex; j++) {
decrRefCount(propargv[j]);
}
propindex = 2;
}
/* Store pointer for later deletion and move to next. */
ps[i] = p;
p = lpNext(lp, p);
index++;
}
lp = lpBatchDelete(lp, ps, count);
zfree(ps);
set->ptr = lp;
} else if (remaining*SPOP_MOVE_STRATEGY_MUL > count) {
for (unsigned long i = 0; i < count; i++) {
propargv[propindex] = setTypePopRandom(set);
addReplyBulk(c, propargv[propindex]);
propindex++;
/* Replicate/AOF this command as an SREM operation */
if (propindex == 2 + batchsize) {
alsoPropagate(c->db->id, propargv, propindex, PROPAGATE_AOF | PROPAGATE_REPL);
for (unsigned long j = 2; j < propindex; j++) {
decrRefCount(propargv[j]);
}
propindex = 2;
}
}
} else {
/* CASE 3: The number of elements to return is very big, approaching
* the size of the set itself. After some time extracting random elements
* from such a set becomes computationally expensive, so we use
* a different strategy, we extract random elements that we don't
* want to return (the elements that will remain part of the set),
* creating a new set as we do this (that will be stored as the original
* set). Then we return the elements left in the original set and
* release it. */
robj *newset = NULL;
/* Create a new set with just the remaining elements. */
if (set->encoding == OBJ_ENCODING_LISTPACK) {
/* Specialized case for listpack. Traverse it only once. */
newset = createSetListpackObject();
unsigned char *lp = set->ptr;
unsigned char *p = lpFirst(lp);
unsigned int index = 0;
unsigned char **ps = zmalloc(sizeof(char *) * remaining);
for (unsigned long i = 0; i < remaining; i++) {
p = lpNextRandom(lp, p, &index, remaining - i, 0);
unsigned int len;
str = (char *)lpGetValue(p, &len, (long long *)&llele);
setTypeAddAux(newset, str, len, llele, 0);
ps[i] = p;
p = lpNext(lp, p);
index++;
}
lp = lpBatchDelete(lp, ps, remaining);
zfree(ps);
set->ptr = lp;
} else {
while(remaining--) {
int encoding = setTypeRandomElement(set, &str, &len, &llele);
if (!newset) {
newset = str ? createSetListpackObject() : createIntsetObject();
}
setTypeAddAux(newset, str, len, llele, encoding == OBJ_ENCODING_HT);
setTypeRemoveAux(set, str, len, llele, encoding == OBJ_ENCODING_HT);
}
}
/* Transfer the old set to the client. */
setTypeIterator *si;
si = setTypeInitIterator(set);
while (setTypeNext(si, &str, &len, &llele) != -1) {
if (str == NULL) {
addReplyBulkLongLong(c,llele);
propargv[propindex++] = createStringObjectFromLongLong(llele);
} else {
addReplyBulkCBuffer(c, str, len);
propargv[propindex++] = createStringObject(str, len);
}
/* Replicate/AOF this command as an SREM operation */
if (propindex == 2 + batchsize) {
alsoPropagate(c->db->id, propargv, propindex, PROPAGATE_AOF | PROPAGATE_REPL);
for (unsigned long i = 2; i < propindex; i++) {
decrRefCount(propargv[i]);
}
propindex = 2;
}
}
setTypeReleaseIterator(si);
/* Assign the new set as the key value. */
dbReplaceValue(c->db,c->argv[1],newset);
}
/* Replicate/AOF the remaining elements as an SREM operation */
if (propindex != 2) {
alsoPropagate(c->db->id, propargv, propindex, PROPAGATE_AOF | PROPAGATE_REPL);
for (unsigned long i = 2; i < propindex; i++) {
decrRefCount(propargv[i]);
}
propindex = 2;
}
zfree(propargv);
/* Don't propagate the command itself even if we incremented the
* dirty counter. We don't want to propagate an SPOP command since
* we propagated the command as a set of SREMs operations using
* the alsoPropagate() API. */
preventCommandPropagation(c);
signalModifiedKey(c,c->db,c->argv[1]);
}
void spopCommand(client *c) {
robj *set, *ele;
if (c->argc == 3) {
spopWithCountCommand(c);
return;
} else if (c->argc > 3) {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
/* Make sure a key with the name inputted exists, and that it's type is
* indeed a set */
if ((set = lookupKeyWriteOrReply(c,c->argv[1],shared.null[c->resp]))
== NULL || checkType(c,set,OBJ_SET)) return;
/* Pop a random element from the set */
ele = setTypePopRandom(set);
notifyKeyspaceEvent(NOTIFY_SET,"spop",c->argv[1],c->db->id);
/* Replicate/AOF this command as an SREM operation */
rewriteClientCommandVector(c,3,shared.srem,c->argv[1],ele);
/* Add the element to the reply */
addReplyBulk(c, ele);
decrRefCount(ele);
/* Delete the set if it's empty */
if (setTypeSize(set) == 0) {
dbDelete(c->db,c->argv[1]);
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",c->argv[1],c->db->id);
}
/* Set has been modified */
signalModifiedKey(c,c->db,c->argv[1]);
server.dirty++;
}
/* handle the "SRANDMEMBER key <count>" variant. The normal version of the
* command is handled by the srandmemberCommand() function itself. */
/* How many times bigger should be the set compared to the requested size
* for us to don't use the "remove elements" strategy? Read later in the
* implementation for more info. */
#define SRANDMEMBER_SUB_STRATEGY_MUL 3
/* If client is trying to ask for a very large number of random elements,
* queuing may consume an unlimited amount of memory, so we want to limit
* the number of randoms per time. */
#define SRANDFIELD_RANDOM_SAMPLE_LIMIT 1000
void srandmemberWithCountCommand(client *c) {
long l;
unsigned long count, size;
int uniq = 1;
robj *set;
char *str;
size_t len;
int64_t llele;
dict *d;
if (getRangeLongFromObjectOrReply(c,c->argv[2],-LONG_MAX,LONG_MAX,&l,NULL) != C_OK) return;
if (l >= 0) {
count = (unsigned long) l;
} else {
/* A negative count means: return the same elements multiple times
* (i.e. don't remove the extracted element after every extraction). */
count = -l;
uniq = 0;
}
if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.emptyarray))
== NULL || checkType(c,set,OBJ_SET)) return;
size = setTypeSize(set);
/* If count is zero, serve it ASAP to avoid special cases later. */
if (count == 0) {
addReply(c,shared.emptyarray);
return;
}
/* CASE 1: The count was negative, so the extraction method is just:
* "return N random elements" sampling the whole set every time.
* This case is trivial and can be served without auxiliary data
* structures. This case is the only one that also needs to return the
* elements in random order. */
if (!uniq || count == 1) {
addReplyArrayLen(c,count);
if (set->encoding == OBJ_ENCODING_LISTPACK && count > 1) {
/* Specialized case for listpack, traversing it only once. */
unsigned long limit, sample_count;
limit = count > SRANDFIELD_RANDOM_SAMPLE_LIMIT ? SRANDFIELD_RANDOM_SAMPLE_LIMIT : count;
listpackEntry *entries = zmalloc(limit * sizeof(listpackEntry));
while (count) {
sample_count = count > limit ? limit : count;
count -= sample_count;
lpRandomEntries(set->ptr, sample_count, entries);
for (unsigned long i = 0; i < sample_count; i++) {
if (entries[i].sval)
addReplyBulkCBuffer(c, entries[i].sval, entries[i].slen);
else
addReplyBulkLongLong(c, entries[i].lval);
}
if (c->flags & CLIENT_CLOSE_ASAP)
break;
}
zfree(entries);
return;
}
while(count--) {
setTypeRandomElement(set, &str, &len, &llele);
if (str == NULL) {
addReplyBulkLongLong(c,llele);
} else {
addReplyBulkCBuffer(c, str, len);
}
if (c->flags & CLIENT_CLOSE_ASAP)
break;
}
return;
}
/* CASE 2:
* The number of requested elements is greater than the number of
* elements inside the set: simply return the whole set. */
if (count >= size) {
setTypeIterator *si;
addReplyArrayLen(c,size);
si = setTypeInitIterator(set);
while (setTypeNext(si, &str, &len, &llele) != -1) {
if (str == NULL) {
addReplyBulkLongLong(c,llele);
} else {
addReplyBulkCBuffer(c, str, len);
}
size--;
}
setTypeReleaseIterator(si);
serverAssert(size==0);
return;
}
/* CASE 2.5 listpack only. Sampling unique elements, in non-random order.
* Listpack encoded sets are meant to be relatively small, so
* SRANDMEMBER_SUB_STRATEGY_MUL isn't necessary and we rather not make
* copies of the entries. Instead, we emit them directly to the output
* buffer.
*
* And it is inefficient to repeatedly pick one random element from a
* listpack in CASE 4. So we use this instead. */
if (set->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *lp = set->ptr;
unsigned char *p = lpFirst(lp);
unsigned int i = 0;
addReplyArrayLen(c, count);
while (count) {
p = lpNextRandom(lp, p, &i, count--, 0);
unsigned int len;
str = (char *)lpGetValue(p, &len, (long long *)&llele);
if (str == NULL) {
addReplyBulkLongLong(c, llele);
} else {
addReplyBulkCBuffer(c, str, len);
}
p = lpNext(lp, p);
i++;
}
return;
}
/* For CASE 3 and CASE 4 we need an auxiliary dictionary. */
d = dictCreate(&sdsReplyDictType);
/* CASE 3:
* The number of elements inside the set is not greater than
* SRANDMEMBER_SUB_STRATEGY_MUL times the number of requested elements.
* In this case we create a set from scratch with all the elements, and
* subtract random elements to reach the requested number of elements.
*
* This is done because if the number of requested elements is just
* a bit less than the number of elements in the set, the natural approach
* used into CASE 4 is highly inefficient. */
if (count*SRANDMEMBER_SUB_STRATEGY_MUL > size) {
setTypeIterator *si;
/* Add all the elements into the temporary dictionary. */
si = setTypeInitIterator(set);
dictExpand(d, size);
while (setTypeNext(si, &str, &len, &llele) != -1) {
int retval = DICT_ERR;
if (str == NULL) {
retval = dictAdd(d,sdsfromlonglong(llele),NULL);
} else {
retval = dictAdd(d, sdsnewlen(str, len), NULL);
}
serverAssert(retval == DICT_OK);
}
setTypeReleaseIterator(si);
serverAssert(dictSize(d) == size);
/* Remove random elements to reach the right count. */
while (size > count) {
dictEntry *de;
de = dictGetFairRandomKey(d);
dictUnlink(d,dictGetKey(de));
sdsfree(dictGetKey(de));
dictFreeUnlinkedEntry(d,de);
size--;
}
}
/* CASE 4: We have a big set compared to the requested number of elements.
* In this case we can simply get random elements from the set and add
* to the temporary set, trying to eventually get enough unique elements
* to reach the specified count. */
else {
unsigned long added = 0;
sds sdsele;
dictExpand(d, count);
while (added < count) {
setTypeRandomElement(set, &str, &len, &llele);
if (str == NULL) {
sdsele = sdsfromlonglong(llele);
} else {
sdsele = sdsnewlen(str, len);
}
/* Try to add the object to the dictionary. If it already exists
* free it, otherwise increment the number of objects we have
* in the result dictionary. */
if (dictAdd(d,sdsele,NULL) == DICT_OK)
added++;
else
sdsfree(sdsele);
}
}
/* CASE 3 & 4: send the result to the user. */
{
dictIterator *di;
dictEntry *de;
addReplyArrayLen(c,count);
di = dictGetIterator(d);
while((de = dictNext(di)) != NULL)
addReplyBulkSds(c,dictGetKey(de));
dictReleaseIterator(di);
dictRelease(d);
}
}
/* SRANDMEMBER <key> [<count>] */
void srandmemberCommand(client *c) {
robj *set;
char *str;
size_t len;
int64_t llele;
if (c->argc == 3) {
srandmemberWithCountCommand(c);
return;
} else if (c->argc > 3) {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
/* Handle variant without <count> argument. Reply with simple bulk string */
if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.null[c->resp]))
== NULL || checkType(c,set,OBJ_SET)) return;
setTypeRandomElement(set, &str, &len, &llele);
if (str == NULL) {
addReplyBulkLongLong(c,llele);
} else {
addReplyBulkCBuffer(c, str, len);
}
}
int qsortCompareSetsByCardinality(const void *s1, const void *s2) {
if (setTypeSize(*(robj**)s1) > setTypeSize(*(robj**)s2)) return 1;
if (setTypeSize(*(robj**)s1) < setTypeSize(*(robj**)s2)) return -1;
return 0;
}
/* This is used by SDIFF and in this case we can receive NULL that should
* be handled as empty sets. */
int qsortCompareSetsByRevCardinality(const void *s1, const void *s2) {
robj *o1 = *(robj**)s1, *o2 = *(robj**)s2;
unsigned long first = o1 ? setTypeSize(o1) : 0;
unsigned long second = o2 ? setTypeSize(o2) : 0;
if (first < second) return 1;
if (first > second) return -1;
return 0;
}
/* SINTER / SMEMBERS / SINTERSTORE / SINTERCARD
*
* 'cardinality_only' work for SINTERCARD, only return the cardinality
* with minimum processing and memory overheads.
*
* 'limit' work for SINTERCARD, stop searching after reaching the limit.
* Passing a 0 means unlimited.
*/
void sinterGenericCommand(client *c, robj **setkeys,
unsigned long setnum, robj *dstkey,
int cardinality_only, unsigned long limit) {
robj **sets = zmalloc(sizeof(robj*)*setnum);
setTypeIterator *si;
robj *dstset = NULL;
char *str;
size_t len;
int64_t intobj;
void *replylen = NULL;
unsigned long j, cardinality = 0;
int encoding, empty = 0;
for (j = 0; j < setnum; j++) {
robj *setobj = lookupKeyRead(c->db, setkeys[j]);
if (!setobj) {
/* A NULL is considered an empty set */
empty += 1;
sets[j] = NULL;
continue;
}
if (checkType(c,setobj,OBJ_SET)) {
zfree(sets);
return;
}
sets[j] = setobj;
}
/* Set intersection with an empty set always results in an empty set.
* Return ASAP if there is an empty set. */
if (empty > 0) {
zfree(sets);
if (dstkey) {
if (dbDelete(c->db,dstkey)) {
signalModifiedKey(c,c->db,dstkey);
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",dstkey,c->db->id);
server.dirty++;
}
addReply(c,shared.czero);
} else if (cardinality_only) {
addReplyLongLong(c,cardinality);
} else {
addReply(c,shared.emptyset[c->resp]);
}
return;
}
/* Sort sets from the smallest to largest, this will improve our
* algorithm's performance */
qsort(sets,setnum,sizeof(robj*),qsortCompareSetsByCardinality);
/* The first thing we should output is the total number of elements...
* since this is a multi-bulk write, but at this stage we don't know
* the intersection set size, so we use a trick, append an empty object
* to the output list and save the pointer to later modify it with the
* right length */
if (dstkey) {
/* If we have a target key where to store the resulting set
* create this key with an empty set inside */
if (sets[0]->encoding == OBJ_ENCODING_INTSET) {
/* The first set is an intset, so the result is an intset too. The
* elements are inserted in ascending order which is efficient in an
* intset. */
dstset = createIntsetObject();
} else if (sets[0]->encoding == OBJ_ENCODING_LISTPACK) {
/* To avoid many reallocs, we estimate that the result is a listpack
* of approximately the same size as the first set. Then we shrink
* it or possibly convert it to intset in the end. */
unsigned char *lp = lpNew(lpBytes(sets[0]->ptr));
dstset = createObject(OBJ_SET, lp);
dstset->encoding = OBJ_ENCODING_LISTPACK;
} else {
/* We start off with a listpack, since it's more efficient to append
* to than an intset. Later we can convert it to intset or a
* hashtable. */
dstset = createSetListpackObject();
}
} else if (!cardinality_only) {
replylen = addReplyDeferredLen(c);
}
/* Iterate all the elements of the first (smallest) set, and test
* the element against all the other sets, if at least one set does
* not include the element it is discarded */
int only_integers = 1;
si = setTypeInitIterator(sets[0]);
while((encoding = setTypeNext(si, &str, &len, &intobj)) != -1) {
for (j = 1; j < setnum; j++) {
if (sets[j] == sets[0]) continue;
if (!setTypeIsMemberAux(sets[j], str, len, intobj,
encoding == OBJ_ENCODING_HT))
break;
}
/* Only take action when all sets contain the member */
if (j == setnum) {
if (cardinality_only) {
cardinality++;
/* We stop the searching after reaching the limit. */
if (limit && cardinality >= limit)
break;
} else if (!dstkey) {
if (str != NULL)
addReplyBulkCBuffer(c, str, len);
else
addReplyBulkLongLong(c,intobj);
cardinality++;
} else {
if (str && only_integers) {
/* It may be an integer although we got it as a string. */
if (encoding == OBJ_ENCODING_HT &&
string2ll(str, len, (long long *)&intobj))
{
if (dstset->encoding == OBJ_ENCODING_LISTPACK ||
dstset->encoding == OBJ_ENCODING_INTSET)
{
/* Adding it as an integer is more efficient. */
str = NULL;
}
} else {
/* It's not an integer */
only_integers = 0;
}
}
setTypeAddAux(dstset, str, len, intobj, encoding == OBJ_ENCODING_HT);
}
}
}
setTypeReleaseIterator(si);
if (cardinality_only) {
addReplyLongLong(c,cardinality);
} else if (dstkey) {
/* Store the resulting set into the target, if the intersection
* is not an empty set. */
if (setTypeSize(dstset) > 0) {
if (only_integers) maybeConvertToIntset(dstset);
if (dstset->encoding == OBJ_ENCODING_LISTPACK) {
/* We allocated too much memory when we created it to avoid
* frequent reallocs. Therefore, we shrink it now. */
dstset->ptr = lpShrinkToFit(dstset->ptr);
}
setKey(c,c->db,dstkey,dstset,0);
addReplyLongLong(c,setTypeSize(dstset));
notifyKeyspaceEvent(NOTIFY_SET,"sinterstore",
dstkey,c->db->id);
server.dirty++;
} else {
addReply(c,shared.czero);
if (dbDelete(c->db,dstkey)) {
server.dirty++;
signalModifiedKey(c,c->db,dstkey);
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",dstkey,c->db->id);
}
}
decrRefCount(dstset);
} else {
setDeferredSetLen(c,replylen,cardinality);
}
zfree(sets);
}
/* SINTER key [key ...] */
void sinterCommand(client *c) {
sinterGenericCommand(c, c->argv+1, c->argc-1, NULL, 0, 0);
}
/* SINTERCARD numkeys key [key ...] [LIMIT limit] */
void sinterCardCommand(client *c) {
long j;
long numkeys = 0; /* Number of keys. */
long limit = 0; /* 0 means not limit. */
if (getRangeLongFromObjectOrReply(c, c->argv[1], 1, LONG_MAX,
&numkeys, "numkeys should be greater than 0") != C_OK)
return;
if (numkeys > (c->argc - 2)) {
addReplyError(c, "Number of keys can't be greater than number of args");
return;
}
for (j = 2 + numkeys; j < c->argc; j++) {
char *opt = c->argv[j]->ptr;
int moreargs = (c->argc - 1) - j;
if (!strcasecmp(opt, "LIMIT") && moreargs) {
j++;
if (getPositiveLongFromObjectOrReply(c, c->argv[j], &limit,
"LIMIT can't be negative") != C_OK)
return;
} else {
addReplyErrorObject(c, shared.syntaxerr);
return;
}
}
sinterGenericCommand(c, c->argv+2, numkeys, NULL, 1, limit);
}
/* SINTERSTORE destination key [key ...] */
void sinterstoreCommand(client *c) {
sinterGenericCommand(c, c->argv+2, c->argc-2, c->argv[1], 0, 0);
}
void sunionDiffGenericCommand(client *c, robj **setkeys, int setnum,
robj *dstkey, int op) {
robj **sets = zmalloc(sizeof(robj*)*setnum);
setTypeIterator *si;
robj *dstset = NULL;
char *str;
size_t len;
int64_t llval;
int encoding;
int j, cardinality = 0;
int diff_algo = 1;
int sameset = 0;
for (j = 0; j < setnum; j++) {
robj *setobj = lookupKeyRead(c->db, setkeys[j]);
if (!setobj) {
sets[j] = NULL;
continue;
}
if (checkType(c,setobj,OBJ_SET)) {
zfree(sets);
return;
}
sets[j] = setobj;
if (j > 0 && sets[0] == sets[j]) {
sameset = 1;
}
}
/* Select what DIFF algorithm to use.
*
* Algorithm 1 is O(N*M) where N is the size of the element first set
* and M the total number of sets.
*
* Algorithm 2 is O(N) where N is the total number of elements in all
* the sets.
*
* We compute what is the best bet with the current input here. */
if (op == SET_OP_DIFF && sets[0] && !sameset) {
long long algo_one_work = 0, algo_two_work = 0;
for (j = 0; j < setnum; j++) {
if (sets[j] == NULL) continue;
algo_one_work += setTypeSize(sets[0]);
algo_two_work += setTypeSize(sets[j]);
}
/* Algorithm 1 has better constant times and performs less operations
* if there are elements in common. Give it some advantage. */
algo_one_work /= 2;
diff_algo = (algo_one_work <= algo_two_work) ? 1 : 2;
if (diff_algo == 1 && setnum > 1) {
/* With algorithm 1 it is better to order the sets to subtract
* by decreasing size, so that we are more likely to find
* duplicated elements ASAP. */
qsort(sets+1,setnum-1,sizeof(robj*),
qsortCompareSetsByRevCardinality);
}
}
/* We need a temp set object to store our union/diff. If the dstkey
* is not NULL (that is, we are inside an SUNIONSTORE/SDIFFSTORE operation) then
* this set object will be the resulting object to set into the target key*/
dstset = createIntsetObject();
if (op == SET_OP_UNION) {
/* Union is trivial, just add every element of every set to the
* temporary set. */
for (j = 0; j < setnum; j++) {
if (!sets[j]) continue; /* non existing keys are like empty sets */
si = setTypeInitIterator(sets[j]);
while ((encoding = setTypeNext(si, &str, &len, &llval)) != -1) {
cardinality += setTypeAddAux(dstset, str, len, llval, encoding == OBJ_ENCODING_HT);
}
setTypeReleaseIterator(si);
}
} else if (op == SET_OP_DIFF && sameset) {
/* At least one of the sets is the same one (same key) as the first one, result must be empty. */
} else if (op == SET_OP_DIFF && sets[0] && diff_algo == 1) {
/* DIFF Algorithm 1:
*
* We perform the diff by iterating all the elements of the first set,
* and only adding it to the target set if the element does not exist
* into all the other sets.
*
* This way we perform at max N*M operations, where N is the size of
* the first set, and M the number of sets. */
si = setTypeInitIterator(sets[0]);
while ((encoding = setTypeNext(si, &str, &len, &llval)) != -1) {
for (j = 1; j < setnum; j++) {
if (!sets[j]) continue; /* no key is an empty set. */
if (sets[j] == sets[0]) break; /* same set! */
if (setTypeIsMemberAux(sets[j], str, len, llval,
encoding == OBJ_ENCODING_HT))
break;
}
if (j == setnum) {
/* There is no other set with this element. Add it. */
cardinality += setTypeAddAux(dstset, str, len, llval, encoding == OBJ_ENCODING_HT);
}
}
setTypeReleaseIterator(si);
} else if (op == SET_OP_DIFF && sets[0] && diff_algo == 2) {
/* DIFF Algorithm 2:
*
* Add all the elements of the first set to the auxiliary set.
* Then remove all the elements of all the next sets from it.
*
* This is O(N) where N is the sum of all the elements in every
* set. */
for (j = 0; j < setnum; j++) {
if (!sets[j]) continue; /* non existing keys are like empty sets */
si = setTypeInitIterator(sets[j]);
while((encoding = setTypeNext(si, &str, &len, &llval)) != -1) {
if (j == 0) {
cardinality += setTypeAddAux(dstset, str, len, llval,
encoding == OBJ_ENCODING_HT);
} else {
cardinality -= setTypeRemoveAux(dstset, str, len, llval,
encoding == OBJ_ENCODING_HT);
}
}
setTypeReleaseIterator(si);
/* Exit if result set is empty as any additional removal
* of elements will have no effect. */
if (cardinality == 0) break;
}
}
/* Output the content of the resulting set, if not in STORE mode */
if (!dstkey) {
addReplySetLen(c,cardinality);
si = setTypeInitIterator(dstset);
while (setTypeNext(si, &str, &len, &llval) != -1) {
if (str)
addReplyBulkCBuffer(c, str, len);
else
addReplyBulkLongLong(c, llval);
}
setTypeReleaseIterator(si);
server.lazyfree_lazy_server_del ? freeObjAsync(NULL, dstset, -1) :
decrRefCount(dstset);
} else {
/* If we have a target key where to store the resulting set
* create this key with the result set inside */
if (setTypeSize(dstset) > 0) {
setKey(c,c->db,dstkey,dstset,0);
addReplyLongLong(c,setTypeSize(dstset));
notifyKeyspaceEvent(NOTIFY_SET,
op == SET_OP_UNION ? "sunionstore" : "sdiffstore",
dstkey,c->db->id);
server.dirty++;
} else {
addReply(c,shared.czero);
if (dbDelete(c->db,dstkey)) {
server.dirty++;
signalModifiedKey(c,c->db,dstkey);
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",dstkey,c->db->id);
}
}
decrRefCount(dstset);
}
zfree(sets);
}
/* SUNION key [key ...] */
void sunionCommand(client *c) {
sunionDiffGenericCommand(c,c->argv+1,c->argc-1,NULL,SET_OP_UNION);
}
/* SUNIONSTORE destination key [key ...] */
void sunionstoreCommand(client *c) {
sunionDiffGenericCommand(c,c->argv+2,c->argc-2,c->argv[1],SET_OP_UNION);
}
/* SDIFF key [key ...] */
void sdiffCommand(client *c) {
sunionDiffGenericCommand(c,c->argv+1,c->argc-1,NULL,SET_OP_DIFF);
}
/* SDIFFSTORE destination key [key ...] */
void sdiffstoreCommand(client *c) {
sunionDiffGenericCommand(c,c->argv+2,c->argc-2,c->argv[1],SET_OP_DIFF);
}
void sscanCommand(client *c) {
robj *set;
unsigned long cursor;
if (parseScanCursorOrReply(c,c->argv[2],&cursor) == C_ERR) return;
if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.emptyscan)) == NULL ||
checkType(c,set,OBJ_SET)) return;
scanGenericCommand(c,set,cursor);
}