futriix/src/listpack.c
Mikhail Koviazin af811748e7
clang-format: set ColumnLimit to 0 and reformat (#1045)
This commit hopefully improves the formatting of the codebase by setting
ColumnLimit to 0 and hence stopping clang-format from trying to put as
much stuff in one line as possible.

This change enabled us to remove most of `clang-format off` directives
and fixed a bunch of lines that looked like this:

```c
#define KEY \
    VALUE /* comment */
```

Additionally, one pair of `clang-format off` / `clang-format on` had
`clang-format off` as the second comment and hence didn't enable the
formatting for the rest of the file. This commit addresses this issue as
well.

Please tell me if anything in the changes seem off. If everything is
fine, I will add this commit to `.git-blame-ignore-revs` later.

---------

Signed-off-by: Mikhail Koviazin <mikhail.koviazin@aiven.io>
2024-09-25 01:22:54 +02:00

1633 lines
62 KiB
C

/* Listpack -- A lists of strings serialization format
*
* This file implements the specification you can find at:
*
* https://github.com/antirez/listpack
*
* Copyright (c) 2017,2020, Redis Ltd.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <limits.h>
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "listpack.h"
#include "listpack_malloc.h"
#include "serverassert.h"
#include "util.h"
#define LP_HDR_SIZE 6 /* 32 bit total len + 16 bit number of elements. */
#define LP_HDR_NUMELE_UNKNOWN UINT16_MAX
#define LP_MAX_INT_ENCODING_LEN 9
#define LP_MAX_BACKLEN_SIZE 5
#define LP_ENCODING_INT 0
#define LP_ENCODING_STRING 1
#define LP_ENCODING_7BIT_UINT 0
#define LP_ENCODING_7BIT_UINT_MASK 0x80
#define LP_ENCODING_IS_7BIT_UINT(byte) (((byte) & LP_ENCODING_7BIT_UINT_MASK) == LP_ENCODING_7BIT_UINT)
#define LP_ENCODING_7BIT_UINT_ENTRY_SIZE 2
#define LP_ENCODING_6BIT_STR 0x80
#define LP_ENCODING_6BIT_STR_MASK 0xC0
#define LP_ENCODING_IS_6BIT_STR(byte) (((byte) & LP_ENCODING_6BIT_STR_MASK) == LP_ENCODING_6BIT_STR)
#define LP_ENCODING_13BIT_INT 0xC0
#define LP_ENCODING_13BIT_INT_MASK 0xE0
#define LP_ENCODING_IS_13BIT_INT(byte) (((byte) & LP_ENCODING_13BIT_INT_MASK) == LP_ENCODING_13BIT_INT)
#define LP_ENCODING_13BIT_INT_ENTRY_SIZE 3
#define LP_ENCODING_12BIT_STR 0xE0
#define LP_ENCODING_12BIT_STR_MASK 0xF0
#define LP_ENCODING_IS_12BIT_STR(byte) (((byte) & LP_ENCODING_12BIT_STR_MASK) == LP_ENCODING_12BIT_STR)
#define LP_ENCODING_16BIT_INT 0xF1
#define LP_ENCODING_16BIT_INT_MASK 0xFF
#define LP_ENCODING_IS_16BIT_INT(byte) (((byte) & LP_ENCODING_16BIT_INT_MASK) == LP_ENCODING_16BIT_INT)
#define LP_ENCODING_16BIT_INT_ENTRY_SIZE 4
#define LP_ENCODING_24BIT_INT 0xF2
#define LP_ENCODING_24BIT_INT_MASK 0xFF
#define LP_ENCODING_IS_24BIT_INT(byte) (((byte) & LP_ENCODING_24BIT_INT_MASK) == LP_ENCODING_24BIT_INT)
#define LP_ENCODING_24BIT_INT_ENTRY_SIZE 5
#define LP_ENCODING_32BIT_INT 0xF3
#define LP_ENCODING_32BIT_INT_MASK 0xFF
#define LP_ENCODING_IS_32BIT_INT(byte) (((byte) & LP_ENCODING_32BIT_INT_MASK) == LP_ENCODING_32BIT_INT)
#define LP_ENCODING_32BIT_INT_ENTRY_SIZE 6
#define LP_ENCODING_64BIT_INT 0xF4
#define LP_ENCODING_64BIT_INT_MASK 0xFF
#define LP_ENCODING_IS_64BIT_INT(byte) (((byte) & LP_ENCODING_64BIT_INT_MASK) == LP_ENCODING_64BIT_INT)
#define LP_ENCODING_64BIT_INT_ENTRY_SIZE 10
#define LP_ENCODING_32BIT_STR 0xF0
#define LP_ENCODING_32BIT_STR_MASK 0xFF
#define LP_ENCODING_IS_32BIT_STR(byte) (((byte) & LP_ENCODING_32BIT_STR_MASK) == LP_ENCODING_32BIT_STR)
#define LP_EOF 0xFF
#define LP_ENCODING_6BIT_STR_LEN(p) ((p)[0] & 0x3F)
#define LP_ENCODING_12BIT_STR_LEN(p) ((((p)[0] & 0xF) << 8) | (p)[1])
#define LP_ENCODING_32BIT_STR_LEN(p) \
(((uint32_t)(p)[1] << 0) | ((uint32_t)(p)[2] << 8) | ((uint32_t)(p)[3] << 16) | ((uint32_t)(p)[4] << 24))
#define lpGetTotalBytes(p) \
(((uint32_t)(p)[0] << 0) | ((uint32_t)(p)[1] << 8) | ((uint32_t)(p)[2] << 16) | ((uint32_t)(p)[3] << 24))
#define lpGetNumElements(p) (((uint32_t)(p)[4] << 0) | ((uint32_t)(p)[5] << 8))
#define lpSetTotalBytes(p, v) \
do { \
(p)[0] = (v) & 0xff; \
(p)[1] = ((v) >> 8) & 0xff; \
(p)[2] = ((v) >> 16) & 0xff; \
(p)[3] = ((v) >> 24) & 0xff; \
} while (0)
#define lpSetNumElements(p, v) \
do { \
(p)[4] = (v) & 0xff; \
(p)[5] = ((v) >> 8) & 0xff; \
} while (0)
/* Validates that 'p' is not outside the listpack.
* All function that return a pointer to an element in the listpack will assert
* that this element is valid, so it can be freely used.
* Generally functions such lpNext and lpDelete assume the input pointer is
* already validated (since it's the return value of another function). */
#define ASSERT_INTEGRITY(lp, p) \
do { \
assert((p) >= (lp) + LP_HDR_SIZE && (p) < (lp) + lpGetTotalBytes((lp))); \
} while (0)
/* Similar to the above, but validates the entire element length rather than just
* it's pointer. */
#define ASSERT_INTEGRITY_LEN(lp, p, len) \
do { \
assert((p) >= (lp) + LP_HDR_SIZE && (p) + (len) < (lp) + lpGetTotalBytes((lp))); \
} while (0)
static inline void lpAssertValidEntry(unsigned char *lp, size_t lpbytes, unsigned char *p);
/* Don't let listpacks grow over 1GB in any case, don't wanna risk overflow in
* Total Bytes header field */
#define LISTPACK_MAX_SAFETY_SIZE (1 << 30)
int lpSafeToAdd(unsigned char *lp, size_t add) {
size_t len = lp ? lpGetTotalBytes(lp) : 0;
if (len + add > LISTPACK_MAX_SAFETY_SIZE) return 0;
return 1;
}
/* Convert a string into a signed 64 bit integer.
* The function returns 1 if the string could be parsed into a (non-overflowing)
* signed 64 bit int, 0 otherwise. The 'value' will be set to the parsed value
* when the function returns success.
*
* Note that this function demands that the string strictly represents
* a int64 value: no spaces or other characters before or after the string
* representing the number are accepted, nor zeroes at the start if not
* for the string "0" representing the zero number.
*
* Because of its strictness, it is safe to use this function to check if
* you can convert a string into a long long, and obtain back the string
* from the number without any loss in the string representation. *
*
* -----------------------------------------------------------------------------
*
* Credits: this function was adapted from the Redis OSS source code, file
* "utils.c", function string2ll(), and is copyright:
*
* Copyright(C) 2011, Pieter Noordhuis
* Copyright(C) 2011, Redis Ltd.
*
* The function is released under the BSD 3-clause license.
*/
int lpStringToInt64(const char *s, unsigned long slen, int64_t *value) {
const char *p = s;
unsigned long plen = 0;
int negative = 0;
uint64_t v;
/* Abort if length indicates this cannot possibly be an int */
if (slen == 0 || slen >= LONG_STR_SIZE) return 0;
/* Special case: first and only digit is 0. */
if (slen == 1 && p[0] == '0') {
if (value != NULL) *value = 0;
return 1;
}
if (p[0] == '-') {
negative = 1;
p++;
plen++;
/* Abort on only a negative sign. */
if (plen == slen) return 0;
}
/* First digit should be 1-9, otherwise the string should just be 0. */
if (p[0] >= '1' && p[0] <= '9') {
v = p[0] - '0';
p++;
plen++;
} else {
return 0;
}
while (plen < slen && p[0] >= '0' && p[0] <= '9') {
if (v > (UINT64_MAX / 10)) /* Overflow. */
return 0;
v *= 10;
if (v > (UINT64_MAX - (p[0] - '0'))) /* Overflow. */
return 0;
v += p[0] - '0';
p++;
plen++;
}
/* Return if not all bytes were used. */
if (plen < slen) return 0;
if (negative) {
if (v > ((uint64_t)(-(INT64_MIN + 1)) + 1)) /* Overflow. */
return 0;
if (value != NULL) *value = -v;
} else {
if (v > INT64_MAX) /* Overflow. */
return 0;
if (value != NULL) *value = v;
}
return 1;
}
/* Create a new, empty listpack.
* On success the new listpack is returned, otherwise an error is returned.
* Pre-allocate at least `capacity` bytes of memory,
* over-allocated memory can be shrunk by `lpShrinkToFit`.
* */
unsigned char *lpNew(size_t capacity) {
unsigned char *lp = lp_malloc(capacity > LP_HDR_SIZE + 1 ? capacity : LP_HDR_SIZE + 1);
if (lp == NULL) return NULL;
lpSetTotalBytes(lp, LP_HDR_SIZE + 1);
lpSetNumElements(lp, 0);
lp[LP_HDR_SIZE] = LP_EOF;
return lp;
}
/* Free the specified listpack. */
void lpFree(unsigned char *lp) {
lp_free(lp);
}
/* Shrink the memory to fit. */
unsigned char *lpShrinkToFit(unsigned char *lp) {
size_t size = lpGetTotalBytes(lp);
if (size < lp_malloc_size(lp)) {
return lp_realloc(lp, size);
} else {
return lp;
}
}
/* Stores the integer encoded representation of 'v' in the 'intenc' buffer. */
static inline void lpEncodeIntegerGetType(int64_t v, unsigned char *intenc, uint64_t *enclen) {
if (v >= 0 && v <= 127) {
/* Single byte 0-127 integer. */
intenc[0] = v;
*enclen = 1;
} else if (v >= -4096 && v <= 4095) {
/* 13 bit integer. */
if (v < 0) v = ((int64_t)1 << 13) + v;
intenc[0] = (v >> 8) | LP_ENCODING_13BIT_INT;
intenc[1] = v & 0xff;
*enclen = 2;
} else if (v >= -32768 && v <= 32767) {
/* 16 bit integer. */
if (v < 0) v = ((int64_t)1 << 16) + v;
intenc[0] = LP_ENCODING_16BIT_INT;
intenc[1] = v & 0xff;
intenc[2] = v >> 8;
*enclen = 3;
} else if (v >= -8388608 && v <= 8388607) {
/* 24 bit integer. */
if (v < 0) v = ((int64_t)1 << 24) + v;
intenc[0] = LP_ENCODING_24BIT_INT;
intenc[1] = v & 0xff;
intenc[2] = (v >> 8) & 0xff;
intenc[3] = v >> 16;
*enclen = 4;
} else if (v >= -2147483648 && v <= 2147483647) {
/* 32 bit integer. */
if (v < 0) v = ((int64_t)1 << 32) + v;
intenc[0] = LP_ENCODING_32BIT_INT;
intenc[1] = v & 0xff;
intenc[2] = (v >> 8) & 0xff;
intenc[3] = (v >> 16) & 0xff;
intenc[4] = v >> 24;
*enclen = 5;
} else {
/* 64 bit integer. */
uint64_t uv = v;
intenc[0] = LP_ENCODING_64BIT_INT;
intenc[1] = uv & 0xff;
intenc[2] = (uv >> 8) & 0xff;
intenc[3] = (uv >> 16) & 0xff;
intenc[4] = (uv >> 24) & 0xff;
intenc[5] = (uv >> 32) & 0xff;
intenc[6] = (uv >> 40) & 0xff;
intenc[7] = (uv >> 48) & 0xff;
intenc[8] = uv >> 56;
*enclen = 9;
}
}
/* Given an element 'ele' of size 'size', determine if the element can be
* represented inside the listpack encoded as integer, and returns
* LP_ENCODING_INT if so. Otherwise returns LP_ENCODING_STR if no integer
* encoding is possible.
*
* If the LP_ENCODING_INT is returned, the function stores the integer encoded
* representation of the element in the 'intenc' buffer.
*
* Regardless of the returned encoding, 'enclen' is populated by reference to
* the number of bytes that the string or integer encoded element will require
* in order to be represented. */
static inline int lpEncodeGetType(unsigned char *ele, uint32_t size, unsigned char *intenc, uint64_t *enclen) {
int64_t v;
if (lpStringToInt64((const char *)ele, size, &v)) {
lpEncodeIntegerGetType(v, intenc, enclen);
return LP_ENCODING_INT;
} else {
if (size < 64)
*enclen = 1 + size;
else if (size < 4096)
*enclen = 2 + size;
else
*enclen = 5 + (uint64_t)size;
return LP_ENCODING_STRING;
}
}
/* Store a reverse-encoded variable length field, representing the length
* of the previous element of size 'l', in the target buffer 'buf'.
* The function returns the number of bytes used to encode it, from
* 1 to 5. If 'buf' is NULL the function just returns the number of bytes
* needed in order to encode the backlen. */
static inline unsigned long lpEncodeBacklen(unsigned char *buf, uint64_t l) {
if (l <= 127) {
if (buf) buf[0] = l;
return 1;
} else if (l < 16383) {
if (buf) {
buf[0] = l >> 7;
buf[1] = (l & 127) | 128;
}
return 2;
} else if (l < 2097151) {
if (buf) {
buf[0] = l >> 14;
buf[1] = ((l >> 7) & 127) | 128;
buf[2] = (l & 127) | 128;
}
return 3;
} else if (l < 268435455) {
if (buf) {
buf[0] = l >> 21;
buf[1] = ((l >> 14) & 127) | 128;
buf[2] = ((l >> 7) & 127) | 128;
buf[3] = (l & 127) | 128;
}
return 4;
} else {
if (buf) {
buf[0] = l >> 28;
buf[1] = ((l >> 21) & 127) | 128;
buf[2] = ((l >> 14) & 127) | 128;
buf[3] = ((l >> 7) & 127) | 128;
buf[4] = (l & 127) | 128;
}
return 5;
}
}
/* Decode the backlen and returns it. If the encoding looks invalid (more than
* 5 bytes are used), UINT64_MAX is returned to report the problem. */
static inline uint64_t lpDecodeBacklen(unsigned char *p) {
uint64_t val = 0;
uint64_t shift = 0;
do {
val |= (uint64_t)(p[0] & 127) << shift;
if (!(p[0] & 128)) break;
shift += 7;
p--;
if (shift > 28) return UINT64_MAX;
} while (1);
return val;
}
/* Encode the string element pointed by 's' of size 'len' in the target
* buffer 's'. The function should be called with 'buf' having always enough
* space for encoding the string. This is done by calling lpEncodeGetType()
* before calling this function. */
static inline void lpEncodeString(unsigned char *buf, unsigned char *s, uint32_t len) {
if (len < 64) {
buf[0] = len | LP_ENCODING_6BIT_STR;
memcpy(buf + 1, s, len);
} else if (len < 4096) {
buf[0] = (len >> 8) | LP_ENCODING_12BIT_STR;
buf[1] = len & 0xff;
memcpy(buf + 2, s, len);
} else {
buf[0] = LP_ENCODING_32BIT_STR;
buf[1] = len & 0xff;
buf[2] = (len >> 8) & 0xff;
buf[3] = (len >> 16) & 0xff;
buf[4] = (len >> 24) & 0xff;
memcpy(buf + 5, s, len);
}
}
/* Return the encoded length of the listpack element pointed by 'p'.
* This includes the encoding byte, length bytes, and the element data itself.
* If the element encoding is wrong then 0 is returned.
* Note that this method may access additional bytes (in case of 12 and 32 bit
* str), so should only be called when we know 'p' was already validated by
* lpCurrentEncodedSizeBytes or ASSERT_INTEGRITY_LEN (possibly since 'p' is
* a return value of another function that validated its return. */
static inline uint32_t lpCurrentEncodedSizeUnsafe(unsigned char *p) {
if (LP_ENCODING_IS_7BIT_UINT(p[0])) return 1;
if (LP_ENCODING_IS_6BIT_STR(p[0])) return 1 + LP_ENCODING_6BIT_STR_LEN(p);
if (LP_ENCODING_IS_13BIT_INT(p[0])) return 2;
if (LP_ENCODING_IS_16BIT_INT(p[0])) return 3;
if (LP_ENCODING_IS_24BIT_INT(p[0])) return 4;
if (LP_ENCODING_IS_32BIT_INT(p[0])) return 5;
if (LP_ENCODING_IS_64BIT_INT(p[0])) return 9;
if (LP_ENCODING_IS_12BIT_STR(p[0])) return 2 + LP_ENCODING_12BIT_STR_LEN(p);
if (LP_ENCODING_IS_32BIT_STR(p[0])) return 5 + LP_ENCODING_32BIT_STR_LEN(p);
if (p[0] == LP_EOF) return 1;
return 0;
}
/* Return bytes needed to encode the length of the listpack element pointed by 'p'.
* This includes just the encoding byte, and the bytes needed to encode the length
* of the element (excluding the element data itself)
* If the element encoding is wrong then 0 is returned. */
static inline uint32_t lpCurrentEncodedSizeBytes(unsigned char *p) {
if (LP_ENCODING_IS_7BIT_UINT(p[0])) return 1;
if (LP_ENCODING_IS_6BIT_STR(p[0])) return 1;
if (LP_ENCODING_IS_13BIT_INT(p[0])) return 1;
if (LP_ENCODING_IS_16BIT_INT(p[0])) return 1;
if (LP_ENCODING_IS_24BIT_INT(p[0])) return 1;
if (LP_ENCODING_IS_32BIT_INT(p[0])) return 1;
if (LP_ENCODING_IS_64BIT_INT(p[0])) return 1;
if (LP_ENCODING_IS_12BIT_STR(p[0])) return 2;
if (LP_ENCODING_IS_32BIT_STR(p[0])) return 5;
if (p[0] == LP_EOF) return 1;
return 0;
}
/* Skip the current entry returning the next. It is invalid to call this
* function if the current element is the EOF element at the end of the
* listpack, however, while this function is used to implement lpNext(),
* it does not return NULL when the EOF element is encountered. */
unsigned char *lpSkip(unsigned char *p) {
unsigned long entrylen = lpCurrentEncodedSizeUnsafe(p);
entrylen += lpEncodeBacklen(NULL, entrylen);
p += entrylen;
return p;
}
/* If 'p' points to an element of the listpack, calling lpNext() will return
* the pointer to the next element (the one on the right), or NULL if 'p'
* already pointed to the last element of the listpack. */
unsigned char *lpNext(unsigned char *lp, unsigned char *p) {
assert(p);
p = lpSkip(p);
if (p[0] == LP_EOF) return NULL;
lpAssertValidEntry(lp, lpBytes(lp), p);
return p;
}
/* If 'p' points to an element of the listpack, calling lpPrev() will return
* the pointer to the previous element (the one on the left), or NULL if 'p'
* already pointed to the first element of the listpack. */
unsigned char *lpPrev(unsigned char *lp, unsigned char *p) {
assert(p);
if (p - lp == LP_HDR_SIZE) return NULL;
p--; /* Seek the first backlen byte of the last element. */
uint64_t prevlen = lpDecodeBacklen(p);
prevlen += lpEncodeBacklen(NULL, prevlen);
p -= prevlen - 1; /* Seek the first byte of the previous entry. */
lpAssertValidEntry(lp, lpBytes(lp), p);
return p;
}
/* Return a pointer to the first element of the listpack, or NULL if the
* listpack has no elements. */
unsigned char *lpFirst(unsigned char *lp) {
unsigned char *p = lp + LP_HDR_SIZE; /* Skip the header. */
if (p[0] == LP_EOF) return NULL;
lpAssertValidEntry(lp, lpBytes(lp), p);
return p;
}
/* Return a pointer to the last element of the listpack, or NULL if the
* listpack has no elements. */
unsigned char *lpLast(unsigned char *lp) {
unsigned char *p = lp + lpGetTotalBytes(lp) - 1; /* Seek EOF element. */
return lpPrev(lp, p); /* Will return NULL if EOF is the only element. */
}
/* Return the number of elements inside the listpack. This function attempts
* to use the cached value when within range, otherwise a full scan is
* needed. As a side effect of calling this function, the listpack header
* could be modified, because if the count is found to be already within
* the 'numele' header field range, the new value is set. */
unsigned long lpLength(unsigned char *lp) {
uint32_t numele = lpGetNumElements(lp);
if (numele != LP_HDR_NUMELE_UNKNOWN) return numele;
/* Too many elements inside the listpack. We need to scan in order
* to get the total number. */
uint32_t count = 0;
unsigned char *p = lpFirst(lp);
while (p) {
count++;
p = lpNext(lp, p);
}
/* If the count is again within range of the header numele field,
* set it. */
if (count < LP_HDR_NUMELE_UNKNOWN) lpSetNumElements(lp, count);
return count;
}
/* Return the listpack element pointed by 'p'.
*
* The function changes behavior depending on the passed 'intbuf' value.
* Specifically, if 'intbuf' is NULL:
*
* If the element is internally encoded as an integer, the function returns
* NULL and populates the integer value by reference in 'count'. Otherwise if
* the element is encoded as a string a pointer to the string (pointing inside
* the listpack itself) is returned, and 'count' is set to the length of the
* string.
*
* If instead 'intbuf' points to a buffer passed by the caller, that must be
* at least LP_INTBUF_SIZE bytes, the function always returns the element as
* it was a string (returning the pointer to the string and setting the
* 'count' argument to the string length by reference). However if the element
* is encoded as an integer, the 'intbuf' buffer is used in order to store
* the string representation.
*
* The user should use one or the other form depending on what the value will
* be used for. If there is immediate usage for an integer value returned
* by the function, than to pass a buffer (and convert it back to a number)
* is of course useless.
*
* If 'entry_size' is not NULL, *entry_size is set to the entry length of the
* listpack element pointed by 'p'. This includes the encoding bytes, length
* bytes, the element data itself, and the backlen bytes.
*
* If the function is called against a badly encoded ziplist, so that there
* is no valid way to parse it, the function returns like if there was an
* integer encoded with value 12345678900000000 + <unrecognized byte>, this may
* be an hint to understand that something is wrong. To crash in this case is
* not sensible because of the different requirements of the application using
* this lib.
*
* Similarly, there is no error returned since the listpack normally can be
* assumed to be valid, so that would be a very high API cost. */
static inline unsigned char *
lpGetWithSize(unsigned char *p, int64_t *count, unsigned char *intbuf, uint64_t *entry_size) {
int64_t val;
uint64_t uval, negstart, negmax;
assert(p); /* assertion for valgrind (avoid NPD) */
if (LP_ENCODING_IS_7BIT_UINT(p[0])) {
negstart = UINT64_MAX; /* 7 bit ints are always positive. */
negmax = 0;
uval = p[0] & 0x7f;
if (entry_size) *entry_size = LP_ENCODING_7BIT_UINT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_6BIT_STR(p[0])) {
*count = LP_ENCODING_6BIT_STR_LEN(p);
if (entry_size) *entry_size = 1 + *count + lpEncodeBacklen(NULL, *count + 1);
return p + 1;
} else if (LP_ENCODING_IS_13BIT_INT(p[0])) {
uval = ((p[0] & 0x1f) << 8) | p[1];
negstart = (uint64_t)1 << 12;
negmax = 8191;
if (entry_size) *entry_size = LP_ENCODING_13BIT_INT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_16BIT_INT(p[0])) {
uval = (uint64_t)p[1] | (uint64_t)p[2] << 8;
negstart = (uint64_t)1 << 15;
negmax = UINT16_MAX;
if (entry_size) *entry_size = LP_ENCODING_16BIT_INT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_24BIT_INT(p[0])) {
uval = (uint64_t)p[1] | (uint64_t)p[2] << 8 | (uint64_t)p[3] << 16;
negstart = (uint64_t)1 << 23;
negmax = UINT32_MAX >> 8;
if (entry_size) *entry_size = LP_ENCODING_24BIT_INT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_32BIT_INT(p[0])) {
uval = (uint64_t)p[1] | (uint64_t)p[2] << 8 | (uint64_t)p[3] << 16 | (uint64_t)p[4] << 24;
negstart = (uint64_t)1 << 31;
negmax = UINT32_MAX;
if (entry_size) *entry_size = LP_ENCODING_32BIT_INT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_64BIT_INT(p[0])) {
uval = (uint64_t)p[1] | (uint64_t)p[2] << 8 | (uint64_t)p[3] << 16 | (uint64_t)p[4] << 24 |
(uint64_t)p[5] << 32 | (uint64_t)p[6] << 40 | (uint64_t)p[7] << 48 | (uint64_t)p[8] << 56;
negstart = (uint64_t)1 << 63;
negmax = UINT64_MAX;
if (entry_size) *entry_size = LP_ENCODING_64BIT_INT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_12BIT_STR(p[0])) {
*count = LP_ENCODING_12BIT_STR_LEN(p);
if (entry_size) *entry_size = 2 + *count + lpEncodeBacklen(NULL, *count + 2);
return p + 2;
} else if (LP_ENCODING_IS_32BIT_STR(p[0])) {
*count = LP_ENCODING_32BIT_STR_LEN(p);
if (entry_size) *entry_size = 5 + *count + lpEncodeBacklen(NULL, *count + 5);
return p + 5;
} else {
uval = 12345678900000000ULL + p[0];
negstart = UINT64_MAX;
negmax = 0;
}
/* We reach this code path only for integer encodings.
* Convert the unsigned value to the signed one using two's complement
* rule. */
if (uval >= negstart) {
/* This three steps conversion should avoid undefined behaviors
* in the unsigned -> signed conversion. */
uval = negmax - uval;
val = uval;
val = -val - 1;
} else {
val = uval;
}
/* Return the string representation of the integer or the value itself
* depending on intbuf being NULL or not. */
if (intbuf) {
*count = ll2string((char *)intbuf, LP_INTBUF_SIZE, (long long)val);
return intbuf;
} else {
*count = val;
return NULL;
}
}
unsigned char *lpGet(unsigned char *p, int64_t *count, unsigned char *intbuf) {
return lpGetWithSize(p, count, intbuf, NULL);
}
/* This is just a wrapper to lpGet() that is able to get entry value directly.
* When the function returns NULL, it populates the integer value by reference in 'lval'.
* Otherwise if the element is encoded as a string a pointer to the string (pointing
* inside the listpack itself) is returned, and 'slen' is set to the length of the
* string. */
unsigned char *lpGetValue(unsigned char *p, unsigned int *slen, long long *lval) {
unsigned char *vstr;
int64_t ele_len;
vstr = lpGet(p, &ele_len, NULL);
if (vstr) {
*slen = ele_len;
} else {
*lval = ele_len;
}
return vstr;
}
/* Find pointer to the entry equal to the specified entry. Skip 'skip' entries
* between every comparison. Returns NULL when the field could not be found. */
unsigned char *lpFind(unsigned char *lp, unsigned char *p, unsigned char *s, uint32_t slen, unsigned int skip) {
int skipcnt = 0;
unsigned char vencoding = 0;
unsigned char *value;
int64_t ll, vll;
uint64_t entry_size = 123456789; /* initialized to avoid warning. */
uint32_t lp_bytes = lpBytes(lp);
assert(p);
while (p) {
if (skipcnt == 0) {
value = lpGetWithSize(p, &ll, NULL, &entry_size);
if (value) {
/* check the value doesn't reach outside the listpack before accessing it */
assert(p >= lp + LP_HDR_SIZE && p + entry_size < lp + lp_bytes);
if (slen == ll && memcmp(value, s, slen) == 0) {
return p;
}
} else {
/* Find out if the searched field can be encoded. Note that
* we do it only the first time, once done vencoding is set
* to non-zero and vll is set to the integer value. */
if (vencoding == 0) {
/* If the entry can be encoded as integer we set it to
* 1, else set it to UCHAR_MAX, so that we don't retry
* again the next time. */
if (slen >= 32 || slen == 0 || !lpStringToInt64((const char *)s, slen, &vll)) {
vencoding = UCHAR_MAX;
} else {
vencoding = 1;
}
}
/* Compare current entry with specified entry, do it only
* if vencoding != UCHAR_MAX because if there is no encoding
* possible for the field it can't be a valid integer. */
if (vencoding != UCHAR_MAX && ll == vll) {
return p;
}
}
/* Reset skip count */
skipcnt = skip;
p += entry_size;
} else {
/* Skip entry */
skipcnt--;
/* Move to next entry, avoid use `lpNext` due to `lpAssertValidEntry` in
* `lpNext` will call `lpBytes`, will cause performance degradation */
p = lpSkip(p);
}
/* The next call to lpGetWithSize could read at most 8 bytes past `p`
* We use the slower validation call only when necessary. */
if (p + 8 >= lp + lp_bytes)
lpAssertValidEntry(lp, lp_bytes, p);
else
assert(p >= lp + LP_HDR_SIZE && p < lp + lp_bytes);
if (p[0] == LP_EOF) break;
}
return NULL;
}
/* Insert, delete or replace the specified string element 'elestr' of length
* 'size' or integer element 'eleint' at the specified position 'p', with 'p'
* being a listpack element pointer obtained with lpFirst(), lpLast(), lpNext(),
* lpPrev() or lpSeek().
*
* The element is inserted before, after, or replaces the element pointed
* by 'p' depending on the 'where' argument, that can be LP_BEFORE, LP_AFTER
* or LP_REPLACE.
*
* If both 'elestr' and `eleint` are NULL, the function removes the element
* pointed by 'p' instead of inserting one.
* If `eleint` is non-NULL, 'size' is the length of 'eleint', the function insert
* or replace with a 64 bit integer, which is stored in the 'eleint' buffer.
* If 'elestr` is non-NULL, 'size' is the length of 'elestr', the function insert
* or replace with a string, which is stored in the 'elestr' buffer.
*
* Returns NULL on out of memory or when the listpack total length would exceed
* the max allowed size of 2^32-1, otherwise the new pointer to the listpack
* holding the new element is returned (and the old pointer passed is no longer
* considered valid)
*
* If 'newp' is not NULL, at the end of a successful call '*newp' will be set
* to the address of the element just added, so that it will be possible to
* continue an interaction with lpNext() and lpPrev().
*
* For deletion operations (both 'elestr' and 'eleint' set to NULL) 'newp' is
* set to the next element, on the right of the deleted one, or to NULL if the
* deleted element was the last one. */
unsigned char *lpInsert(unsigned char *lp,
unsigned char *elestr,
unsigned char *eleint,
uint32_t size,
unsigned char *p,
int where,
unsigned char **newp) {
unsigned char intenc[LP_MAX_INT_ENCODING_LEN];
unsigned char backlen[LP_MAX_BACKLEN_SIZE];
uint64_t enclen; /* The length of the encoded element. */
int del_ele = (elestr == NULL && eleint == NULL);
/* when deletion, it is conceptually replacing the element with a
* zero-length element. So whatever we get passed as 'where', set
* it to LP_REPLACE. */
if (del_ele) where = LP_REPLACE;
/* If we need to insert after the current element, we just jump to the
* next element (that could be the EOF one) and handle the case of
* inserting before. So the function will actually deal with just two
* cases: LP_BEFORE and LP_REPLACE. */
if (where == LP_AFTER) {
p = lpSkip(p);
where = LP_BEFORE;
ASSERT_INTEGRITY(lp, p);
}
/* Store the offset of the element 'p', so that we can obtain its
* address again after a reallocation. */
unsigned long poff = p - lp;
int enctype;
if (elestr) {
/* Calling lpEncodeGetType() results into the encoded version of the
* element to be stored into 'intenc' in case it is representable as
* an integer: in that case, the function returns LP_ENCODING_INT.
* Otherwise if LP_ENCODING_STR is returned, we'll have to call
* lpEncodeString() to actually write the encoded string on place later.
*
* Whatever the returned encoding is, 'enclen' is populated with the
* length of the encoded element. */
enctype = lpEncodeGetType(elestr, size, intenc, &enclen);
if (enctype == LP_ENCODING_INT) eleint = intenc;
} else if (eleint) {
enctype = LP_ENCODING_INT;
enclen = size; /* 'size' is the length of the encoded integer element. */
} else {
enctype = -1;
enclen = 0;
}
/* We need to also encode the backward-parsable length of the element
* and append it to the end: this allows to traverse the listpack from
* the end to the start. */
unsigned long backlen_size = (!del_ele) ? lpEncodeBacklen(backlen, enclen) : 0;
uint64_t old_listpack_bytes = lpGetTotalBytes(lp);
uint32_t replaced_len = 0;
if (where == LP_REPLACE) {
replaced_len = lpCurrentEncodedSizeUnsafe(p);
replaced_len += lpEncodeBacklen(NULL, replaced_len);
ASSERT_INTEGRITY_LEN(lp, p, replaced_len);
}
uint64_t new_listpack_bytes = old_listpack_bytes + enclen + backlen_size - replaced_len;
if (new_listpack_bytes > UINT32_MAX) return NULL;
/* We now need to reallocate in order to make space or shrink the
* allocation (in case 'when' value is LP_REPLACE and the new element is
* smaller). However we do that before memmoving the memory to
* make room for the new element if the final allocation will get
* larger, or we do it after if the final allocation will get smaller. */
unsigned char *dst = lp + poff; /* May be updated after reallocation. */
/* Realloc before: we need more room. */
if (new_listpack_bytes > old_listpack_bytes && new_listpack_bytes > lp_malloc_size(lp)) {
if ((lp = lp_realloc(lp, new_listpack_bytes)) == NULL) return NULL;
dst = lp + poff;
}
/* Setup the listpack relocating the elements to make the exact room
* we need to store the new one. */
if (where == LP_BEFORE) {
memmove(dst + enclen + backlen_size, dst, old_listpack_bytes - poff);
} else { /* LP_REPLACE. */
memmove(dst + enclen + backlen_size, dst + replaced_len, old_listpack_bytes - poff - replaced_len);
}
/* Realloc after: we need to free space. */
if (new_listpack_bytes < old_listpack_bytes) {
if ((lp = lp_realloc(lp, new_listpack_bytes)) == NULL) return NULL;
dst = lp + poff;
}
/* Store the entry. */
if (newp) {
*newp = dst;
/* In case of deletion, set 'newp' to NULL if the next element is
* the EOF element. */
if (del_ele && dst[0] == LP_EOF) *newp = NULL;
}
if (!del_ele) {
if (enctype == LP_ENCODING_INT) {
memcpy(dst, eleint, enclen);
} else if (elestr) {
lpEncodeString(dst, elestr, size);
} else {
valkey_unreachable();
}
dst += enclen;
memcpy(dst, backlen, backlen_size);
dst += backlen_size;
}
/* Update header. */
if (where != LP_REPLACE || del_ele) {
uint32_t num_elements = lpGetNumElements(lp);
if (num_elements != LP_HDR_NUMELE_UNKNOWN) {
if (!del_ele)
lpSetNumElements(lp, num_elements + 1);
else
lpSetNumElements(lp, num_elements - 1);
}
}
lpSetTotalBytes(lp, new_listpack_bytes);
#if 0
/* This code path is normally disabled: what it does is to force listpack
* to return *always* a new pointer after performing some modification to
* the listpack, even if the previous allocation was enough. This is useful
* in order to spot bugs in code using listpacks: by doing so we can find
* if the caller forgets to set the new pointer where the listpack reference
* is stored, after an update. */
unsigned char *oldlp = lp;
lp = lp_malloc(new_listpack_bytes);
memcpy(lp,oldlp,new_listpack_bytes);
if (newp) {
unsigned long offset = (*newp)-oldlp;
*newp = lp + offset;
}
/* Make sure the old allocation contains garbage. */
memset(oldlp,'A',new_listpack_bytes);
lp_free(oldlp);
#endif
return lp;
}
/* This is just a wrapper for lpInsert() to directly use a string. */
unsigned char *
lpInsertString(unsigned char *lp, unsigned char *s, uint32_t slen, unsigned char *p, int where, unsigned char **newp) {
return lpInsert(lp, s, NULL, slen, p, where, newp);
}
/* This is just a wrapper for lpInsert() to directly use a 64 bit integer
* instead of a string. */
unsigned char *lpInsertInteger(unsigned char *lp, long long lval, unsigned char *p, int where, unsigned char **newp) {
uint64_t enclen; /* The length of the encoded element. */
unsigned char intenc[LP_MAX_INT_ENCODING_LEN];
lpEncodeIntegerGetType(lval, intenc, &enclen);
return lpInsert(lp, NULL, intenc, enclen, p, where, newp);
}
/* Append the specified element 's' of length 'slen' at the head of the listpack. */
unsigned char *lpPrepend(unsigned char *lp, unsigned char *s, uint32_t slen) {
unsigned char *p = lpFirst(lp);
if (!p) return lpAppend(lp, s, slen);
return lpInsert(lp, s, NULL, slen, p, LP_BEFORE, NULL);
}
/* Append the specified integer element 'lval' at the head of the listpack. */
unsigned char *lpPrependInteger(unsigned char *lp, long long lval) {
unsigned char *p = lpFirst(lp);
if (!p) return lpAppendInteger(lp, lval);
return lpInsertInteger(lp, lval, p, LP_BEFORE, NULL);
}
/* Append the specified element 'ele' of length 'size' at the end of the
* listpack. It is implemented in terms of lpInsert(), so the return value is
* the same as lpInsert(). */
unsigned char *lpAppend(unsigned char *lp, unsigned char *ele, uint32_t size) {
uint64_t listpack_bytes = lpGetTotalBytes(lp);
unsigned char *eofptr = lp + listpack_bytes - 1;
return lpInsert(lp, ele, NULL, size, eofptr, LP_BEFORE, NULL);
}
/* Append the specified integer element 'lval' at the end of the listpack. */
unsigned char *lpAppendInteger(unsigned char *lp, long long lval) {
uint64_t listpack_bytes = lpGetTotalBytes(lp);
unsigned char *eofptr = lp + listpack_bytes - 1;
return lpInsertInteger(lp, lval, eofptr, LP_BEFORE, NULL);
}
/* This is just a wrapper for lpInsert() to directly use a string to replace
* the current element. The function returns the new listpack as return
* value, and also updates the current cursor by updating '*p'. */
unsigned char *lpReplace(unsigned char *lp, unsigned char **p, unsigned char *s, uint32_t slen) {
return lpInsert(lp, s, NULL, slen, *p, LP_REPLACE, p);
}
/* This is just a wrapper for lpInsertInteger() to directly use a 64 bit integer
* instead of a string to replace the current element. The function returns
* the new listpack as return value, and also updates the current cursor
* by updating '*p'. */
unsigned char *lpReplaceInteger(unsigned char *lp, unsigned char **p, long long lval) {
return lpInsertInteger(lp, lval, *p, LP_REPLACE, p);
}
/* Remove the element pointed by 'p', and return the resulting listpack.
* If 'newp' is not NULL, the next element pointer (to the right of the
* deleted one) is returned by reference. If the deleted element was the
* last one, '*newp' is set to NULL. */
unsigned char *lpDelete(unsigned char *lp, unsigned char *p, unsigned char **newp) {
return lpInsert(lp, NULL, NULL, 0, p, LP_REPLACE, newp);
}
/* Delete a range of entries from the listpack start with the element pointed by 'p'. */
unsigned char *lpDeleteRangeWithEntry(unsigned char *lp, unsigned char **p, unsigned long num) {
size_t bytes = lpBytes(lp);
unsigned long deleted = 0;
unsigned char *eofptr = lp + bytes - 1;
unsigned char *first, *tail;
first = tail = *p;
if (num == 0) return lp; /* Nothing to delete, return ASAP. */
/* Find the next entry to the last entry that needs to be deleted.
* lpLength may be unreliable due to corrupt data, so we cannot
* treat 'num' as the number of elements to be deleted. */
while (num--) {
deleted++;
tail = lpSkip(tail);
if (tail[0] == LP_EOF) break;
lpAssertValidEntry(lp, bytes, tail);
}
/* Store the offset of the element 'first', so that we can obtain its
* address again after a reallocation. */
unsigned long poff = first - lp;
/* Move tail to the front of the listpack */
memmove(first, tail, eofptr - tail + 1);
lpSetTotalBytes(lp, bytes - (tail - first));
uint32_t numele = lpGetNumElements(lp);
if (numele != LP_HDR_NUMELE_UNKNOWN) lpSetNumElements(lp, numele - deleted);
lp = lpShrinkToFit(lp);
/* Store the entry. */
*p = lp + poff;
if ((*p)[0] == LP_EOF) *p = NULL;
return lp;
}
/* Delete a range of entries from the listpack. */
unsigned char *lpDeleteRange(unsigned char *lp, long index, unsigned long num) {
unsigned char *p;
uint32_t numele = lpGetNumElements(lp);
if (num == 0) return lp; /* Nothing to delete, return ASAP. */
if ((p = lpSeek(lp, index)) == NULL) return lp;
/* If we know we're gonna delete beyond the end of the listpack, we can just move
* the EOF marker, and there's no need to iterate through the entries,
* but if we can't be sure how many entries there are, we rather avoid calling lpLength
* since that means an additional iteration on all elements.
*
* Note that index could overflow, but we use the value after seek, so when we
* use it no overflow happens. */
if (numele != LP_HDR_NUMELE_UNKNOWN && index < 0) index = (long)numele + index;
if (numele != LP_HDR_NUMELE_UNKNOWN && (numele - (unsigned long)index) <= num) {
p[0] = LP_EOF;
lpSetTotalBytes(lp, p - lp + 1);
lpSetNumElements(lp, index);
lp = lpShrinkToFit(lp);
} else {
lp = lpDeleteRangeWithEntry(lp, &p, num);
}
return lp;
}
/* Delete the elements 'ps' passed as an array of 'count' element pointers and
* return the resulting listpack. The elements must be given in the same order
* as they apper in the listpack. */
unsigned char *lpBatchDelete(unsigned char *lp, unsigned char **ps, unsigned long count) {
if (count == 0) return lp;
unsigned char *dst = ps[0];
size_t total_bytes = lpGetTotalBytes(lp);
unsigned char *lp_end = lp + total_bytes; /* After the EOF element. */
assert(lp_end[-1] == LP_EOF);
/*
* ----+--------+-----------+--------+---------+-----+---+
* ... | Delete | Keep | Delete | Keep | ... |EOF|
* ... |xxxxxxxx| |xxxxxxxx| | ... | |
* ----+--------+-----------+--------+---------+-----+---+
* ^ ^ ^ ^
* | | | |
* ps[i] | ps[i+1] |
* skip keep_start keep_end lp_end
*
* The loop memmoves the bytes between keep_start and keep_end to dst.
*/
for (unsigned long i = 0; i < count; i++) {
unsigned char *skip = ps[i];
assert(skip != NULL && skip[0] != LP_EOF);
unsigned char *keep_start = lpSkip(skip);
unsigned char *keep_end;
if (i + 1 < count) {
keep_end = ps[i + 1];
/* Deleting consecutive elements. Nothing to keep between them. */
if (keep_start == keep_end) continue;
} else {
/* Keep the rest of the listpack including the EOF marker. */
keep_end = lp_end;
}
assert(keep_end > keep_start);
size_t bytes_to_keep = keep_end - keep_start;
memmove(dst, keep_start, bytes_to_keep);
dst += bytes_to_keep;
}
/* Update total size and num elements. */
size_t deleted_bytes = lp_end - dst;
total_bytes -= deleted_bytes;
assert(lp[total_bytes - 1] == LP_EOF);
lpSetTotalBytes(lp, total_bytes);
uint32_t numele = lpGetNumElements(lp);
if (numele != LP_HDR_NUMELE_UNKNOWN) lpSetNumElements(lp, numele - count);
return lpShrinkToFit(lp);
}
/* Merge listpacks 'first' and 'second' by appending 'second' to 'first'.
*
* NOTE: The larger listpack is reallocated to contain the new merged listpack.
* Either 'first' or 'second' can be used for the result. The parameter not
* used will be free'd and set to NULL.
*
* After calling this function, the input parameters are no longer valid since
* they are changed and free'd in-place.
*
* The result listpack is the contents of 'first' followed by 'second'.
*
* On failure: returns NULL if the merge is impossible.
* On success: returns the merged listpack (which is expanded version of either
* 'first' or 'second', also frees the other unused input listpack, and sets the
* input listpack argument equal to newly reallocated listpack return value. */
unsigned char *lpMerge(unsigned char **first, unsigned char **second) {
/* If any params are null, we can't merge, so NULL. */
if (first == NULL || *first == NULL || second == NULL || *second == NULL) return NULL;
/* Can't merge same list into itself. */
if (*first == *second) return NULL;
size_t first_bytes = lpBytes(*first);
unsigned long first_len = lpLength(*first);
size_t second_bytes = lpBytes(*second);
unsigned long second_len = lpLength(*second);
int append;
unsigned char *source, *target;
size_t target_bytes, source_bytes;
/* Pick the largest listpack so we can resize easily in-place.
* We must also track if we are now appending or prepending to
* the target listpack. */
if (first_bytes >= second_bytes) {
/* retain first, append second to first. */
target = *first;
target_bytes = first_bytes;
source = *second;
source_bytes = second_bytes;
append = 1;
} else {
/* else, retain second, prepend first to second. */
target = *second;
target_bytes = second_bytes;
source = *first;
source_bytes = first_bytes;
append = 0;
}
/* Calculate final bytes (subtract one pair of metadata) */
unsigned long long lpbytes = (unsigned long long)first_bytes + second_bytes - LP_HDR_SIZE - 1;
assert(lpbytes < UINT32_MAX); /* larger values can't be stored */
unsigned long lplength = first_len + second_len;
/* Combined lp length should be limited within UINT16_MAX */
lplength = lplength < UINT16_MAX ? lplength : UINT16_MAX;
/* Extend target to new lpbytes then append or prepend source. */
target = lp_realloc(target, lpbytes);
if (append) {
/* append == appending to target */
/* Copy source after target (copying over original [END]):
* [TARGET - END, SOURCE - HEADER] */
memcpy(target + target_bytes - 1, source + LP_HDR_SIZE, source_bytes - LP_HDR_SIZE);
} else {
/* !append == prepending to target */
/* Move target *contents* exactly size of (source - [END]),
* then copy source into vacated space (source - [END]):
* [SOURCE - END, TARGET - HEADER] */
memmove(target + source_bytes - 1, target + LP_HDR_SIZE, target_bytes - LP_HDR_SIZE);
memcpy(target, source, source_bytes - 1);
}
lpSetNumElements(target, lplength);
lpSetTotalBytes(target, lpbytes);
/* Now free and NULL out what we didn't realloc */
if (append) {
lp_free(*second);
*second = NULL;
*first = target;
} else {
lp_free(*first);
*first = NULL;
*second = target;
}
return target;
}
unsigned char *lpDup(unsigned char *lp) {
size_t lpbytes = lpBytes(lp);
unsigned char *newlp = lp_malloc(lpbytes);
memcpy(newlp, lp, lpbytes);
return newlp;
}
/* Return the total number of bytes the listpack is composed of. */
size_t lpBytes(unsigned char *lp) {
return lpGetTotalBytes(lp);
}
/* Returns the size of a listpack consisting of an integer repeated 'rep' times. */
size_t lpEstimateBytesRepeatedInteger(long long lval, unsigned long rep) {
uint64_t enclen;
unsigned char intenc[LP_MAX_INT_ENCODING_LEN];
lpEncodeIntegerGetType(lval, intenc, &enclen);
unsigned long backlen = lpEncodeBacklen(NULL, enclen);
return LP_HDR_SIZE + (enclen + backlen) * rep + 1;
}
/* Seek the specified element and returns the pointer to the seeked element.
* Positive indexes specify the zero-based element to seek from the head to
* the tail, negative indexes specify elements starting from the tail, where
* -1 means the last element, -2 the penultimate and so forth. If the index
* is out of range, NULL is returned. */
unsigned char *lpSeek(unsigned char *lp, long index) {
int forward = 1; /* Seek forward by default. */
/* We want to seek from left to right or the other way around
* depending on the listpack length and the element position.
* However if the listpack length cannot be obtained in constant time,
* we always seek from left to right. */
uint32_t numele = lpGetNumElements(lp);
if (numele != LP_HDR_NUMELE_UNKNOWN) {
if (index < 0) index = (long)numele + index;
if (index < 0) return NULL; /* Index still < 0 means out of range. */
if (index >= (long)numele) return NULL; /* Out of range the other side. */
/* We want to scan right-to-left if the element we are looking for
* is past the half of the listpack. */
if (index > (long)numele / 2) {
forward = 0;
/* Right to left scanning always expects a negative index. Convert
* our index to negative form. */
index -= numele;
}
} else {
/* If the listpack length is unspecified, for negative indexes we
* want to always scan right-to-left. */
if (index < 0) forward = 0;
}
/* Forward and backward scanning is trivially based on lpNext()/lpPrev(). */
if (forward) {
unsigned char *ele = lpFirst(lp);
while (index > 0 && ele) {
ele = lpNext(lp, ele);
index--;
}
return ele;
} else {
unsigned char *ele = lpLast(lp);
while (index < -1 && ele) {
ele = lpPrev(lp, ele);
index++;
}
return ele;
}
}
/* Same as lpFirst but without validation assert, to be used right before lpValidateNext. */
unsigned char *lpValidateFirst(unsigned char *lp) {
unsigned char *p = lp + LP_HDR_SIZE; /* Skip the header. */
if (p[0] == LP_EOF) return NULL;
return p;
}
/* Validate the integrity of a single listpack entry and move to the next one.
* The input argument 'pp' is a reference to the current record and is advanced on exit.
* Returns 1 if valid, 0 if invalid. */
int lpValidateNext(unsigned char *lp, unsigned char **pp, size_t lpbytes) {
#define OUT_OF_RANGE(p) ((p) < lp + LP_HDR_SIZE || (p) > lp + lpbytes - 1)
unsigned char *p = *pp;
if (!p) return 0;
/* Before accessing p, make sure it's valid. */
if (OUT_OF_RANGE(p)) return 0;
if (*p == LP_EOF) {
*pp = NULL;
return 1;
}
/* check that we can read the encoded size */
uint32_t lenbytes = lpCurrentEncodedSizeBytes(p);
if (!lenbytes) return 0;
/* make sure the encoded entry length doesn't reach outside the edge of the listpack */
if (OUT_OF_RANGE(p + lenbytes)) return 0;
/* get the entry length and encoded backlen. */
unsigned long entrylen = lpCurrentEncodedSizeUnsafe(p);
unsigned long encodedBacklen = lpEncodeBacklen(NULL, entrylen);
entrylen += encodedBacklen;
/* make sure the entry doesn't reach outside the edge of the listpack */
if (OUT_OF_RANGE(p + entrylen)) return 0;
/* move to the next entry */
p += entrylen;
/* make sure the encoded length at the end patches the one at the beginning. */
uint64_t prevlen = lpDecodeBacklen(p - 1);
if (prevlen + encodedBacklen != entrylen) return 0;
*pp = p;
return 1;
#undef OUT_OF_RANGE
}
/* Validate that the entry doesn't reach outside the listpack allocation. */
static inline void lpAssertValidEntry(unsigned char *lp, size_t lpbytes, unsigned char *p) {
assert(lpValidateNext(lp, &p, lpbytes));
}
/* Validate the integrity of the data structure.
* when `deep` is 0, only the integrity of the header is validated.
* when `deep` is 1, we scan all the entries one by one. */
int lpValidateIntegrity(unsigned char *lp, size_t size, int deep, listpackValidateEntryCB entry_cb, void *cb_userdata) {
/* Check that we can actually read the header. (and EOF) */
if (size < LP_HDR_SIZE + 1) return 0;
/* Check that the encoded size in the header must match the allocated size. */
size_t bytes = lpGetTotalBytes(lp);
if (bytes != size) return 0;
/* The last byte must be the terminator. */
if (lp[size - 1] != LP_EOF) return 0;
if (!deep) return 1;
/* Validate the individual entries. */
uint32_t count = 0;
uint32_t numele = lpGetNumElements(lp);
unsigned char *p = lp + LP_HDR_SIZE;
while (p && p[0] != LP_EOF) {
unsigned char *prev = p;
/* Validate this entry and move to the next entry in advance
* to avoid callback crash due to corrupt listpack. */
if (!lpValidateNext(lp, &p, bytes)) return 0;
/* Optionally let the caller validate the entry too. */
if (entry_cb && !entry_cb(prev, numele, cb_userdata)) return 0;
count++;
}
/* Make sure 'p' really does point to the end of the listpack. */
if (p != lp + size - 1) return 0;
/* Check that the count in the header is correct */
if (numele != LP_HDR_NUMELE_UNKNOWN && numele != count) return 0;
return 1;
}
/* Compare entry pointer to by 'p' with string 's' of length 'slen'.
* Return 1 if equal. */
unsigned int lpCompare(unsigned char *p, unsigned char *s, uint32_t slen) {
unsigned char *value;
int64_t sz;
if (p[0] == LP_EOF) return 0;
value = lpGet(p, &sz, NULL);
if (value) {
return (slen == sz) && memcmp(value, s, slen) == 0;
} else {
/* We use lpStringToInt64() to get an integer representation of the
* string 's' and compare it to 'sval', it's much faster than convert
* integer to string and comparing. */
int64_t sval;
if (lpStringToInt64((const char *)s, slen, &sval)) return sz == sval;
}
return 0;
}
/* uint compare for qsort */
static int uintCompare(const void *a, const void *b) {
return (*(unsigned int *)a - *(unsigned int *)b);
}
/* Helper method to store a string into from val or lval into dest */
static inline void lpSaveValue(unsigned char *val, unsigned int len, int64_t lval, listpackEntry *dest) {
dest->sval = val;
dest->slen = len;
dest->lval = lval;
}
/* Randomly select a pair of key and value.
* total_count is a pre-computed length/2 of the listpack (to avoid calls to lpLength)
* 'key' and 'val' are used to store the result key value pair.
* 'val' can be NULL if the value is not needed. */
void lpRandomPair(unsigned char *lp, unsigned long total_count, listpackEntry *key, listpackEntry *val) {
unsigned char *p;
/* Avoid div by zero on corrupt listpack */
assert(total_count);
/* Generate even numbers, because listpack saved K-V pair */
int r = (rand() % total_count) * 2;
assert((p = lpSeek(lp, r)));
key->sval = lpGetValue(p, &(key->slen), &(key->lval));
if (!val) return;
assert((p = lpNext(lp, p)));
val->sval = lpGetValue(p, &(val->slen), &(val->lval));
}
/* Randomly select 'count' entries and store them in the 'entries' array, which
* needs to have space for 'count' listpackEntry structs. The order is random
* and duplicates are possible. */
void lpRandomEntries(unsigned char *lp, unsigned int count, listpackEntry *entries) {
struct pick {
unsigned int index;
unsigned int order;
} *picks = lp_malloc(count * sizeof(struct pick));
unsigned int total_size = lpLength(lp);
assert(total_size);
for (unsigned int i = 0; i < count; i++) {
picks[i].index = rand() % total_size;
picks[i].order = i;
}
/* Sort by index. */
qsort(picks, count, sizeof(struct pick), uintCompare);
/* Iterate over listpack in index order and store the values in the entries
* array respecting the original order. */
unsigned char *p = lpFirst(lp);
unsigned int j = 0; /* index in listpack */
for (unsigned int i = 0; i < count; i++) {
/* Advance listpack pointer to until we reach 'index' listpack. */
while (j < picks[i].index) {
p = lpNext(lp, p);
j++;
}
int storeorder = picks[i].order;
unsigned int len = 0;
long long llval = 0;
unsigned char *str = lpGetValue(p, &len, &llval);
lpSaveValue(str, len, llval, &entries[storeorder]);
}
lp_free(picks);
}
/* Randomly select count of key value pairs and store into 'keys' and
* 'vals' args. The order of the picked entries is random, and the selections
* are non-unique (repetitions are possible).
* The 'vals' arg can be NULL in which case we skip these. */
void lpRandomPairs(unsigned char *lp, unsigned int count, listpackEntry *keys, listpackEntry *vals) {
unsigned char *p, *key, *value;
unsigned int klen = 0, vlen = 0;
long long klval = 0, vlval = 0;
/* Notice: the index member must be first due to the use in uintCompare */
typedef struct {
unsigned int index;
unsigned int order;
} rand_pick;
rand_pick *picks = lp_malloc(sizeof(rand_pick) * count);
unsigned int total_size = lpLength(lp) / 2;
/* Avoid div by zero on corrupt listpack */
assert(total_size);
/* create a pool of random indexes (some may be duplicate). */
for (unsigned int i = 0; i < count; i++) {
picks[i].index = (rand() % total_size) * 2; /* Generate even indexes */
/* keep track of the order we picked them */
picks[i].order = i;
}
/* sort by indexes. */
qsort(picks, count, sizeof(rand_pick), uintCompare);
/* fetch the elements form the listpack into a output array respecting the original order. */
unsigned int lpindex = picks[0].index, pickindex = 0;
p = lpSeek(lp, lpindex);
while (p && pickindex < count) {
key = lpGetValue(p, &klen, &klval);
assert((p = lpNext(lp, p)));
value = lpGetValue(p, &vlen, &vlval);
while (pickindex < count && lpindex == picks[pickindex].index) {
int storeorder = picks[pickindex].order;
lpSaveValue(key, klen, klval, &keys[storeorder]);
if (vals) lpSaveValue(value, vlen, vlval, &vals[storeorder]);
pickindex++;
}
lpindex += 2;
p = lpNext(lp, p);
}
lp_free(picks);
}
/* Randomly select count of key value pairs and store into 'keys' and
* 'vals' args. The selections are unique (no repetitions), and the order of
* the picked entries is NOT-random.
* The 'vals' arg can be NULL in which case we skip these.
* The return value is the number of items picked which can be lower than the
* requested count if the listpack doesn't hold enough pairs. */
unsigned int lpRandomPairsUnique(unsigned char *lp, unsigned int count, listpackEntry *keys, listpackEntry *vals) {
unsigned char *p, *key;
unsigned int klen = 0;
long long klval = 0;
unsigned int total_size = lpLength(lp) / 2;
unsigned int index = 0;
if (count > total_size) count = total_size;
p = lpFirst(lp);
unsigned int picked = 0, remaining = count;
while (picked < count && p) {
assert((p = lpNextRandom(lp, p, &index, remaining, 1)));
key = lpGetValue(p, &klen, &klval);
lpSaveValue(key, klen, klval, &keys[picked]);
assert((p = lpNext(lp, p)));
index++;
if (vals) {
key = lpGetValue(p, &klen, &klval);
lpSaveValue(key, klen, klval, &vals[picked]);
}
p = lpNext(lp, p);
remaining--;
picked++;
index++;
}
return picked;
}
/* Iterates forward to the "next random" element, given we are yet to pick
* 'remaining' unique elements between the starting element 'p' (inclusive) and
* the end of the list. The 'index' needs to be initialized according to the
* current zero-based index matching the position of the starting element 'p'
* and is updated to match the returned element's zero-based index. If
* 'even_only' is nonzero, an element with an even index is picked, which is
* useful if the listpack represents a key-value pair sequence.
*
* Note that this function can return p. In order to skip the previously
* returned element, you need to call lpNext() or lpDelete() after each call to
* lpNextRandom(). Idea:
*
* assert(remaining <= lpLength(lp));
* p = lpFirst(lp);
* i = 0;
* while (remaining > 0) {
* p = lpNextRandom(lp, p, &i, remaining--, 0);
*
* // ... Do stuff with p ...
*
* p = lpNext(lp, p);
* i++;
* }
*/
unsigned char *
lpNextRandom(unsigned char *lp, unsigned char *p, unsigned int *index, unsigned int remaining, int even_only) {
/* To only iterate once, every time we try to pick a member, the probability
* we pick it is the quotient of the count left we want to pick and the
* count still we haven't visited. This way, we could make every member be
* equally likely to be picked. */
unsigned int i = *index;
unsigned int total_size = lpLength(lp);
while (i < total_size && p != NULL) {
if (even_only && i % 2 != 0) {
p = lpNext(lp, p);
i++;
continue;
}
/* Do we pick this element? */
unsigned int available = total_size - i;
if (even_only) available /= 2;
double randomDouble = ((double)rand()) / RAND_MAX;
double threshold = ((double)remaining) / available;
if (randomDouble <= threshold) {
*index = i;
return p;
}
p = lpNext(lp, p);
i++;
}
return NULL;
}
/* Print info of listpack which is used in debugCommand */
void lpRepr(unsigned char *lp) {
unsigned char *p, *vstr;
int64_t vlen;
unsigned char intbuf[LP_INTBUF_SIZE];
int index = 0;
printf("{total bytes %zu} {num entries %lu}\n", lpBytes(lp), lpLength(lp));
p = lpFirst(lp);
while (p) {
uint32_t encoded_size_bytes = lpCurrentEncodedSizeBytes(p);
uint32_t encoded_size = lpCurrentEncodedSizeUnsafe(p);
unsigned long back_len = lpEncodeBacklen(NULL, encoded_size);
printf("{\n"
"\taddr: 0x%08lx,\n"
"\tindex: %2d,\n"
"\toffset: %1lu,\n"
"\thdr+entrylen+backlen: %2lu,\n"
"\thdrlen: %3u,\n"
"\tbacklen: %2lu,\n"
"\tpayload: %1u\n",
(long unsigned)p, index, (unsigned long)(p - lp), encoded_size + back_len, encoded_size_bytes, back_len,
encoded_size - encoded_size_bytes);
printf("\tbytes: ");
for (unsigned int i = 0; i < (encoded_size + back_len); i++) {
printf("%02x|", p[i]);
}
printf("\n");
vstr = lpGet(p, &vlen, intbuf);
printf("\t[str]");
if (vlen > 40) {
if (fwrite(vstr, 40, 1, stdout) == 0) perror("fwrite");
printf("...");
} else {
if (fwrite(vstr, vlen, 1, stdout) == 0) perror("fwrite");
}
printf("\n}\n");
index++;
p = lpNext(lp, p);
}
printf("{end}\n\n");
}