
The recent PR (https://github.com/valkey-io/valkey/pull/1242) converted Active Defrag to use `monotime`. In that change, a conversion was performed to continue to use `ustime()` as part of the module interface. Since this time is only used internally, and never actually exposed to the module, we can convert this to use `monotime` directly. Signed-off-by: Jim Brunner <brunnerj@amazon.com>
1403 lines
55 KiB
C
1403 lines
55 KiB
C
/*
|
|
* Active memory defragmentation
|
|
* Try to find key / value allocations that need to be re-allocated in order
|
|
* to reduce external fragmentation.
|
|
* We do that by scanning the keyspace and for each pointer we have, we can try to
|
|
* ask the allocator if moving it to a new address will help reduce fragmentation.
|
|
*
|
|
* Copyright (c) 2020, Redis Ltd.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "server.h"
|
|
#include <stddef.h>
|
|
|
|
#ifdef HAVE_DEFRAG
|
|
|
|
typedef enum { DEFRAG_NOT_DONE = 0,
|
|
DEFRAG_DONE = 1 } doneStatus;
|
|
|
|
|
|
/*
|
|
* Defragmentation is performed in stages. Each stage is serviced by a stage function
|
|
* (defragStageFn). The stage function is passed a target (void*) to defrag. The contents of that
|
|
* target are unique to the particular stage - and may even be NULL for some stage functions. The
|
|
* same stage function can be used multiple times (for different stages) each having a different
|
|
* target.
|
|
*
|
|
* The stage function is required to maintain an internal static state. This allows the stage
|
|
* function to continue when invoked in an iterative manner. When invoked with a 0 endtime, the
|
|
* stage function is required to clear it's internal state and prepare to begin a new stage. It
|
|
* should return false (more work to do) as it should NOT perform any real "work" during init.
|
|
*
|
|
* Parameters:
|
|
* endtime - This is the monotonic time that the function should end and return. This ensures
|
|
* a bounded latency due to defrag. When endtime is 0, the internal state should be
|
|
* cleared, preparing to begin the stage with a new target.
|
|
* target - This is the "thing" that should be defragged. It's type is dependent on the
|
|
* type of the stage function. This might be a dict, a kvstore, a DB, or other.
|
|
* privdata - A pointer to arbitrary private data which is unique to the stage function.
|
|
*
|
|
* Returns:
|
|
* - DEFRAG_DONE if the stage is complete
|
|
* - DEFRAG_NOT_DONE if there is more work to do
|
|
*/
|
|
typedef doneStatus (*defragStageFn)(monotime endtime, void *target, void *privdata);
|
|
|
|
typedef struct {
|
|
defragStageFn stage_fn; // The function to be invoked for the stage
|
|
void *target; // The target that the function will defrag
|
|
void *privdata; // Private data, unique to the stage function
|
|
} StageDescriptor;
|
|
|
|
/* Globals needed for the main defrag processing logic.
|
|
* Doesn't include variables specific to a stage or type of data. */
|
|
struct DefragContext {
|
|
monotime start_cycle; // Time of beginning of defrag cycle
|
|
long long start_defrag_hits; // server.stat_active_defrag_hits captured at beginning of cycle
|
|
list *remaining_stages; // List of stages which remain to be processed
|
|
StageDescriptor *current_stage; // The stage that's currently being processed
|
|
|
|
long long timeproc_id; // Eventloop ID of the timerproc (or AE_DELETED_EVENT_ID)
|
|
monotime timeproc_end_time; // Ending time of previous timerproc execution
|
|
long timeproc_overage_us; // A correction value if over/under target CPU percent
|
|
};
|
|
static struct DefragContext defrag;
|
|
|
|
|
|
/* There are a number of stages which process a kvstore. To simplify this, a stage helper function
|
|
* `defragStageKvstoreHelper()` is defined. This function aids in iterating over the kvstore. It
|
|
* uses these definitions.
|
|
*/
|
|
/* State of the kvstore helper. The private data (privdata) passed to the kvstore helper MUST BEGIN
|
|
* with a kvstoreIterState (or be passed as NULL). */
|
|
#define KVS_SLOT_DEFRAG_LUT -2
|
|
#define KVS_SLOT_UNASSIGNED -1
|
|
typedef struct {
|
|
kvstore *kvs;
|
|
int slot;
|
|
unsigned long cursor;
|
|
} kvstoreIterState;
|
|
/* The kvstore helper uses this function to perform tasks before continuing the iteration. For the
|
|
* main dictionary, large items are set aside and processed by this function before continuing with
|
|
* iteration over the kvstore.
|
|
* endtime - This is the monotonic time that the function should end and return.
|
|
* privdata - Private data for functions invoked by the helper. If provided in the call to
|
|
* `defragStageKvstoreHelper()`, the `kvstoreIterState` portion (at the beginning)
|
|
* will be updated with the current kvstore iteration status.
|
|
*
|
|
* Returns:
|
|
* - DEFRAG_DONE if the pre-continue work is complete
|
|
* - DEFRAG_NOT_DONE if there is more work to do
|
|
*/
|
|
typedef doneStatus (*kvstoreHelperPreContinueFn)(monotime endtime, void *privdata);
|
|
|
|
|
|
// Private data for main dictionary keys
|
|
typedef struct {
|
|
kvstoreIterState kvstate;
|
|
serverDb *db;
|
|
dictEntry *saved_expire_de;
|
|
} defragKeysCtx;
|
|
static_assert(offsetof(defragKeysCtx, kvstate) == 0, "defragStageKvstoreHelper requires this");
|
|
|
|
// Private data for pubsub kvstores
|
|
typedef dict *(*getClientChannelsFn)(client *);
|
|
typedef struct {
|
|
getClientChannelsFn fn;
|
|
} getClientChannelsFnWrapper;
|
|
|
|
typedef struct {
|
|
kvstoreIterState kvstate;
|
|
getClientChannelsFn getPubSubChannels;
|
|
} defragPubSubCtx;
|
|
static_assert(offsetof(defragPubSubCtx, kvstate) == 0, "defragStageKvstoreHelper requires this");
|
|
|
|
|
|
/* When scanning a main kvstore, large elements are queued for later handling rather than
|
|
* causing a large latency spike while processing a hash table bucket. This list is only used
|
|
* for stage: "defragStageDbKeys". It will only contain values for the current kvstore being
|
|
* defragged.
|
|
* Note that this is a list of key names. It's possible that the key may be deleted or modified
|
|
* before "later" and we will search by key name to find the entry when we defrag the item later.
|
|
*/
|
|
static list *defrag_later;
|
|
static unsigned long defrag_later_cursor;
|
|
|
|
|
|
/* this method was added to jemalloc in order to help us understand which
|
|
* pointers are worthwhile moving and which aren't */
|
|
int je_get_defrag_hint(void *ptr);
|
|
|
|
/* Defrag function which allocates and copies memory if needed, but DOESN'T free the old block.
|
|
* It is the responsibility of the caller to free the old block if a non-NULL value (new block)
|
|
* is returned. (Returns NULL if no relocation was needed.)
|
|
*/
|
|
static void *activeDefragAllocWithoutFree(void *ptr, size_t *allocation_size) {
|
|
size_t size;
|
|
void *newptr;
|
|
if (!allocatorShouldDefrag(ptr)) {
|
|
server.stat_active_defrag_misses++;
|
|
return NULL;
|
|
}
|
|
/* move this allocation to a new allocation.
|
|
* make sure not to use the thread cache. so that we don't get back the same
|
|
* pointers we try to free */
|
|
size = zmalloc_size(ptr);
|
|
newptr = allocatorDefragAlloc(size);
|
|
memcpy(newptr, ptr, size);
|
|
if (allocation_size) *allocation_size = size;
|
|
|
|
server.stat_active_defrag_hits++;
|
|
return newptr;
|
|
}
|
|
|
|
/* Defrag helper for generic allocations.
|
|
*
|
|
* Returns NULL in case the allocation wasn't moved.
|
|
* When it returns a non-null value, the old pointer was already released
|
|
* and should NOT be accessed. */
|
|
void *activeDefragAlloc(void *ptr) {
|
|
size_t allocation_size;
|
|
void *newptr = activeDefragAllocWithoutFree(ptr, &allocation_size);
|
|
if (newptr) allocatorDefragFree(ptr, allocation_size);
|
|
return newptr;
|
|
}
|
|
|
|
/* This method captures the expiry db dict entry which refers to data stored in keys db dict entry. */
|
|
static void defragEntryStartCbForKeys(void *ctx, void *oldptr) {
|
|
defragKeysCtx *defragctx = (defragKeysCtx *)ctx;
|
|
serverDb *db = defragctx->db;
|
|
sds oldsds = (sds)dictGetKey((dictEntry *)oldptr);
|
|
int slot = defragctx->kvstate.slot;
|
|
if (kvstoreDictSize(db->expires, slot)) {
|
|
dictEntry *expire_de = kvstoreDictFind(db->expires, slot, oldsds);
|
|
defragctx->saved_expire_de = expire_de;
|
|
} else {
|
|
defragctx->saved_expire_de = NULL;
|
|
}
|
|
}
|
|
|
|
/* This method updates the key of expiry db dict entry. The key might be no longer valid
|
|
* as it could have been cleaned up during the defrag-realloc of the main dictionary. */
|
|
static void defragEntryFinishCbForKeys(void *ctx, void *newptr) {
|
|
defragKeysCtx *defragctx = (defragKeysCtx *)ctx;
|
|
dictEntry *expire_de = defragctx->saved_expire_de;
|
|
/* Item doesn't have TTL associated to it. */
|
|
if (!expire_de) return;
|
|
/* No reallocation happened. */
|
|
if (!newptr) {
|
|
expire_de = NULL;
|
|
return;
|
|
}
|
|
serverDb *db = defragctx->db;
|
|
sds newsds = (sds)dictGetKey((dictEntry *)newptr);
|
|
int slot = defragctx->kvstate.slot;
|
|
kvstoreDictSetKey(db->expires, slot, expire_de, newsds);
|
|
}
|
|
|
|
/* Defrag helper for sds strings
|
|
*
|
|
* Returns NULL in case the allocation wasn't moved.
|
|
* When it returns a non-null value, the old pointer was already released
|
|
* and should NOT be accessed. */
|
|
static sds activeDefragSds(sds sdsptr) {
|
|
void *ptr = sdsAllocPtr(sdsptr);
|
|
void *newptr = activeDefragAlloc(ptr);
|
|
if (newptr) {
|
|
size_t offset = sdsptr - (char *)ptr;
|
|
sdsptr = (char *)newptr + offset;
|
|
return sdsptr;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Performs defrag on a string-type (or generic) robj, but does not free the old robj. This is the
|
|
* caller's responsibility. This is necessary for string objects with multiple references. In this
|
|
* case the caller can fix the references before freeing the original object.
|
|
*/
|
|
static robj *activeDefragStringObWithoutFree(robj *ob, size_t *allocation_size) {
|
|
if (ob->type == OBJ_STRING && ob->encoding == OBJ_ENCODING_RAW) {
|
|
// Try to defrag the linked sds, regardless of if robj will be moved
|
|
sds newsds = activeDefragSds((sds)ob->ptr);
|
|
if (newsds) ob->ptr = newsds;
|
|
}
|
|
|
|
robj *new_robj = activeDefragAllocWithoutFree(ob, allocation_size);
|
|
|
|
if (new_robj && ob->type == OBJ_STRING && ob->encoding == OBJ_ENCODING_EMBSTR) {
|
|
// If the robj is moved, correct the internal pointer
|
|
long embstr_offset = (intptr_t)ob->ptr - (intptr_t)ob;
|
|
new_robj->ptr = (void *)((intptr_t)new_robj + embstr_offset);
|
|
}
|
|
return new_robj;
|
|
}
|
|
|
|
|
|
/* Defrag helper for robj and/or string objects
|
|
*
|
|
* Returns NULL in case the allocation wasn't moved.
|
|
* When it returns a non-null value, the old pointer was already released
|
|
* and should NOT be accessed. */
|
|
robj *activeDefragStringOb(robj *ob) {
|
|
size_t allocation_size;
|
|
if (ob->refcount != 1) return NULL; // Unsafe to defrag if multiple refs
|
|
robj *new_robj = activeDefragStringObWithoutFree(ob, &allocation_size);
|
|
if (new_robj) allocatorDefragFree(ob, allocation_size);
|
|
return new_robj;
|
|
}
|
|
|
|
|
|
/* Defrag helper for lua scripts
|
|
*
|
|
* Returns NULL in case the allocation wasn't moved.
|
|
* When it returns a non-null value, the old pointer was already released
|
|
* and should NOT be accessed. */
|
|
static luaScript *activeDefragLuaScript(luaScript *script) {
|
|
luaScript *ret = NULL;
|
|
|
|
/* try to defrag script struct */
|
|
if ((ret = activeDefragAlloc(script))) {
|
|
script = ret;
|
|
}
|
|
|
|
/* try to defrag actual script object */
|
|
robj *ob = activeDefragStringOb(script->body);
|
|
if (ob) script->body = ob;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Defrag helper for dict main allocations (dict struct, and hash tables).
|
|
* Receives a pointer to the dict* and return a new dict* when the dict
|
|
* struct itself was moved.
|
|
*
|
|
* Returns NULL in case the allocation wasn't moved.
|
|
* When it returns a non-null value, the old pointer was already released
|
|
* and should NOT be accessed. */
|
|
static dict *dictDefragTables(dict *d) {
|
|
dict *ret = NULL;
|
|
dictEntry **newtable;
|
|
/* handle the dict struct */
|
|
if ((ret = activeDefragAlloc(d))) d = ret;
|
|
/* handle the first hash table */
|
|
if (!d->ht_table[0]) return ret; /* created but unused */
|
|
newtable = activeDefragAlloc(d->ht_table[0]);
|
|
if (newtable) d->ht_table[0] = newtable;
|
|
/* handle the second hash table */
|
|
if (d->ht_table[1]) {
|
|
newtable = activeDefragAlloc(d->ht_table[1]);
|
|
if (newtable) d->ht_table[1] = newtable;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Internal function used by zslDefrag */
|
|
static void zslUpdateNode(zskiplist *zsl, zskiplistNode *oldnode, zskiplistNode *newnode, zskiplistNode **update) {
|
|
int i;
|
|
for (i = 0; i < zsl->level; i++) {
|
|
if (update[i]->level[i].forward == oldnode) update[i]->level[i].forward = newnode;
|
|
}
|
|
serverAssert(zsl->header != oldnode);
|
|
if (newnode->level[0].forward) {
|
|
serverAssert(newnode->level[0].forward->backward == oldnode);
|
|
newnode->level[0].forward->backward = newnode;
|
|
} else {
|
|
serverAssert(zsl->tail == oldnode);
|
|
zsl->tail = newnode;
|
|
}
|
|
}
|
|
|
|
/* Defrag helper for sorted set.
|
|
* Update the robj pointer, defrag the skiplist struct and return the new score
|
|
* reference. We may not access oldele pointer (not even the pointer stored in
|
|
* the skiplist), as it was already freed. Newele may be null, in which case we
|
|
* only need to defrag the skiplist, but not update the obj pointer.
|
|
* When return value is non-NULL, it is the score reference that must be updated
|
|
* in the dict record. */
|
|
static double *zslDefrag(zskiplist *zsl, double score, sds oldele, sds newele) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x, *newx;
|
|
int i;
|
|
sds ele = newele ? newele : oldele;
|
|
|
|
/* find the skiplist node referring to the object that was moved,
|
|
* and all pointers that need to be updated if we'll end up moving the skiplist node. */
|
|
x = zsl->header;
|
|
for (i = zsl->level - 1; i >= 0; i--) {
|
|
while (x->level[i].forward && x->level[i].forward->ele != oldele && /* make sure not to access the
|
|
->obj pointer if it matches
|
|
oldele */
|
|
(x->level[i].forward->score < score ||
|
|
(x->level[i].forward->score == score && sdscmp(x->level[i].forward->ele, ele) < 0)))
|
|
x = x->level[i].forward;
|
|
update[i] = x;
|
|
}
|
|
|
|
/* update the robj pointer inside the skip list record. */
|
|
x = x->level[0].forward;
|
|
serverAssert(x && score == x->score && x->ele == oldele);
|
|
if (newele) x->ele = newele;
|
|
|
|
/* try to defrag the skiplist record itself */
|
|
newx = activeDefragAlloc(x);
|
|
if (newx) {
|
|
zslUpdateNode(zsl, x, newx, update);
|
|
return &newx->score;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Defrag helper for sorted set.
|
|
* Defrag a single dict entry key name, and corresponding skiplist struct */
|
|
static void activeDefragZsetEntry(zset *zs, dictEntry *de) {
|
|
sds newsds;
|
|
double *newscore;
|
|
sds sdsele = dictGetKey(de);
|
|
if ((newsds = activeDefragSds(sdsele))) dictSetKey(zs->dict, de, newsds);
|
|
newscore = zslDefrag(zs->zsl, *(double *)dictGetVal(de), sdsele, newsds);
|
|
if (newscore) {
|
|
dictSetVal(zs->dict, de, newscore);
|
|
}
|
|
}
|
|
|
|
#define DEFRAG_SDS_DICT_NO_VAL 0
|
|
#define DEFRAG_SDS_DICT_VAL_IS_SDS 1
|
|
#define DEFRAG_SDS_DICT_VAL_IS_STROB 2
|
|
#define DEFRAG_SDS_DICT_VAL_VOID_PTR 3
|
|
#define DEFRAG_SDS_DICT_VAL_LUA_SCRIPT 4
|
|
|
|
static void activeDefragSdsDictCallback(void *privdata, const dictEntry *de) {
|
|
UNUSED(privdata);
|
|
UNUSED(de);
|
|
}
|
|
|
|
/* Defrag a dict with sds key and optional value (either ptr, sds or robj string) */
|
|
static void activeDefragSdsDict(dict *d, int val_type) {
|
|
unsigned long cursor = 0;
|
|
dictDefragFunctions defragfns = {
|
|
.defragAlloc = activeDefragAlloc,
|
|
.defragKey = (dictDefragAllocFunction *)activeDefragSds,
|
|
.defragVal = (val_type == DEFRAG_SDS_DICT_VAL_IS_SDS ? (dictDefragAllocFunction *)activeDefragSds
|
|
: val_type == DEFRAG_SDS_DICT_VAL_IS_STROB ? (dictDefragAllocFunction *)activeDefragStringOb
|
|
: val_type == DEFRAG_SDS_DICT_VAL_VOID_PTR ? (dictDefragAllocFunction *)activeDefragAlloc
|
|
: val_type == DEFRAG_SDS_DICT_VAL_LUA_SCRIPT ? (dictDefragAllocFunction *)activeDefragLuaScript
|
|
: NULL)};
|
|
do {
|
|
cursor = dictScanDefrag(d, cursor, activeDefragSdsDictCallback, &defragfns, NULL);
|
|
} while (cursor != 0);
|
|
}
|
|
|
|
/* Defrag a list of ptr, sds or robj string values */
|
|
static void activeDefragQuickListNode(quicklist *ql, quicklistNode **node_ref) {
|
|
quicklistNode *newnode, *node = *node_ref;
|
|
unsigned char *newzl;
|
|
if ((newnode = activeDefragAlloc(node))) {
|
|
if (newnode->prev)
|
|
newnode->prev->next = newnode;
|
|
else
|
|
ql->head = newnode;
|
|
if (newnode->next)
|
|
newnode->next->prev = newnode;
|
|
else
|
|
ql->tail = newnode;
|
|
*node_ref = node = newnode;
|
|
}
|
|
if ((newzl = activeDefragAlloc(node->entry))) node->entry = newzl;
|
|
}
|
|
|
|
static void activeDefragQuickListNodes(quicklist *ql) {
|
|
quicklistNode *node = ql->head;
|
|
while (node) {
|
|
activeDefragQuickListNode(ql, &node);
|
|
node = node->next;
|
|
}
|
|
}
|
|
|
|
/* when the value has lots of elements, we want to handle it later and not as
|
|
* part of the main dictionary scan. this is needed in order to prevent latency
|
|
* spikes when handling large items */
|
|
static void defragLater(dictEntry *kde) {
|
|
if (!defrag_later) {
|
|
defrag_later = listCreate();
|
|
listSetFreeMethod(defrag_later, (void (*)(void *))sdsfree);
|
|
defrag_later_cursor = 0;
|
|
}
|
|
sds key = sdsdup(dictGetKey(kde));
|
|
listAddNodeTail(defrag_later, key);
|
|
}
|
|
|
|
/* returns 0 if no more work needs to be been done, and 1 if time is up and more work is needed. */
|
|
static long scanLaterList(robj *ob, unsigned long *cursor, monotime endtime) {
|
|
quicklist *ql = ob->ptr;
|
|
quicklistNode *node;
|
|
long iterations = 0;
|
|
int bookmark_failed = 0;
|
|
if (ob->type != OBJ_LIST || ob->encoding != OBJ_ENCODING_QUICKLIST) return 0;
|
|
|
|
if (*cursor == 0) {
|
|
/* if cursor is 0, we start new iteration */
|
|
node = ql->head;
|
|
} else {
|
|
node = quicklistBookmarkFind(ql, "_AD");
|
|
if (!node) {
|
|
/* if the bookmark was deleted, it means we reached the end. */
|
|
*cursor = 0;
|
|
return 0;
|
|
}
|
|
node = node->next;
|
|
}
|
|
|
|
(*cursor)++;
|
|
while (node) {
|
|
activeDefragQuickListNode(ql, &node);
|
|
server.stat_active_defrag_scanned++;
|
|
if (++iterations > 128 && !bookmark_failed) {
|
|
if (getMonotonicUs() > endtime) {
|
|
if (!quicklistBookmarkCreate(&ql, "_AD", node)) {
|
|
bookmark_failed = 1;
|
|
} else {
|
|
ob->ptr = ql; /* bookmark creation may have re-allocated the quicklist */
|
|
return 1;
|
|
}
|
|
}
|
|
iterations = 0;
|
|
}
|
|
node = node->next;
|
|
}
|
|
quicklistBookmarkDelete(ql, "_AD");
|
|
*cursor = 0;
|
|
return bookmark_failed ? 1 : 0;
|
|
}
|
|
|
|
typedef struct {
|
|
zset *zs;
|
|
} scanLaterZsetData;
|
|
|
|
static void scanLaterZsetCallback(void *privdata, const dictEntry *_de) {
|
|
dictEntry *de = (dictEntry *)_de;
|
|
scanLaterZsetData *data = privdata;
|
|
activeDefragZsetEntry(data->zs, de);
|
|
server.stat_active_defrag_scanned++;
|
|
}
|
|
|
|
static void scanLaterZset(robj *ob, unsigned long *cursor) {
|
|
if (ob->type != OBJ_ZSET || ob->encoding != OBJ_ENCODING_SKIPLIST) return;
|
|
zset *zs = (zset *)ob->ptr;
|
|
dict *d = zs->dict;
|
|
scanLaterZsetData data = {zs};
|
|
dictDefragFunctions defragfns = {.defragAlloc = activeDefragAlloc};
|
|
*cursor = dictScanDefrag(d, *cursor, scanLaterZsetCallback, &defragfns, &data);
|
|
}
|
|
|
|
/* Used as scan callback when all the work is done in the dictDefragFunctions. */
|
|
static void scanCallbackCountScanned(void *privdata, const dictEntry *de) {
|
|
UNUSED(privdata);
|
|
UNUSED(de);
|
|
server.stat_active_defrag_scanned++;
|
|
}
|
|
|
|
static void scanLaterSet(robj *ob, unsigned long *cursor) {
|
|
if (ob->type != OBJ_SET || ob->encoding != OBJ_ENCODING_HT) return;
|
|
dict *d = ob->ptr;
|
|
dictDefragFunctions defragfns = {.defragAlloc = activeDefragAlloc,
|
|
.defragKey = (dictDefragAllocFunction *)activeDefragSds};
|
|
*cursor = dictScanDefrag(d, *cursor, scanCallbackCountScanned, &defragfns, NULL);
|
|
}
|
|
|
|
static void scanLaterHash(robj *ob, unsigned long *cursor) {
|
|
if (ob->type != OBJ_HASH || ob->encoding != OBJ_ENCODING_HT) return;
|
|
dict *d = ob->ptr;
|
|
dictDefragFunctions defragfns = {.defragAlloc = activeDefragAlloc,
|
|
.defragKey = (dictDefragAllocFunction *)activeDefragSds,
|
|
.defragVal = (dictDefragAllocFunction *)activeDefragSds};
|
|
*cursor = dictScanDefrag(d, *cursor, scanCallbackCountScanned, &defragfns, NULL);
|
|
}
|
|
|
|
static void defragQuicklist(dictEntry *kde) {
|
|
robj *ob = dictGetVal(kde);
|
|
quicklist *ql = ob->ptr, *newql;
|
|
serverAssert(ob->type == OBJ_LIST && ob->encoding == OBJ_ENCODING_QUICKLIST);
|
|
if ((newql = activeDefragAlloc(ql))) ob->ptr = ql = newql;
|
|
if (ql->len > server.active_defrag_max_scan_fields)
|
|
defragLater(kde);
|
|
else
|
|
activeDefragQuickListNodes(ql);
|
|
}
|
|
|
|
static void defragZsetSkiplist(dictEntry *kde) {
|
|
robj *ob = dictGetVal(kde);
|
|
zset *zs = (zset *)ob->ptr;
|
|
zset *newzs;
|
|
zskiplist *newzsl;
|
|
dict *newdict;
|
|
dictEntry *de;
|
|
struct zskiplistNode *newheader;
|
|
serverAssert(ob->type == OBJ_ZSET && ob->encoding == OBJ_ENCODING_SKIPLIST);
|
|
if ((newzs = activeDefragAlloc(zs))) ob->ptr = zs = newzs;
|
|
if ((newzsl = activeDefragAlloc(zs->zsl))) zs->zsl = newzsl;
|
|
if ((newheader = activeDefragAlloc(zs->zsl->header))) zs->zsl->header = newheader;
|
|
if (dictSize(zs->dict) > server.active_defrag_max_scan_fields)
|
|
defragLater(kde);
|
|
else {
|
|
dictIterator *di = dictGetIterator(zs->dict);
|
|
while ((de = dictNext(di)) != NULL) {
|
|
activeDefragZsetEntry(zs, de);
|
|
}
|
|
dictReleaseIterator(di);
|
|
}
|
|
/* defrag the dict struct and tables */
|
|
if ((newdict = dictDefragTables(zs->dict))) zs->dict = newdict;
|
|
}
|
|
|
|
static void defragHash(dictEntry *kde) {
|
|
robj *ob = dictGetVal(kde);
|
|
dict *d, *newd;
|
|
serverAssert(ob->type == OBJ_HASH && ob->encoding == OBJ_ENCODING_HT);
|
|
d = ob->ptr;
|
|
if (dictSize(d) > server.active_defrag_max_scan_fields)
|
|
defragLater(kde);
|
|
else
|
|
activeDefragSdsDict(d, DEFRAG_SDS_DICT_VAL_IS_SDS);
|
|
/* defrag the dict struct and tables */
|
|
if ((newd = dictDefragTables(ob->ptr))) ob->ptr = newd;
|
|
}
|
|
|
|
static void defragSet(dictEntry *kde) {
|
|
robj *ob = dictGetVal(kde);
|
|
dict *d, *newd;
|
|
serverAssert(ob->type == OBJ_SET && ob->encoding == OBJ_ENCODING_HT);
|
|
d = ob->ptr;
|
|
if (dictSize(d) > server.active_defrag_max_scan_fields)
|
|
defragLater(kde);
|
|
else
|
|
activeDefragSdsDict(d, DEFRAG_SDS_DICT_NO_VAL);
|
|
/* defrag the dict struct and tables */
|
|
if ((newd = dictDefragTables(ob->ptr))) ob->ptr = newd;
|
|
}
|
|
|
|
/* Defrag callback for radix tree iterator, called for each node,
|
|
* used in order to defrag the nodes allocations. */
|
|
static int defragRaxNode(raxNode **noderef) {
|
|
raxNode *newnode = activeDefragAlloc(*noderef);
|
|
if (newnode) {
|
|
*noderef = newnode;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* returns 0 if no more work needs to be been done, and 1 if time is up and more work is needed. */
|
|
static int scanLaterStreamListpacks(robj *ob, unsigned long *cursor, monotime endtime) {
|
|
static unsigned char last[sizeof(streamID)];
|
|
raxIterator ri;
|
|
long iterations = 0;
|
|
if (ob->type != OBJ_STREAM || ob->encoding != OBJ_ENCODING_STREAM) {
|
|
*cursor = 0;
|
|
return 0;
|
|
}
|
|
|
|
stream *s = ob->ptr;
|
|
raxStart(&ri, s->rax);
|
|
if (*cursor == 0) {
|
|
/* if cursor is 0, we start new iteration */
|
|
defragRaxNode(&s->rax->head);
|
|
/* assign the iterator node callback before the seek, so that the
|
|
* initial nodes that are processed till the first item are covered */
|
|
ri.node_cb = defragRaxNode;
|
|
raxSeek(&ri, "^", NULL, 0);
|
|
} else {
|
|
/* if cursor is non-zero, we seek to the static 'last' */
|
|
if (!raxSeek(&ri, ">", last, sizeof(last))) {
|
|
*cursor = 0;
|
|
raxStop(&ri);
|
|
return 0;
|
|
}
|
|
/* assign the iterator node callback after the seek, so that the
|
|
* initial nodes that are processed till now aren't covered */
|
|
ri.node_cb = defragRaxNode;
|
|
}
|
|
|
|
(*cursor)++;
|
|
while (raxNext(&ri)) {
|
|
void *newdata = activeDefragAlloc(ri.data);
|
|
if (newdata) raxSetData(ri.node, ri.data = newdata);
|
|
server.stat_active_defrag_scanned++;
|
|
if (++iterations > 128) {
|
|
if (getMonotonicUs() > endtime) {
|
|
serverAssert(ri.key_len == sizeof(last));
|
|
memcpy(last, ri.key, ri.key_len);
|
|
raxStop(&ri);
|
|
return 1;
|
|
}
|
|
iterations = 0;
|
|
}
|
|
}
|
|
raxStop(&ri);
|
|
*cursor = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* optional callback used defrag each rax element (not including the element pointer itself) */
|
|
typedef void *(raxDefragFunction)(raxIterator *ri, void *privdata);
|
|
|
|
/* defrag radix tree including:
|
|
* 1) rax struct
|
|
* 2) rax nodes
|
|
* 3) rax entry data (only if defrag_data is specified)
|
|
* 4) call a callback per element, and allow the callback to return a new pointer for the element */
|
|
static void defragRadixTree(rax **raxref, int defrag_data, raxDefragFunction *element_cb, void *element_cb_data) {
|
|
raxIterator ri;
|
|
rax *rax;
|
|
if ((rax = activeDefragAlloc(*raxref))) *raxref = rax;
|
|
rax = *raxref;
|
|
raxStart(&ri, rax);
|
|
ri.node_cb = defragRaxNode;
|
|
defragRaxNode(&rax->head);
|
|
raxSeek(&ri, "^", NULL, 0);
|
|
while (raxNext(&ri)) {
|
|
void *newdata = NULL;
|
|
if (element_cb) newdata = element_cb(&ri, element_cb_data);
|
|
if (defrag_data && !newdata) newdata = activeDefragAlloc(ri.data);
|
|
if (newdata) raxSetData(ri.node, ri.data = newdata);
|
|
}
|
|
raxStop(&ri);
|
|
}
|
|
|
|
typedef struct {
|
|
streamCG *cg;
|
|
streamConsumer *c;
|
|
} PendingEntryContext;
|
|
|
|
static void *defragStreamConsumerPendingEntry(raxIterator *ri, void *privdata) {
|
|
PendingEntryContext *ctx = privdata;
|
|
streamNACK *nack = ri->data, *newnack;
|
|
nack->consumer = ctx->c; /* update nack pointer to consumer */
|
|
newnack = activeDefragAlloc(nack);
|
|
if (newnack) {
|
|
/* update consumer group pointer to the nack */
|
|
void *prev;
|
|
raxInsert(ctx->cg->pel, ri->key, ri->key_len, newnack, &prev);
|
|
serverAssert(prev == nack);
|
|
}
|
|
return newnack;
|
|
}
|
|
|
|
static void *defragStreamConsumer(raxIterator *ri, void *privdata) {
|
|
streamConsumer *c = ri->data;
|
|
streamCG *cg = privdata;
|
|
void *newc = activeDefragAlloc(c);
|
|
if (newc) {
|
|
c = newc;
|
|
}
|
|
sds newsds = activeDefragSds(c->name);
|
|
if (newsds) c->name = newsds;
|
|
if (c->pel) {
|
|
PendingEntryContext pel_ctx = {cg, c};
|
|
defragRadixTree(&c->pel, 0, defragStreamConsumerPendingEntry, &pel_ctx);
|
|
}
|
|
return newc; /* returns NULL if c was not defragged */
|
|
}
|
|
|
|
static void *defragStreamConsumerGroup(raxIterator *ri, void *privdata) {
|
|
streamCG *cg = ri->data;
|
|
UNUSED(privdata);
|
|
if (cg->consumers) defragRadixTree(&cg->consumers, 0, defragStreamConsumer, cg);
|
|
if (cg->pel) defragRadixTree(&cg->pel, 0, NULL, NULL);
|
|
return NULL;
|
|
}
|
|
|
|
static void defragStream(dictEntry *kde) {
|
|
robj *ob = dictGetVal(kde);
|
|
serverAssert(ob->type == OBJ_STREAM && ob->encoding == OBJ_ENCODING_STREAM);
|
|
stream *s = ob->ptr, *news;
|
|
|
|
/* handle the main struct */
|
|
if ((news = activeDefragAlloc(s))) ob->ptr = s = news;
|
|
|
|
if (raxSize(s->rax) > server.active_defrag_max_scan_fields) {
|
|
rax *newrax = activeDefragAlloc(s->rax);
|
|
if (newrax) s->rax = newrax;
|
|
defragLater(kde);
|
|
} else
|
|
defragRadixTree(&s->rax, 1, NULL, NULL);
|
|
|
|
if (s->cgroups) defragRadixTree(&s->cgroups, 1, defragStreamConsumerGroup, NULL);
|
|
}
|
|
|
|
/* Defrag a module key. This is either done immediately or scheduled
|
|
* for later. Returns then number of pointers defragged.
|
|
*/
|
|
static void defragModule(serverDb *db, dictEntry *kde) {
|
|
robj *obj = dictGetVal(kde);
|
|
serverAssert(obj->type == OBJ_MODULE);
|
|
|
|
if (!moduleDefragValue(dictGetKey(kde), obj, db->id)) defragLater(kde);
|
|
}
|
|
|
|
/* for each key we scan in the main dict, this function will attempt to defrag
|
|
* all the various pointers it has. */
|
|
static void defragKey(defragKeysCtx *ctx, dictEntry *de) {
|
|
serverDb *db = ctx->db;
|
|
int slot = ctx->kvstate.slot;
|
|
robj *newob, *ob;
|
|
unsigned char *newzl;
|
|
|
|
/* Try to defrag robj and / or string value. */
|
|
ob = dictGetVal(de);
|
|
if ((newob = activeDefragStringOb(ob))) {
|
|
kvstoreDictSetVal(ctx->kvstate.kvs, slot, de, newob);
|
|
ob = newob;
|
|
}
|
|
|
|
if (ob->type == OBJ_STRING) {
|
|
/* Already handled in activeDefragStringOb. */
|
|
} else if (ob->type == OBJ_LIST) {
|
|
if (ob->encoding == OBJ_ENCODING_QUICKLIST) {
|
|
defragQuicklist(de);
|
|
} else if (ob->encoding == OBJ_ENCODING_LISTPACK) {
|
|
if ((newzl = activeDefragAlloc(ob->ptr))) ob->ptr = newzl;
|
|
} else {
|
|
serverPanic("Unknown list encoding");
|
|
}
|
|
} else if (ob->type == OBJ_SET) {
|
|
if (ob->encoding == OBJ_ENCODING_HT) {
|
|
defragSet(de);
|
|
} else if (ob->encoding == OBJ_ENCODING_INTSET || ob->encoding == OBJ_ENCODING_LISTPACK) {
|
|
void *newptr, *ptr = ob->ptr;
|
|
if ((newptr = activeDefragAlloc(ptr))) ob->ptr = newptr;
|
|
} else {
|
|
serverPanic("Unknown set encoding");
|
|
}
|
|
} else if (ob->type == OBJ_ZSET) {
|
|
if (ob->encoding == OBJ_ENCODING_LISTPACK) {
|
|
if ((newzl = activeDefragAlloc(ob->ptr))) ob->ptr = newzl;
|
|
} else if (ob->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
defragZsetSkiplist(de);
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else if (ob->type == OBJ_HASH) {
|
|
if (ob->encoding == OBJ_ENCODING_LISTPACK) {
|
|
if ((newzl = activeDefragAlloc(ob->ptr))) ob->ptr = newzl;
|
|
} else if (ob->encoding == OBJ_ENCODING_HT) {
|
|
defragHash(de);
|
|
} else {
|
|
serverPanic("Unknown hash encoding");
|
|
}
|
|
} else if (ob->type == OBJ_STREAM) {
|
|
defragStream(de);
|
|
} else if (ob->type == OBJ_MODULE) {
|
|
defragModule(db, de);
|
|
} else {
|
|
serverPanic("Unknown object type");
|
|
}
|
|
}
|
|
|
|
/* Defrag scan callback for the main db dictionary. */
|
|
static void dbKeysScanCallback(void *privdata, const dictEntry *de) {
|
|
long long hits_before = server.stat_active_defrag_hits;
|
|
defragKey((defragKeysCtx *)privdata, (dictEntry *)de);
|
|
if (server.stat_active_defrag_hits != hits_before)
|
|
server.stat_active_defrag_key_hits++;
|
|
else
|
|
server.stat_active_defrag_key_misses++;
|
|
server.stat_active_defrag_scanned++;
|
|
}
|
|
|
|
/* Utility function to get the fragmentation ratio from jemalloc.
|
|
* It is critical to do that by comparing only heap maps that belong to
|
|
* jemalloc, and skip ones the jemalloc keeps as spare. Since we use this
|
|
* fragmentation ratio in order to decide if a defrag action should be taken
|
|
* or not, a false detection can cause the defragmenter to waste a lot of CPU
|
|
* without the possibility of getting any results. */
|
|
static float getAllocatorFragmentation(size_t *out_frag_bytes) {
|
|
size_t resident, active, allocated, frag_smallbins_bytes;
|
|
zmalloc_get_allocator_info(&allocated, &active, &resident, NULL, NULL);
|
|
frag_smallbins_bytes = allocatorDefragGetFragSmallbins();
|
|
/* Calculate the fragmentation ratio as the proportion of wasted memory in small
|
|
* bins (which are defraggable) relative to the total allocated memory (including large bins).
|
|
* This is because otherwise, if most of the memory usage is large bins, we may show high percentage,
|
|
* despite the fact it's not a lot of memory for the user. */
|
|
float frag_pct = (float)frag_smallbins_bytes / allocated * 100;
|
|
float rss_pct = ((float)resident / allocated) * 100 - 100;
|
|
size_t rss_bytes = resident - allocated;
|
|
if (out_frag_bytes) *out_frag_bytes = frag_smallbins_bytes;
|
|
serverLog(LL_DEBUG, "allocated=%zu, active=%zu, resident=%zu, frag=%.2f%% (%.2f%% rss), frag_bytes=%zu (%zu rss)",
|
|
allocated, active, resident, frag_pct, rss_pct, frag_smallbins_bytes, rss_bytes);
|
|
return frag_pct;
|
|
}
|
|
|
|
/* Defrag scan callback for the pubsub dictionary. */
|
|
static void defragPubsubScanCallback(void *privdata, const dictEntry *de) {
|
|
defragPubSubCtx *ctx = privdata;
|
|
kvstore *pubsub_channels = ctx->kvstate.kvs;
|
|
robj *newchannel, *channel = dictGetKey(de);
|
|
dict *newclients, *clients = dictGetVal(de);
|
|
size_t allocation_size;
|
|
|
|
/* Try to defrag the channel name. */
|
|
serverAssert(channel->refcount == (int)dictSize(clients) + 1);
|
|
newchannel = activeDefragStringObWithoutFree(channel, &allocation_size);
|
|
if (newchannel) {
|
|
kvstoreDictSetKey(pubsub_channels, ctx->kvstate.slot, (dictEntry *)de, newchannel);
|
|
|
|
/* The channel name is shared by the client's pubsub(shard) and server's
|
|
* pubsub(shard), after defraging the channel name, we need to update
|
|
* the reference in the clients' dictionary. */
|
|
dictIterator *di = dictGetIterator(clients);
|
|
dictEntry *clientde;
|
|
while ((clientde = dictNext(di)) != NULL) {
|
|
client *c = dictGetKey(clientde);
|
|
dict *client_channels = ctx->getPubSubChannels(c);
|
|
dictEntry *pubsub_channel = dictFind(client_channels, newchannel);
|
|
serverAssert(pubsub_channel);
|
|
dictSetKey(ctx->getPubSubChannels(c), pubsub_channel, newchannel);
|
|
}
|
|
dictReleaseIterator(di);
|
|
// Now that we're done correcting the references, we can safely free the old channel robj
|
|
allocatorDefragFree(channel, allocation_size);
|
|
}
|
|
|
|
/* Try to defrag the dictionary of clients that is stored as the value part. */
|
|
if ((newclients = dictDefragTables(clients)))
|
|
kvstoreDictSetVal(pubsub_channels, ctx->kvstate.slot, (dictEntry *)de, newclients);
|
|
|
|
server.stat_active_defrag_scanned++;
|
|
}
|
|
|
|
/* returns 0 more work may or may not be needed (see non-zero cursor),
|
|
* and 1 if time is up and more work is needed. */
|
|
static int defragLaterItem(dictEntry *de, unsigned long *cursor, monotime endtime, int dbid) {
|
|
if (de) {
|
|
robj *ob = dictGetVal(de);
|
|
if (ob->type == OBJ_LIST) {
|
|
return scanLaterList(ob, cursor, endtime);
|
|
} else if (ob->type == OBJ_SET) {
|
|
scanLaterSet(ob, cursor);
|
|
} else if (ob->type == OBJ_ZSET) {
|
|
scanLaterZset(ob, cursor);
|
|
} else if (ob->type == OBJ_HASH) {
|
|
scanLaterHash(ob, cursor);
|
|
} else if (ob->type == OBJ_STREAM) {
|
|
return scanLaterStreamListpacks(ob, cursor, endtime);
|
|
} else if (ob->type == OBJ_MODULE) {
|
|
return moduleLateDefrag(dictGetKey(de), ob, cursor, endtime, dbid);
|
|
} else {
|
|
*cursor = 0; /* object type may have changed since we schedule it for later */
|
|
}
|
|
} else {
|
|
*cursor = 0; /* object may have been deleted already */
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
// A kvstoreHelperPreContinueFn
|
|
static doneStatus defragLaterStep(monotime endtime, void *privdata) {
|
|
defragKeysCtx *ctx = privdata;
|
|
|
|
unsigned int iterations = 0;
|
|
unsigned long long prev_defragged = server.stat_active_defrag_hits;
|
|
unsigned long long prev_scanned = server.stat_active_defrag_scanned;
|
|
|
|
while (defrag_later && listLength(defrag_later) > 0) {
|
|
listNode *head = listFirst(defrag_later);
|
|
sds key = head->value;
|
|
dictEntry *de = kvstoreDictFind(ctx->kvstate.kvs, ctx->kvstate.slot, key);
|
|
|
|
long long key_defragged = server.stat_active_defrag_hits;
|
|
bool timeout = (defragLaterItem(de, &defrag_later_cursor, endtime, ctx->db->id) == 1);
|
|
if (key_defragged != server.stat_active_defrag_hits) {
|
|
server.stat_active_defrag_key_hits++;
|
|
} else {
|
|
server.stat_active_defrag_key_misses++;
|
|
}
|
|
|
|
if (timeout) break;
|
|
|
|
if (defrag_later_cursor == 0) {
|
|
// the item is finished, move on
|
|
listDelNode(defrag_later, head);
|
|
}
|
|
|
|
if (++iterations > 16 || server.stat_active_defrag_hits - prev_defragged > 512 ||
|
|
server.stat_active_defrag_scanned - prev_scanned > 64) {
|
|
if (getMonotonicUs() > endtime) break;
|
|
iterations = 0;
|
|
prev_defragged = server.stat_active_defrag_hits;
|
|
prev_scanned = server.stat_active_defrag_scanned;
|
|
}
|
|
}
|
|
|
|
return (!defrag_later || listLength(defrag_later) == 0) ? DEFRAG_DONE : DEFRAG_NOT_DONE;
|
|
}
|
|
|
|
|
|
/* This helper function handles most of the work for iterating over a kvstore. 'privdata', if
|
|
* provided, MUST begin with 'kvstoreIterState' and this part is automatically updated by this
|
|
* function during the iteration. */
|
|
static doneStatus defragStageKvstoreHelper(monotime endtime,
|
|
kvstore *kvs,
|
|
dictScanFunction scan_fn,
|
|
kvstoreHelperPreContinueFn precontinue_fn,
|
|
const dictDefragFunctions *defragfns,
|
|
void *privdata) {
|
|
static kvstoreIterState state; // STATIC - this persists
|
|
if (endtime == 0) {
|
|
// Starting the stage, set up the state information for this stage
|
|
state.kvs = kvs;
|
|
state.slot = KVS_SLOT_DEFRAG_LUT;
|
|
state.cursor = 0;
|
|
return DEFRAG_NOT_DONE;
|
|
}
|
|
serverAssert(kvs == state.kvs); // Shouldn't change during the stage
|
|
|
|
unsigned int iterations = 0;
|
|
unsigned long long prev_defragged = server.stat_active_defrag_hits;
|
|
unsigned long long prev_scanned = server.stat_active_defrag_scanned;
|
|
|
|
if (state.slot == KVS_SLOT_DEFRAG_LUT) {
|
|
// Before we start scanning the kvstore, handle the main structures
|
|
do {
|
|
state.cursor = kvstoreDictLUTDefrag(kvs, state.cursor, dictDefragTables);
|
|
if (getMonotonicUs() >= endtime) return DEFRAG_NOT_DONE;
|
|
} while (state.cursor != 0);
|
|
state.slot = KVS_SLOT_UNASSIGNED;
|
|
}
|
|
|
|
while (true) {
|
|
if (++iterations > 16 || server.stat_active_defrag_hits - prev_defragged > 512 || server.stat_active_defrag_scanned - prev_scanned > 64) {
|
|
if (getMonotonicUs() >= endtime) break;
|
|
iterations = 0;
|
|
prev_defragged = server.stat_active_defrag_hits;
|
|
prev_scanned = server.stat_active_defrag_scanned;
|
|
}
|
|
|
|
if (precontinue_fn) {
|
|
if (privdata) *(kvstoreIterState *)privdata = state;
|
|
if (precontinue_fn(endtime, privdata) == DEFRAG_NOT_DONE) return DEFRAG_NOT_DONE;
|
|
}
|
|
|
|
if (!state.cursor) {
|
|
// If there's no cursor, we're ready to begin a new kvstore slot.
|
|
if (state.slot == KVS_SLOT_UNASSIGNED) {
|
|
state.slot = kvstoreGetFirstNonEmptyDictIndex(kvs);
|
|
} else {
|
|
state.slot = kvstoreGetNextNonEmptyDictIndex(kvs, state.slot);
|
|
}
|
|
|
|
if (state.slot == KVS_SLOT_UNASSIGNED) return DEFRAG_DONE;
|
|
}
|
|
|
|
// Whatever privdata's actual type, this function requires that it begins with kvstoreIterState.
|
|
if (privdata) *(kvstoreIterState *)privdata = state;
|
|
state.cursor = kvstoreDictScanDefrag(kvs, state.slot, state.cursor,
|
|
scan_fn, defragfns, privdata);
|
|
}
|
|
|
|
return DEFRAG_NOT_DONE;
|
|
}
|
|
|
|
|
|
// Note: target is a DB, (not a KVS like most stages)
|
|
static doneStatus defragStageDbKeys(monotime endtime, void *target, void *privdata) {
|
|
UNUSED(privdata);
|
|
serverDb *db = (serverDb *)target;
|
|
|
|
static defragKeysCtx ctx; // STATIC - this persists
|
|
if (endtime == 0) {
|
|
ctx.db = db;
|
|
// Don't return yet. Call the helper with endtime==0 below.
|
|
}
|
|
serverAssert(ctx.db == db);
|
|
|
|
/* Note: for DB keys, we use the start/finish callback to fix an expires table entry if
|
|
* the main DB entry has been moved. */
|
|
static const dictDefragFunctions defragfns = {
|
|
.defragAlloc = activeDefragAlloc,
|
|
.defragKey = NULL, // Handled by dbKeysScanCallback
|
|
.defragVal = NULL, // Handled by dbKeysScanCallback
|
|
.defragEntryStartCb = defragEntryStartCbForKeys,
|
|
.defragEntryFinishCb = defragEntryFinishCbForKeys};
|
|
|
|
return defragStageKvstoreHelper(endtime, db->keys,
|
|
dbKeysScanCallback, defragLaterStep, &defragfns, &ctx);
|
|
}
|
|
|
|
|
|
static doneStatus defragStageExpiresKvstore(monotime endtime, void *target, void *privdata) {
|
|
UNUSED(privdata);
|
|
static const dictDefragFunctions defragfns = {
|
|
.defragAlloc = activeDefragAlloc,
|
|
.defragKey = NULL, // Not needed for expires (just a ref)
|
|
.defragVal = NULL, // Not needed for expires (no value)
|
|
};
|
|
return defragStageKvstoreHelper(endtime, (kvstore *)target,
|
|
scanCallbackCountScanned, NULL, &defragfns, NULL);
|
|
}
|
|
|
|
|
|
static doneStatus defragStagePubsubKvstore(monotime endtime, void *target, void *privdata) {
|
|
// target is server.pubsub_channels or server.pubsubshard_channels
|
|
getClientChannelsFnWrapper *fnWrapper = privdata;
|
|
|
|
static const dictDefragFunctions defragfns = {
|
|
.defragAlloc = activeDefragAlloc,
|
|
.defragKey = NULL, // Handled by defragPubsubScanCallback
|
|
.defragVal = NULL, // Not needed for expires (no value)
|
|
};
|
|
defragPubSubCtx ctx;
|
|
|
|
ctx.getPubSubChannels = fnWrapper->fn;
|
|
return defragStageKvstoreHelper(endtime, (kvstore *)target,
|
|
defragPubsubScanCallback, NULL, &defragfns, &ctx);
|
|
}
|
|
|
|
|
|
static doneStatus defragLuaScripts(monotime endtime, void *target, void *privdata) {
|
|
UNUSED(target);
|
|
UNUSED(privdata);
|
|
if (endtime == 0) return DEFRAG_NOT_DONE; // required initialization
|
|
activeDefragSdsDict(evalScriptsDict(), DEFRAG_SDS_DICT_VAL_LUA_SCRIPT);
|
|
return DEFRAG_DONE;
|
|
}
|
|
|
|
|
|
static doneStatus defragModuleGlobals(monotime endtime, void *target, void *privdata) {
|
|
UNUSED(target);
|
|
UNUSED(privdata);
|
|
if (endtime == 0) return DEFRAG_NOT_DONE; // required initialization
|
|
moduleDefragGlobals();
|
|
return DEFRAG_DONE;
|
|
}
|
|
|
|
|
|
static bool defragIsRunning(void) {
|
|
return (defrag.timeproc_id > 0);
|
|
}
|
|
|
|
|
|
static void addDefragStage(defragStageFn stage_fn, void *target, void *privdata) {
|
|
StageDescriptor *stage = zmalloc(sizeof(StageDescriptor));
|
|
stage->stage_fn = stage_fn;
|
|
stage->target = target;
|
|
stage->privdata = privdata;
|
|
listAddNodeTail(defrag.remaining_stages, stage);
|
|
}
|
|
|
|
|
|
// Called at the end of a complete defrag cycle, or when defrag is terminated
|
|
static void endDefragCycle(bool normal_termination) {
|
|
if (normal_termination) {
|
|
// For normal termination, we expect...
|
|
serverAssert(!defrag.current_stage);
|
|
serverAssert(listLength(defrag.remaining_stages) == 0);
|
|
serverAssert(!defrag_later || listLength(defrag_later) == 0);
|
|
} else {
|
|
// Defrag is being terminated abnormally
|
|
aeDeleteTimeEvent(server.el, defrag.timeproc_id);
|
|
|
|
if (defrag.current_stage) {
|
|
zfree(defrag.current_stage);
|
|
defrag.current_stage = NULL;
|
|
}
|
|
listSetFreeMethod(defrag.remaining_stages, zfree);
|
|
}
|
|
defrag.timeproc_id = AE_DELETED_EVENT_ID;
|
|
|
|
listRelease(defrag.remaining_stages);
|
|
defrag.remaining_stages = NULL;
|
|
|
|
if (defrag_later) {
|
|
listRelease(defrag_later);
|
|
defrag_later = NULL;
|
|
}
|
|
defrag_later_cursor = 0;
|
|
|
|
size_t frag_bytes;
|
|
float frag_pct = getAllocatorFragmentation(&frag_bytes);
|
|
serverLog(LL_VERBOSE, "Active defrag done in %dms, reallocated=%d, frag=%.0f%%, frag_bytes=%zu",
|
|
(int)elapsedMs(defrag.start_cycle), (int)(server.stat_active_defrag_hits - defrag.start_defrag_hits),
|
|
frag_pct, frag_bytes);
|
|
|
|
server.stat_total_active_defrag_time += elapsedUs(server.stat_last_active_defrag_time);
|
|
server.stat_last_active_defrag_time = 0;
|
|
server.active_defrag_cpu_percent = 0;
|
|
}
|
|
|
|
|
|
/* Must be called at the start of the timeProc as it measures the delay from the end of the previous
|
|
* timeProc invocation when performing the computation. */
|
|
static int computeDefragCycleUs(void) {
|
|
long dutyCycleUs;
|
|
|
|
int targetCpuPercent = server.active_defrag_cpu_percent;
|
|
serverAssert(targetCpuPercent > 0 && targetCpuPercent < 100);
|
|
|
|
static int prevCpuPercent = 0; // STATIC - this persists
|
|
if (targetCpuPercent != prevCpuPercent) {
|
|
/* If the targetCpuPercent changes, the value might be different from when the last wait
|
|
* time was computed. In this case, don't consider wait time. (This is really only an
|
|
* issue in crazy tests that dramatically increase CPU while defrag is running.) */
|
|
defrag.timeproc_end_time = 0;
|
|
prevCpuPercent = targetCpuPercent;
|
|
}
|
|
|
|
// Given when the last duty cycle ended, compute time needed to achieve the desired percentage.
|
|
if (defrag.timeproc_end_time == 0) {
|
|
// Either the first call to the timeProc, or we were paused for some reason.
|
|
defrag.timeproc_overage_us = 0;
|
|
dutyCycleUs = server.active_defrag_cycle_us;
|
|
} else {
|
|
long waitedUs = getMonotonicUs() - defrag.timeproc_end_time;
|
|
/* Given the elapsed wait time between calls, compute the necessary duty time needed to
|
|
* achieve the desired CPU percentage.
|
|
* With: D = duty time, W = wait time, P = percent
|
|
* Solve: D P
|
|
* ----- = -----
|
|
* D + W 100
|
|
* Solving for D:
|
|
* D = P * W / (100 - P)
|
|
*
|
|
* Note that dutyCycleUs addresses starvation. If the wait time was long, we will compensate
|
|
* with a proportionately long duty-cycle. This won't significantly affect perceived
|
|
* latency, because clients are already being impacted by the long cycle time which caused
|
|
* the starvation of the timer. */
|
|
dutyCycleUs = targetCpuPercent * waitedUs / (100 - targetCpuPercent);
|
|
|
|
// Also adjust for any accumulated overage(underage).
|
|
dutyCycleUs -= defrag.timeproc_overage_us;
|
|
defrag.timeproc_overage_us = 0;
|
|
|
|
if (dutyCycleUs < server.active_defrag_cycle_us) {
|
|
/* We never reduce our cycle time, that would increase overhead. Instead, we track this
|
|
* as part of the overage, and increase wait time between cycles. */
|
|
defrag.timeproc_overage_us = server.active_defrag_cycle_us - dutyCycleUs;
|
|
dutyCycleUs = server.active_defrag_cycle_us;
|
|
}
|
|
}
|
|
return dutyCycleUs;
|
|
}
|
|
|
|
|
|
/* Must be called at the end of the timeProc as it records the timeproc_end_time for use in the next
|
|
* computeDefragCycleUs computation. */
|
|
static int computeDelayMs(monotime intendedEndtime) {
|
|
defrag.timeproc_end_time = getMonotonicUs();
|
|
int overage = defrag.timeproc_end_time - intendedEndtime;
|
|
defrag.timeproc_overage_us += overage; // track over/under desired CPU
|
|
|
|
int targetCpuPercent = server.active_defrag_cpu_percent;
|
|
serverAssert(targetCpuPercent > 0 && targetCpuPercent < 100);
|
|
|
|
// Given the desired duty cycle, what inter-cycle delay do we need to achieve that?
|
|
// We want to achieve a specific CPU percent. To do that, we can't use a skewed computation.
|
|
// Example, if we run for 1ms and delay 10ms, that's NOT 10%, because the total cycle time is 11ms.
|
|
// Instead, if we rum for 1ms, our total time should be 10ms. So the delay is only 9ms.
|
|
long totalCycleTimeUs = server.active_defrag_cycle_us * 100 / targetCpuPercent;
|
|
long delayUs = totalCycleTimeUs - server.active_defrag_cycle_us;
|
|
// Only increase delay by the fraction of the overage that would be non-duty-cycle
|
|
delayUs += defrag.timeproc_overage_us * (100 - targetCpuPercent) / 100; // "overage" might be negative
|
|
if (delayUs < 0) delayUs = 0;
|
|
long delayMs = delayUs / 1000; // round down
|
|
return delayMs;
|
|
}
|
|
|
|
|
|
/* An independent time proc for defrag. While defrag is running, this is called much more often
|
|
* than the server cron. Frequent short calls provides low latency impact. */
|
|
static long long activeDefragTimeProc(struct aeEventLoop *eventLoop, long long id, void *clientData) {
|
|
UNUSED(eventLoop);
|
|
UNUSED(id);
|
|
UNUSED(clientData);
|
|
|
|
// This timer shouldn't be registered unless there's work to do.
|
|
serverAssert(defrag.current_stage || listLength(defrag.remaining_stages) > 0);
|
|
|
|
if (!server.active_defrag_enabled) {
|
|
// Defrag has been disabled while running
|
|
endDefragCycle(false);
|
|
return AE_NOMORE;
|
|
}
|
|
|
|
if (hasActiveChildProcess()) {
|
|
// If there's a child process, pause the defrag, polling until the child completes.
|
|
defrag.timeproc_end_time = 0; // prevent starvation recovery
|
|
return 100;
|
|
}
|
|
|
|
monotime starttime = getMonotonicUs();
|
|
monotime endtime = starttime + computeDefragCycleUs();
|
|
|
|
mstime_t latency;
|
|
latencyStartMonitor(latency);
|
|
|
|
if (!defrag.current_stage) {
|
|
defrag.current_stage = listNodeValue(listFirst(defrag.remaining_stages));
|
|
listDelNode(defrag.remaining_stages, listFirst(defrag.remaining_stages));
|
|
// Initialize the stage with endtime==0
|
|
doneStatus status = defrag.current_stage->stage_fn(0, defrag.current_stage->target, defrag.current_stage->privdata);
|
|
serverAssert(status == DEFRAG_NOT_DONE); // Initialization should always return DEFRAG_NOT_DONE
|
|
}
|
|
|
|
doneStatus status = defrag.current_stage->stage_fn(endtime, defrag.current_stage->target, defrag.current_stage->privdata);
|
|
if (status == DEFRAG_DONE) {
|
|
zfree(defrag.current_stage);
|
|
defrag.current_stage = NULL;
|
|
}
|
|
|
|
latencyEndMonitor(latency);
|
|
latencyAddSampleIfNeeded("active-defrag-cycle", latency);
|
|
|
|
if (defrag.current_stage || listLength(defrag.remaining_stages) > 0) {
|
|
return computeDelayMs(endtime);
|
|
} else {
|
|
endDefragCycle(true);
|
|
return AE_NOMORE; // Ends the timer proc
|
|
}
|
|
}
|
|
|
|
|
|
/* During long running scripts, or while loading, there is a periodic function for handling other
|
|
* actions. This interface allows defrag to continue running, avoiding a single long defrag step
|
|
* after the long operation completes. */
|
|
void defragWhileBlocked(void) {
|
|
if (!defragIsRunning()) return;
|
|
|
|
// Save off the timeproc_id. If we have a normal termination, it will be cleared.
|
|
long long timeproc_id = defrag.timeproc_id;
|
|
|
|
// Simulate a single call of the timer proc
|
|
long long reschedule_delay = activeDefragTimeProc(NULL, 0, NULL);
|
|
if (reschedule_delay == AE_NOMORE) {
|
|
// If it's done, deregister the timer
|
|
aeDeleteTimeEvent(server.el, timeproc_id);
|
|
}
|
|
/* Otherwise, just ignore the reschedule_delay, the timer will pop the next time that the
|
|
* event loop can process timers again. */
|
|
}
|
|
|
|
|
|
static void beginDefragCycle(void) {
|
|
serverAssert(!defragIsRunning());
|
|
|
|
serverAssert(defrag.remaining_stages == NULL);
|
|
defrag.remaining_stages = listCreate();
|
|
|
|
for (int dbid = 0; dbid < server.dbnum; dbid++) {
|
|
serverDb *db = &server.db[dbid];
|
|
addDefragStage(defragStageDbKeys, db, NULL);
|
|
addDefragStage(defragStageExpiresKvstore, db->expires, NULL);
|
|
}
|
|
|
|
static getClientChannelsFnWrapper getClientPubSubChannelsFn = {getClientPubSubChannels};
|
|
static getClientChannelsFnWrapper getClientPubSubShardChannelsFn = {getClientPubSubShardChannels};
|
|
addDefragStage(defragStagePubsubKvstore, server.pubsub_channels, &getClientPubSubChannelsFn);
|
|
addDefragStage(defragStagePubsubKvstore, server.pubsubshard_channels, &getClientPubSubShardChannelsFn);
|
|
|
|
addDefragStage(defragLuaScripts, NULL, NULL);
|
|
addDefragStage(defragModuleGlobals, NULL, NULL);
|
|
|
|
defrag.current_stage = NULL;
|
|
defrag.start_cycle = getMonotonicUs();
|
|
defrag.start_defrag_hits = server.stat_active_defrag_hits;
|
|
defrag.timeproc_end_time = 0;
|
|
defrag.timeproc_overage_us = 0;
|
|
defrag.timeproc_id = aeCreateTimeEvent(server.el, 0, activeDefragTimeProc, NULL, NULL);
|
|
|
|
elapsedStart(&server.stat_last_active_defrag_time);
|
|
}
|
|
|
|
|
|
#define INTERPOLATE(x, x1, x2, y1, y2) ((y1) + ((x) - (x1)) * ((y2) - (y1)) / ((x2) - (x1)))
|
|
#define LIMIT(y, min, max) ((y) < (min) ? min : ((y) > (max) ? max : (y)))
|
|
|
|
/* decide if defrag is needed, and at what CPU effort to invest in it */
|
|
static void updateDefragCpuPercent(void) {
|
|
size_t frag_bytes;
|
|
float frag_pct = getAllocatorFragmentation(&frag_bytes);
|
|
if (server.active_defrag_cpu_percent == 0) {
|
|
if (frag_pct < server.active_defrag_threshold_lower ||
|
|
frag_bytes < server.active_defrag_ignore_bytes) return;
|
|
}
|
|
|
|
/* Calculate the adaptive aggressiveness of the defrag based on the current
|
|
* fragmentation and configurations. */
|
|
int cpu_pct = INTERPOLATE(frag_pct, server.active_defrag_threshold_lower, server.active_defrag_threshold_upper,
|
|
server.active_defrag_cpu_min, server.active_defrag_cpu_max);
|
|
cpu_pct = LIMIT(cpu_pct, server.active_defrag_cpu_min, server.active_defrag_cpu_max);
|
|
|
|
/* Normally we allow increasing the aggressiveness during a scan, but don't
|
|
* reduce it, since we should not lower the aggressiveness when fragmentation
|
|
* drops. But when a configuration is made, we should reconsider it. */
|
|
if (cpu_pct > server.active_defrag_cpu_percent || server.active_defrag_configuration_changed) {
|
|
server.active_defrag_configuration_changed = 0;
|
|
if (defragIsRunning()) {
|
|
serverLog(LL_VERBOSE, "Changing active defrag CPU, frag=%.0f%%, frag_bytes=%zu, cpu=%d%%",
|
|
frag_pct, frag_bytes, cpu_pct);
|
|
} else {
|
|
serverLog(LL_VERBOSE, "Starting active defrag, frag=%.0f%%, frag_bytes=%zu, cpu=%d%%",
|
|
frag_pct, frag_bytes, cpu_pct);
|
|
}
|
|
server.active_defrag_cpu_percent = cpu_pct;
|
|
}
|
|
}
|
|
|
|
|
|
void monitorActiveDefrag(void) {
|
|
if (!server.active_defrag_enabled) return;
|
|
|
|
/* Defrag gets paused while a child process is active. So there's no point in starting a new
|
|
* cycle or adjusting the CPU percentage for an existing cycle. */
|
|
if (hasActiveChildProcess()) return;
|
|
|
|
updateDefragCpuPercent();
|
|
|
|
if (server.active_defrag_cpu_percent > 0 && !defragIsRunning()) beginDefragCycle();
|
|
}
|
|
|
|
#else /* HAVE_DEFRAG */
|
|
|
|
void monitorActiveDefrag(void) {
|
|
/* Not implemented yet. */
|
|
}
|
|
|
|
void *activeDefragAlloc(void *ptr) {
|
|
UNUSED(ptr);
|
|
return NULL;
|
|
}
|
|
|
|
robj *activeDefragStringOb(robj *ob) {
|
|
UNUSED(ob);
|
|
return NULL;
|
|
}
|
|
|
|
void defragWhileBlocked(void) {
|
|
}
|
|
|
|
#endif
|