
# Background The RDB file is usually generated and used once and seldom used again, but the content would reside in page cache until OS evicts it. A potential problem is that once the free memory exhausts, the OS have to reclaim some memory from page cache or swap anonymous page out, which may result in a jitters to the Redis service. Supposing an exact scenario, a high-capacity machine hosts many redis instances, and we're upgrading the Redis together. The page cache in host machine increases as RDBs are generated. Once the free memory drop into low watermark(which is more likely to happen in older Linux kernel like 3.10, before [watermark_scale_factor](https://lore.kernel.org/lkml/1455813719-2395-1-git-send-email-hannes@cmpxchg.org/) is introduced, the `low watermark` is linear to `min watermark`, and there'is not too much buffer space for `kswapd` to be wake up to reclaim memory), a `direct reclaim` happens, which means the process would stall to wait for memory allocation. # What the PR does The PR introduces a capability to reclaim the cache when the RDB is operated. Generally there're two cases, read and write the RDB. For read it's a little messy to address the incremental reclaim, so the reclaim is done in one go in background after the load is finished to avoid blocking the work thread. For write, incremental reclaim amortizes the work of reclaim so no need to put it into background, and the peak watermark of cache can be reduced in this way. Two cases are addresses specially, replication and restart, for both of which the cache is leveraged to speed up the processing, so the reclaim is postponed to a right time. To do this, a flag is added to`rdbSave` and `rdbLoad` to control whether the cache need to be kept, with the default value false. # Something deserve noting 1. Though `posix_fadvise` is the POSIX standard, but only few platform support it, e.g. Linux, FreeBSD 10.0. 2. In Linux `posix_fadvise` only take effect on writeback-ed pages, so a `sync`(or `fsync`, `fdatasync`) is needed to flush the dirty page before `posix_fadvise` if we reclaim write cache. # About test A unit test is added to verify the effect of `posix_fadvise`. In integration test overall cache increase is checked, as well as the cache backed by RDB as a specific TCL test is executed in isolated Github action job.
1409 lines
43 KiB
C
1409 lines
43 KiB
C
/*
|
|
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "fmacros.h"
|
|
#include "fpconv_dtoa.h"
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <unistd.h>
|
|
#include <sys/time.h>
|
|
#include <float.h>
|
|
#include <stdint.h>
|
|
#include <errno.h>
|
|
#include <time.h>
|
|
#include <sys/stat.h>
|
|
#include <dirent.h>
|
|
#include <fcntl.h>
|
|
#include <libgen.h>
|
|
|
|
#include "util.h"
|
|
#include "sha256.h"
|
|
#include "config.h"
|
|
|
|
#define UNUSED(x) ((void)(x))
|
|
|
|
/* Glob-style pattern matching. */
|
|
int stringmatchlen(const char *pattern, int patternLen,
|
|
const char *string, int stringLen, int nocase)
|
|
{
|
|
while(patternLen && stringLen) {
|
|
switch(pattern[0]) {
|
|
case '*':
|
|
while (patternLen && pattern[1] == '*') {
|
|
pattern++;
|
|
patternLen--;
|
|
}
|
|
if (patternLen == 1)
|
|
return 1; /* match */
|
|
while(stringLen) {
|
|
if (stringmatchlen(pattern+1, patternLen-1,
|
|
string, stringLen, nocase))
|
|
return 1; /* match */
|
|
string++;
|
|
stringLen--;
|
|
}
|
|
return 0; /* no match */
|
|
break;
|
|
case '?':
|
|
string++;
|
|
stringLen--;
|
|
break;
|
|
case '[':
|
|
{
|
|
int not, match;
|
|
|
|
pattern++;
|
|
patternLen--;
|
|
not = pattern[0] == '^';
|
|
if (not) {
|
|
pattern++;
|
|
patternLen--;
|
|
}
|
|
match = 0;
|
|
while(1) {
|
|
if (pattern[0] == '\\' && patternLen >= 2) {
|
|
pattern++;
|
|
patternLen--;
|
|
if (pattern[0] == string[0])
|
|
match = 1;
|
|
} else if (pattern[0] == ']') {
|
|
break;
|
|
} else if (patternLen == 0) {
|
|
pattern--;
|
|
patternLen++;
|
|
break;
|
|
} else if (patternLen >= 3 && pattern[1] == '-') {
|
|
int start = pattern[0];
|
|
int end = pattern[2];
|
|
int c = string[0];
|
|
if (start > end) {
|
|
int t = start;
|
|
start = end;
|
|
end = t;
|
|
}
|
|
if (nocase) {
|
|
start = tolower(start);
|
|
end = tolower(end);
|
|
c = tolower(c);
|
|
}
|
|
pattern += 2;
|
|
patternLen -= 2;
|
|
if (c >= start && c <= end)
|
|
match = 1;
|
|
} else {
|
|
if (!nocase) {
|
|
if (pattern[0] == string[0])
|
|
match = 1;
|
|
} else {
|
|
if (tolower((int)pattern[0]) == tolower((int)string[0]))
|
|
match = 1;
|
|
}
|
|
}
|
|
pattern++;
|
|
patternLen--;
|
|
}
|
|
if (not)
|
|
match = !match;
|
|
if (!match)
|
|
return 0; /* no match */
|
|
string++;
|
|
stringLen--;
|
|
break;
|
|
}
|
|
case '\\':
|
|
if (patternLen >= 2) {
|
|
pattern++;
|
|
patternLen--;
|
|
}
|
|
/* fall through */
|
|
default:
|
|
if (!nocase) {
|
|
if (pattern[0] != string[0])
|
|
return 0; /* no match */
|
|
} else {
|
|
if (tolower((int)pattern[0]) != tolower((int)string[0]))
|
|
return 0; /* no match */
|
|
}
|
|
string++;
|
|
stringLen--;
|
|
break;
|
|
}
|
|
pattern++;
|
|
patternLen--;
|
|
if (stringLen == 0) {
|
|
while(*pattern == '*') {
|
|
pattern++;
|
|
patternLen--;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (patternLen == 0 && stringLen == 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
int stringmatch(const char *pattern, const char *string, int nocase) {
|
|
return stringmatchlen(pattern,strlen(pattern),string,strlen(string),nocase);
|
|
}
|
|
|
|
/* Fuzz stringmatchlen() trying to crash it with bad input. */
|
|
int stringmatchlen_fuzz_test(void) {
|
|
char str[32];
|
|
char pat[32];
|
|
int cycles = 10000000;
|
|
int total_matches = 0;
|
|
while(cycles--) {
|
|
int strlen = rand() % sizeof(str);
|
|
int patlen = rand() % sizeof(pat);
|
|
for (int j = 0; j < strlen; j++) str[j] = rand() % 128;
|
|
for (int j = 0; j < patlen; j++) pat[j] = rand() % 128;
|
|
total_matches += stringmatchlen(pat, patlen, str, strlen, 0);
|
|
}
|
|
return total_matches;
|
|
}
|
|
|
|
|
|
/* Convert a string representing an amount of memory into the number of
|
|
* bytes, so for instance memtoull("1Gb") will return 1073741824 that is
|
|
* (1024*1024*1024).
|
|
*
|
|
* On parsing error, if *err is not NULL, it's set to 1, otherwise it's
|
|
* set to 0. On error the function return value is 0, regardless of the
|
|
* fact 'err' is NULL or not. */
|
|
unsigned long long memtoull(const char *p, int *err) {
|
|
const char *u;
|
|
char buf[128];
|
|
long mul; /* unit multiplier */
|
|
unsigned long long val;
|
|
unsigned int digits;
|
|
|
|
if (err) *err = 0;
|
|
|
|
/* Search the first non digit character. */
|
|
u = p;
|
|
if (*u == '-') {
|
|
if (err) *err = 1;
|
|
return 0;
|
|
}
|
|
while(*u && isdigit(*u)) u++;
|
|
if (*u == '\0' || !strcasecmp(u,"b")) {
|
|
mul = 1;
|
|
} else if (!strcasecmp(u,"k")) {
|
|
mul = 1000;
|
|
} else if (!strcasecmp(u,"kb")) {
|
|
mul = 1024;
|
|
} else if (!strcasecmp(u,"m")) {
|
|
mul = 1000*1000;
|
|
} else if (!strcasecmp(u,"mb")) {
|
|
mul = 1024*1024;
|
|
} else if (!strcasecmp(u,"g")) {
|
|
mul = 1000L*1000*1000;
|
|
} else if (!strcasecmp(u,"gb")) {
|
|
mul = 1024L*1024*1024;
|
|
} else {
|
|
if (err) *err = 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Copy the digits into a buffer, we'll use strtoll() to convert
|
|
* the digit (without the unit) into a number. */
|
|
digits = u-p;
|
|
if (digits >= sizeof(buf)) {
|
|
if (err) *err = 1;
|
|
return 0;
|
|
}
|
|
memcpy(buf,p,digits);
|
|
buf[digits] = '\0';
|
|
|
|
char *endptr;
|
|
errno = 0;
|
|
val = strtoull(buf,&endptr,10);
|
|
if ((val == 0 && errno == EINVAL) || *endptr != '\0') {
|
|
if (err) *err = 1;
|
|
return 0;
|
|
}
|
|
return val*mul;
|
|
}
|
|
|
|
/* Search a memory buffer for any set of bytes, like strpbrk().
|
|
* Returns pointer to first found char or NULL.
|
|
*/
|
|
const char *mempbrk(const char *s, size_t len, const char *chars, size_t charslen) {
|
|
for (size_t j = 0; j < len; j++) {
|
|
for (size_t n = 0; n < charslen; n++)
|
|
if (s[j] == chars[n]) return &s[j];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Modify the buffer replacing all occurrences of chars from the 'from'
|
|
* set with the corresponding char in the 'to' set. Always returns s.
|
|
*/
|
|
char *memmapchars(char *s, size_t len, const char *from, const char *to, size_t setlen) {
|
|
for (size_t j = 0; j < len; j++) {
|
|
for (size_t i = 0; i < setlen; i++) {
|
|
if (s[j] == from[i]) {
|
|
s[j] = to[i];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return s;
|
|
}
|
|
|
|
/* Return the number of digits of 'v' when converted to string in radix 10.
|
|
* See ll2string() for more information. */
|
|
uint32_t digits10(uint64_t v) {
|
|
if (v < 10) return 1;
|
|
if (v < 100) return 2;
|
|
if (v < 1000) return 3;
|
|
if (v < 1000000000000UL) {
|
|
if (v < 100000000UL) {
|
|
if (v < 1000000) {
|
|
if (v < 10000) return 4;
|
|
return 5 + (v >= 100000);
|
|
}
|
|
return 7 + (v >= 10000000UL);
|
|
}
|
|
if (v < 10000000000UL) {
|
|
return 9 + (v >= 1000000000UL);
|
|
}
|
|
return 11 + (v >= 100000000000UL);
|
|
}
|
|
return 12 + digits10(v / 1000000000000UL);
|
|
}
|
|
|
|
/* Like digits10() but for signed values. */
|
|
uint32_t sdigits10(int64_t v) {
|
|
if (v < 0) {
|
|
/* Abs value of LLONG_MIN requires special handling. */
|
|
uint64_t uv = (v != LLONG_MIN) ?
|
|
(uint64_t)-v : ((uint64_t) LLONG_MAX)+1;
|
|
return digits10(uv)+1; /* +1 for the minus. */
|
|
} else {
|
|
return digits10(v);
|
|
}
|
|
}
|
|
|
|
/* Convert a long long into a string. Returns the number of
|
|
* characters needed to represent the number.
|
|
* If the buffer is not big enough to store the string, 0 is returned. */
|
|
int ll2string(char *dst, size_t dstlen, long long svalue) {
|
|
unsigned long long value;
|
|
int negative = 0;
|
|
|
|
/* The ull2string function with 64bit unsigned integers for simplicity, so
|
|
* we convert the number here and remember if it is negative. */
|
|
if (svalue < 0) {
|
|
if (svalue != LLONG_MIN) {
|
|
value = -svalue;
|
|
} else {
|
|
value = ((unsigned long long) LLONG_MAX)+1;
|
|
}
|
|
if (dstlen < 2)
|
|
goto err;
|
|
negative = 1;
|
|
dst[0] = '-';
|
|
dst++;
|
|
dstlen--;
|
|
} else {
|
|
value = svalue;
|
|
}
|
|
|
|
/* Converts the unsigned long long value to string*/
|
|
int length = ull2string(dst, dstlen, value);
|
|
if (length == 0) return 0;
|
|
return length + negative;
|
|
|
|
err:
|
|
/* force add Null termination */
|
|
if (dstlen > 0)
|
|
dst[0] = '\0';
|
|
return 0;
|
|
}
|
|
|
|
/* Convert a unsigned long long into a string. Returns the number of
|
|
* characters needed to represent the number.
|
|
* If the buffer is not big enough to store the string, 0 is returned.
|
|
*
|
|
* Based on the following article (that apparently does not provide a
|
|
* novel approach but only publicizes an already used technique):
|
|
*
|
|
* https://www.facebook.com/notes/facebook-engineering/three-optimization-tips-for-c/10151361643253920 */
|
|
int ull2string(char *dst, size_t dstlen, unsigned long long value) {
|
|
static const char digits[201] =
|
|
"0001020304050607080910111213141516171819"
|
|
"2021222324252627282930313233343536373839"
|
|
"4041424344454647484950515253545556575859"
|
|
"6061626364656667686970717273747576777879"
|
|
"8081828384858687888990919293949596979899";
|
|
|
|
/* Check length. */
|
|
uint32_t length = digits10(value);
|
|
if (length >= dstlen) goto err;;
|
|
|
|
/* Null term. */
|
|
uint32_t next = length - 1;
|
|
dst[next + 1] = '\0';
|
|
while (value >= 100) {
|
|
int const i = (value % 100) * 2;
|
|
value /= 100;
|
|
dst[next] = digits[i + 1];
|
|
dst[next - 1] = digits[i];
|
|
next -= 2;
|
|
}
|
|
|
|
/* Handle last 1-2 digits. */
|
|
if (value < 10) {
|
|
dst[next] = '0' + (uint32_t) value;
|
|
} else {
|
|
int i = (uint32_t) value * 2;
|
|
dst[next] = digits[i + 1];
|
|
dst[next - 1] = digits[i];
|
|
}
|
|
return length;
|
|
err:
|
|
/* force add Null termination */
|
|
if (dstlen > 0)
|
|
dst[0] = '\0';
|
|
return 0;
|
|
}
|
|
|
|
/* Convert a string into a long long. Returns 1 if the string could be parsed
|
|
* into a (non-overflowing) long long, 0 otherwise. The value will be set to
|
|
* the parsed value when appropriate.
|
|
*
|
|
* Note that this function demands that the string strictly represents
|
|
* a long long: no spaces or other characters before or after the string
|
|
* representing the number are accepted, nor zeroes at the start if not
|
|
* for the string "0" representing the zero number.
|
|
*
|
|
* Because of its strictness, it is safe to use this function to check if
|
|
* you can convert a string into a long long, and obtain back the string
|
|
* from the number without any loss in the string representation. */
|
|
int string2ll(const char *s, size_t slen, long long *value) {
|
|
const char *p = s;
|
|
size_t plen = 0;
|
|
int negative = 0;
|
|
unsigned long long v;
|
|
|
|
/* A string of zero length or excessive length is not a valid number. */
|
|
if (plen == slen || slen >= LONG_STR_SIZE)
|
|
return 0;
|
|
|
|
/* Special case: first and only digit is 0. */
|
|
if (slen == 1 && p[0] == '0') {
|
|
if (value != NULL) *value = 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Handle negative numbers: just set a flag and continue like if it
|
|
* was a positive number. Later convert into negative. */
|
|
if (p[0] == '-') {
|
|
negative = 1;
|
|
p++; plen++;
|
|
|
|
/* Abort on only a negative sign. */
|
|
if (plen == slen)
|
|
return 0;
|
|
}
|
|
|
|
/* First digit should be 1-9, otherwise the string should just be 0. */
|
|
if (p[0] >= '1' && p[0] <= '9') {
|
|
v = p[0]-'0';
|
|
p++; plen++;
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
/* Parse all the other digits, checking for overflow at every step. */
|
|
while (plen < slen && p[0] >= '0' && p[0] <= '9') {
|
|
if (v > (ULLONG_MAX / 10)) /* Overflow. */
|
|
return 0;
|
|
v *= 10;
|
|
|
|
if (v > (ULLONG_MAX - (p[0]-'0'))) /* Overflow. */
|
|
return 0;
|
|
v += p[0]-'0';
|
|
|
|
p++; plen++;
|
|
}
|
|
|
|
/* Return if not all bytes were used. */
|
|
if (plen < slen)
|
|
return 0;
|
|
|
|
/* Convert to negative if needed, and do the final overflow check when
|
|
* converting from unsigned long long to long long. */
|
|
if (negative) {
|
|
if (v > ((unsigned long long)(-(LLONG_MIN+1))+1)) /* Overflow. */
|
|
return 0;
|
|
if (value != NULL) *value = -v;
|
|
} else {
|
|
if (v > LLONG_MAX) /* Overflow. */
|
|
return 0;
|
|
if (value != NULL) *value = v;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Helper function to convert a string to an unsigned long long value.
|
|
* The function attempts to use the faster string2ll() function inside
|
|
* Redis: if it fails, strtoull() is used instead. The function returns
|
|
* 1 if the conversion happened successfully or 0 if the number is
|
|
* invalid or out of range. */
|
|
int string2ull(const char *s, unsigned long long *value) {
|
|
long long ll;
|
|
if (string2ll(s,strlen(s),&ll)) {
|
|
if (ll < 0) return 0; /* Negative values are out of range. */
|
|
*value = ll;
|
|
return 1;
|
|
}
|
|
errno = 0;
|
|
char *endptr = NULL;
|
|
*value = strtoull(s,&endptr,10);
|
|
if (errno == EINVAL || errno == ERANGE || !(*s != '\0' && *endptr == '\0'))
|
|
return 0; /* strtoull() failed. */
|
|
return 1; /* Conversion done! */
|
|
}
|
|
|
|
/* Convert a string into a long. Returns 1 if the string could be parsed into a
|
|
* (non-overflowing) long, 0 otherwise. The value will be set to the parsed
|
|
* value when appropriate. */
|
|
int string2l(const char *s, size_t slen, long *lval) {
|
|
long long llval;
|
|
|
|
if (!string2ll(s,slen,&llval))
|
|
return 0;
|
|
|
|
if (llval < LONG_MIN || llval > LONG_MAX)
|
|
return 0;
|
|
|
|
*lval = (long)llval;
|
|
return 1;
|
|
}
|
|
|
|
/* Convert a string into a double. Returns 1 if the string could be parsed
|
|
* into a (non-overflowing) double, 0 otherwise. The value will be set to
|
|
* the parsed value when appropriate.
|
|
*
|
|
* Note that this function demands that the string strictly represents
|
|
* a double: no spaces or other characters before or after the string
|
|
* representing the number are accepted. */
|
|
int string2ld(const char *s, size_t slen, long double *dp) {
|
|
char buf[MAX_LONG_DOUBLE_CHARS];
|
|
long double value;
|
|
char *eptr;
|
|
|
|
if (slen == 0 || slen >= sizeof(buf)) return 0;
|
|
memcpy(buf,s,slen);
|
|
buf[slen] = '\0';
|
|
|
|
errno = 0;
|
|
value = strtold(buf, &eptr);
|
|
if (isspace(buf[0]) || eptr[0] != '\0' ||
|
|
(size_t)(eptr-buf) != slen ||
|
|
(errno == ERANGE &&
|
|
(value == HUGE_VAL || value == -HUGE_VAL || fpclassify(value) == FP_ZERO)) ||
|
|
errno == EINVAL ||
|
|
isnan(value))
|
|
return 0;
|
|
|
|
if (dp) *dp = value;
|
|
return 1;
|
|
}
|
|
|
|
/* Convert a string into a double. Returns 1 if the string could be parsed
|
|
* into a (non-overflowing) double, 0 otherwise. The value will be set to
|
|
* the parsed value when appropriate.
|
|
*
|
|
* Note that this function demands that the string strictly represents
|
|
* a double: no spaces or other characters before or after the string
|
|
* representing the number are accepted. */
|
|
int string2d(const char *s, size_t slen, double *dp) {
|
|
errno = 0;
|
|
char *eptr;
|
|
*dp = strtod(s, &eptr);
|
|
if (slen == 0 ||
|
|
isspace(((const char*)s)[0]) ||
|
|
(size_t)(eptr-(char*)s) != slen ||
|
|
(errno == ERANGE &&
|
|
(*dp == HUGE_VAL || *dp == -HUGE_VAL || fpclassify(*dp) == FP_ZERO)) ||
|
|
isnan(*dp))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Returns 1 if the double value can safely be represented in long long without
|
|
* precision loss, in which case the corresponding long long is stored in the out variable. */
|
|
int double2ll(double d, long long *out) {
|
|
#if (DBL_MANT_DIG >= 52) && (DBL_MANT_DIG <= 63) && (LLONG_MAX == 0x7fffffffffffffffLL)
|
|
/* Check if the float is in a safe range to be casted into a
|
|
* long long. We are assuming that long long is 64 bit here.
|
|
* Also we are assuming that there are no implementations around where
|
|
* double has precision < 52 bit.
|
|
*
|
|
* Under this assumptions we test if a double is inside a range
|
|
* where casting to long long is safe. Then using two castings we
|
|
* make sure the decimal part is zero. If all this is true we can use
|
|
* integer without precision loss.
|
|
*
|
|
* Note that numbers above 2^52 and below 2^63 use all the fraction bits as real part,
|
|
* and the exponent bits are positive, which means the "decimal" part must be 0.
|
|
* i.e. all double values in that range are representable as a long without precision loss,
|
|
* but not all long values in that range can be represented as a double.
|
|
* we only care about the first part here. */
|
|
if (d < (double)(-LLONG_MAX/2) || d > (double)(LLONG_MAX/2))
|
|
return 0;
|
|
long long ll = d;
|
|
if (ll == d) {
|
|
*out = ll;
|
|
return 1;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/* Convert a double to a string representation. Returns the number of bytes
|
|
* required. The representation should always be parsable by strtod(3).
|
|
* This function does not support human-friendly formatting like ld2string
|
|
* does. It is intended mainly to be used inside t_zset.c when writing scores
|
|
* into a listpack representing a sorted set. */
|
|
int d2string(char *buf, size_t len, double value) {
|
|
if (isnan(value)) {
|
|
/* Libc in some systems will format nan in a different way,
|
|
* like nan, -nan, NAN, nan(char-sequence).
|
|
* So we normalize it and create a single nan form in an explicit way. */
|
|
len = snprintf(buf,len,"nan");
|
|
} else if (isinf(value)) {
|
|
/* Libc in odd systems (Hi Solaris!) will format infinite in a
|
|
* different way, so better to handle it in an explicit way. */
|
|
if (value < 0)
|
|
len = snprintf(buf,len,"-inf");
|
|
else
|
|
len = snprintf(buf,len,"inf");
|
|
} else if (value == 0) {
|
|
/* See: http://en.wikipedia.org/wiki/Signed_zero, "Comparisons". */
|
|
if (1.0/value < 0)
|
|
len = snprintf(buf,len,"-0");
|
|
else
|
|
len = snprintf(buf,len,"0");
|
|
} else {
|
|
long long lvalue;
|
|
/* Integer printing function is much faster, check if we can safely use it. */
|
|
if (double2ll(value, &lvalue))
|
|
len = ll2string(buf,len,lvalue);
|
|
else {
|
|
len = fpconv_dtoa(value, buf);
|
|
buf[len] = '\0';
|
|
}
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/* Convert a double into a string with 'fractional_digits' digits after the dot precision.
|
|
* This is an optimized version of snprintf "%.<fractional_digits>f".
|
|
* We convert the double to long and multiply it by 10 ^ <fractional_digits> to shift
|
|
* the decimal places.
|
|
* Note that multiply it of input value by 10 ^ <fractional_digits> can overflow but on the scenario
|
|
* that we currently use within redis this that is not possible.
|
|
* After we get the long representation we use the logic from ull2string function on this file
|
|
* which is based on the following article:
|
|
* https://www.facebook.com/notes/facebook-engineering/three-optimization-tips-for-c/10151361643253920
|
|
*
|
|
* Input values:
|
|
* char: the buffer to store the string representation
|
|
* dstlen: the buffer length
|
|
* dvalue: the input double
|
|
* fractional_digits: the number of fractional digits after the dot precision. between 1 and 17
|
|
*
|
|
* Return values:
|
|
* Returns the number of characters needed to represent the number.
|
|
* If the buffer is not big enough to store the string, 0 is returned.
|
|
*/
|
|
int fixedpoint_d2string(char *dst, size_t dstlen, double dvalue, int fractional_digits) {
|
|
if (fractional_digits < 1 || fractional_digits > 17)
|
|
goto err;
|
|
/* min size of 2 ( due to 0. ) + n fractional_digitits + \0 */
|
|
if ((int)dstlen < (fractional_digits+3))
|
|
goto err;
|
|
if (dvalue == 0) {
|
|
dst[0] = '0';
|
|
dst[1] = '.';
|
|
memset(dst + 2, '0', fractional_digits);
|
|
dst[fractional_digits+2] = '\0';
|
|
return fractional_digits + 2;
|
|
}
|
|
/* scale and round */
|
|
static double powers_of_ten[] = {1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0, 1000000.0,
|
|
10000000.0, 100000000.0, 1000000000.0, 10000000000.0, 100000000000.0, 1000000000000.0,
|
|
10000000000000.0, 100000000000000.0, 1000000000000000.0, 10000000000000000.0,
|
|
100000000000000000.0 };
|
|
long long svalue = llrint(dvalue * powers_of_ten[fractional_digits]);
|
|
unsigned long long value;
|
|
/* write sign */
|
|
int negative = 0;
|
|
if (svalue < 0) {
|
|
if (svalue != LLONG_MIN) {
|
|
value = -svalue;
|
|
} else {
|
|
value = ((unsigned long long) LLONG_MAX)+1;
|
|
}
|
|
if (dstlen < 2)
|
|
goto err;
|
|
negative = 1;
|
|
dst[0] = '-';
|
|
dst++;
|
|
dstlen--;
|
|
} else {
|
|
value = svalue;
|
|
}
|
|
|
|
static const char digitsd[201] =
|
|
"0001020304050607080910111213141516171819"
|
|
"2021222324252627282930313233343536373839"
|
|
"4041424344454647484950515253545556575859"
|
|
"6061626364656667686970717273747576777879"
|
|
"8081828384858687888990919293949596979899";
|
|
|
|
/* Check length. */
|
|
uint32_t ndigits = digits10(value);
|
|
if (ndigits >= dstlen) goto err;
|
|
int integer_digits = ndigits - fractional_digits;
|
|
/* Fractional only check to avoid representing 0.7750 as .7750.
|
|
* This means we need to increment the length and store 0 as the first character.
|
|
*/
|
|
if (integer_digits < 1) {
|
|
dst[0] = '0';
|
|
integer_digits = 1;
|
|
}
|
|
dst[integer_digits] = '.';
|
|
int size = integer_digits + 1 + fractional_digits;
|
|
/* fill with 0 from fractional digits until size */
|
|
memset(dst + integer_digits + 1, '0', fractional_digits);
|
|
int next = size - 1;
|
|
while (value >= 100) {
|
|
int const i = (value % 100) * 2;
|
|
value /= 100;
|
|
dst[next] = digitsd[i + 1];
|
|
dst[next - 1] = digitsd[i];
|
|
next -= 2;
|
|
/* dot position */
|
|
if (next == integer_digits) {
|
|
next--;
|
|
}
|
|
}
|
|
|
|
/* Handle last 1-2 digits. */
|
|
if (value < 10) {
|
|
dst[next] = '0' + (uint32_t) value;
|
|
} else {
|
|
int i = (uint32_t) value * 2;
|
|
dst[next] = digitsd[i + 1];
|
|
dst[next - 1] = digitsd[i];
|
|
}
|
|
/* Null term. */
|
|
dst[size] = '\0';
|
|
return size + negative;
|
|
err:
|
|
/* force add Null termination */
|
|
if (dstlen > 0)
|
|
dst[0] = '\0';
|
|
return 0;
|
|
}
|
|
|
|
/* Trims off trailing zeros from a string representing a double. */
|
|
int trimDoubleString(char *buf, size_t len) {
|
|
if (strchr(buf,'.') != NULL) {
|
|
char *p = buf+len-1;
|
|
while(*p == '0') {
|
|
p--;
|
|
len--;
|
|
}
|
|
if (*p == '.') len--;
|
|
}
|
|
buf[len] = '\0';
|
|
return len;
|
|
}
|
|
|
|
/* Create a string object from a long double.
|
|
* If mode is humanfriendly it does not use exponential format and trims trailing
|
|
* zeroes at the end (may result in loss of precision).
|
|
* If mode is default exp format is used and the output of snprintf()
|
|
* is not modified (may result in loss of precision).
|
|
* If mode is hex hexadecimal format is used (no loss of precision)
|
|
*
|
|
* The function returns the length of the string or zero if there was not
|
|
* enough buffer room to store it. */
|
|
int ld2string(char *buf, size_t len, long double value, ld2string_mode mode) {
|
|
size_t l = 0;
|
|
|
|
if (isinf(value)) {
|
|
/* Libc in odd systems (Hi Solaris!) will format infinite in a
|
|
* different way, so better to handle it in an explicit way. */
|
|
if (len < 5) goto err; /* No room. 5 is "-inf\0" */
|
|
if (value > 0) {
|
|
memcpy(buf,"inf",3);
|
|
l = 3;
|
|
} else {
|
|
memcpy(buf,"-inf",4);
|
|
l = 4;
|
|
}
|
|
} else if (isnan(value)) {
|
|
/* Libc in some systems will format nan in a different way,
|
|
* like nan, -nan, NAN, nan(char-sequence).
|
|
* So we normalize it and create a single nan form in an explicit way. */
|
|
if (len < 4) goto err; /* No room. 4 is "nan\0" */
|
|
memcpy(buf, "nan", 3);
|
|
l = 3;
|
|
} else {
|
|
switch (mode) {
|
|
case LD_STR_AUTO:
|
|
l = snprintf(buf,len,"%.17Lg",value);
|
|
if (l+1 > len) goto err;; /* No room. */
|
|
break;
|
|
case LD_STR_HEX:
|
|
l = snprintf(buf,len,"%La",value);
|
|
if (l+1 > len) goto err; /* No room. */
|
|
break;
|
|
case LD_STR_HUMAN:
|
|
/* We use 17 digits precision since with 128 bit floats that precision
|
|
* after rounding is able to represent most small decimal numbers in a
|
|
* way that is "non surprising" for the user (that is, most small
|
|
* decimal numbers will be represented in a way that when converted
|
|
* back into a string are exactly the same as what the user typed.) */
|
|
l = snprintf(buf,len,"%.17Lf",value);
|
|
if (l+1 > len) goto err; /* No room. */
|
|
/* Now remove trailing zeroes after the '.' */
|
|
if (strchr(buf,'.') != NULL) {
|
|
char *p = buf+l-1;
|
|
while(*p == '0') {
|
|
p--;
|
|
l--;
|
|
}
|
|
if (*p == '.') l--;
|
|
}
|
|
if (l == 2 && buf[0] == '-' && buf[1] == '0') {
|
|
buf[0] = '0';
|
|
l = 1;
|
|
}
|
|
break;
|
|
default: goto err; /* Invalid mode. */
|
|
}
|
|
}
|
|
buf[l] = '\0';
|
|
return l;
|
|
err:
|
|
/* force add Null termination */
|
|
if (len > 0)
|
|
buf[0] = '\0';
|
|
return 0;
|
|
}
|
|
|
|
/* Get random bytes, attempts to get an initial seed from /dev/urandom and
|
|
* the uses a one way hash function in counter mode to generate a random
|
|
* stream. However if /dev/urandom is not available, a weaker seed is used.
|
|
*
|
|
* This function is not thread safe, since the state is global. */
|
|
void getRandomBytes(unsigned char *p, size_t len) {
|
|
/* Global state. */
|
|
static int seed_initialized = 0;
|
|
static unsigned char seed[64]; /* 512 bit internal block size. */
|
|
static uint64_t counter = 0; /* The counter we hash with the seed. */
|
|
|
|
if (!seed_initialized) {
|
|
/* Initialize a seed and use SHA1 in counter mode, where we hash
|
|
* the same seed with a progressive counter. For the goals of this
|
|
* function we just need non-colliding strings, there are no
|
|
* cryptographic security needs. */
|
|
FILE *fp = fopen("/dev/urandom","r");
|
|
if (fp == NULL || fread(seed,sizeof(seed),1,fp) != 1) {
|
|
/* Revert to a weaker seed, and in this case reseed again
|
|
* at every call.*/
|
|
for (unsigned int j = 0; j < sizeof(seed); j++) {
|
|
struct timeval tv;
|
|
gettimeofday(&tv,NULL);
|
|
pid_t pid = getpid();
|
|
seed[j] = tv.tv_sec ^ tv.tv_usec ^ pid ^ (long)fp;
|
|
}
|
|
} else {
|
|
seed_initialized = 1;
|
|
}
|
|
if (fp) fclose(fp);
|
|
}
|
|
|
|
while(len) {
|
|
/* This implements SHA256-HMAC. */
|
|
unsigned char digest[SHA256_BLOCK_SIZE];
|
|
unsigned char kxor[64];
|
|
unsigned int copylen =
|
|
len > SHA256_BLOCK_SIZE ? SHA256_BLOCK_SIZE : len;
|
|
|
|
/* IKEY: key xored with 0x36. */
|
|
memcpy(kxor,seed,sizeof(kxor));
|
|
for (unsigned int i = 0; i < sizeof(kxor); i++) kxor[i] ^= 0x36;
|
|
|
|
/* Obtain HASH(IKEY||MESSAGE). */
|
|
SHA256_CTX ctx;
|
|
sha256_init(&ctx);
|
|
sha256_update(&ctx,kxor,sizeof(kxor));
|
|
sha256_update(&ctx,(unsigned char*)&counter,sizeof(counter));
|
|
sha256_final(&ctx,digest);
|
|
|
|
/* OKEY: key xored with 0x5c. */
|
|
memcpy(kxor,seed,sizeof(kxor));
|
|
for (unsigned int i = 0; i < sizeof(kxor); i++) kxor[i] ^= 0x5C;
|
|
|
|
/* Obtain HASH(OKEY || HASH(IKEY||MESSAGE)). */
|
|
sha256_init(&ctx);
|
|
sha256_update(&ctx,kxor,sizeof(kxor));
|
|
sha256_update(&ctx,digest,SHA256_BLOCK_SIZE);
|
|
sha256_final(&ctx,digest);
|
|
|
|
/* Increment the counter for the next iteration. */
|
|
counter++;
|
|
|
|
memcpy(p,digest,copylen);
|
|
len -= copylen;
|
|
p += copylen;
|
|
}
|
|
}
|
|
|
|
/* Generate the Redis "Run ID", a SHA1-sized random number that identifies a
|
|
* given execution of Redis, so that if you are talking with an instance
|
|
* having run_id == A, and you reconnect and it has run_id == B, you can be
|
|
* sure that it is either a different instance or it was restarted. */
|
|
void getRandomHexChars(char *p, size_t len) {
|
|
char *charset = "0123456789abcdef";
|
|
size_t j;
|
|
|
|
getRandomBytes((unsigned char*)p,len);
|
|
for (j = 0; j < len; j++) p[j] = charset[p[j] & 0x0F];
|
|
}
|
|
|
|
/* Given the filename, return the absolute path as an SDS string, or NULL
|
|
* if it fails for some reason. Note that "filename" may be an absolute path
|
|
* already, this will be detected and handled correctly.
|
|
*
|
|
* The function does not try to normalize everything, but only the obvious
|
|
* case of one or more "../" appearing at the start of "filename"
|
|
* relative path. */
|
|
sds getAbsolutePath(char *filename) {
|
|
char cwd[1024];
|
|
sds abspath;
|
|
sds relpath = sdsnew(filename);
|
|
|
|
relpath = sdstrim(relpath," \r\n\t");
|
|
if (relpath[0] == '/') return relpath; /* Path is already absolute. */
|
|
|
|
/* If path is relative, join cwd and relative path. */
|
|
if (getcwd(cwd,sizeof(cwd)) == NULL) {
|
|
sdsfree(relpath);
|
|
return NULL;
|
|
}
|
|
abspath = sdsnew(cwd);
|
|
if (sdslen(abspath) && abspath[sdslen(abspath)-1] != '/')
|
|
abspath = sdscat(abspath,"/");
|
|
|
|
/* At this point we have the current path always ending with "/", and
|
|
* the trimmed relative path. Try to normalize the obvious case of
|
|
* trailing ../ elements at the start of the path.
|
|
*
|
|
* For every "../" we find in the filename, we remove it and also remove
|
|
* the last element of the cwd, unless the current cwd is "/". */
|
|
while (sdslen(relpath) >= 3 &&
|
|
relpath[0] == '.' && relpath[1] == '.' && relpath[2] == '/')
|
|
{
|
|
sdsrange(relpath,3,-1);
|
|
if (sdslen(abspath) > 1) {
|
|
char *p = abspath + sdslen(abspath)-2;
|
|
int trimlen = 1;
|
|
|
|
while(*p != '/') {
|
|
p--;
|
|
trimlen++;
|
|
}
|
|
sdsrange(abspath,0,-(trimlen+1));
|
|
}
|
|
}
|
|
|
|
/* Finally glue the two parts together. */
|
|
abspath = sdscatsds(abspath,relpath);
|
|
sdsfree(relpath);
|
|
return abspath;
|
|
}
|
|
|
|
/*
|
|
* Gets the proper timezone in a more portable fashion
|
|
* i.e timezone variables are linux specific.
|
|
*/
|
|
long getTimeZone(void) {
|
|
#if defined(__linux__) || defined(__sun)
|
|
return timezone;
|
|
#else
|
|
struct timeval tv;
|
|
struct timezone tz;
|
|
|
|
gettimeofday(&tv, &tz);
|
|
|
|
return tz.tz_minuteswest * 60L;
|
|
#endif
|
|
}
|
|
|
|
/* Return true if the specified path is just a file basename without any
|
|
* relative or absolute path. This function just checks that no / or \
|
|
* character exists inside the specified path, that's enough in the
|
|
* environments where Redis runs. */
|
|
int pathIsBaseName(char *path) {
|
|
return strchr(path,'/') == NULL && strchr(path,'\\') == NULL;
|
|
}
|
|
|
|
int fileExist(char *filename) {
|
|
struct stat statbuf;
|
|
return stat(filename, &statbuf) == 0 && S_ISREG(statbuf.st_mode);
|
|
}
|
|
|
|
int dirExists(char *dname) {
|
|
struct stat statbuf;
|
|
return stat(dname, &statbuf) == 0 && S_ISDIR(statbuf.st_mode);
|
|
}
|
|
|
|
int dirCreateIfMissing(char *dname) {
|
|
if (mkdir(dname, 0755) != 0) {
|
|
if (errno != EEXIST) {
|
|
return -1;
|
|
} else if (!dirExists(dname)) {
|
|
errno = ENOTDIR;
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int dirRemove(char *dname) {
|
|
DIR *dir;
|
|
struct stat stat_entry;
|
|
struct dirent *entry;
|
|
char full_path[PATH_MAX + 1];
|
|
|
|
if ((dir = opendir(dname)) == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
while ((entry = readdir(dir)) != NULL) {
|
|
if (!strcmp(entry->d_name, ".") || !strcmp(entry->d_name, "..")) continue;
|
|
|
|
snprintf(full_path, sizeof(full_path), "%s/%s", dname, entry->d_name);
|
|
|
|
int fd = open(full_path, O_RDONLY|O_NONBLOCK);
|
|
if (fd == -1) {
|
|
closedir(dir);
|
|
return -1;
|
|
}
|
|
|
|
if (fstat(fd, &stat_entry) == -1) {
|
|
close(fd);
|
|
closedir(dir);
|
|
return -1;
|
|
}
|
|
close(fd);
|
|
|
|
if (S_ISDIR(stat_entry.st_mode) != 0) {
|
|
if (dirRemove(full_path) == -1) {
|
|
return -1;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (unlink(full_path) != 0) {
|
|
closedir(dir);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (rmdir(dname) != 0) {
|
|
closedir(dir);
|
|
return -1;
|
|
}
|
|
|
|
closedir(dir);
|
|
return 0;
|
|
}
|
|
|
|
sds makePath(char *path, char *filename) {
|
|
return sdscatfmt(sdsempty(), "%s/%s", path, filename);
|
|
}
|
|
|
|
/* Given the filename, sync the corresponding directory.
|
|
*
|
|
* Usually a portable and safe pattern to overwrite existing files would be like:
|
|
* 1. create a new temp file (on the same file system!)
|
|
* 2. write data to the temp file
|
|
* 3. fsync() the temp file
|
|
* 4. rename the temp file to the appropriate name
|
|
* 5. fsync() the containing directory */
|
|
int fsyncFileDir(const char *filename) {
|
|
#ifdef _AIX
|
|
/* AIX is unable to fsync a directory */
|
|
return 0;
|
|
#endif
|
|
char temp_filename[PATH_MAX + 1];
|
|
char *dname;
|
|
int dir_fd;
|
|
|
|
if (strlen(filename) > PATH_MAX) {
|
|
errno = ENAMETOOLONG;
|
|
return -1;
|
|
}
|
|
|
|
/* In the glibc implementation dirname may modify their argument. */
|
|
memcpy(temp_filename, filename, strlen(filename) + 1);
|
|
dname = dirname(temp_filename);
|
|
|
|
dir_fd = open(dname, O_RDONLY);
|
|
if (dir_fd == -1) {
|
|
/* Some OSs don't allow us to open directories at all, just
|
|
* ignore the error in that case */
|
|
if (errno == EISDIR) {
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
/* Some OSs don't allow us to fsync directories at all, so we can ignore
|
|
* those errors. */
|
|
if (redis_fsync(dir_fd) == -1 && !(errno == EBADF || errno == EINVAL)) {
|
|
int save_errno = errno;
|
|
close(dir_fd);
|
|
errno = save_errno;
|
|
return -1;
|
|
}
|
|
|
|
close(dir_fd);
|
|
return 0;
|
|
}
|
|
|
|
/* free OS pages backed by file */
|
|
int reclaimFilePageCache(int fd, size_t offset, size_t length) {
|
|
#ifdef HAVE_FADVISE
|
|
int ret = posix_fadvise(fd, offset, length, POSIX_FADV_DONTNEED);
|
|
if (ret) return -1;
|
|
return 0;
|
|
#else
|
|
UNUSED(fd);
|
|
UNUSED(offset);
|
|
UNUSED(length);
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#ifdef REDIS_TEST
|
|
#include <assert.h>
|
|
#include <sys/mman.h>
|
|
|
|
static void test_string2ll(void) {
|
|
char buf[32];
|
|
long long v;
|
|
|
|
/* May not start with +. */
|
|
redis_strlcpy(buf,"+1",sizeof(buf));
|
|
assert(string2ll(buf,strlen(buf),&v) == 0);
|
|
|
|
/* Leading space. */
|
|
redis_strlcpy(buf," 1",sizeof(buf));
|
|
assert(string2ll(buf,strlen(buf),&v) == 0);
|
|
|
|
/* Trailing space. */
|
|
redis_strlcpy(buf,"1 ",sizeof(buf));
|
|
assert(string2ll(buf,strlen(buf),&v) == 0);
|
|
|
|
/* May not start with 0. */
|
|
redis_strlcpy(buf,"01",sizeof(buf));
|
|
assert(string2ll(buf,strlen(buf),&v) == 0);
|
|
|
|
redis_strlcpy(buf,"-1",sizeof(buf));
|
|
assert(string2ll(buf,strlen(buf),&v) == 1);
|
|
assert(v == -1);
|
|
|
|
redis_strlcpy(buf,"0",sizeof(buf));
|
|
assert(string2ll(buf,strlen(buf),&v) == 1);
|
|
assert(v == 0);
|
|
|
|
redis_strlcpy(buf,"1",sizeof(buf));
|
|
assert(string2ll(buf,strlen(buf),&v) == 1);
|
|
assert(v == 1);
|
|
|
|
redis_strlcpy(buf,"99",sizeof(buf));
|
|
assert(string2ll(buf,strlen(buf),&v) == 1);
|
|
assert(v == 99);
|
|
|
|
redis_strlcpy(buf,"-99",sizeof(buf));
|
|
assert(string2ll(buf,strlen(buf),&v) == 1);
|
|
assert(v == -99);
|
|
|
|
redis_strlcpy(buf,"-9223372036854775808",sizeof(buf));
|
|
assert(string2ll(buf,strlen(buf),&v) == 1);
|
|
assert(v == LLONG_MIN);
|
|
|
|
redis_strlcpy(buf,"-9223372036854775809",sizeof(buf)); /* overflow */
|
|
assert(string2ll(buf,strlen(buf),&v) == 0);
|
|
|
|
redis_strlcpy(buf,"9223372036854775807",sizeof(buf));
|
|
assert(string2ll(buf,strlen(buf),&v) == 1);
|
|
assert(v == LLONG_MAX);
|
|
|
|
redis_strlcpy(buf,"9223372036854775808",sizeof(buf)); /* overflow */
|
|
assert(string2ll(buf,strlen(buf),&v) == 0);
|
|
}
|
|
|
|
static void test_string2l(void) {
|
|
char buf[32];
|
|
long v;
|
|
|
|
/* May not start with +. */
|
|
redis_strlcpy(buf,"+1",sizeof(buf));
|
|
assert(string2l(buf,strlen(buf),&v) == 0);
|
|
|
|
/* May not start with 0. */
|
|
redis_strlcpy(buf,"01",sizeof(buf));
|
|
assert(string2l(buf,strlen(buf),&v) == 0);
|
|
|
|
redis_strlcpy(buf,"-1",sizeof(buf));
|
|
assert(string2l(buf,strlen(buf),&v) == 1);
|
|
assert(v == -1);
|
|
|
|
redis_strlcpy(buf,"0",sizeof(buf));
|
|
assert(string2l(buf,strlen(buf),&v) == 1);
|
|
assert(v == 0);
|
|
|
|
redis_strlcpy(buf,"1",sizeof(buf));
|
|
assert(string2l(buf,strlen(buf),&v) == 1);
|
|
assert(v == 1);
|
|
|
|
redis_strlcpy(buf,"99",sizeof(buf));
|
|
assert(string2l(buf,strlen(buf),&v) == 1);
|
|
assert(v == 99);
|
|
|
|
redis_strlcpy(buf,"-99",sizeof(buf));
|
|
assert(string2l(buf,strlen(buf),&v) == 1);
|
|
assert(v == -99);
|
|
|
|
#if LONG_MAX != LLONG_MAX
|
|
redis_strlcpy(buf,"-2147483648",sizeof(buf));
|
|
assert(string2l(buf,strlen(buf),&v) == 1);
|
|
assert(v == LONG_MIN);
|
|
|
|
redis_strlcpy(buf,"-2147483649",sizeof(buf)); /* overflow */
|
|
assert(string2l(buf,strlen(buf),&v) == 0);
|
|
|
|
redis_strlcpy(buf,"2147483647",sizeof(buf));
|
|
assert(string2l(buf,strlen(buf),&v) == 1);
|
|
assert(v == LONG_MAX);
|
|
|
|
redis_strlcpy(buf,"2147483648",sizeof(buf)); /* overflow */
|
|
assert(string2l(buf,strlen(buf),&v) == 0);
|
|
#endif
|
|
}
|
|
|
|
static void test_ll2string(void) {
|
|
char buf[32];
|
|
long long v;
|
|
int sz;
|
|
|
|
v = 0;
|
|
sz = ll2string(buf, sizeof buf, v);
|
|
assert(sz == 1);
|
|
assert(!strcmp(buf, "0"));
|
|
|
|
v = -1;
|
|
sz = ll2string(buf, sizeof buf, v);
|
|
assert(sz == 2);
|
|
assert(!strcmp(buf, "-1"));
|
|
|
|
v = 99;
|
|
sz = ll2string(buf, sizeof buf, v);
|
|
assert(sz == 2);
|
|
assert(!strcmp(buf, "99"));
|
|
|
|
v = -99;
|
|
sz = ll2string(buf, sizeof buf, v);
|
|
assert(sz == 3);
|
|
assert(!strcmp(buf, "-99"));
|
|
|
|
v = -2147483648;
|
|
sz = ll2string(buf, sizeof buf, v);
|
|
assert(sz == 11);
|
|
assert(!strcmp(buf, "-2147483648"));
|
|
|
|
v = LLONG_MIN;
|
|
sz = ll2string(buf, sizeof buf, v);
|
|
assert(sz == 20);
|
|
assert(!strcmp(buf, "-9223372036854775808"));
|
|
|
|
v = LLONG_MAX;
|
|
sz = ll2string(buf, sizeof buf, v);
|
|
assert(sz == 19);
|
|
assert(!strcmp(buf, "9223372036854775807"));
|
|
}
|
|
|
|
static void test_ld2string(void) {
|
|
char buf[32];
|
|
long double v;
|
|
int sz;
|
|
|
|
v = 0.0 / 0.0;
|
|
sz = ld2string(buf, sizeof(buf), v, LD_STR_AUTO);
|
|
assert(sz == 3);
|
|
assert(!strcmp(buf, "nan"));
|
|
}
|
|
|
|
static void test_fixedpoint_d2string(void) {
|
|
char buf[32];
|
|
double v;
|
|
int sz;
|
|
v = 0.0;
|
|
sz = fixedpoint_d2string(buf, sizeof buf, v, 4);
|
|
assert(sz == 6);
|
|
assert(!strcmp(buf, "0.0000"));
|
|
sz = fixedpoint_d2string(buf, sizeof buf, v, 1);
|
|
assert(sz == 3);
|
|
assert(!strcmp(buf, "0.0"));
|
|
/* set junk in buffer */
|
|
memset(buf,'A',32);
|
|
v = 0.0001;
|
|
sz = fixedpoint_d2string(buf, sizeof buf, v, 4);
|
|
assert(sz == 6);
|
|
assert(buf[sz] == '\0');
|
|
assert(!strcmp(buf, "0.0001"));
|
|
/* set junk in buffer */
|
|
memset(buf,'A',32);
|
|
v = 6.0642951598391699e-05;
|
|
sz = fixedpoint_d2string(buf, sizeof buf, v, 4);
|
|
assert(sz == 6);
|
|
assert(buf[sz] == '\0');
|
|
assert(!strcmp(buf, "0.0001"));
|
|
v = 0.01;
|
|
sz = fixedpoint_d2string(buf, sizeof buf, v, 4);
|
|
assert(sz == 6);
|
|
assert(!strcmp(buf, "0.0100"));
|
|
sz = fixedpoint_d2string(buf, sizeof buf, v, 1);
|
|
assert(sz == 3);
|
|
assert(!strcmp(buf, "0.0"));
|
|
v = -0.01;
|
|
sz = fixedpoint_d2string(buf, sizeof buf, v, 4);
|
|
assert(sz == 7);
|
|
assert(!strcmp(buf, "-0.0100"));
|
|
v = -0.1;
|
|
sz = fixedpoint_d2string(buf, sizeof buf, v, 1);
|
|
assert(sz == 4);
|
|
assert(!strcmp(buf, "-0.1"));
|
|
v = 0.1;
|
|
sz = fixedpoint_d2string(buf, sizeof buf, v, 1);
|
|
assert(sz == 3);
|
|
assert(!strcmp(buf, "0.1"));
|
|
v = 0.01;
|
|
sz = fixedpoint_d2string(buf, sizeof buf, v, 17);
|
|
assert(sz == 19);
|
|
assert(!strcmp(buf, "0.01000000000000000"));
|
|
v = 10.01;
|
|
sz = fixedpoint_d2string(buf, sizeof buf, v, 4);
|
|
assert(sz == 7);
|
|
assert(!strcmp(buf, "10.0100"));
|
|
/* negative tests */
|
|
sz = fixedpoint_d2string(buf, sizeof buf, v, 18);
|
|
assert(sz == 0);
|
|
sz = fixedpoint_d2string(buf, sizeof buf, v, 0);
|
|
assert(sz == 0);
|
|
sz = fixedpoint_d2string(buf, 1, v, 1);
|
|
assert(sz == 0);
|
|
}
|
|
|
|
#if defined(__linux__)
|
|
/* Since fadvise and mincore is only supported in specific platforms like
|
|
* Linux, we only verify the fadvise mechanism works in Linux */
|
|
static int cache_exist(int fd) {
|
|
unsigned char flag;
|
|
void *m = mmap(NULL, 4096, PROT_READ, MAP_SHARED, fd, 0);
|
|
assert(m);
|
|
assert(mincore(m, 4096, &flag) == 0);
|
|
munmap(m, 4096);
|
|
/* the least significant bit of the byte will be set if the corresponding
|
|
* page is currently resident in memory */
|
|
return flag&1;
|
|
}
|
|
|
|
static void test_reclaimFilePageCache(void) {
|
|
char *tmpfile = "/tmp/redis-reclaim-cache-test";
|
|
int fd = open(tmpfile, O_RDWR|O_CREAT, 0644);
|
|
assert(fd >= 0);
|
|
|
|
/* test write file */
|
|
char buf[4] = "foo";
|
|
assert(write(fd, buf, sizeof(buf)) > 0);
|
|
assert(cache_exist(fd));
|
|
assert(redis_fsync(fd) == 0);
|
|
assert(reclaimFilePageCache(fd, 0, 0) == 0);
|
|
assert(!cache_exist(fd));
|
|
|
|
/* test read file */
|
|
assert(pread(fd, buf, sizeof(buf), 0) > 0);
|
|
assert(cache_exist(fd));
|
|
assert(reclaimFilePageCache(fd, 0, 0) == 0);
|
|
assert(!cache_exist(fd));
|
|
|
|
unlink(tmpfile);
|
|
printf("reclaimFilePageCach test is ok\n");
|
|
}
|
|
#endif
|
|
|
|
int utilTest(int argc, char **argv, int flags) {
|
|
UNUSED(argc);
|
|
UNUSED(argv);
|
|
UNUSED(flags);
|
|
|
|
test_string2ll();
|
|
test_string2l();
|
|
test_ll2string();
|
|
test_ld2string();
|
|
test_fixedpoint_d2string();
|
|
#if defined(__linux__)
|
|
test_reclaimFilePageCache();
|
|
#endif
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|