
A value of type long long is always less than 21 bytes when convert to a string, so always meets the conditions for using embedded string object which can always get memory reduction and performance gain (less calls to the heap allocator). Additionally, for the conversion of longlong type to sds, we also use a faster algorithm (the one in util.c instead of the one that used to be in sds.c). For the DECR command on 32-bit Redis, we get about a 5.7% performance improvement. There will also be some performance gains for some commands that heavily use sdscatfmt to convert numbers, such as INFO. Co-authored-by: Oran Agra <oran@redislabs.com>
1006 lines
37 KiB
C
1006 lines
37 KiB
C
/*
|
|
* Copyright (c) 2014, Matt Stancliff <matt@genges.com>.
|
|
* Copyright (c) 2015-2016, Salvatore Sanfilippo <antirez@gmail.com>.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "geo.h"
|
|
#include "geohash_helper.h"
|
|
#include "debugmacro.h"
|
|
#include "pqsort.h"
|
|
|
|
/* Things exported from t_zset.c only for geo.c, since it is the only other
|
|
* part of Redis that requires close zset introspection. */
|
|
unsigned char *zzlFirstInRange(unsigned char *zl, zrangespec *range);
|
|
int zslValueLteMax(double value, zrangespec *spec);
|
|
|
|
/* ====================================================================
|
|
* This file implements the following commands:
|
|
*
|
|
* - geoadd - add coordinates for value to geoset
|
|
* - georadius - search radius by coordinates in geoset
|
|
* - georadiusbymember - search radius based on geoset member position
|
|
* ==================================================================== */
|
|
|
|
/* ====================================================================
|
|
* geoArray implementation
|
|
* ==================================================================== */
|
|
|
|
/* Create a new array of geoPoints. */
|
|
geoArray *geoArrayCreate(void) {
|
|
geoArray *ga = zmalloc(sizeof(*ga));
|
|
/* It gets allocated on first geoArrayAppend() call. */
|
|
ga->array = NULL;
|
|
ga->buckets = 0;
|
|
ga->used = 0;
|
|
return ga;
|
|
}
|
|
|
|
/* Add and populate with data a new entry to the geoArray. */
|
|
geoPoint *geoArrayAppend(geoArray *ga, double *xy, double dist,
|
|
double score, char *member)
|
|
{
|
|
if (ga->used == ga->buckets) {
|
|
ga->buckets = (ga->buckets == 0) ? 8 : ga->buckets*2;
|
|
ga->array = zrealloc(ga->array,sizeof(geoPoint)*ga->buckets);
|
|
}
|
|
geoPoint *gp = ga->array+ga->used;
|
|
gp->longitude = xy[0];
|
|
gp->latitude = xy[1];
|
|
gp->dist = dist;
|
|
gp->member = member;
|
|
gp->score = score;
|
|
ga->used++;
|
|
return gp;
|
|
}
|
|
|
|
/* Destroy a geoArray created with geoArrayCreate(). */
|
|
void geoArrayFree(geoArray *ga) {
|
|
size_t i;
|
|
for (i = 0; i < ga->used; i++) sdsfree(ga->array[i].member);
|
|
zfree(ga->array);
|
|
zfree(ga);
|
|
}
|
|
|
|
/* ====================================================================
|
|
* Helpers
|
|
* ==================================================================== */
|
|
int decodeGeohash(double bits, double *xy) {
|
|
GeoHashBits hash = { .bits = (uint64_t)bits, .step = GEO_STEP_MAX };
|
|
return geohashDecodeToLongLatWGS84(hash, xy);
|
|
}
|
|
|
|
/* Input Argument Helper */
|
|
/* Take a pointer to the latitude arg then use the next arg for longitude.
|
|
* On parse error C_ERR is returned, otherwise C_OK. */
|
|
int extractLongLatOrReply(client *c, robj **argv, double *xy) {
|
|
int i;
|
|
for (i = 0; i < 2; i++) {
|
|
if (getDoubleFromObjectOrReply(c, argv[i], xy + i, NULL) !=
|
|
C_OK) {
|
|
return C_ERR;
|
|
}
|
|
}
|
|
if (xy[0] < GEO_LONG_MIN || xy[0] > GEO_LONG_MAX ||
|
|
xy[1] < GEO_LAT_MIN || xy[1] > GEO_LAT_MAX) {
|
|
addReplyErrorFormat(c,
|
|
"-ERR invalid longitude,latitude pair %f,%f\r\n",xy[0],xy[1]);
|
|
return C_ERR;
|
|
}
|
|
return C_OK;
|
|
}
|
|
|
|
/* Input Argument Helper */
|
|
/* Decode lat/long from a zset member's score.
|
|
* Returns C_OK on successful decoding, otherwise C_ERR is returned. */
|
|
int longLatFromMember(robj *zobj, robj *member, double *xy) {
|
|
double score = 0;
|
|
|
|
if (zsetScore(zobj, member->ptr, &score) == C_ERR) return C_ERR;
|
|
if (!decodeGeohash(score, xy)) return C_ERR;
|
|
return C_OK;
|
|
}
|
|
|
|
/* Check that the unit argument matches one of the known units, and returns
|
|
* the conversion factor to meters (you need to divide meters by the conversion
|
|
* factor to convert to the right unit).
|
|
*
|
|
* If the unit is not valid, an error is reported to the client, and a value
|
|
* less than zero is returned. */
|
|
double extractUnitOrReply(client *c, robj *unit) {
|
|
char *u = unit->ptr;
|
|
|
|
if (!strcasecmp(u, "m")) {
|
|
return 1;
|
|
} else if (!strcasecmp(u, "km")) {
|
|
return 1000;
|
|
} else if (!strcasecmp(u, "ft")) {
|
|
return 0.3048;
|
|
} else if (!strcasecmp(u, "mi")) {
|
|
return 1609.34;
|
|
} else {
|
|
addReplyError(c,
|
|
"unsupported unit provided. please use M, KM, FT, MI");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Input Argument Helper.
|
|
* Extract the distance from the specified two arguments starting at 'argv'
|
|
* that should be in the form: <number> <unit>, and return C_OK or C_ERR means success or failure
|
|
* *conversions is populated with the coefficient to use in order to convert meters to the unit.*/
|
|
int extractDistanceOrReply(client *c, robj **argv,
|
|
double *conversion, double *radius) {
|
|
double distance;
|
|
if (getDoubleFromObjectOrReply(c, argv[0], &distance,
|
|
"need numeric radius") != C_OK) {
|
|
return C_ERR;
|
|
}
|
|
|
|
if (distance < 0) {
|
|
addReplyError(c,"radius cannot be negative");
|
|
return C_ERR;
|
|
}
|
|
if (radius) *radius = distance;
|
|
|
|
double to_meters = extractUnitOrReply(c,argv[1]);
|
|
if (to_meters < 0) {
|
|
return C_ERR;
|
|
}
|
|
|
|
if (conversion) *conversion = to_meters;
|
|
return C_OK;
|
|
}
|
|
|
|
/* Input Argument Helper.
|
|
* Extract height and width from the specified three arguments starting at 'argv'
|
|
* that should be in the form: <number> <number> <unit>, and return C_OK or C_ERR means success or failure
|
|
* *conversions is populated with the coefficient to use in order to convert meters to the unit.*/
|
|
int extractBoxOrReply(client *c, robj **argv, double *conversion,
|
|
double *width, double *height) {
|
|
double h, w;
|
|
if ((getDoubleFromObjectOrReply(c, argv[0], &w, "need numeric width") != C_OK) ||
|
|
(getDoubleFromObjectOrReply(c, argv[1], &h, "need numeric height") != C_OK)) {
|
|
return C_ERR;
|
|
}
|
|
|
|
if (h < 0 || w < 0) {
|
|
addReplyError(c, "height or width cannot be negative");
|
|
return C_ERR;
|
|
}
|
|
if (height) *height = h;
|
|
if (width) *width = w;
|
|
|
|
double to_meters = extractUnitOrReply(c,argv[2]);
|
|
if (to_meters < 0) {
|
|
return C_ERR;
|
|
}
|
|
|
|
if (conversion) *conversion = to_meters;
|
|
return C_OK;
|
|
}
|
|
|
|
/* The default addReplyDouble has too much accuracy. We use this
|
|
* for returning location distances. "5.2145 meters away" is nicer
|
|
* than "5.2144992818115 meters away." We provide 4 digits after the dot
|
|
* so that the returned value is decently accurate even when the unit is
|
|
* the kilometer. */
|
|
void addReplyDoubleDistance(client *c, double d) {
|
|
char dbuf[128];
|
|
const int dlen = fixedpoint_d2string(dbuf, sizeof(dbuf), d, 4);
|
|
addReplyBulkCBuffer(c, dbuf, dlen);
|
|
}
|
|
|
|
/* Helper function for geoGetPointsInRange(): given a sorted set score
|
|
* representing a point, and a GeoShape, checks if the point is within the search area.
|
|
*
|
|
* shape: the rectangle
|
|
* score: the encoded version of lat,long
|
|
* xy: output variable, the decoded lat,long
|
|
* distance: output variable, the distance between the center of the shape and the point
|
|
*
|
|
* Return values:
|
|
*
|
|
* The return value is C_OK if the point is within search area, or C_ERR if it is outside.
|
|
* "*xy" is populated with the decoded lat,long.
|
|
* "*distance" is populated with the distance between the center of the shape and the point.
|
|
*/
|
|
int geoWithinShape(GeoShape *shape, double score, double *xy, double *distance) {
|
|
if (!decodeGeohash(score,xy)) return C_ERR; /* Can't decode. */
|
|
/* Note that geohashGetDistanceIfInRadiusWGS84() takes arguments in
|
|
* reverse order: longitude first, latitude later. */
|
|
if (shape->type == CIRCULAR_TYPE) {
|
|
if (!geohashGetDistanceIfInRadiusWGS84(shape->xy[0], shape->xy[1], xy[0], xy[1],
|
|
shape->t.radius*shape->conversion, distance))
|
|
return C_ERR;
|
|
} else if (shape->type == RECTANGLE_TYPE) {
|
|
if (!geohashGetDistanceIfInRectangle(shape->t.r.width * shape->conversion,
|
|
shape->t.r.height * shape->conversion,
|
|
shape->xy[0], shape->xy[1], xy[0], xy[1], distance))
|
|
return C_ERR;
|
|
}
|
|
return C_OK;
|
|
}
|
|
|
|
/* Query a Redis sorted set to extract all the elements between 'min' and
|
|
* 'max', appending them into the array of geoPoint structures 'geoArray'.
|
|
* The command returns the number of elements added to the array.
|
|
*
|
|
* Elements which are farther than 'radius' from the specified 'x' and 'y'
|
|
* coordinates are not included.
|
|
*
|
|
* The ability of this function to append to an existing set of points is
|
|
* important for good performances because querying by radius is performed
|
|
* using multiple queries to the sorted set, that we later need to sort
|
|
* via qsort. Similarly we need to be able to reject points outside the search
|
|
* radius area ASAP in order to allocate and process more points than needed. */
|
|
int geoGetPointsInRange(robj *zobj, double min, double max, GeoShape *shape, geoArray *ga, unsigned long limit) {
|
|
/* minex 0 = include min in range; maxex 1 = exclude max in range */
|
|
/* That's: min <= val < max */
|
|
zrangespec range = { .min = min, .max = max, .minex = 0, .maxex = 1 };
|
|
size_t origincount = ga->used;
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr = NULL;
|
|
unsigned int vlen = 0;
|
|
long long vlong = 0;
|
|
double score = 0;
|
|
|
|
if ((eptr = zzlFirstInRange(zl, &range)) == NULL) {
|
|
/* Nothing exists starting at our min. No results. */
|
|
return 0;
|
|
}
|
|
|
|
sptr = lpNext(zl, eptr);
|
|
while (eptr) {
|
|
double xy[2];
|
|
double distance = 0;
|
|
score = zzlGetScore(sptr);
|
|
|
|
/* If we fell out of range, break. */
|
|
if (!zslValueLteMax(score, &range))
|
|
break;
|
|
|
|
vstr = lpGetValue(eptr, &vlen, &vlong);
|
|
if (geoWithinShape(shape, score, xy, &distance) == C_OK) {
|
|
/* Append the new element. */
|
|
char *member = (vstr == NULL) ? sdsfromlonglong(vlong) : sdsnewlen(vstr, vlen);
|
|
geoArrayAppend(ga, xy, distance, score, member);
|
|
}
|
|
if (ga->used && limit && ga->used >= limit) break;
|
|
zzlNext(zl, &eptr, &sptr);
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *ln;
|
|
|
|
if ((ln = zslFirstInRange(zsl, &range)) == NULL) {
|
|
/* Nothing exists starting at our min. No results. */
|
|
return 0;
|
|
}
|
|
|
|
while (ln) {
|
|
double xy[2];
|
|
double distance = 0;
|
|
/* Abort when the node is no longer in range. */
|
|
if (!zslValueLteMax(ln->score, &range))
|
|
break;
|
|
if (geoWithinShape(shape, ln->score, xy, &distance) == C_OK) {
|
|
/* Append the new element. */
|
|
geoArrayAppend(ga, xy, distance, ln->score, sdsdup(ln->ele));
|
|
}
|
|
if (ga->used && limit && ga->used >= limit) break;
|
|
ln = ln->level[0].forward;
|
|
}
|
|
}
|
|
return ga->used - origincount;
|
|
}
|
|
|
|
/* Compute the sorted set scores min (inclusive), max (exclusive) we should
|
|
* query in order to retrieve all the elements inside the specified area
|
|
* 'hash'. The two scores are returned by reference in *min and *max. */
|
|
void scoresOfGeoHashBox(GeoHashBits hash, GeoHashFix52Bits *min, GeoHashFix52Bits *max) {
|
|
/* We want to compute the sorted set scores that will include all the
|
|
* elements inside the specified Geohash 'hash', which has as many
|
|
* bits as specified by hash.step * 2.
|
|
*
|
|
* So if step is, for example, 3, and the hash value in binary
|
|
* is 101010, since our score is 52 bits we want every element which
|
|
* is in binary: 101010?????????????????????????????????????????????
|
|
* Where ? can be 0 or 1.
|
|
*
|
|
* To get the min score we just use the initial hash value left
|
|
* shifted enough to get the 52 bit value. Later we increment the
|
|
* 6 bit prefix (see the hash.bits++ statement), and get the new
|
|
* prefix: 101011, which we align again to 52 bits to get the maximum
|
|
* value (which is excluded from the search). So we get everything
|
|
* between the two following scores (represented in binary):
|
|
*
|
|
* 1010100000000000000000000000000000000000000000000000 (included)
|
|
* and
|
|
* 1010110000000000000000000000000000000000000000000000 (excluded).
|
|
*/
|
|
*min = geohashAlign52Bits(hash);
|
|
hash.bits++;
|
|
*max = geohashAlign52Bits(hash);
|
|
}
|
|
|
|
/* Obtain all members between the min/max of this geohash bounding box.
|
|
* Populate a geoArray of GeoPoints by calling geoGetPointsInRange().
|
|
* Return the number of points added to the array. */
|
|
int membersOfGeoHashBox(robj *zobj, GeoHashBits hash, geoArray *ga, GeoShape *shape, unsigned long limit) {
|
|
GeoHashFix52Bits min, max;
|
|
|
|
scoresOfGeoHashBox(hash,&min,&max);
|
|
return geoGetPointsInRange(zobj, min, max, shape, ga, limit);
|
|
}
|
|
|
|
/* Search all eight neighbors + self geohash box */
|
|
int membersOfAllNeighbors(robj *zobj, const GeoHashRadius *n, GeoShape *shape, geoArray *ga, unsigned long limit) {
|
|
GeoHashBits neighbors[9];
|
|
unsigned int i, count = 0, last_processed = 0;
|
|
int debugmsg = 0;
|
|
|
|
neighbors[0] = n->hash;
|
|
neighbors[1] = n->neighbors.north;
|
|
neighbors[2] = n->neighbors.south;
|
|
neighbors[3] = n->neighbors.east;
|
|
neighbors[4] = n->neighbors.west;
|
|
neighbors[5] = n->neighbors.north_east;
|
|
neighbors[6] = n->neighbors.north_west;
|
|
neighbors[7] = n->neighbors.south_east;
|
|
neighbors[8] = n->neighbors.south_west;
|
|
|
|
/* For each neighbor (*and* our own hashbox), get all the matching
|
|
* members and add them to the potential result list. */
|
|
for (i = 0; i < sizeof(neighbors) / sizeof(*neighbors); i++) {
|
|
if (HASHISZERO(neighbors[i])) {
|
|
if (debugmsg) D("neighbors[%d] is zero",i);
|
|
continue;
|
|
}
|
|
|
|
/* Debugging info. */
|
|
if (debugmsg) {
|
|
GeoHashRange long_range, lat_range;
|
|
geohashGetCoordRange(&long_range,&lat_range);
|
|
GeoHashArea myarea = {{0}};
|
|
geohashDecode(long_range, lat_range, neighbors[i], &myarea);
|
|
|
|
/* Dump center square. */
|
|
D("neighbors[%d]:\n",i);
|
|
D("area.longitude.min: %f\n", myarea.longitude.min);
|
|
D("area.longitude.max: %f\n", myarea.longitude.max);
|
|
D("area.latitude.min: %f\n", myarea.latitude.min);
|
|
D("area.latitude.max: %f\n", myarea.latitude.max);
|
|
D("\n");
|
|
}
|
|
|
|
/* When a huge Radius (in the 5000 km range or more) is used,
|
|
* adjacent neighbors can be the same, leading to duplicated
|
|
* elements. Skip every range which is the same as the one
|
|
* processed previously. */
|
|
if (last_processed &&
|
|
neighbors[i].bits == neighbors[last_processed].bits &&
|
|
neighbors[i].step == neighbors[last_processed].step)
|
|
{
|
|
if (debugmsg)
|
|
D("Skipping processing of %d, same as previous\n",i);
|
|
continue;
|
|
}
|
|
if (ga->used && limit && ga->used >= limit) break;
|
|
count += membersOfGeoHashBox(zobj, neighbors[i], ga, shape, limit);
|
|
last_processed = i;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/* Sort comparators for qsort() */
|
|
static int sort_gp_asc(const void *a, const void *b) {
|
|
const struct geoPoint *gpa = a, *gpb = b;
|
|
/* We can't do adist - bdist because they are doubles and
|
|
* the comparator returns an int. */
|
|
if (gpa->dist > gpb->dist)
|
|
return 1;
|
|
else if (gpa->dist == gpb->dist)
|
|
return 0;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
static int sort_gp_desc(const void *a, const void *b) {
|
|
return -sort_gp_asc(a, b);
|
|
}
|
|
|
|
/* ====================================================================
|
|
* Commands
|
|
* ==================================================================== */
|
|
|
|
/* GEOADD key [CH] [NX|XX] long lat name [long2 lat2 name2 ... longN latN nameN] */
|
|
void geoaddCommand(client *c) {
|
|
int xx = 0, nx = 0, longidx = 2;
|
|
int i;
|
|
|
|
/* Parse options. At the end 'longidx' is set to the argument position
|
|
* of the longitude of the first element. */
|
|
while (longidx < c->argc) {
|
|
char *opt = c->argv[longidx]->ptr;
|
|
if (!strcasecmp(opt,"nx")) nx = 1;
|
|
else if (!strcasecmp(opt,"xx")) xx = 1;
|
|
else if (!strcasecmp(opt,"ch")) { /* Handle in zaddCommand. */ }
|
|
else break;
|
|
longidx++;
|
|
}
|
|
|
|
if ((c->argc - longidx) % 3 || (xx && nx)) {
|
|
/* Need an odd number of arguments if we got this far... */
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
|
|
/* Set up the vector for calling ZADD. */
|
|
int elements = (c->argc - longidx) / 3;
|
|
int argc = longidx+elements*2; /* ZADD key [CH] [NX|XX] score ele ... */
|
|
robj **argv = zcalloc(argc*sizeof(robj*));
|
|
argv[0] = createRawStringObject("zadd",4);
|
|
for (i = 1; i < longidx; i++) {
|
|
argv[i] = c->argv[i];
|
|
incrRefCount(argv[i]);
|
|
}
|
|
|
|
/* Create the argument vector to call ZADD in order to add all
|
|
* the score,value pairs to the requested zset, where score is actually
|
|
* an encoded version of lat,long. */
|
|
for (i = 0; i < elements; i++) {
|
|
double xy[2];
|
|
|
|
if (extractLongLatOrReply(c, (c->argv+longidx)+(i*3),xy) == C_ERR) {
|
|
for (i = 0; i < argc; i++)
|
|
if (argv[i]) decrRefCount(argv[i]);
|
|
zfree(argv);
|
|
return;
|
|
}
|
|
|
|
/* Turn the coordinates into the score of the element. */
|
|
GeoHashBits hash;
|
|
geohashEncodeWGS84(xy[0], xy[1], GEO_STEP_MAX, &hash);
|
|
GeoHashFix52Bits bits = geohashAlign52Bits(hash);
|
|
robj *score = createStringObjectFromLongLongWithSds(bits);
|
|
robj *val = c->argv[longidx + i * 3 + 2];
|
|
argv[longidx+i*2] = score;
|
|
argv[longidx+1+i*2] = val;
|
|
incrRefCount(val);
|
|
}
|
|
|
|
/* Finally call ZADD that will do the work for us. */
|
|
replaceClientCommandVector(c,argc,argv);
|
|
zaddCommand(c);
|
|
}
|
|
|
|
#define SORT_NONE 0
|
|
#define SORT_ASC 1
|
|
#define SORT_DESC 2
|
|
|
|
#define RADIUS_COORDS (1<<0) /* Search around coordinates. */
|
|
#define RADIUS_MEMBER (1<<1) /* Search around member. */
|
|
#define RADIUS_NOSTORE (1<<2) /* Do not accept STORE/STOREDIST option. */
|
|
#define GEOSEARCH (1<<3) /* GEOSEARCH command variant (different arguments supported) */
|
|
#define GEOSEARCHSTORE (1<<4) /* GEOSEARCHSTORE just accept STOREDIST option */
|
|
|
|
/* GEORADIUS key x y radius unit [WITHDIST] [WITHHASH] [WITHCOORD] [ASC|DESC]
|
|
* [COUNT count [ANY]] [STORE key|STOREDIST key]
|
|
* GEORADIUSBYMEMBER key member radius unit ... options ...
|
|
* GEOSEARCH key [FROMMEMBER member] [FROMLONLAT long lat] [BYRADIUS radius unit]
|
|
* [BYBOX width height unit] [WITHCOORD] [WITHDIST] [WITHASH] [COUNT count [ANY]] [ASC|DESC]
|
|
* GEOSEARCHSTORE dest_key src_key [FROMMEMBER member] [FROMLONLAT long lat] [BYRADIUS radius unit]
|
|
* [BYBOX width height unit] [COUNT count [ANY]] [ASC|DESC] [STOREDIST]
|
|
* */
|
|
void georadiusGeneric(client *c, int srcKeyIndex, int flags) {
|
|
robj *storekey = NULL;
|
|
int storedist = 0; /* 0 for STORE, 1 for STOREDIST. */
|
|
|
|
/* Look up the requested zset */
|
|
robj *zobj = lookupKeyRead(c->db, c->argv[srcKeyIndex]);
|
|
if (checkType(c, zobj, OBJ_ZSET)) return;
|
|
|
|
/* Find long/lat to use for radius or box search based on inquiry type */
|
|
int base_args;
|
|
GeoShape shape = {0};
|
|
if (flags & RADIUS_COORDS) {
|
|
/* GEORADIUS or GEORADIUS_RO */
|
|
base_args = 6;
|
|
shape.type = CIRCULAR_TYPE;
|
|
if (extractLongLatOrReply(c, c->argv + 2, shape.xy) == C_ERR) return;
|
|
if (extractDistanceOrReply(c, c->argv+base_args-2, &shape.conversion, &shape.t.radius) != C_OK) return;
|
|
} else if ((flags & RADIUS_MEMBER) && !zobj) {
|
|
/* We don't have a source key, but we need to proceed with argument
|
|
* parsing, so we know which reply to use depending on the STORE flag. */
|
|
base_args = 5;
|
|
} else if (flags & RADIUS_MEMBER) {
|
|
/* GEORADIUSBYMEMBER or GEORADIUSBYMEMBER_RO */
|
|
base_args = 5;
|
|
shape.type = CIRCULAR_TYPE;
|
|
robj *member = c->argv[2];
|
|
if (longLatFromMember(zobj, member, shape.xy) == C_ERR) {
|
|
addReplyError(c, "could not decode requested zset member");
|
|
return;
|
|
}
|
|
if (extractDistanceOrReply(c, c->argv+base_args-2, &shape.conversion, &shape.t.radius) != C_OK) return;
|
|
} else if (flags & GEOSEARCH) {
|
|
/* GEOSEARCH or GEOSEARCHSTORE */
|
|
base_args = 2;
|
|
if (flags & GEOSEARCHSTORE) {
|
|
base_args = 3;
|
|
storekey = c->argv[1];
|
|
}
|
|
} else {
|
|
addReplyError(c, "Unknown georadius search type");
|
|
return;
|
|
}
|
|
|
|
/* Discover and populate all optional parameters. */
|
|
int withdist = 0, withhash = 0, withcoords = 0;
|
|
int frommember = 0, fromloc = 0, byradius = 0, bybox = 0;
|
|
int sort = SORT_NONE;
|
|
int any = 0; /* any=1 means a limited search, stop as soon as enough results were found. */
|
|
long long count = 0; /* Max number of results to return. 0 means unlimited. */
|
|
if (c->argc > base_args) {
|
|
int remaining = c->argc - base_args;
|
|
for (int i = 0; i < remaining; i++) {
|
|
char *arg = c->argv[base_args + i]->ptr;
|
|
if (!strcasecmp(arg, "withdist")) {
|
|
withdist = 1;
|
|
} else if (!strcasecmp(arg, "withhash")) {
|
|
withhash = 1;
|
|
} else if (!strcasecmp(arg, "withcoord")) {
|
|
withcoords = 1;
|
|
} else if (!strcasecmp(arg, "any")) {
|
|
any = 1;
|
|
} else if (!strcasecmp(arg, "asc")) {
|
|
sort = SORT_ASC;
|
|
} else if (!strcasecmp(arg, "desc")) {
|
|
sort = SORT_DESC;
|
|
} else if (!strcasecmp(arg, "count") && (i+1) < remaining) {
|
|
if (getLongLongFromObjectOrReply(c, c->argv[base_args+i+1],
|
|
&count, NULL) != C_OK) return;
|
|
if (count <= 0) {
|
|
addReplyError(c,"COUNT must be > 0");
|
|
return;
|
|
}
|
|
i++;
|
|
} else if (!strcasecmp(arg, "store") &&
|
|
(i+1) < remaining &&
|
|
!(flags & RADIUS_NOSTORE) &&
|
|
!(flags & GEOSEARCH))
|
|
{
|
|
storekey = c->argv[base_args+i+1];
|
|
storedist = 0;
|
|
i++;
|
|
} else if (!strcasecmp(arg, "storedist") &&
|
|
(i+1) < remaining &&
|
|
!(flags & RADIUS_NOSTORE) &&
|
|
!(flags & GEOSEARCH))
|
|
{
|
|
storekey = c->argv[base_args+i+1];
|
|
storedist = 1;
|
|
i++;
|
|
} else if (!strcasecmp(arg, "storedist") &&
|
|
(flags & GEOSEARCH) &&
|
|
(flags & GEOSEARCHSTORE))
|
|
{
|
|
storedist = 1;
|
|
} else if (!strcasecmp(arg, "frommember") &&
|
|
(i+1) < remaining &&
|
|
flags & GEOSEARCH &&
|
|
!fromloc)
|
|
{
|
|
/* No source key, proceed with argument parsing and return an error when done. */
|
|
if (zobj == NULL) {
|
|
frommember = 1;
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
if (longLatFromMember(zobj, c->argv[base_args+i+1], shape.xy) == C_ERR) {
|
|
addReplyError(c, "could not decode requested zset member");
|
|
return;
|
|
}
|
|
frommember = 1;
|
|
i++;
|
|
} else if (!strcasecmp(arg, "fromlonlat") &&
|
|
(i+2) < remaining &&
|
|
flags & GEOSEARCH &&
|
|
!frommember)
|
|
{
|
|
if (extractLongLatOrReply(c, c->argv+base_args+i+1, shape.xy) == C_ERR) return;
|
|
fromloc = 1;
|
|
i += 2;
|
|
} else if (!strcasecmp(arg, "byradius") &&
|
|
(i+2) < remaining &&
|
|
flags & GEOSEARCH &&
|
|
!bybox)
|
|
{
|
|
if (extractDistanceOrReply(c, c->argv+base_args+i+1, &shape.conversion, &shape.t.radius) != C_OK)
|
|
return;
|
|
shape.type = CIRCULAR_TYPE;
|
|
byradius = 1;
|
|
i += 2;
|
|
} else if (!strcasecmp(arg, "bybox") &&
|
|
(i+3) < remaining &&
|
|
flags & GEOSEARCH &&
|
|
!byradius)
|
|
{
|
|
if (extractBoxOrReply(c, c->argv+base_args+i+1, &shape.conversion, &shape.t.r.width,
|
|
&shape.t.r.height) != C_OK) return;
|
|
shape.type = RECTANGLE_TYPE;
|
|
bybox = 1;
|
|
i += 3;
|
|
} else {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Trap options not compatible with STORE and STOREDIST. */
|
|
if (storekey && (withdist || withhash || withcoords)) {
|
|
addReplyErrorFormat(c,
|
|
"%s is not compatible with WITHDIST, WITHHASH and WITHCOORD options",
|
|
flags & GEOSEARCHSTORE? "GEOSEARCHSTORE": "STORE option in GEORADIUS");
|
|
return;
|
|
}
|
|
|
|
if ((flags & GEOSEARCH) && !(frommember || fromloc)) {
|
|
addReplyErrorFormat(c,
|
|
"exactly one of FROMMEMBER or FROMLONLAT can be specified for %s",
|
|
(char *)c->argv[0]->ptr);
|
|
return;
|
|
}
|
|
|
|
if ((flags & GEOSEARCH) && !(byradius || bybox)) {
|
|
addReplyErrorFormat(c,
|
|
"exactly one of BYRADIUS and BYBOX can be specified for %s",
|
|
(char *)c->argv[0]->ptr);
|
|
return;
|
|
}
|
|
|
|
if (any && !count) {
|
|
addReplyErrorFormat(c, "the ANY argument requires COUNT argument");
|
|
return;
|
|
}
|
|
|
|
/* Return ASAP when src key does not exist. */
|
|
if (zobj == NULL) {
|
|
if (storekey) {
|
|
/* store key is not NULL, try to delete it and return 0. */
|
|
if (dbDelete(c->db, storekey)) {
|
|
signalModifiedKey(c, c->db, storekey);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC, "del", storekey, c->db->id);
|
|
server.dirty++;
|
|
}
|
|
addReply(c, shared.czero);
|
|
} else {
|
|
/* Otherwise we return an empty array. */
|
|
addReply(c, shared.emptyarray);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* COUNT without ordering does not make much sense (we need to
|
|
* sort in order to return the closest N entries),
|
|
* force ASC ordering if COUNT was specified but no sorting was
|
|
* requested. Note that this is not needed for ANY option. */
|
|
if (count != 0 && sort == SORT_NONE && !any) sort = SORT_ASC;
|
|
|
|
/* Get all neighbor geohash boxes for our radius search */
|
|
GeoHashRadius georadius = geohashCalculateAreasByShapeWGS84(&shape);
|
|
|
|
/* Search the zset for all matching points */
|
|
geoArray *ga = geoArrayCreate();
|
|
membersOfAllNeighbors(zobj, &georadius, &shape, ga, any ? count : 0);
|
|
|
|
/* If no matching results, the user gets an empty reply. */
|
|
if (ga->used == 0 && storekey == NULL) {
|
|
addReply(c,shared.emptyarray);
|
|
geoArrayFree(ga);
|
|
return;
|
|
}
|
|
|
|
long result_length = ga->used;
|
|
long returned_items = (count == 0 || result_length < count) ?
|
|
result_length : count;
|
|
long option_length = 0;
|
|
|
|
/* Process [optional] requested sorting */
|
|
if (sort != SORT_NONE) {
|
|
int (*sort_gp_callback)(const void *a, const void *b) = NULL;
|
|
if (sort == SORT_ASC) {
|
|
sort_gp_callback = sort_gp_asc;
|
|
} else if (sort == SORT_DESC) {
|
|
sort_gp_callback = sort_gp_desc;
|
|
}
|
|
|
|
if (returned_items == result_length) {
|
|
qsort(ga->array, result_length, sizeof(geoPoint), sort_gp_callback);
|
|
} else {
|
|
pqsort(ga->array, result_length, sizeof(geoPoint), sort_gp_callback,
|
|
0, (returned_items - 1));
|
|
}
|
|
}
|
|
|
|
if (storekey == NULL) {
|
|
/* No target key, return results to user. */
|
|
|
|
/* Our options are self-contained nested multibulk replies, so we
|
|
* only need to track how many of those nested replies we return. */
|
|
if (withdist)
|
|
option_length++;
|
|
|
|
if (withcoords)
|
|
option_length++;
|
|
|
|
if (withhash)
|
|
option_length++;
|
|
|
|
/* The array len we send is exactly result_length. The result is
|
|
* either all strings of just zset members *or* a nested multi-bulk
|
|
* reply containing the zset member string _and_ all the additional
|
|
* options the user enabled for this request. */
|
|
addReplyArrayLen(c, returned_items);
|
|
|
|
/* Finally send results back to the caller */
|
|
int i;
|
|
for (i = 0; i < returned_items; i++) {
|
|
geoPoint *gp = ga->array+i;
|
|
gp->dist /= shape.conversion; /* Fix according to unit. */
|
|
|
|
/* If we have options in option_length, return each sub-result
|
|
* as a nested multi-bulk. Add 1 to account for result value
|
|
* itself. */
|
|
if (option_length)
|
|
addReplyArrayLen(c, option_length + 1);
|
|
|
|
addReplyBulkSds(c,gp->member);
|
|
gp->member = NULL;
|
|
|
|
if (withdist)
|
|
addReplyDoubleDistance(c, gp->dist);
|
|
|
|
if (withhash)
|
|
addReplyLongLong(c, gp->score);
|
|
|
|
if (withcoords) {
|
|
addReplyArrayLen(c, 2);
|
|
addReplyHumanLongDouble(c, gp->longitude);
|
|
addReplyHumanLongDouble(c, gp->latitude);
|
|
}
|
|
}
|
|
} else {
|
|
/* Target key, create a sorted set with the results. */
|
|
robj *zobj;
|
|
zset *zs;
|
|
int i;
|
|
size_t maxelelen = 0, totelelen = 0;
|
|
|
|
if (returned_items) {
|
|
zobj = createZsetObject();
|
|
zs = zobj->ptr;
|
|
}
|
|
|
|
for (i = 0; i < returned_items; i++) {
|
|
zskiplistNode *znode;
|
|
geoPoint *gp = ga->array+i;
|
|
gp->dist /= shape.conversion; /* Fix according to unit. */
|
|
double score = storedist ? gp->dist : gp->score;
|
|
size_t elelen = sdslen(gp->member);
|
|
|
|
if (maxelelen < elelen) maxelelen = elelen;
|
|
totelelen += elelen;
|
|
znode = zslInsert(zs->zsl,score,gp->member);
|
|
serverAssert(dictAdd(zs->dict,gp->member,&znode->score) == DICT_OK);
|
|
gp->member = NULL;
|
|
}
|
|
|
|
if (returned_items) {
|
|
zsetConvertToListpackIfNeeded(zobj,maxelelen,totelelen);
|
|
setKey(c,c->db,storekey,zobj,0);
|
|
decrRefCount(zobj);
|
|
notifyKeyspaceEvent(NOTIFY_ZSET,flags & GEOSEARCH ? "geosearchstore" : "georadiusstore",storekey,
|
|
c->db->id);
|
|
server.dirty += returned_items;
|
|
} else if (dbDelete(c->db,storekey)) {
|
|
signalModifiedKey(c,c->db,storekey);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",storekey,c->db->id);
|
|
server.dirty++;
|
|
}
|
|
addReplyLongLong(c, returned_items);
|
|
}
|
|
geoArrayFree(ga);
|
|
}
|
|
|
|
/* GEORADIUS wrapper function. */
|
|
void georadiusCommand(client *c) {
|
|
georadiusGeneric(c, 1, RADIUS_COORDS);
|
|
}
|
|
|
|
/* GEORADIUSBYMEMBER wrapper function. */
|
|
void georadiusbymemberCommand(client *c) {
|
|
georadiusGeneric(c, 1, RADIUS_MEMBER);
|
|
}
|
|
|
|
/* GEORADIUS_RO wrapper function. */
|
|
void georadiusroCommand(client *c) {
|
|
georadiusGeneric(c, 1, RADIUS_COORDS|RADIUS_NOSTORE);
|
|
}
|
|
|
|
/* GEORADIUSBYMEMBER_RO wrapper function. */
|
|
void georadiusbymemberroCommand(client *c) {
|
|
georadiusGeneric(c, 1, RADIUS_MEMBER|RADIUS_NOSTORE);
|
|
}
|
|
|
|
void geosearchCommand(client *c) {
|
|
georadiusGeneric(c, 1, GEOSEARCH);
|
|
}
|
|
|
|
void geosearchstoreCommand(client *c) {
|
|
georadiusGeneric(c, 2, GEOSEARCH|GEOSEARCHSTORE);
|
|
}
|
|
|
|
/* GEOHASH key ele1 ele2 ... eleN
|
|
*
|
|
* Returns an array with an 11 characters geohash representation of the
|
|
* position of the specified elements. */
|
|
void geohashCommand(client *c) {
|
|
char *geoalphabet= "0123456789bcdefghjkmnpqrstuvwxyz";
|
|
int j;
|
|
|
|
/* Look up the requested zset */
|
|
robj *zobj = lookupKeyRead(c->db, c->argv[1]);
|
|
if (checkType(c, zobj, OBJ_ZSET)) return;
|
|
|
|
/* Geohash elements one after the other, using a null bulk reply for
|
|
* missing elements. */
|
|
addReplyArrayLen(c,c->argc-2);
|
|
for (j = 2; j < c->argc; j++) {
|
|
double score;
|
|
if (!zobj || zsetScore(zobj, c->argv[j]->ptr, &score) == C_ERR) {
|
|
addReplyNull(c);
|
|
} else {
|
|
/* The internal format we use for geocoding is a bit different
|
|
* than the standard, since we use as initial latitude range
|
|
* -85,85, while the normal geohashing algorithm uses -90,90.
|
|
* So we have to decode our position and re-encode using the
|
|
* standard ranges in order to output a valid geohash string. */
|
|
|
|
/* Decode... */
|
|
double xy[2];
|
|
if (!decodeGeohash(score,xy)) {
|
|
addReplyNull(c);
|
|
continue;
|
|
}
|
|
|
|
/* Re-encode */
|
|
GeoHashRange r[2];
|
|
GeoHashBits hash;
|
|
r[0].min = -180;
|
|
r[0].max = 180;
|
|
r[1].min = -90;
|
|
r[1].max = 90;
|
|
geohashEncode(&r[0],&r[1],xy[0],xy[1],26,&hash);
|
|
|
|
char buf[12];
|
|
int i;
|
|
for (i = 0; i < 11; i++) {
|
|
int idx;
|
|
if (i == 10) {
|
|
/* We have just 52 bits, but the API used to output
|
|
* an 11 bytes geohash. For compatibility we assume
|
|
* zero. */
|
|
idx = 0;
|
|
} else {
|
|
idx = (hash.bits >> (52-((i+1)*5))) & 0x1f;
|
|
}
|
|
buf[i] = geoalphabet[idx];
|
|
}
|
|
buf[11] = '\0';
|
|
addReplyBulkCBuffer(c,buf,11);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* GEOPOS key ele1 ele2 ... eleN
|
|
*
|
|
* Returns an array of two-items arrays representing the x,y position of each
|
|
* element specified in the arguments. For missing elements NULL is returned. */
|
|
void geoposCommand(client *c) {
|
|
int j;
|
|
|
|
/* Look up the requested zset */
|
|
robj *zobj = lookupKeyRead(c->db, c->argv[1]);
|
|
if (checkType(c, zobj, OBJ_ZSET)) return;
|
|
|
|
/* Report elements one after the other, using a null bulk reply for
|
|
* missing elements. */
|
|
addReplyArrayLen(c,c->argc-2);
|
|
for (j = 2; j < c->argc; j++) {
|
|
double score;
|
|
if (!zobj || zsetScore(zobj, c->argv[j]->ptr, &score) == C_ERR) {
|
|
addReplyNullArray(c);
|
|
} else {
|
|
/* Decode... */
|
|
double xy[2];
|
|
if (!decodeGeohash(score,xy)) {
|
|
addReplyNullArray(c);
|
|
continue;
|
|
}
|
|
addReplyArrayLen(c,2);
|
|
addReplyHumanLongDouble(c,xy[0]);
|
|
addReplyHumanLongDouble(c,xy[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* GEODIST key ele1 ele2 [unit]
|
|
*
|
|
* Return the distance, in meters by default, otherwise according to "unit",
|
|
* between points ele1 and ele2. If one or more elements are missing NULL
|
|
* is returned. */
|
|
void geodistCommand(client *c) {
|
|
double to_meter = 1;
|
|
|
|
/* Check if there is the unit to extract, otherwise assume meters. */
|
|
if (c->argc == 5) {
|
|
to_meter = extractUnitOrReply(c,c->argv[4]);
|
|
if (to_meter < 0) return;
|
|
} else if (c->argc > 5) {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
|
|
/* Look up the requested zset */
|
|
robj *zobj = NULL;
|
|
if ((zobj = lookupKeyReadOrReply(c, c->argv[1], shared.null[c->resp]))
|
|
== NULL || checkType(c, zobj, OBJ_ZSET)) return;
|
|
|
|
/* Get the scores. We need both otherwise NULL is returned. */
|
|
double score1, score2, xyxy[4];
|
|
if (zsetScore(zobj, c->argv[2]->ptr, &score1) == C_ERR ||
|
|
zsetScore(zobj, c->argv[3]->ptr, &score2) == C_ERR)
|
|
{
|
|
addReplyNull(c);
|
|
return;
|
|
}
|
|
|
|
/* Decode & compute the distance. */
|
|
if (!decodeGeohash(score1,xyxy) || !decodeGeohash(score2,xyxy+2))
|
|
addReplyNull(c);
|
|
else
|
|
addReplyDoubleDistance(c,
|
|
geohashGetDistance(xyxy[0],xyxy[1],xyxy[2],xyxy[3]) / to_meter);
|
|
}
|