
In the distant history there was only the read flag for commands, and whatever command that didn't have the read flag was a write one. Then we added the write flag, but some portions of the code still used !read Also some commands that don't work on the keyspace at all, still have the read flag. Changes in this commit: 1. remove the read-only flag from TIME, ECHO, ROLE and LASTSAVE 2. EXEC command used to decides if it should propagate a MULTI by looking at the command flags (!read & !admin). When i was about to change it to look at the write flag instead, i realized that this would cause it not to propagate a MULTI for PUBLISH, EVAL, and SCRIPT, all 3 are not marked as either a read command or a write one (as they should), but all 3 are calling forceCommandPropagation. So instead of introducing a new flag to denote a command that "writes" but not into the keyspace, and still needs propagation, i decided to rely on the forceCommandPropagation, and just fix the code to propagate MULTI when needed rather than depending on the command flags at all. The implication of my change then is that now it won't decide to propagate MULTI when it sees one of these: SELECT, PING, INFO, COMMAND, TIME and other commands which are neither read nor write. 3. Changing getNodeByQuery and clusterRedirectBlockedClientIfNeeded in cluster.c to look at !write rather than read flag. This should have no implications, since these code paths are only reachable for commands which access keys, and these are always marked as either read or write. This commit improve MULTI propagation tests, for modules and a bunch of other special cases, all of which used to pass already before that commit. the only one that test change that uncovered a change of behavior is the one that DELs a non-existing key, it used to propagate an empty multi-exec block, and no longer does.
421 lines
15 KiB
C
421 lines
15 KiB
C
/*
|
|
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "server.h"
|
|
|
|
/* ================================ MULTI/EXEC ============================== */
|
|
|
|
/* Client state initialization for MULTI/EXEC */
|
|
void initClientMultiState(client *c) {
|
|
c->mstate.commands = NULL;
|
|
c->mstate.count = 0;
|
|
c->mstate.cmd_flags = 0;
|
|
c->mstate.cmd_inv_flags = 0;
|
|
}
|
|
|
|
/* Release all the resources associated with MULTI/EXEC state */
|
|
void freeClientMultiState(client *c) {
|
|
int j;
|
|
|
|
for (j = 0; j < c->mstate.count; j++) {
|
|
int i;
|
|
multiCmd *mc = c->mstate.commands+j;
|
|
|
|
for (i = 0; i < mc->argc; i++)
|
|
decrRefCount(mc->argv[i]);
|
|
zfree(mc->argv);
|
|
}
|
|
zfree(c->mstate.commands);
|
|
}
|
|
|
|
/* Add a new command into the MULTI commands queue */
|
|
void queueMultiCommand(client *c) {
|
|
multiCmd *mc;
|
|
int j;
|
|
|
|
/* No sense to waste memory if the transaction is already aborted.
|
|
* this is useful in case client sends these in a pipeline, or doesn't
|
|
* bother to read previous responses and didn't notice the multi was already
|
|
* aborted. */
|
|
if (c->flags & CLIENT_DIRTY_EXEC)
|
|
return;
|
|
|
|
c->mstate.commands = zrealloc(c->mstate.commands,
|
|
sizeof(multiCmd)*(c->mstate.count+1));
|
|
mc = c->mstate.commands+c->mstate.count;
|
|
mc->cmd = c->cmd;
|
|
mc->argc = c->argc;
|
|
mc->argv = zmalloc(sizeof(robj*)*c->argc);
|
|
memcpy(mc->argv,c->argv,sizeof(robj*)*c->argc);
|
|
for (j = 0; j < c->argc; j++)
|
|
incrRefCount(mc->argv[j]);
|
|
c->mstate.count++;
|
|
c->mstate.cmd_flags |= c->cmd->flags;
|
|
c->mstate.cmd_inv_flags |= ~c->cmd->flags;
|
|
}
|
|
|
|
void discardTransaction(client *c) {
|
|
freeClientMultiState(c);
|
|
initClientMultiState(c);
|
|
c->flags &= ~(CLIENT_MULTI|CLIENT_DIRTY_CAS|CLIENT_DIRTY_EXEC);
|
|
unwatchAllKeys(c);
|
|
}
|
|
|
|
/* Flag the transaction as DIRTY_EXEC so that EXEC will fail.
|
|
* Should be called every time there is an error while queueing a command. */
|
|
void flagTransaction(client *c) {
|
|
if (c->flags & CLIENT_MULTI)
|
|
c->flags |= CLIENT_DIRTY_EXEC;
|
|
}
|
|
|
|
void multiCommand(client *c) {
|
|
if (c->flags & CLIENT_MULTI) {
|
|
addReplyError(c,"MULTI calls can not be nested");
|
|
return;
|
|
}
|
|
c->flags |= CLIENT_MULTI;
|
|
|
|
addReply(c,shared.ok);
|
|
}
|
|
|
|
void discardCommand(client *c) {
|
|
if (!(c->flags & CLIENT_MULTI)) {
|
|
addReplyError(c,"DISCARD without MULTI");
|
|
return;
|
|
}
|
|
discardTransaction(c);
|
|
addReply(c,shared.ok);
|
|
}
|
|
|
|
void beforePropagateMultiOrExec(int multi) {
|
|
if (multi) {
|
|
/* Propagating MULTI */
|
|
serverAssert(!server.propagate_in_transaction);
|
|
server.propagate_in_transaction = 1;
|
|
} else {
|
|
/* Propagating EXEC */
|
|
serverAssert(server.propagate_in_transaction == 1);
|
|
server.propagate_in_transaction = 0;
|
|
}
|
|
}
|
|
|
|
/* Send a MULTI command to all the slaves and AOF file. Check the execCommand
|
|
* implementation for more information. */
|
|
void execCommandPropagateMulti(int dbid) {
|
|
beforePropagateMultiOrExec(1);
|
|
propagate(server.multiCommand,dbid,&shared.multi,1,
|
|
PROPAGATE_AOF|PROPAGATE_REPL);
|
|
}
|
|
|
|
void execCommandPropagateExec(int dbid) {
|
|
beforePropagateMultiOrExec(0);
|
|
propagate(server.execCommand,dbid,&shared.exec,1,
|
|
PROPAGATE_AOF|PROPAGATE_REPL);
|
|
}
|
|
|
|
/* Aborts a transaction, with a specific error message.
|
|
* The transaction is always aboarted with -EXECABORT so that the client knows
|
|
* the server exited the multi state, but the actual reason for the abort is
|
|
* included too.
|
|
* Note: 'error' may or may not end with \r\n. see addReplyErrorFormat. */
|
|
void execCommandAbort(client *c, sds error) {
|
|
discardTransaction(c);
|
|
|
|
if (error[0] == '-') error++;
|
|
addReplyErrorFormat(c, "-EXECABORT Transaction discarded because of: %s", error);
|
|
|
|
/* Send EXEC to clients waiting data from MONITOR. We did send a MULTI
|
|
* already, and didn't send any of the queued commands, now we'll just send
|
|
* EXEC so it is clear that the transaction is over. */
|
|
if (listLength(server.monitors) && !server.loading)
|
|
replicationFeedMonitors(c,server.monitors,c->db->id,c->argv,c->argc);
|
|
}
|
|
|
|
void execCommand(client *c) {
|
|
int j;
|
|
robj **orig_argv;
|
|
int orig_argc;
|
|
struct redisCommand *orig_cmd;
|
|
int was_master = server.masterhost == NULL;
|
|
|
|
if (!(c->flags & CLIENT_MULTI)) {
|
|
addReplyError(c,"EXEC without MULTI");
|
|
return;
|
|
}
|
|
|
|
/* Check if we need to abort the EXEC because:
|
|
* 1) Some WATCHed key was touched.
|
|
* 2) There was a previous error while queueing commands.
|
|
* A failed EXEC in the first case returns a multi bulk nil object
|
|
* (technically it is not an error but a special behavior), while
|
|
* in the second an EXECABORT error is returned. */
|
|
if (c->flags & (CLIENT_DIRTY_CAS|CLIENT_DIRTY_EXEC)) {
|
|
addReply(c, c->flags & CLIENT_DIRTY_EXEC ? shared.execaborterr :
|
|
shared.nullarray[c->resp]);
|
|
discardTransaction(c);
|
|
goto handle_monitor;
|
|
}
|
|
|
|
uint64_t old_flags = c->flags;
|
|
|
|
/* we do not want to allow blocking commands inside multi */
|
|
c->flags |= CLIENT_DENY_BLOCKING;
|
|
|
|
/* Exec all the queued commands */
|
|
unwatchAllKeys(c); /* Unwatch ASAP otherwise we'll waste CPU cycles */
|
|
|
|
server.in_exec = 1;
|
|
|
|
orig_argv = c->argv;
|
|
orig_argc = c->argc;
|
|
orig_cmd = c->cmd;
|
|
addReplyArrayLen(c,c->mstate.count);
|
|
for (j = 0; j < c->mstate.count; j++) {
|
|
c->argc = c->mstate.commands[j].argc;
|
|
c->argv = c->mstate.commands[j].argv;
|
|
c->cmd = c->mstate.commands[j].cmd;
|
|
|
|
/* ACL permissions are also checked at the time of execution in case
|
|
* they were changed after the commands were ququed. */
|
|
int acl_errpos;
|
|
int acl_retval = ACLCheckCommandPerm(c,&acl_errpos);
|
|
if (acl_retval == ACL_OK && c->cmd->proc == publishCommand)
|
|
acl_retval = ACLCheckPubsubPerm(c,1,1,0,&acl_errpos);
|
|
if (acl_retval != ACL_OK) {
|
|
char *reason;
|
|
switch (acl_retval) {
|
|
case ACL_DENIED_CMD:
|
|
reason = "no permission to execute the command or subcommand";
|
|
break;
|
|
case ACL_DENIED_KEY:
|
|
reason = "no permission to touch the specified keys";
|
|
break;
|
|
case ACL_DENIED_CHANNEL:
|
|
reason = "no permission to publish to the specified channel";
|
|
break;
|
|
default:
|
|
reason = "no permission";
|
|
break;
|
|
}
|
|
addACLLogEntry(c,acl_retval,acl_errpos,NULL);
|
|
addReplyErrorFormat(c,
|
|
"-NOPERM ACLs rules changed between the moment the "
|
|
"transaction was accumulated and the EXEC call. "
|
|
"This command is no longer allowed for the "
|
|
"following reason: %s", reason);
|
|
} else {
|
|
call(c,server.loading ? CMD_CALL_NONE : CMD_CALL_FULL);
|
|
serverAssert((c->flags & CLIENT_BLOCKED) == 0);
|
|
}
|
|
|
|
/* Commands may alter argc/argv, restore mstate. */
|
|
c->mstate.commands[j].argc = c->argc;
|
|
c->mstate.commands[j].argv = c->argv;
|
|
c->mstate.commands[j].cmd = c->cmd;
|
|
}
|
|
|
|
// restore old DENY_BLOCKING value
|
|
if (!(old_flags & CLIENT_DENY_BLOCKING))
|
|
c->flags &= ~CLIENT_DENY_BLOCKING;
|
|
|
|
c->argv = orig_argv;
|
|
c->argc = orig_argc;
|
|
c->cmd = orig_cmd;
|
|
discardTransaction(c);
|
|
|
|
/* Make sure the EXEC command will be propagated as well if MULTI
|
|
* was already propagated. */
|
|
if (server.propagate_in_transaction) {
|
|
int is_master = server.masterhost == NULL;
|
|
server.dirty++;
|
|
beforePropagateMultiOrExec(0);
|
|
/* If inside the MULTI/EXEC block this instance was suddenly
|
|
* switched from master to slave (using the SLAVEOF command), the
|
|
* initial MULTI was propagated into the replication backlog, but the
|
|
* rest was not. We need to make sure to at least terminate the
|
|
* backlog with the final EXEC. */
|
|
if (server.repl_backlog && was_master && !is_master) {
|
|
char *execcmd = "*1\r\n$4\r\nEXEC\r\n";
|
|
feedReplicationBacklog(execcmd,strlen(execcmd));
|
|
}
|
|
}
|
|
|
|
server.in_exec = 0;
|
|
|
|
handle_monitor:
|
|
/* Send EXEC to clients waiting data from MONITOR. We do it here
|
|
* since the natural order of commands execution is actually:
|
|
* MUTLI, EXEC, ... commands inside transaction ...
|
|
* Instead EXEC is flagged as CMD_SKIP_MONITOR in the command
|
|
* table, and we do it here with correct ordering. */
|
|
if (listLength(server.monitors) && !server.loading)
|
|
replicationFeedMonitors(c,server.monitors,c->db->id,c->argv,c->argc);
|
|
}
|
|
|
|
/* ===================== WATCH (CAS alike for MULTI/EXEC) ===================
|
|
*
|
|
* The implementation uses a per-DB hash table mapping keys to list of clients
|
|
* WATCHing those keys, so that given a key that is going to be modified
|
|
* we can mark all the associated clients as dirty.
|
|
*
|
|
* Also every client contains a list of WATCHed keys so that's possible to
|
|
* un-watch such keys when the client is freed or when UNWATCH is called. */
|
|
|
|
/* In the client->watched_keys list we need to use watchedKey structures
|
|
* as in order to identify a key in Redis we need both the key name and the
|
|
* DB */
|
|
typedef struct watchedKey {
|
|
robj *key;
|
|
redisDb *db;
|
|
} watchedKey;
|
|
|
|
/* Watch for the specified key */
|
|
void watchForKey(client *c, robj *key) {
|
|
list *clients = NULL;
|
|
listIter li;
|
|
listNode *ln;
|
|
watchedKey *wk;
|
|
|
|
/* Check if we are already watching for this key */
|
|
listRewind(c->watched_keys,&li);
|
|
while((ln = listNext(&li))) {
|
|
wk = listNodeValue(ln);
|
|
if (wk->db == c->db && equalStringObjects(key,wk->key))
|
|
return; /* Key already watched */
|
|
}
|
|
/* This key is not already watched in this DB. Let's add it */
|
|
clients = dictFetchValue(c->db->watched_keys,key);
|
|
if (!clients) {
|
|
clients = listCreate();
|
|
dictAdd(c->db->watched_keys,key,clients);
|
|
incrRefCount(key);
|
|
}
|
|
listAddNodeTail(clients,c);
|
|
/* Add the new key to the list of keys watched by this client */
|
|
wk = zmalloc(sizeof(*wk));
|
|
wk->key = key;
|
|
wk->db = c->db;
|
|
incrRefCount(key);
|
|
listAddNodeTail(c->watched_keys,wk);
|
|
}
|
|
|
|
/* Unwatch all the keys watched by this client. To clean the EXEC dirty
|
|
* flag is up to the caller. */
|
|
void unwatchAllKeys(client *c) {
|
|
listIter li;
|
|
listNode *ln;
|
|
|
|
if (listLength(c->watched_keys) == 0) return;
|
|
listRewind(c->watched_keys,&li);
|
|
while((ln = listNext(&li))) {
|
|
list *clients;
|
|
watchedKey *wk;
|
|
|
|
/* Lookup the watched key -> clients list and remove the client
|
|
* from the list */
|
|
wk = listNodeValue(ln);
|
|
clients = dictFetchValue(wk->db->watched_keys, wk->key);
|
|
serverAssertWithInfo(c,NULL,clients != NULL);
|
|
listDelNode(clients,listSearchKey(clients,c));
|
|
/* Kill the entry at all if this was the only client */
|
|
if (listLength(clients) == 0)
|
|
dictDelete(wk->db->watched_keys, wk->key);
|
|
/* Remove this watched key from the client->watched list */
|
|
listDelNode(c->watched_keys,ln);
|
|
decrRefCount(wk->key);
|
|
zfree(wk);
|
|
}
|
|
}
|
|
|
|
/* "Touch" a key, so that if this key is being WATCHed by some client the
|
|
* next EXEC will fail. */
|
|
void touchWatchedKey(redisDb *db, robj *key) {
|
|
list *clients;
|
|
listIter li;
|
|
listNode *ln;
|
|
|
|
if (dictSize(db->watched_keys) == 0) return;
|
|
clients = dictFetchValue(db->watched_keys, key);
|
|
if (!clients) return;
|
|
|
|
/* Mark all the clients watching this key as CLIENT_DIRTY_CAS */
|
|
/* Check if we are already watching for this key */
|
|
listRewind(clients,&li);
|
|
while((ln = listNext(&li))) {
|
|
client *c = listNodeValue(ln);
|
|
|
|
c->flags |= CLIENT_DIRTY_CAS;
|
|
}
|
|
}
|
|
|
|
/* On FLUSHDB or FLUSHALL all the watched keys that are present before the
|
|
* flush but will be deleted as effect of the flushing operation should
|
|
* be touched. "dbid" is the DB that's getting the flush. -1 if it is
|
|
* a FLUSHALL operation (all the DBs flushed). */
|
|
void touchWatchedKeysOnFlush(int dbid) {
|
|
listIter li1, li2;
|
|
listNode *ln;
|
|
|
|
/* For every client, check all the waited keys */
|
|
listRewind(server.clients,&li1);
|
|
while((ln = listNext(&li1))) {
|
|
client *c = listNodeValue(ln);
|
|
listRewind(c->watched_keys,&li2);
|
|
while((ln = listNext(&li2))) {
|
|
watchedKey *wk = listNodeValue(ln);
|
|
|
|
/* For every watched key matching the specified DB, if the
|
|
* key exists, mark the client as dirty, as the key will be
|
|
* removed. */
|
|
if (dbid == -1 || wk->db->id == dbid) {
|
|
if (dictFind(wk->db->dict, wk->key->ptr) != NULL)
|
|
c->flags |= CLIENT_DIRTY_CAS;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void watchCommand(client *c) {
|
|
int j;
|
|
|
|
if (c->flags & CLIENT_MULTI) {
|
|
addReplyError(c,"WATCH inside MULTI is not allowed");
|
|
return;
|
|
}
|
|
for (j = 1; j < c->argc; j++)
|
|
watchForKey(c,c->argv[j]);
|
|
addReply(c,shared.ok);
|
|
}
|
|
|
|
void unwatchCommand(client *c) {
|
|
unwatchAllKeys(c);
|
|
c->flags &= (~CLIENT_DIRTY_CAS);
|
|
addReply(c,shared.ok);
|
|
}
|