
With this commit, users are able to build valkey using `CMake`. ## Example usage: Build `valkey-server` in Release mode with TLS enabled and using `jemalloc` as the allocator: ```bash mkdir build-release cd $_ cmake .. -DCMAKE_BUILD_TYPE=Release \ -DCMAKE_INSTALL_PREFIX=/tmp/valkey-install \ -DBUILD_MALLOC=jemalloc -DBUILD_TLS=1 make -j$(nproc) install # start valkey /tmp/valkey-install/bin/valkey-server ``` Build `valkey-unit-tests`: ```bash mkdir build-release-ut cd $_ cmake .. -DCMAKE_BUILD_TYPE=Release \ -DBUILD_MALLOC=jemalloc -DBUILD_UNIT_TESTS=1 make -j$(nproc) # Run the tests ./bin/valkey-unit-tests ``` Current features supported by this PR: - Building against different allocators: (`jemalloc`, `tcmalloc`, `tcmalloc_minimal` and `libc`), e.g. to enable `jemalloc` pass `-DBUILD_MALLOC=jemalloc` to `cmake` - OpenSSL builds (to enable TLS, pass `-DBUILD_TLS=1` to `cmake`) - Sanitizier: pass `-DBUILD_SANITIZER=<address|thread|undefined>` to `cmake` - Install target + redis symbolic links - Build `valkey-unit-tests` executable - Standard CMake variables are supported. e.g. to install `valkey` under `/home/you/root` pass `-DCMAKE_INSTALL_PREFIX=/home/you/root` Why using `CMake`? To list *some* of the advantages of using `CMake`: - Superior IDE integrations: cmake generates the file `compile_commands.json` which is required by `clangd` to get a compiler accuracy code completion (in other words: your VScode will thank you) - Out of the source build tree: with the current build system, object files are created all over the place polluting the build source tree, the best practice is to build the project on a separate folder - Multiple build types co-existing: with the current build system, it is often hard to have multiple build configurations. With cmake you can do it easily: - It is the de-facto standard for C/C++ project these days More build examples: ASAN build: ```bash mkdir build-asan cd $_ cmake .. -DBUILD_SANITIZER=address -DBUILD_MALLOC=libc make -j$(nproc) ``` ASAN with jemalloc: ```bash mkdir build-asan-jemalloc cd $_ cmake .. -DBUILD_SANITIZER=address -DBUILD_MALLOC=jemalloc make -j$(nproc) ``` As seen by the previous examples, any combination is allowed and co-exist on the same source tree. ## Valkey installation With this new `CMake`, it is possible to install the binary by running `make install` or creating a package `make package` (currently supported on Debian like distros) ### Example 1: build & install using `make install`: ```bash mkdir build-release cd $_ cmake .. -DCMAKE_INSTALL_PREFIX=$HOME/valkey-install -DCMAKE_BUILD_TYPE=Release make -j$(nproc) install # valkey is now installed under $HOME/valkey-install ``` ### Example 2: create a `.deb` installer: ```bash mkdir build-release cd $_ cmake .. -DCMAKE_BUILD_TYPE=Release make -j$(nproc) package # ... CPack deb generation output sudo gdebi -n ./valkey_8.1.0_amd64.deb # valkey is now installed under /opt/valkey ``` ### Example 3: create installer for non Debian systems (e.g. FreeBSD or macOS): ```bash mkdir build-release cd $_ cmake .. -DCMAKE_BUILD_TYPE=Release make -j$(nproc) package mkdir -p /opt/valkey && ./valkey-8.1.0-Darwin.sh --prefix=/opt/valkey --exclude-subdir # valkey-server is now installed under /opt/valkey ``` Signed-off-by: Eran Ifrah <eifrah@amazon.com>
README for Lua 5.1 See INSTALL for installation instructions. See HISTORY for a summary of changes since the last released version. * What is Lua? ------------ Lua is a powerful, light-weight programming language designed for extending applications. Lua is also frequently used as a general-purpose, stand-alone language. Lua is free software. For complete information, visit Lua's web site at http://www.lua.org/ . For an executive summary, see http://www.lua.org/about.html . Lua has been used in many different projects around the world. For a short list, see http://www.lua.org/uses.html . * Availability ------------ Lua is freely available for both academic and commercial purposes. See COPYRIGHT and http://www.lua.org/license.html for details. Lua can be downloaded at http://www.lua.org/download.html . * Installation ------------ Lua is implemented in pure ANSI C, and compiles unmodified in all known platforms that have an ANSI C compiler. In most Unix-like platforms, simply do "make" with a suitable target. See INSTALL for detailed instructions. * Origin ------ Lua is developed at Lua.org, a laboratory of the Department of Computer Science of PUC-Rio (the Pontifical Catholic University of Rio de Janeiro in Brazil). For more information about the authors, see http://www.lua.org/authors.html . (end of README)