futriix/src/zmalloc.c
Lipeng Zhu a62d1f177b
Fix false sharing issue between main thread and io-threads when access used_memory_thread. (#1179)
When profiling some workloads with `io-threads` enabled. We found the
false sharing issue is heavy.

This patch try to split the the elements accessed by main thread and
io-threads into different cache line by padding the elements in the head
of `used_memory_thread_padded` array. 

This design helps mitigate the false sharing between main
thread and io-threads, because the main thread has been the bottleneck
with io-threads enabled. We didn't put each element in an individual
cache line is that we don't want to bring the additional cache line
fetch operation (3 vs 16 cache line) when call function like
`zmalloc_used_memory()`.

---------

Signed-off-by: Lipeng Zhu <lipeng.zhu@intel.com>
Signed-off-by: Lipeng Zhu <zhu.lipeng@outlook.com>
Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
Co-authored-by: Wangyang Guo <wangyang.guo@intel.com>
Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
2024-10-17 12:37:10 +02:00

960 lines
30 KiB
C

/* zmalloc - total amount of allocated memory aware version of malloc()
*
* Copyright (c) 2009-2010, Redis Ltd.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "fmacros.h"
#include "config.h"
#include "solarisfixes.h"
#include "serverassert.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#ifdef __linux__
#include <sys/mman.h>
#endif
/* This function provide us access to the original libc free(). This is useful
* for instance to free results obtained by backtrace_symbols(). We need
* to define this function before including zmalloc.h that may shadow the
* free implementation if we use jemalloc or another non standard allocator. */
void zlibc_free(void *ptr) {
free(ptr);
}
#include <string.h>
#include "zmalloc.h"
#include <stdatomic.h>
#define UNUSED(x) ((void)(x))
#ifdef HAVE_MALLOC_SIZE
#define PREFIX_SIZE (0)
#else
/* Use at least 8 bytes alignment on all systems. */
#if SIZE_MAX < 0xffffffffffffffffull
#define PREFIX_SIZE 8
#else
#define PREFIX_SIZE (sizeof(size_t))
#endif
#endif
/* When using the libc allocator, use a minimum allocation size to match the
* jemalloc behavior that doesn't return NULL in this case.
*/
#define MALLOC_MIN_SIZE(x) ((x) > 0 ? (x) : sizeof(long))
/* Explicitly override malloc/free etc when using tcmalloc. */
#if defined(USE_TCMALLOC)
#define malloc(size) tc_malloc(size)
#define calloc(count, size) tc_calloc(count, size)
#define realloc(ptr, size) tc_realloc(ptr, size)
#define free(ptr) tc_free(ptr)
/* Explicitly override malloc/free etc when using jemalloc. */
#elif defined(USE_JEMALLOC)
#define malloc(size) je_malloc(size)
#define calloc(count, size) je_calloc(count, size)
#define realloc(ptr, size) je_realloc(ptr, size)
#define free(ptr) je_free(ptr)
#define mallocx(size, flags) je_mallocx(size, flags)
#define dallocx(ptr, flags) je_dallocx(ptr, flags)
#endif
#define thread_local _Thread_local
#define PADDING_ELEMENT_NUM (CACHE_LINE_SIZE / sizeof(size_t) - 1)
#define MAX_THREADS_NUM (IO_THREADS_MAX_NUM + 3 + 1)
/* A thread-local storage which keep the current thread's index in the used_memory_thread array. */
static thread_local int thread_index = -1;
/* Element in used_memory_thread array should only be written by a single thread which
* distinguished by the thread-local storage thread_index. But when an element in
* used_memory_thread array was written, it could be read by another thread simultaneously,
* the reader will see the inconsistency memory on non x86 architecture potentially.
* For the ARM and PowerPC platform, we can solve this issue by make the memory aligned.
* For the other architecture, lets fall back to the atomic operation to keep safe. */
#if defined(__i386__) || defined(__x86_64__) || defined(__amd64__) || defined(__POWERPC__) || defined(__arm__) || \
defined(__arm64__)
static __attribute__((aligned(CACHE_LINE_SIZE))) size_t used_memory_thread_padded[MAX_THREADS_NUM + PADDING_ELEMENT_NUM];
#else
static __attribute__((aligned(CACHE_LINE_SIZE))) _Atomic size_t used_memory_thread_padded[MAX_THREADS_NUM + PADDING_ELEMENT_NUM];
#endif
static size_t *used_memory_thread = &used_memory_thread_padded[PADDING_ELEMENT_NUM];
static atomic_int total_active_threads = 0;
/* This is a simple protection. It's used only if some modules create a lot of threads. */
static atomic_size_t used_memory_for_additional_threads = 0;
/* Register the thread index in start_routine. */
static inline void zmalloc_register_thread_index(void) {
thread_index = atomic_fetch_add_explicit(&total_active_threads, 1, memory_order_relaxed);
}
static inline void update_zmalloc_stat_alloc(size_t size) {
if (unlikely(thread_index == -1)) zmalloc_register_thread_index();
if (unlikely(thread_index >= MAX_THREADS_NUM)) {
atomic_fetch_add_explicit(&used_memory_for_additional_threads, size, memory_order_relaxed);
} else {
used_memory_thread[thread_index] += size;
}
}
static inline void update_zmalloc_stat_free(size_t size) {
if (unlikely(thread_index == -1)) zmalloc_register_thread_index();
if (unlikely(thread_index >= MAX_THREADS_NUM)) {
atomic_fetch_sub_explicit(&used_memory_for_additional_threads, size, memory_order_relaxed);
} else {
used_memory_thread[thread_index] -= size;
}
}
static void zmalloc_default_oom(size_t size) {
fprintf(stderr, "zmalloc: Out of memory trying to allocate %zu bytes\n", size);
fflush(stderr);
abort();
}
static void (*zmalloc_oom_handler)(size_t) = zmalloc_default_oom;
#ifdef HAVE_MALLOC_SIZE
void *extend_to_usable(void *ptr, size_t size) {
UNUSED(size);
return ptr;
}
#endif
/* Try allocating memory, and return NULL if failed.
* '*usable' is set to the usable size if non NULL. */
static inline void *ztrymalloc_usable_internal(size_t size, size_t *usable) {
/* Possible overflow, return NULL, so that the caller can panic or handle a failed allocation. */
if (size >= SIZE_MAX / 2) return NULL;
void *ptr = malloc(MALLOC_MIN_SIZE(size) + PREFIX_SIZE);
if (!ptr) return NULL;
#ifdef HAVE_MALLOC_SIZE
size = zmalloc_size(ptr);
update_zmalloc_stat_alloc(size);
if (usable) *usable = size;
return ptr;
#else
size = MALLOC_MIN_SIZE(size);
*((size_t *)ptr) = size;
update_zmalloc_stat_alloc(size + PREFIX_SIZE);
if (usable) *usable = size;
return (char *)ptr + PREFIX_SIZE;
#endif
}
void *ztrymalloc_usable(size_t size, size_t *usable) {
size_t usable_size = 0;
void *ptr = ztrymalloc_usable_internal(size, &usable_size);
#ifdef HAVE_MALLOC_SIZE
ptr = extend_to_usable(ptr, usable_size);
#endif
if (usable) *usable = usable_size;
return ptr;
}
/* Allocate memory or panic */
void *zmalloc(size_t size) {
void *ptr = ztrymalloc_usable_internal(size, NULL);
if (!ptr) zmalloc_oom_handler(size);
return ptr;
}
/* Try allocating memory, and return NULL if failed. */
void *ztrymalloc(size_t size) {
void *ptr = ztrymalloc_usable_internal(size, NULL);
return ptr;
}
/* Allocate memory or panic.
* '*usable' is set to the usable size if non NULL. */
void *zmalloc_usable(size_t size, size_t *usable) {
size_t usable_size = 0;
void *ptr = ztrymalloc_usable_internal(size, &usable_size);
if (!ptr) zmalloc_oom_handler(size);
#ifdef HAVE_MALLOC_SIZE
ptr = extend_to_usable(ptr, usable_size);
#endif
if (usable) *usable = usable_size;
return ptr;
}
/* Allocation and free functions that bypass the thread cache
* and go straight to the allocator arena bins.
* Currently implemented only for jemalloc. Used for online defragmentation. */
#ifdef HAVE_DEFRAG
void *zmalloc_no_tcache(size_t size) {
if (size >= SIZE_MAX / 2) zmalloc_oom_handler(size);
void *ptr = mallocx(size + PREFIX_SIZE, MALLOCX_TCACHE_NONE);
if (!ptr) zmalloc_oom_handler(size);
update_zmalloc_stat_alloc(zmalloc_size(ptr));
return ptr;
}
void zfree_no_tcache(void *ptr) {
if (ptr == NULL) return;
update_zmalloc_stat_free(zmalloc_size(ptr));
dallocx(ptr, MALLOCX_TCACHE_NONE);
}
#endif
/* Try allocating memory and zero it, and return NULL if failed.
* '*usable' is set to the usable size if non NULL. */
static inline void *ztrycalloc_usable_internal(size_t size, size_t *usable) {
/* Possible overflow, return NULL, so that the caller can panic or handle a failed allocation. */
if (size >= SIZE_MAX / 2) return NULL;
void *ptr = calloc(1, MALLOC_MIN_SIZE(size) + PREFIX_SIZE);
if (ptr == NULL) return NULL;
#ifdef HAVE_MALLOC_SIZE
size = zmalloc_size(ptr);
update_zmalloc_stat_alloc(size);
if (usable) *usable = size;
return ptr;
#else
size = MALLOC_MIN_SIZE(size);
*((size_t *)ptr) = size;
update_zmalloc_stat_alloc(size + PREFIX_SIZE);
if (usable) *usable = size;
return (char *)ptr + PREFIX_SIZE;
#endif
}
void *ztrycalloc_usable(size_t size, size_t *usable) {
size_t usable_size = 0;
void *ptr = ztrycalloc_usable_internal(size, &usable_size);
#ifdef HAVE_MALLOC_SIZE
ptr = extend_to_usable(ptr, usable_size);
#endif
if (usable) *usable = usable_size;
return ptr;
}
/* Allocate memory and zero it or panic.
* We need this wrapper to have a calloc compatible signature */
void *zcalloc_num(size_t num, size_t size) {
/* Ensure that the arguments to calloc(), when multiplied, do not wrap.
* Division operations are susceptible to divide-by-zero errors so we also check it. */
if ((size == 0) || (num > SIZE_MAX / size)) {
zmalloc_oom_handler(SIZE_MAX);
return NULL;
}
void *ptr = ztrycalloc_usable_internal(num * size, NULL);
if (!ptr) zmalloc_oom_handler(num * size);
return ptr;
}
/* Allocate memory and zero it or panic */
void *zcalloc(size_t size) {
void *ptr = ztrycalloc_usable_internal(size, NULL);
if (!ptr) zmalloc_oom_handler(size);
return ptr;
}
/* Try allocating memory, and return NULL if failed. */
void *ztrycalloc(size_t size) {
void *ptr = ztrycalloc_usable_internal(size, NULL);
return ptr;
}
/* Allocate memory or panic.
* '*usable' is set to the usable size if non NULL. */
void *zcalloc_usable(size_t size, size_t *usable) {
size_t usable_size = 0;
void *ptr = ztrycalloc_usable_internal(size, &usable_size);
if (!ptr) zmalloc_oom_handler(size);
#ifdef HAVE_MALLOC_SIZE
ptr = extend_to_usable(ptr, usable_size);
#endif
if (usable) *usable = usable_size;
return ptr;
}
/* Try reallocating memory, and return NULL if failed.
* '*usable' is set to the usable size if non NULL. */
static inline void *ztryrealloc_usable_internal(void *ptr, size_t size, size_t *usable) {
#ifndef HAVE_MALLOC_SIZE
void *realptr;
#endif
size_t oldsize;
void *newptr;
/* not allocating anything, just redirect to free. */
if (size == 0 && ptr != NULL) {
zfree(ptr);
if (usable) *usable = 0;
return NULL;
}
/* Not freeing anything, just redirect to malloc. */
if (ptr == NULL) return ztrymalloc_usable(size, usable);
/* Possible overflow, return NULL, so that the caller can panic or handle a failed allocation. */
if (size >= SIZE_MAX / 2) {
zfree(ptr);
if (usable) *usable = 0;
return NULL;
}
#ifdef HAVE_MALLOC_SIZE
oldsize = zmalloc_size(ptr);
newptr = realloc(ptr, size);
if (newptr == NULL) {
if (usable) *usable = 0;
return NULL;
}
update_zmalloc_stat_free(oldsize);
size = zmalloc_size(newptr);
update_zmalloc_stat_alloc(size);
if (usable) *usable = size;
return newptr;
#else
realptr = (char *)ptr - PREFIX_SIZE;
oldsize = *((size_t *)realptr);
newptr = realloc(realptr, size + PREFIX_SIZE);
if (newptr == NULL) {
if (usable) *usable = 0;
return NULL;
}
*((size_t *)newptr) = size;
update_zmalloc_stat_free(oldsize);
update_zmalloc_stat_alloc(size);
if (usable) *usable = size;
return (char *)newptr + PREFIX_SIZE;
#endif
}
void *ztryrealloc_usable(void *ptr, size_t size, size_t *usable) {
size_t usable_size = 0;
ptr = ztryrealloc_usable_internal(ptr, size, &usable_size);
#ifdef HAVE_MALLOC_SIZE
ptr = extend_to_usable(ptr, usable_size);
#endif
if (usable) *usable = usable_size;
return ptr;
}
/* Reallocate memory and zero it or panic */
void *zrealloc(void *ptr, size_t size) {
ptr = ztryrealloc_usable_internal(ptr, size, NULL);
if (!ptr && size != 0) zmalloc_oom_handler(size);
return ptr;
}
/* Try Reallocating memory, and return NULL if failed. */
void *ztryrealloc(void *ptr, size_t size) {
ptr = ztryrealloc_usable_internal(ptr, size, NULL);
return ptr;
}
/* Reallocate memory or panic.
* '*usable' is set to the usable size if non NULL. */
void *zrealloc_usable(void *ptr, size_t size, size_t *usable) {
size_t usable_size = 0;
ptr = ztryrealloc_usable(ptr, size, &usable_size);
if (!ptr && size != 0) zmalloc_oom_handler(size);
#ifdef HAVE_MALLOC_SIZE
ptr = extend_to_usable(ptr, usable_size);
#endif
if (usable) *usable = usable_size;
return ptr;
}
/* Provide zmalloc_size() for systems where this function is not provided by
* malloc itself, given that in that case we store a header with this
* information as the first bytes of every allocation. */
#ifndef HAVE_MALLOC_SIZE
size_t zmalloc_size(void *ptr) {
void *realptr = (char *)ptr - PREFIX_SIZE;
size_t size = *((size_t *)realptr);
return size + PREFIX_SIZE;
}
size_t zmalloc_usable_size(void *ptr) {
return zmalloc_size(ptr) - PREFIX_SIZE;
}
#endif
/* Frees the memory buffer pointed to by ptr and updates statistics. When using
* jemalloc it uses the fast track by specifying the buffer size.
*
* ptr must have been returned by a previous call to the system allocator which
* returned the usable size, such as zmalloc_usable. ptr must not be NULL. The
* caller is responsible to provide the actual allocation size, which may be
* different from the requested size. */
static inline void zfree_internal(void *ptr, size_t size) {
assert(ptr != NULL);
update_zmalloc_stat_free(size);
#ifdef USE_JEMALLOC
je_sdallocx(ptr, size, 0);
#else
free(ptr);
#endif
}
void zfree(void *ptr) {
if (ptr == NULL) return;
#ifdef HAVE_MALLOC_SIZE
size_t size = zmalloc_size(ptr);
#else
ptr = (char *)ptr - PREFIX_SIZE;
size_t data_size = *((size_t *)ptr);
size_t size = data_size + PREFIX_SIZE;
#endif
zfree_internal(ptr, size);
}
/* Like zfree(), but doesn't call zmalloc_size(). */
void zfree_with_size(void *ptr, size_t size) {
if (ptr == NULL) return;
#ifndef HAVE_MALLOC_SIZE
ptr = (char *)ptr - PREFIX_SIZE;
size += PREFIX_SIZE;
#endif
zfree_internal(ptr, size);
}
char *zstrdup(const char *s) {
size_t l = strlen(s) + 1;
char *p = zmalloc(l);
memcpy(p, s, l);
return p;
}
size_t zmalloc_used_memory(void) {
size_t um = 0;
int threads_num = total_active_threads;
if (unlikely(total_active_threads > MAX_THREADS_NUM)) {
um += atomic_load_explicit(&used_memory_for_additional_threads, memory_order_relaxed);
threads_num = MAX_THREADS_NUM;
}
for (int i = 0; i < threads_num; i++) {
um += used_memory_thread[i];
}
return um;
}
void zmalloc_set_oom_handler(void (*oom_handler)(size_t)) {
zmalloc_oom_handler = oom_handler;
}
/* Use 'MADV_DONTNEED' to release memory to operating system quickly.
* We do that in a fork child process to avoid CoW when the parent modifies
* these shared pages. */
void zmadvise_dontneed(void *ptr) {
#if defined(USE_JEMALLOC) && defined(__linux__)
static size_t page_size = 0;
if (page_size == 0) page_size = sysconf(_SC_PAGESIZE);
size_t page_size_mask = page_size - 1;
size_t real_size = zmalloc_size(ptr);
if (real_size < page_size) return;
/* We need to align the pointer upwards according to page size, because
* the memory address is increased upwards and we only can free memory
* based on page. */
char *aligned_ptr = (char *)(((size_t)ptr + page_size_mask) & ~page_size_mask);
real_size -= (aligned_ptr - (char *)ptr);
if (real_size >= page_size) {
madvise((void *)aligned_ptr, real_size & ~page_size_mask, MADV_DONTNEED);
}
#else
(void)(ptr);
#endif
}
/* Get the RSS information in an OS-specific way.
*
* WARNING: the function zmalloc_get_rss() is not designed to be fast
* and may not be called in the busy loops where the server tries to release
* memory expiring or swapping out objects.
*
* For this kind of "fast RSS reporting" usages use instead the
* function RedisEstimateRSS() that is a much faster (and less precise)
* version of the function. */
#if defined(HAVE_PROC_STAT)
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#endif
/* Get the i'th field from "/proc/self/stat" note i is 1 based as appears in the 'proc' man page */
int get_proc_stat_ll(int i, long long *res) {
#if defined(HAVE_PROC_STAT)
char buf[4096];
int fd, l;
char *p, *x;
if ((fd = open("/proc/self/stat", O_RDONLY)) == -1) return 0;
if ((l = read(fd, buf, sizeof(buf) - 1)) <= 0) {
close(fd);
return 0;
}
close(fd);
buf[l] = '\0';
if (buf[l - 1] == '\n') buf[l - 1] = '\0';
/* Skip pid and process name (surrounded with parentheses) */
p = strrchr(buf, ')');
if (!p) return 0;
p++;
while (*p == ' ') p++;
if (*p == '\0') return 0;
i -= 3;
if (i < 0) return 0;
while (p && i--) {
p = strchr(p, ' ');
if (p)
p++;
else
return 0;
}
x = strchr(p, ' ');
if (x) *x = '\0';
*res = strtoll(p, &x, 10);
if (*x != '\0') return 0;
return 1;
#else
UNUSED(i);
UNUSED(res);
return 0;
#endif
}
#if defined(HAVE_PROC_STAT)
size_t zmalloc_get_rss(void) {
int page = sysconf(_SC_PAGESIZE);
long long rss;
/* RSS is the 24th field in /proc/<pid>/stat */
if (!get_proc_stat_ll(24, &rss)) return 0;
rss *= page;
return rss;
}
#elif defined(HAVE_TASKINFO)
#include <sys/types.h>
#include <sys/sysctl.h>
#include <mach/task.h>
#include <mach/mach_init.h>
size_t zmalloc_get_rss(void) {
task_t task = MACH_PORT_NULL;
struct task_basic_info t_info;
mach_msg_type_number_t t_info_count = TASK_BASIC_INFO_COUNT;
if (task_for_pid(current_task(), getpid(), &task) != KERN_SUCCESS) return 0;
task_info(task, TASK_BASIC_INFO, (task_info_t)&t_info, &t_info_count);
return t_info.resident_size;
}
#elif defined(__FreeBSD__) || defined(__DragonFly__)
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/user.h>
size_t zmalloc_get_rss(void) {
struct kinfo_proc info;
size_t infolen = sizeof(info);
int mib[4];
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = getpid();
if (sysctl(mib, 4, &info, &infolen, NULL, 0) == 0)
#if defined(__FreeBSD__)
return (size_t)info.ki_rssize * getpagesize();
#else
return (size_t)info.kp_vm_rssize * getpagesize();
#endif
return 0L;
}
#elif defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/types.h>
#include <sys/sysctl.h>
#if defined(__OpenBSD__)
#define kinfo_proc2 kinfo_proc
#define KERN_PROC2 KERN_PROC
#define __arraycount(a) (sizeof(a) / sizeof(a[0]))
#endif
size_t zmalloc_get_rss(void) {
struct kinfo_proc2 info;
size_t infolen = sizeof(info);
int mib[6];
mib[0] = CTL_KERN;
mib[1] = KERN_PROC2;
mib[2] = KERN_PROC_PID;
mib[3] = getpid();
mib[4] = sizeof(info);
mib[5] = 1;
if (sysctl(mib, __arraycount(mib), &info, &infolen, NULL, 0) == 0) return (size_t)info.p_vm_rssize * getpagesize();
return 0L;
}
#elif defined(__HAIKU__)
#include <OS.h>
size_t zmalloc_get_rss(void) {
area_info info;
thread_info th;
size_t rss = 0;
ssize_t cookie = 0;
if (get_thread_info(find_thread(0), &th) != B_OK) return 0;
while (get_next_area_info(th.team, &cookie, &info) == B_OK) rss += info.ram_size;
return rss;
}
#elif defined(HAVE_PSINFO)
#include <unistd.h>
#include <sys/procfs.h>
#include <fcntl.h>
size_t zmalloc_get_rss(void) {
struct prpsinfo info;
char filename[256];
int fd;
snprintf(filename, 256, "/proc/%ld/psinfo", (long)getpid());
if ((fd = open(filename, O_RDONLY)) == -1) return 0;
if (ioctl(fd, PIOCPSINFO, &info) == -1) {
close(fd);
return 0;
}
close(fd);
return info.pr_rssize;
}
#else
size_t zmalloc_get_rss(void) {
/* If we can't get the RSS in an OS-specific way for this system just
* return the memory usage we estimated in zmalloc()..
*
* Fragmentation will appear to be always 1 (no fragmentation)
* of course... */
return zmalloc_used_memory();
}
#endif
#if defined(USE_JEMALLOC)
#define STRINGIFY_(x) #x
#define STRINGIFY(x) STRINGIFY_(x)
/* Compute the total memory wasted in fragmentation of inside small arena bins.
* Done by summing the memory in unused regs in all slabs of all small bins. */
size_t zmalloc_get_frag_smallbins(void) {
unsigned nbins;
size_t sz, frag = 0;
char buf[100];
sz = sizeof(unsigned);
assert(!je_mallctl("arenas.nbins", &nbins, &sz, NULL, 0));
for (unsigned j = 0; j < nbins; j++) {
size_t curregs, curslabs, reg_size;
uint32_t nregs;
/* The size of the current bin */
snprintf(buf, sizeof(buf), "arenas.bin.%d.size", j);
sz = sizeof(size_t);
assert(!je_mallctl(buf, &reg_size, &sz, NULL, 0));
/* Number of used regions in the bin */
snprintf(buf, sizeof(buf), "stats.arenas." STRINGIFY(MALLCTL_ARENAS_ALL) ".bins.%d.curregs", j);
sz = sizeof(size_t);
assert(!je_mallctl(buf, &curregs, &sz, NULL, 0));
/* Number of regions per slab */
snprintf(buf, sizeof(buf), "arenas.bin.%d.nregs", j);
sz = sizeof(uint32_t);
assert(!je_mallctl(buf, &nregs, &sz, NULL, 0));
/* Number of current slabs in the bin */
snprintf(buf, sizeof(buf), "stats.arenas." STRINGIFY(MALLCTL_ARENAS_ALL) ".bins.%d.curslabs", j);
sz = sizeof(size_t);
assert(!je_mallctl(buf, &curslabs, &sz, NULL, 0));
/* Calculate the fragmentation bytes for the current bin and add it to the total. */
frag += ((nregs * curslabs) - curregs) * reg_size;
}
return frag;
}
int zmalloc_get_allocator_info(size_t *allocated,
size_t *active,
size_t *resident,
size_t *retained,
size_t *muzzy,
size_t *frag_smallbins_bytes) {
uint64_t epoch = 1;
size_t sz;
*allocated = *resident = *active = 0;
/* Update the statistics cached by mallctl. */
sz = sizeof(epoch);
je_mallctl("epoch", &epoch, &sz, &epoch, sz);
sz = sizeof(size_t);
/* Unlike RSS, this does not include RSS from shared libraries and other non
* heap mappings. */
je_mallctl("stats.resident", resident, &sz, NULL, 0);
/* Unlike resident, this doesn't not include the pages jemalloc reserves
* for re-use (purge will clean that). */
je_mallctl("stats.active", active, &sz, NULL, 0);
/* Unlike zmalloc_used_memory, this matches the stats.resident by taking
* into account all allocations done by this process (not only zmalloc). */
je_mallctl("stats.allocated", allocated, &sz, NULL, 0);
/* Retained memory is memory released by `madvised(..., MADV_DONTNEED)`, which is not part
* of RSS or mapped memory, and doesn't have a strong association with physical memory in the OS.
* It is still part of the VM-Size, and may be used again in later allocations. */
if (retained) {
*retained = 0;
je_mallctl("stats.retained", retained, &sz, NULL, 0);
}
/* Unlike retained, Muzzy representats memory released with `madvised(..., MADV_FREE)`.
* These pages will show as RSS for the process, until the OS decides to re-use them. */
if (muzzy) {
size_t pmuzzy, page;
assert(!je_mallctl("stats.arenas." STRINGIFY(MALLCTL_ARENAS_ALL) ".pmuzzy", &pmuzzy, &sz, NULL, 0));
assert(!je_mallctl("arenas.page", &page, &sz, NULL, 0));
*muzzy = pmuzzy * page;
}
/* Total size of consumed meomry in unused regs in small bins (AKA external fragmentation). */
*frag_smallbins_bytes = zmalloc_get_frag_smallbins();
return 1;
}
void set_jemalloc_bg_thread(int enable) {
/* let jemalloc do purging asynchronously, required when there's no traffic
* after flushdb */
char val = !!enable;
je_mallctl("background_thread", NULL, 0, &val, 1);
}
int jemalloc_purge(void) {
/* return all unused (reserved) pages to the OS */
char tmp[32];
unsigned narenas = 0;
size_t sz = sizeof(unsigned);
if (!je_mallctl("arenas.narenas", &narenas, &sz, NULL, 0)) {
snprintf(tmp, sizeof(tmp), "arena.%d.purge", narenas);
if (!je_mallctl(tmp, NULL, 0, NULL, 0)) return 0;
}
return -1;
}
#else
int zmalloc_get_allocator_info(size_t *allocated,
size_t *active,
size_t *resident,
size_t *retained,
size_t *muzzy,
size_t *frag_smallbins_bytes) {
*allocated = *resident = *active = *frag_smallbins_bytes = 0;
if (retained) *retained = 0;
if (muzzy) *muzzy = 0;
return 1;
}
void set_jemalloc_bg_thread(int enable) {
((void)(enable));
}
int jemalloc_purge(void) {
return 0;
}
#endif
/* This function provides us access to the libc malloc_trim(). */
void zlibc_trim(void) {
#if defined(__GLIBC__) && !defined(USE_LIBC)
malloc_trim(0);
#else
return;
#endif
}
#if defined(__APPLE__)
/* For proc_pidinfo() used later in zmalloc_get_smap_bytes_by_field().
* Note that this file cannot be included in zmalloc.h because it includes
* a Darwin queue.h file where there is a "LIST_HEAD" macro (!) defined
* conficting with user code. */
#include <libproc.h>
#endif
/* Get the sum of the specified field (converted form kb to bytes) in
* /proc/self/smaps. The field must be specified with trailing ":" as it
* apperas in the smaps output.
*
* If a pid is specified, the information is extracted for such a pid,
* otherwise if pid is -1 the information is reported is about the
* current process.
*
* Example: zmalloc_get_smap_bytes_by_field("Rss:",-1);
*/
#if defined(HAVE_PROC_SMAPS)
size_t zmalloc_get_smap_bytes_by_field(char *field, long pid) {
char line[1024];
size_t bytes = 0;
int flen = strlen(field);
FILE *fp;
if (pid == -1) {
fp = fopen("/proc/self/smaps", "r");
} else {
char filename[128];
snprintf(filename, sizeof(filename), "/proc/%ld/smaps", pid);
fp = fopen(filename, "r");
}
if (!fp) return 0;
while (fgets(line, sizeof(line), fp) != NULL) {
if (strncmp(line, field, flen) == 0) {
char *p = strchr(line, 'k');
if (p) {
*p = '\0';
bytes += strtol(line + flen, NULL, 10) * 1024;
}
}
}
fclose(fp);
return bytes;
}
#else
/* Get sum of the specified field from libproc api call.
* As there are per page value basis we need to convert
* them accordingly.
*
* Note that AnonHugePages is a no-op as THP feature
* is not supported in this platform
*/
size_t zmalloc_get_smap_bytes_by_field(char *field, long pid) {
#if defined(__APPLE__)
struct proc_regioninfo pri;
if (pid == -1) pid = getpid();
if (proc_pidinfo(pid, PROC_PIDREGIONINFO, 0, &pri, PROC_PIDREGIONINFO_SIZE) == PROC_PIDREGIONINFO_SIZE) {
int pagesize = getpagesize();
if (!strcmp(field, "Private_Dirty:")) {
return (size_t)pri.pri_pages_dirtied * pagesize;
} else if (!strcmp(field, "Rss:")) {
return (size_t)pri.pri_pages_resident * pagesize;
} else if (!strcmp(field, "AnonHugePages:")) {
return 0;
}
}
return 0;
#endif
((void)field);
((void)pid);
return 0;
}
#endif
/* Return the total number bytes in pages marked as Private Dirty.
*
* Note: depending on the platform and memory footprint of the process, this
* call can be slow, exceeding 1000ms!
*/
size_t zmalloc_get_private_dirty(long pid) {
return zmalloc_get_smap_bytes_by_field("Private_Dirty:", pid);
}
/* Returns the size of physical memory (RAM) in bytes.
* It looks ugly, but this is the cleanest way to achieve cross platform results.
* Cleaned up from:
*
* http://nadeausoftware.com/articles/2012/09/c_c_tip_how_get_physical_memory_size_system
*
* Note that this function:
* 1) Was released under the following CC attribution license:
* http://creativecommons.org/licenses/by/3.0/deed.en_US.
* 2) Was originally implemented by David Robert Nadeau.
* 3) Was modified for Redis by Matt Stancliff.
* 4) This note exists in order to comply with the original license.
*/
size_t zmalloc_get_memory_size(void) {
#if defined(__unix__) || defined(__unix) || defined(unix) || (defined(__APPLE__) && defined(__MACH__))
#if defined(CTL_HW) && (defined(HW_MEMSIZE) || defined(HW_PHYSMEM64))
int mib[2];
mib[0] = CTL_HW;
#if defined(HW_MEMSIZE)
mib[1] = HW_MEMSIZE; /* OSX. --------------------- */
#elif defined(HW_PHYSMEM64)
mib[1] = HW_PHYSMEM64; /* NetBSD, OpenBSD. --------- */
#endif
int64_t size = 0; /* 64-bit */
size_t len = sizeof(size);
if (sysctl(mib, 2, &size, &len, NULL, 0) == 0) return (size_t)size;
return 0L; /* Failed? */
#elif defined(_SC_PHYS_PAGES) && defined(_SC_PAGESIZE)
/* FreeBSD, Linux, OpenBSD, and Solaris. -------------------- */
return (size_t)sysconf(_SC_PHYS_PAGES) * (size_t)sysconf(_SC_PAGESIZE);
#elif defined(CTL_HW) && (defined(HW_PHYSMEM) || defined(HW_REALMEM))
/* DragonFly BSD, FreeBSD, NetBSD, OpenBSD, and OSX. -------- */
int mib[2];
mib[0] = CTL_HW;
#if defined(HW_REALMEM)
mib[1] = HW_REALMEM; /* FreeBSD. ----------------- */
#elif defined(HW_PHYSMEM)
mib[1] = HW_PHYSMEM; /* Others. ------------------ */
#endif
unsigned int size = 0; /* 32-bit */
size_t len = sizeof(size);
if (sysctl(mib, 2, &size, &len, NULL, 0) == 0) return (size_t)size;
return 0L; /* Failed? */
#else
return 0L; /* Unknown method to get the data. */
#endif
#else
return 0L; /* Unknown OS. */
#endif
}