futriix/tests/unit/obuf-limits.tcl
Yossi Gottlieb 8a86bca5ed
Improve test suite to handle external servers better. (#9033)
This commit revives the improves the ability to run the test suite against
external servers, instead of launching and managing `redis-server` processes as
part of the test fixture.

This capability existed in the past, using the `--host` and `--port` options.
However, it was quite limited and mostly useful when running a specific tests.
Attempting to run larger chunks of the test suite experienced many issues:

* Many tests depend on being able to start and control `redis-server` themselves,
and there's no clear distinction between external server compatible and other
tests.
* Cluster mode is not supported (resulting with `CROSSSLOT` errors).

This PR cleans up many things and makes it possible to run the entire test suite
against an external server. It also provides more fine grained controls to
handle cases where the external server supports a subset of the Redis commands,
limited number of databases, cluster mode, etc.

The tests directory now contains a `README.md` file that describes how this
works.

This commit also includes additional cleanups and fixes:

* Tests can now be tagged.
* Tag-based selection is now unified across `start_server`, `tags` and `test`.
* More information is provided about skipped or ignored tests.
* Repeated patterns in tests have been extracted to common procedures, both at a
  global level and on a per-test file basis.
* Cleaned up some cases where test setup was based on a previous test executing
  (a major anti-pattern that repeats itself in many places).
* Cleaned up some cases where test teardown was not part of a test (in the
  future we should have dedicated teardown code that executes even when tests
  fail).
* Fixed some tests that were flaky running on external servers.
2021-06-09 15:13:24 +03:00

187 lines
7.0 KiB
Tcl

start_server {tags {"obuf-limits external:skip"}} {
test {Client output buffer hard limit is enforced} {
r config set client-output-buffer-limit {pubsub 100000 0 0}
set rd1 [redis_deferring_client]
$rd1 subscribe foo
set reply [$rd1 read]
assert {$reply eq "subscribe foo 1"}
set omem 0
while 1 {
r publish foo bar
set clients [split [r client list] "\r\n"]
set c [split [lindex $clients 1] " "]
if {![regexp {omem=([0-9]+)} $c - omem]} break
if {$omem > 200000} break
}
assert {$omem >= 70000 && $omem < 200000}
$rd1 close
}
foreach {soft_limit_time wait_for_timeout} {3 yes
4 no } {
if $wait_for_timeout {
set test_name "Client output buffer soft limit is enforced if time is overreached"
} else {
set test_name "Client output buffer soft limit is not enforced too early and is enforced when no traffic"
}
test $test_name {
r config set client-output-buffer-limit "pubsub 0 100000 $soft_limit_time"
set soft_limit_time [expr $soft_limit_time*1000]
set rd1 [redis_deferring_client]
$rd1 client setname test_client
set reply [$rd1 read]
assert {$reply eq "OK"}
$rd1 subscribe foo
set reply [$rd1 read]
assert {$reply eq "subscribe foo 1"}
set omem 0
set start_time 0
set time_elapsed 0
set last_under_limit_time [clock milliseconds]
while 1 {
r publish foo [string repeat "x" 1000]
set clients [split [r client list] "\r\n"]
set c [lsearch -inline $clients *name=test_client*]
if {$start_time != 0} {
set time_elapsed [expr {[clock milliseconds]-$start_time}]
# Make sure test isn't taking too long
assert {$time_elapsed <= [expr $soft_limit_time+3000]}
}
if {$wait_for_timeout && $c == ""} {
# Make sure we're disconnected when we reach the soft limit
assert {$omem >= 100000 && $time_elapsed >= $soft_limit_time}
break
} else {
assert {[regexp {omem=([0-9]+)} $c - omem]}
}
if {$omem > 100000} {
if {$start_time == 0} {set start_time $last_under_limit_time}
if {!$wait_for_timeout && $time_elapsed >= [expr $soft_limit_time-1000]} break
# Slow down loop when omem has reached the limit.
after 10
} else {
# if the OS socket buffers swallowed what we previously filled, reset the start timer.
set start_time 0
set last_under_limit_time [clock milliseconds]
}
}
if {!$wait_for_timeout} {
# After we completely stopped the traffic, wait for soft limit to time out
set timeout [expr {$soft_limit_time+1500 - ([clock milliseconds]-$start_time)}]
wait_for_condition [expr $timeout/10] 10 {
[lsearch [split [r client list] "\r\n"] *name=test_client*] == -1
} else {
fail "Soft limit timed out but client still connected"
}
}
$rd1 close
}
}
test {No response for single command if client output buffer hard limit is enforced} {
r config set client-output-buffer-limit {normal 100000 0 0}
# Total size of all items must be more than 100k
set item [string repeat "x" 1000]
for {set i 0} {$i < 150} {incr i} {
r lpush mylist $item
}
set orig_mem [s used_memory]
# Set client name and get all items
set rd [redis_deferring_client]
$rd client setname mybiglist
assert {[$rd read] eq "OK"}
$rd lrange mylist 0 -1
$rd flush
after 100
# Before we read reply, redis will close this client.
set clients [r client list]
assert_no_match "*name=mybiglist*" $clients
set cur_mem [s used_memory]
# 10k just is a deviation threshold
assert {$cur_mem < 10000 + $orig_mem}
# Read nothing
set fd [$rd channel]
assert_equal {} [read $fd]
}
# Note: This test assumes that what's written with one write, will be read by redis in one read.
# this assumption is wrong, but seem to work empirically (for now)
test {No response for multi commands in pipeline if client output buffer limit is enforced} {
r config set client-output-buffer-limit {normal 100000 0 0}
set value [string repeat "x" 10000]
r set bigkey $value
set rd1 [redis_deferring_client]
set rd2 [redis_deferring_client]
$rd2 client setname multicommands
assert_equal "OK" [$rd2 read]
# Let redis sleep 1s firstly
$rd1 debug sleep 1
$rd1 flush
after 100
# Create a pipeline of commands that will be processed in one socket read.
# It is important to use one write, in TLS mode independant writes seem
# to wait for response from the server.
# Total size should be less than OS socket buffer, redis can
# execute all commands in this pipeline when it wakes up.
set buf ""
for {set i 0} {$i < 15} {incr i} {
append buf "set $i $i\r\n"
append buf "get $i\r\n"
append buf "del $i\r\n"
# One bigkey is 10k, total response size must be more than 100k
append buf "get bigkey\r\n"
}
$rd2 write $buf
$rd2 flush
after 100
# Reds must wake up if it can send reply
assert_equal "PONG" [r ping]
set clients [r client list]
assert_no_match "*name=multicommands*" $clients
set fd [$rd2 channel]
assert_equal {} [read $fd]
}
test {Execute transactions completely even if client output buffer limit is enforced} {
r config set client-output-buffer-limit {normal 100000 0 0}
# Total size of all items must be more than 100k
set item [string repeat "x" 1000]
for {set i 0} {$i < 150} {incr i} {
r lpush mylist2 $item
}
# Output buffer limit is enforced during executing transaction
r client setname transactionclient
r set k1 v1
r multi
r set k2 v2
r get k2
r lrange mylist2 0 -1
r set k3 v3
r del k1
catch {[r exec]} e
assert_match "*I/O error*" $e
reconnect
set clients [r client list]
assert_no_match "*name=transactionclient*" $clients
# Transactions should be executed completely
assert_equal {} [r get k1]
assert_equal "v2" [r get k2]
assert_equal "v3" [r get k3]
}
}