futriix/tests/support/server.tcl
guybe7 4ba47d2d21
Add reply_schema to command json files (internal for now) (#10273)
Work in progress towards implementing a reply schema as part of COMMAND DOCS, see #9845
Since ironing the details of the reply schema of each and every command can take a long time, we
would like to merge this PR when the infrastructure is ready, and let this mature in the unstable branch.
Meanwhile the changes of this PR are internal, they are part of the repo, but do not affect the produced build.

### Background
In #9656 we add a lot of information about Redis commands, but we are missing information about the replies

### Motivation
1. Documentation. This is the primary goal.
2. It should be possible, based on the output of COMMAND, to be able to generate client code in typed
  languages. In order to do that, we need Redis to tell us, in detail, what each reply looks like.
3. We would like to build a fuzzer that verifies the reply structure (for now we use the existing
  testsuite, see the "Testing" section)

### Schema
The idea is to supply some sort of schema for the various replies of each command.
The schema will describe the conceptual structure of the reply (for generated clients), as defined in RESP3.
Note that the reply structure itself may change, depending on the arguments (e.g. `XINFO STREAM`, with
and without the `FULL` modifier)
We decided to use the standard json-schema (see https://json-schema.org/) as the reply-schema.

Example for `BZPOPMIN`:
```
"reply_schema": {
    "oneOf": [
        {
            "description": "Timeout reached and no elements were popped.",
            "type": "null"
        },
        {
            "description": "The keyname, popped member, and its score.",
            "type": "array",
            "minItems": 3,
            "maxItems": 3,
            "items": [
                {
                    "description": "Keyname",
                    "type": "string"
                },
                {
                    "description": "Member",
                    "type": "string"
                },
                {
                    "description": "Score",
                    "type": "number"
                }
            ]
        }
    ]
}
```

#### Notes
1.  It is ok that some commands' reply structure depends on the arguments and it's the caller's responsibility
  to know which is the relevant one. this comes after looking at other request-reply systems like OpenAPI,
  where the reply schema can also be oneOf and the caller is responsible to know which schema is the relevant one.
2. The reply schemas will describe RESP3 replies only. even though RESP3 is structured, we want to use reply
  schema for documentation (and possibly to create a fuzzer that validates the replies)
3. For documentation, the description field will include an explanation of the scenario in which the reply is sent,
  including any relation to arguments. for example, for `ZRANGE`'s two schemas we will need to state that one
  is with `WITHSCORES` and the other is without.
4. For documentation, there will be another optional field "notes" in which we will add a short description of
  the representation in RESP2, in case it's not trivial (RESP3's `ZRANGE`'s nested array vs. RESP2's flat
  array, for example)

Given the above:
1. We can generate the "return" section of all commands in [redis-doc](https://redis.io/commands/)
  (given that "description" and "notes" are comprehensive enough)
2. We can generate a client in a strongly typed language (but the return type could be a conceptual
  `union` and the caller needs to know which schema is relevant). see the section below for RESP2 support.
3. We can create a fuzzer for RESP3.

### Limitations (because we are using the standard json-schema)
The problem is that Redis' replies are more diverse than what the json format allows. This means that,
when we convert the reply to a json (in order to validate the schema against it), we lose information (see
the "Testing" section below).
The other option would have been to extend the standard json-schema (and json format) to include stuff
like sets, bulk-strings, error-string, etc. but that would mean also extending the schema-validator - and that
seemed like too much work, so we decided to compromise.

Examples:
1. We cannot tell the difference between an "array" and a "set"
2. We cannot tell the difference between simple-string and bulk-string
3. we cannot verify true uniqueness of items in commands like ZRANGE: json-schema doesn't cover the
  case of two identical members with different scores (e.g. `[["m1",6],["m1",7]]`) because `uniqueItems`
  compares (member,score) tuples and not just the member name. 

### Testing
This commit includes some changes inside Redis in order to verify the schemas (existing and future ones)
are indeed correct (i.e. describe the actual response of Redis).
To do that, we added a debugging feature to Redis that causes it to produce a log of all the commands
it executed and their replies.
For that, Redis needs to be compiled with `-DLOG_REQ_RES` and run with
`--reg-res-logfile <file> --client-default-resp 3` (the testsuite already does that if you run it with
`--log-req-res --force-resp3`)
You should run the testsuite with the above args (and `--dont-clean`) in order to make Redis generate
`.reqres` files (same dir as the `stdout` files) which contain request-response pairs.
These files are later on processed by `./utils/req-res-log-validator.py` which does:
1. Goes over req-res files, generated by redis-servers, spawned by the testsuite (see logreqres.c)
2. For each request-response pair, it validates the response against the request's reply_schema
  (obtained from the extended COMMAND DOCS)
5. In order to get good coverage of the Redis commands, and all their different replies, we chose to use
  the existing redis test suite, rather than attempt to write a fuzzer.

#### Notes about RESP2
1. We will not be able to use the testing tool to verify RESP2 replies (we are ok with that, it's time to
  accept RESP3 as the future RESP)
2. Since the majority of the test suite is using RESP2, and we want the server to reply with RESP3
  so that we can validate it, we will need to know how to convert the actual reply to the one expected.
   - number and boolean are always strings in RESP2 so the conversion is easy
   - objects (maps) are always a flat array in RESP2
   - others (nested array in RESP3's `ZRANGE` and others) will need some special per-command
     handling (so the client will not be totally auto-generated)

Example for ZRANGE:
```
"reply_schema": {
    "anyOf": [
        {
            "description": "A list of member elements",
            "type": "array",
            "uniqueItems": true,
            "items": {
                "type": "string"
            }
        },
        {
            "description": "Members and their scores. Returned in case `WITHSCORES` was used.",
            "notes": "In RESP2 this is returned as a flat array",
            "type": "array",
            "uniqueItems": true,
            "items": {
                "type": "array",
                "minItems": 2,
                "maxItems": 2,
                "items": [
                    {
                        "description": "Member",
                        "type": "string"
                    },
                    {
                        "description": "Score",
                        "type": "number"
                    }
                ]
            }
        }
    ]
}
```

### Other changes
1. Some tests that behave differently depending on the RESP are now being tested for both RESP,
  regardless of the special log-req-res mode ("Pub/Sub PING" for example)
2. Update the history field of CLIENT LIST
3. Added basic tests for commands that were not covered at all by the testsuite

### TODO

- [x] (maybe a different PR) add a "condition" field to anyOf/oneOf schemas that refers to args. e.g.
  when `SET` return NULL, the condition is `arguments.get||arguments.condition`, for `OK` the condition
  is `!arguments.get`, and for `string` the condition is `arguments.get` - https://github.com/redis/redis/issues/11896
- [x] (maybe a different PR) also run `runtest-cluster` in the req-res logging mode
- [x] add the new tests to GH actions (i.e. compile with `-DLOG_REQ_RES`, run the tests, and run the validator)
- [x] (maybe a different PR) figure out a way to warn about (sub)schemas that are uncovered by the output
  of the tests - https://github.com/redis/redis/issues/11897
- [x] (probably a separate PR) add all missing schemas
- [x] check why "SDOWN is triggered by misconfigured instance replying with errors" fails with --log-req-res
- [x] move the response transformers to their own file (run both regular, cluster, and sentinel tests - need to
  fight with the tcl including mechanism a bit)
- [x] issue: module API - https://github.com/redis/redis/issues/11898
- [x] (probably a separate PR): improve schemas: add `required` to `object`s - https://github.com/redis/redis/issues/11899

Co-authored-by: Ozan Tezcan <ozantezcan@gmail.com>
Co-authored-by: Hanna Fadida <hanna.fadida@redislabs.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Shaya Potter <shaya@redislabs.com>
2023-03-11 10:14:16 +02:00

781 lines
25 KiB
Tcl

set ::global_overrides {}
set ::tags {}
set ::valgrind_errors {}
proc start_server_error {config_file error} {
set err {}
append err "Can't start the Redis server\n"
append err "CONFIGURATION:"
append err [exec cat $config_file]
append err "\nERROR:"
append err [string trim $error]
send_data_packet $::test_server_fd err $err
}
proc check_valgrind_errors stderr {
set res [find_valgrind_errors $stderr true]
if {$res != ""} {
send_data_packet $::test_server_fd err "Valgrind error: $res\n"
}
}
proc check_sanitizer_errors stderr {
set res [sanitizer_errors_from_file $stderr]
if {$res != ""} {
send_data_packet $::test_server_fd err "Sanitizer error: $res\n"
}
}
proc clean_persistence config {
# we may wanna keep the logs for later, but let's clean the persistence
# files right away, since they can accumulate and take up a lot of space
set config [dict get $config "config"]
set dir [dict get $config "dir"]
set rdb [format "%s/%s" $dir "dump.rdb"]
if {[dict exists $config "appenddirname"]} {
set aofdir [dict get $config "appenddirname"]
} else {
set aofdir "appendonlydir"
}
set aof_dirpath [format "%s/%s" $dir $aofdir]
clean_aof_persistence $aof_dirpath
catch {exec rm -rf $rdb}
}
proc kill_server config {
# nothing to kill when running against external server
if {$::external} return
# Close client connection if exists
if {[dict exists $config "client"]} {
[dict get $config "client"] close
}
# nevermind if its already dead
if {![is_alive $config]} {
# Check valgrind errors if needed
if {$::valgrind} {
check_valgrind_errors [dict get $config stderr]
}
check_sanitizer_errors [dict get $config stderr]
return
}
set pid [dict get $config pid]
# check for leaks
if {![dict exists $config "skipleaks"]} {
catch {
if {[string match {*Darwin*} [exec uname -a]]} {
tags {"leaks"} {
test "Check for memory leaks (pid $pid)" {
set output {0 leaks}
catch {exec leaks $pid} output option
# In a few tests we kill the server process, so leaks will not find it.
# It'll exits with exit code >1 on error, so we ignore these.
if {[dict exists $option -errorcode]} {
set details [dict get $option -errorcode]
if {[lindex $details 0] eq "CHILDSTATUS"} {
set status [lindex $details 2]
if {$status > 1} {
set output "0 leaks"
}
}
}
set output
} {*0 leaks*}
}
}
}
}
# kill server and wait for the process to be totally exited
send_data_packet $::test_server_fd server-killing $pid
catch {exec kill $pid}
# Node might have been stopped in the test
catch {exec kill -SIGCONT $pid}
if {$::valgrind} {
set max_wait 120000
} else {
set max_wait 10000
}
while {[is_alive $config]} {
incr wait 10
if {$wait == $max_wait} {
puts "Forcing process $pid to crash..."
catch {exec kill -SEGV $pid}
} elseif {$wait >= $max_wait * 2} {
puts "Forcing process $pid to exit..."
catch {exec kill -KILL $pid}
} elseif {$wait % 1000 == 0} {
puts "Waiting for process $pid to exit..."
}
after 10
}
# Check valgrind errors if needed
if {$::valgrind} {
check_valgrind_errors [dict get $config stderr]
}
check_sanitizer_errors [dict get $config stderr]
# Remove this pid from the set of active pids in the test server.
send_data_packet $::test_server_fd server-killed $pid
}
proc is_alive config {
set pid [dict get $config pid]
if {[catch {exec kill -0 $pid} err]} {
return 0
} else {
return 1
}
}
proc ping_server {host port} {
set retval 0
if {[catch {
if {$::tls} {
set fd [::tls::socket $host $port]
} else {
set fd [socket $host $port]
}
fconfigure $fd -translation binary
puts $fd "PING\r\n"
flush $fd
set reply [gets $fd]
if {[string range $reply 0 0] eq {+} ||
[string range $reply 0 0] eq {-}} {
set retval 1
}
close $fd
} e]} {
if {$::verbose} {
puts -nonewline "."
}
} else {
if {$::verbose} {
puts -nonewline "ok"
}
}
return $retval
}
# Return 1 if the server at the specified addr is reachable by PING, otherwise
# returns 0. Performs a try every 50 milliseconds for the specified number
# of retries.
proc server_is_up {host port retrynum} {
after 10 ;# Use a small delay to make likely a first-try success.
set retval 0
while {[incr retrynum -1]} {
if {[catch {ping_server $host $port} ping]} {
set ping 0
}
if {$ping} {return 1}
after 50
}
return 0
}
# Check if current ::tags match requested tags. If ::allowtags are used,
# there must be some intersection. If ::denytags are used, no intersection
# is allowed. Returns 1 if tags are acceptable or 0 otherwise, in which
# case err_return names a return variable for the message to be logged.
proc tags_acceptable {tags err_return} {
upvar $err_return err
# If tags are whitelisted, make sure there's match
if {[llength $::allowtags] > 0} {
set matched 0
foreach tag $::allowtags {
if {[lsearch $tags $tag] >= 0} {
incr matched
}
}
if {$matched < 1} {
set err "Tag: none of the tags allowed"
return 0
}
}
foreach tag $::denytags {
if {[lsearch $tags $tag] >= 0} {
set err "Tag: $tag denied"
return 0
}
}
# some units mess with the client output buffer so we can't really use the req-res logging mechanism.
if {$::log_req_res && [lsearch $tags "logreqres:skip"] >= 0} {
set err "Not supported when running in log-req-res mode"
return 0
}
if {$::external && [lsearch $tags "external:skip"] >= 0} {
set err "Not supported on external server"
return 0
}
if {$::singledb && [lsearch $tags "singledb:skip"] >= 0} {
set err "Not supported on singledb"
return 0
}
if {$::cluster_mode && [lsearch $tags "cluster:skip"] >= 0} {
set err "Not supported in cluster mode"
return 0
}
if {$::tls && [lsearch $tags "tls:skip"] >= 0} {
set err "Not supported in tls mode"
return 0
}
if {!$::large_memory && [lsearch $tags "large-memory"] >= 0} {
set err "large memory flag not provided"
return 0
}
return 1
}
# doesn't really belong here, but highly coupled to code in start_server
proc tags {tags code} {
# If we 'tags' contain multiple tags, quoted and separated by spaces,
# we want to get rid of the quotes in order to have a proper list
set tags [string map { \" "" } $tags]
set ::tags [concat $::tags $tags]
if {![tags_acceptable $::tags err]} {
incr ::num_aborted
send_data_packet $::test_server_fd ignore $err
set ::tags [lrange $::tags 0 end-[llength $tags]]
return
}
uplevel 1 $code
set ::tags [lrange $::tags 0 end-[llength $tags]]
}
# Write the configuration in the dictionary 'config' in the specified
# file name.
proc create_server_config_file {filename config config_lines} {
set fp [open $filename w+]
foreach directive [dict keys $config] {
puts -nonewline $fp "$directive "
puts $fp [dict get $config $directive]
}
foreach {config_line_directive config_line_args} $config_lines {
puts $fp "$config_line_directive $config_line_args"
}
close $fp
}
proc spawn_server {config_file stdout stderr args} {
set cmd [list src/redis-server $config_file]
set args {*}$args
if {[llength $args] > 0} {
lappend cmd {*}$args
}
if {$::valgrind} {
set pid [exec valgrind --track-origins=yes --trace-children=yes --suppressions=[pwd]/src/valgrind.sup --show-reachable=no --show-possibly-lost=no --leak-check=full {*}$cmd >> $stdout 2>> $stderr &]
} elseif ($::stack_logging) {
set pid [exec /usr/bin/env MallocStackLogging=1 MallocLogFile=/tmp/malloc_log.txt {*}$cmd >> $stdout 2>> $stderr &]
} else {
# ASAN_OPTIONS environment variable is for address sanitizer. If a test
# tries to allocate huge memory area and expects allocator to return
# NULL, address sanitizer throws an error without this setting.
set pid [exec /usr/bin/env ASAN_OPTIONS=allocator_may_return_null=1 {*}$cmd >> $stdout 2>> $stderr &]
}
if {$::wait_server} {
set msg "server started PID: $pid. press any key to continue..."
puts $msg
read stdin 1
}
# Tell the test server about this new instance.
send_data_packet $::test_server_fd server-spawned $pid
return $pid
}
# Wait for actual startup, return 1 if port is busy, 0 otherwise
proc wait_server_started {config_file stdout pid} {
set checkperiod 100; # Milliseconds
set maxiter [expr {120*1000/$checkperiod}] ; # Wait up to 2 minutes.
set port_busy 0
while 1 {
if {[regexp -- " PID: $pid.*Server initialized" [exec cat $stdout]]} {
break
}
after $checkperiod
incr maxiter -1
if {$maxiter == 0} {
start_server_error $config_file "No PID detected in log $stdout"
puts "--- LOG CONTENT ---"
puts [exec cat $stdout]
puts "-------------------"
break
}
# Check if the port is actually busy and the server failed
# for this reason.
if {[regexp {Failed listening on port} [exec cat $stdout]]} {
set port_busy 1
break
}
}
return $port_busy
}
proc dump_server_log {srv} {
set pid [dict get $srv "pid"]
puts "\n===== Start of server log (pid $pid) =====\n"
puts [exec cat [dict get $srv "stdout"]]
puts "===== End of server log (pid $pid) =====\n"
puts "\n===== Start of server stderr log (pid $pid) =====\n"
puts [exec cat [dict get $srv "stderr"]]
puts "===== End of server stderr log (pid $pid) =====\n"
}
proc run_external_server_test {code overrides} {
set srv {}
dict set srv "host" $::host
dict set srv "port" $::port
set client [redis $::host $::port 0 $::tls]
dict set srv "client" $client
if {!$::singledb} {
$client select 9
}
set config {}
dict set config "port" $::port
dict set srv "config" $config
# append the server to the stack
lappend ::servers $srv
if {[llength $::servers] > 1} {
if {$::verbose} {
puts "Notice: nested start_server statements in external server mode, test must be aware of that!"
}
}
r flushall
r function flush
# store overrides
set saved_config {}
foreach {param val} $overrides {
dict set saved_config $param [lindex [r config get $param] 1]
r config set $param $val
# If we enable appendonly, wait for for rewrite to complete. This is
# required for tests that begin with a bg* command which will fail if
# the rewriteaof operation is not completed at this point.
if {$param == "appendonly" && $val == "yes"} {
waitForBgrewriteaof r
}
}
if {[catch {set retval [uplevel 2 $code]} error]} {
if {$::durable} {
set msg [string range $error 10 end]
lappend details $msg
lappend details $::errorInfo
lappend ::tests_failed $details
incr ::num_failed
send_data_packet $::test_server_fd err [join $details "\n"]
} else {
# Re-raise, let handler up the stack take care of this.
error $error $::errorInfo
}
}
# restore overrides
dict for {param val} $saved_config {
r config set $param $val
}
set srv [lpop ::servers]
if {[dict exists $srv "client"]} {
[dict get $srv "client"] close
}
}
proc start_server {options {code undefined}} {
# setup defaults
set baseconfig "default.conf"
set overrides {}
set omit {}
set tags {}
set args {}
set keep_persistence false
set config_lines {}
# parse options
foreach {option value} $options {
switch $option {
"config" {
set baseconfig $value
}
"overrides" {
set overrides [concat $overrides $value]
}
"config_lines" {
set config_lines $value
}
"args" {
set args $value
}
"omit" {
set omit $value
}
"tags" {
# If we 'tags' contain multiple tags, quoted and separated by spaces,
# we want to get rid of the quotes in order to have a proper list
set tags [string map { \" "" } $value]
set ::tags [concat $::tags $tags]
}
"keep_persistence" {
set keep_persistence $value
}
default {
error "Unknown option $option"
}
}
}
# We skip unwanted tags
if {![tags_acceptable $::tags err]} {
incr ::num_aborted
send_data_packet $::test_server_fd ignore $err
set ::tags [lrange $::tags 0 end-[llength $tags]]
return
}
# If we are running against an external server, we just push the
# host/port pair in the stack the first time
if {$::external} {
run_external_server_test $code $overrides
set ::tags [lrange $::tags 0 end-[llength $tags]]
return
}
set data [split [exec cat "tests/assets/$baseconfig"] "\n"]
set config {}
if {$::tls} {
if {$::tls_module} {
lappend config_lines [list "loadmodule" [format "%s/src/redis-tls.so" [pwd]]]
}
dict set config "tls-cert-file" [format "%s/tests/tls/server.crt" [pwd]]
dict set config "tls-key-file" [format "%s/tests/tls/server.key" [pwd]]
dict set config "tls-client-cert-file" [format "%s/tests/tls/client.crt" [pwd]]
dict set config "tls-client-key-file" [format "%s/tests/tls/client.key" [pwd]]
dict set config "tls-dh-params-file" [format "%s/tests/tls/redis.dh" [pwd]]
dict set config "tls-ca-cert-file" [format "%s/tests/tls/ca.crt" [pwd]]
dict set config "loglevel" "debug"
}
foreach line $data {
if {[string length $line] > 0 && [string index $line 0] ne "#"} {
set elements [split $line " "]
set directive [lrange $elements 0 0]
set arguments [lrange $elements 1 end]
dict set config $directive $arguments
}
}
# use a different directory every time a server is started
dict set config dir [tmpdir server]
# start every server on a different port
set port [find_available_port $::baseport $::portcount]
if {$::tls} {
dict set config "port" 0
dict set config "tls-port" $port
dict set config "tls-cluster" "yes"
dict set config "tls-replication" "yes"
} else {
dict set config port $port
}
set unixsocket [file normalize [format "%s/%s" [dict get $config "dir"] "socket"]]
dict set config "unixsocket" $unixsocket
# apply overrides from global space and arguments
foreach {directive arguments} [concat $::global_overrides $overrides] {
dict set config $directive $arguments
}
# remove directives that are marked to be omitted
foreach directive $omit {
dict unset config $directive
}
if {$::log_req_res} {
dict set config "req-res-logfile" "stdout.reqres"
}
if {$::force_resp3} {
dict set config "client-default-resp" "3"
}
# write new configuration to temporary file
set config_file [tmpfile redis.conf]
create_server_config_file $config_file $config $config_lines
set stdout [format "%s/%s" [dict get $config "dir"] "stdout"]
set stderr [format "%s/%s" [dict get $config "dir"] "stderr"]
# if we're inside a test, write the test name to the server log file
if {[info exists ::cur_test]} {
set fd [open $stdout "a+"]
puts $fd "### Starting server for test $::cur_test"
close $fd
}
# We may have a stdout left over from the previous tests, so we need
# to get the current count of ready logs
set previous_ready_count [count_message_lines $stdout "Ready to accept"]
# We need a loop here to retry with different ports.
set server_started 0
while {$server_started == 0} {
if {$::verbose} {
puts -nonewline "=== ($tags) Starting server ${::host}:${port} "
}
send_data_packet $::test_server_fd "server-spawning" "port $port"
set pid [spawn_server $config_file $stdout $stderr $args]
# check that the server actually started
set port_busy [wait_server_started $config_file $stdout $pid]
# Sometimes we have to try a different port, even if we checked
# for availability. Other test clients may grab the port before we
# are able to do it for example.
if {$port_busy} {
puts "Port $port was already busy, trying another port..."
set port [find_available_port $::baseport $::portcount]
if {$::tls} {
dict set config "tls-port" $port
} else {
dict set config port $port
}
create_server_config_file $config_file $config $config_lines
# Truncate log so wait_server_started will not be looking at
# output of the failed server.
close [open $stdout "w"]
continue; # Try again
}
if {$::valgrind} {set retrynum 1000} else {set retrynum 100}
if {$code ne "undefined"} {
set serverisup [server_is_up $::host $port $retrynum]
} else {
set serverisup 1
}
if {$::verbose} {
puts ""
}
if {!$serverisup} {
set err {}
append err [exec cat $stdout] "\n" [exec cat $stderr]
start_server_error $config_file $err
return
}
set server_started 1
}
# setup properties to be able to initialize a client object
set port_param [expr $::tls ? {"tls-port"} : {"port"}]
set host $::host
if {[dict exists $config bind]} { set host [dict get $config bind] }
if {[dict exists $config $port_param]} { set port [dict get $config $port_param] }
# setup config dict
dict set srv "config_file" $config_file
dict set srv "config" $config
dict set srv "pid" $pid
dict set srv "host" $host
dict set srv "port" $port
dict set srv "stdout" $stdout
dict set srv "stderr" $stderr
dict set srv "unixsocket" $unixsocket
# if a block of code is supplied, we wait for the server to become
# available, create a client object and kill the server afterwards
if {$code ne "undefined"} {
set line [exec head -n1 $stdout]
if {[string match {*already in use*} $line]} {
error_and_quit $config_file $line
}
while 1 {
# check that the server actually started and is ready for connections
if {[count_message_lines $stdout "Ready to accept"] > $previous_ready_count} {
break
}
after 10
}
# append the server to the stack
lappend ::servers $srv
# connect client (after server dict is put on the stack)
reconnect
# remember previous num_failed to catch new errors
set prev_num_failed $::num_failed
# execute provided block
set num_tests $::num_tests
if {[catch { uplevel 1 $code } error]} {
set backtrace $::errorInfo
set assertion [string match "assertion:*" $error]
# fetch srv back from the server list, in case it was restarted by restart_server (new PID)
set srv [lindex $::servers end]
# pop the server object
set ::servers [lrange $::servers 0 end-1]
# Kill the server without checking for leaks
dict set srv "skipleaks" 1
kill_server $srv
if {$::dump_logs && $assertion} {
# if we caught an assertion ($::num_failed isn't incremented yet)
# this happens when the test spawns a server and not the other way around
dump_server_log $srv
} else {
# Print crash report from log
set crashlog [crashlog_from_file [dict get $srv "stdout"]]
if {[string length $crashlog] > 0} {
puts [format "\nLogged crash report (pid %d):" [dict get $srv "pid"]]
puts "$crashlog"
puts ""
}
set sanitizerlog [sanitizer_errors_from_file [dict get $srv "stderr"]]
if {[string length $sanitizerlog] > 0} {
puts [format "\nLogged sanitizer errors (pid %d):" [dict get $srv "pid"]]
puts "$sanitizerlog"
puts ""
}
}
if {!$assertion && $::durable} {
# durable is meant to prevent the whole tcl test from exiting on
# an exception. an assertion will be caught by the test proc.
set msg [string range $error 10 end]
lappend details $msg
lappend details $backtrace
lappend ::tests_failed $details
incr ::num_failed
send_data_packet $::test_server_fd err [join $details "\n"]
} else {
# Re-raise, let handler up the stack take care of this.
error $error $backtrace
}
} else {
if {$::dump_logs && $prev_num_failed != $::num_failed} {
dump_server_log $srv
}
}
# fetch srv back from the server list, in case it was restarted by restart_server (new PID)
set srv [lindex $::servers end]
# Don't do the leak check when no tests were run
if {$num_tests == $::num_tests} {
dict set srv "skipleaks" 1
}
# pop the server object
set ::servers [lrange $::servers 0 end-1]
set ::tags [lrange $::tags 0 end-[llength $tags]]
kill_server $srv
if {!$keep_persistence} {
clean_persistence $srv
}
set _ ""
} else {
set ::tags [lrange $::tags 0 end-[llength $tags]]
set _ $srv
}
}
# Start multiple servers with the same options, run code, then stop them.
proc start_multiple_servers {num options code} {
for {set i 0} {$i < $num} {incr i} {
set code [list start_server $options $code]
}
uplevel 1 $code
}
proc restart_server {level wait_ready rotate_logs {reconnect 1} {shutdown sigterm}} {
set srv [lindex $::servers end+$level]
if {$shutdown ne {sigterm}} {
catch {[dict get $srv "client"] shutdown $shutdown}
}
# Kill server doesn't mind if the server is already dead
kill_server $srv
# Remove the default client from the server
dict unset srv "client"
set pid [dict get $srv "pid"]
set stdout [dict get $srv "stdout"]
set stderr [dict get $srv "stderr"]
if {$rotate_logs} {
set ts [clock format [clock seconds] -format %y%m%d%H%M%S]
file rename $stdout $stdout.$ts.$pid
file rename $stderr $stderr.$ts.$pid
}
set prev_ready_count [count_message_lines $stdout "Ready to accept"]
# if we're inside a test, write the test name to the server log file
if {[info exists ::cur_test]} {
set fd [open $stdout "a+"]
puts $fd "### Restarting server for test $::cur_test"
close $fd
}
set config_file [dict get $srv "config_file"]
set pid [spawn_server $config_file $stdout $stderr {}]
# check that the server actually started
wait_server_started $config_file $stdout $pid
# update the pid in the servers list
dict set srv "pid" $pid
# re-set $srv in the servers list
lset ::servers end+$level $srv
if {$wait_ready} {
while 1 {
# check that the server actually started and is ready for connections
if {[count_message_lines $stdout "Ready to accept"] > $prev_ready_count} {
break
}
after 10
}
}
if {$reconnect} {
reconnect $level
}
}