futriix/src/ae.cpp
John Sully 6c510bc5cb Repair async rehash code removed by merge
Former-commit-id: 14a3ab8133c474bf8f1ad636c8699d5d59c5394e
2021-05-29 00:24:46 +00:00

831 lines
25 KiB
C++

/* A simple event-driven programming library. Originally I wrote this code
* for the Jim's event-loop (Jim is a Tcl interpreter) but later translated
* it in form of a library for easy reuse.
*
* Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "ae.h"
#include "anet.h"
#include "fastlock.h"
#include <condition_variable>
#include <atomic>
#include <mutex>
#include <stdio.h>
#include <fcntl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <poll.h>
#include <string.h>
#include <time.h>
#include <errno.h>
#include "ae.h"
#include "fastlock.h"
#include "zmalloc.h"
#include "config.h"
#include "serverassert.h"
#ifdef USE_MUTEX
thread_local int cOwnLock = 0;
class mutex_wrapper
{
std::recursive_mutex m_mutex;
public:
void lock() {
m_mutex.lock();
cOwnLock++;
}
void unlock() {
cOwnLock--;
m_mutex.unlock();
}
bool try_lock() {
if (m_mutex.try_lock()) {
cOwnLock++;
return true;
}
return false;
}
bool fOwnLock() {
return cOwnLock > 0;
}
};
mutex_wrapper g_lock;
#else
fastlock g_lock("AE (global)");
#endif
thread_local aeEventLoop *g_eventLoopThisThread = NULL;
/* Include the best multiplexing layer supported by this system.
* The following should be ordered by performances, descending. */
#ifdef HAVE_EVPORT
#include "ae_evport.c"
#else
#ifdef HAVE_EPOLL
#include "ae_epoll.cpp"
#else
#ifdef HAVE_KQUEUE
#include "ae_kqueue.c"
#else
#include "ae_select.c"
#endif
#endif
#endif
enum class AE_ASYNC_OP
{
PostFunction,
PostCppFunction,
DeleteFileEvent,
CreateFileEvent,
};
struct aeCommand
{
AE_ASYNC_OP op;
int fd;
int mask;
bool fLock = true;
union {
aePostFunctionProc *proc;
aeFileProc *fproc;
std::function<void()> *pfn;
};
void *clientData;
};
#ifdef PIPE_BUF
static_assert(sizeof(aeCommand) <= PIPE_BUF, "aeCommand must be small enough to send atomically through a pipe");
#endif
void aeProcessCmd(aeEventLoop *eventLoop, int fd, void *, int )
{
aeCommand cmd;
for (;;)
{
auto cb = read(fd, &cmd, sizeof(aeCommand));
if (cb != sizeof(cmd))
{
serverAssert(errno == EAGAIN);
break;
}
switch (cmd.op)
{
case AE_ASYNC_OP::DeleteFileEvent:
aeDeleteFileEvent(eventLoop, cmd.fd, cmd.mask);
break;
case AE_ASYNC_OP::CreateFileEvent:
aeCreateFileEvent(eventLoop, cmd.fd, cmd.mask, cmd.fproc, cmd.clientData);
break;
case AE_ASYNC_OP::PostFunction:
{
std::unique_lock<decltype(g_lock)> ulock(g_lock, std::defer_lock);
if (cmd.fLock)
ulock.lock();
((aePostFunctionProc*)cmd.proc)(cmd.clientData);
break;
}
case AE_ASYNC_OP::PostCppFunction:
{
std::unique_lock<decltype(g_lock)> ulock(g_lock, std::defer_lock);
if (cmd.fLock)
ulock.lock();
(*cmd.pfn)();
delete cmd.pfn;
}
break;
}
}
}
// Unlike write() this is an all or nothing thing. We will block if a partial write is hit
ssize_t safe_write(int fd, const void *pv, size_t cb)
{
const char *pcb = (const char*)pv;
ssize_t written = 0;
do
{
ssize_t rval = write(fd, pcb, cb);
if (rval > 0)
{
pcb += rval;
cb -= rval;
written += rval;
}
else if (errno == EAGAIN)
{
if (written == 0)
break;
// if we've already written something then we're committed so keep trying
}
else
{
if (rval == 0)
return written;
return rval;
}
} while (cb);
return written;
}
int aeCreateRemoteFileEvent(aeEventLoop *eventLoop, int fd, int mask,
aeFileProc *proc, void *clientData)
{
if (eventLoop == g_eventLoopThisThread)
return aeCreateFileEvent(eventLoop, fd, mask, proc, clientData);
int ret = AE_OK;
aeCommand cmd;
cmd.op = AE_ASYNC_OP::CreateFileEvent;
cmd.fd = fd;
cmd.mask = mask;
cmd.fproc = proc;
cmd.clientData = clientData;
cmd.fLock = true;
auto size = safe_write(eventLoop->fdCmdWrite, &cmd, sizeof(cmd));
if (size != sizeof(cmd))
{
serverAssert(size == sizeof(cmd) || size <= 0);
serverAssert(errno == EAGAIN);
ret = AE_ERR;
}
return ret;
}
int aePostFunction(aeEventLoop *eventLoop, aePostFunctionProc *proc, void *arg)
{
if (eventLoop == g_eventLoopThisThread)
{
proc(arg);
return AE_OK;
}
aeCommand cmd = {};
cmd.op = AE_ASYNC_OP::PostFunction;
cmd.proc = proc;
cmd.clientData = arg;
cmd.fLock = true;
auto size = write(eventLoop->fdCmdWrite, &cmd, sizeof(cmd));
if (size != sizeof(cmd))
return AE_ERR;
return AE_OK;
}
int aePostFunction(aeEventLoop *eventLoop, std::function<void()> fn, bool fLock, bool fForceQueue)
{
if (eventLoop == g_eventLoopThisThread && !fForceQueue)
{
fn();
return AE_OK;
}
aeCommand cmd = {};
cmd.op = AE_ASYNC_OP::PostCppFunction;
cmd.pfn = new std::function<void()>(fn);
cmd.fLock = fLock;
auto size = write(eventLoop->fdCmdWrite, &cmd, sizeof(cmd));
if (!(!size || size == sizeof(cmd))) {
printf("Last error: %d\n", errno);
}
serverAssert(!size || size == sizeof(cmd));
if (size == 0)
return AE_ERR;
return AE_OK;
}
aeEventLoop *aeCreateEventLoop(int setsize) {
aeEventLoop *eventLoop;
int i;
monotonicInit(); /* just in case the calling app didn't initialize */
if ((eventLoop = (aeEventLoop*)zmalloc(sizeof(*eventLoop), MALLOC_LOCAL)) == NULL) goto err;
eventLoop->events = (aeFileEvent*)zmalloc(sizeof(aeFileEvent)*setsize, MALLOC_LOCAL);
eventLoop->fired = (aeFiredEvent*)zmalloc(sizeof(aeFiredEvent)*setsize, MALLOC_LOCAL);
if (eventLoop->events == NULL || eventLoop->fired == NULL) goto err;
eventLoop->setsize = setsize;
eventLoop->timeEventHead = NULL;
eventLoop->timeEventNextId = 0;
eventLoop->stop = 0;
eventLoop->maxfd = -1;
eventLoop->beforesleep = NULL;
eventLoop->aftersleep = NULL;
eventLoop->flags = 0;
if (aeApiCreate(eventLoop) == -1) goto err;
/* Events with mask == AE_NONE are not set. So let's initialize the
* vector with it. */
for (i = 0; i < setsize; i++)
eventLoop->events[i].mask = AE_NONE;
fastlock_init(&eventLoop->flock, "event loop");
int rgfd[2];
if (pipe(rgfd) < 0)
goto err;
eventLoop->fdCmdRead = rgfd[0];
eventLoop->fdCmdWrite = rgfd[1];
//fcntl(eventLoop->fdCmdWrite, F_SETFL, O_NONBLOCK);
fcntl(eventLoop->fdCmdRead, F_SETFL, O_NONBLOCK);
eventLoop->cevents = 0;
aeCreateFileEvent(eventLoop, eventLoop->fdCmdRead, AE_READABLE|AE_READ_THREADSAFE, aeProcessCmd, NULL);
return eventLoop;
err:
if (eventLoop) {
zfree(eventLoop->events);
zfree(eventLoop->fired);
zfree(eventLoop);
}
return NULL;
}
/* Return the current set size. */
int aeGetSetSize(aeEventLoop *eventLoop) {
return eventLoop->setsize;
}
/* Return the current EventLoop. */
aeEventLoop *aeGetCurrentEventLoop(){
return g_eventLoopThisThread;
}
/* Tells the next iteration/s of the event processing to set timeout of 0. */
void aeSetDontWait(aeEventLoop *eventLoop, int noWait) {
if (noWait)
eventLoop->flags |= AE_DONT_WAIT;
else
eventLoop->flags &= ~AE_DONT_WAIT;
}
/* Resize the maximum set size of the event loop.
* If the requested set size is smaller than the current set size, but
* there is already a file descriptor in use that is >= the requested
* set size minus one, AE_ERR is returned and the operation is not
* performed at all.
*
* Otherwise AE_OK is returned and the operation is successful. */
int aeResizeSetSize(aeEventLoop *eventLoop, int setsize) {
serverAssert(g_eventLoopThisThread == NULL || g_eventLoopThisThread == eventLoop);
int i;
if (setsize == eventLoop->setsize) return AE_OK;
if (eventLoop->maxfd >= setsize) return AE_ERR;
if (aeApiResize(eventLoop,setsize) == -1) return AE_ERR;
eventLoop->events = (aeFileEvent*)zrealloc(eventLoop->events,sizeof(aeFileEvent)*setsize, MALLOC_LOCAL);
eventLoop->fired = (aeFiredEvent*)zrealloc(eventLoop->fired,sizeof(aeFiredEvent)*setsize, MALLOC_LOCAL);
eventLoop->setsize = setsize;
/* Make sure that if we created new slots, they are initialized with
* an AE_NONE mask. */
for (i = eventLoop->maxfd+1; i < setsize; i++)
eventLoop->events[i].mask = AE_NONE;
return AE_OK;
}
extern "C" void aeDeleteEventLoop(aeEventLoop *eventLoop) {
aeApiFree(eventLoop);
zfree(eventLoop->events);
zfree(eventLoop->fired);
fastlock_free(&eventLoop->flock);
close(eventLoop->fdCmdRead);
close(eventLoop->fdCmdWrite);
/* Free the time events list. */
auto *te = eventLoop->timeEventHead;
while (te)
{
auto *teNext = te->next;
zfree(te);
te = teNext;
}
zfree(eventLoop);
}
extern "C" void aeStop(aeEventLoop *eventLoop) {
serverAssert(g_eventLoopThisThread == NULL || g_eventLoopThisThread == eventLoop);
eventLoop->stop = 1;
}
extern "C" int aeCreateFileEvent(aeEventLoop *eventLoop, int fd, int mask,
aeFileProc *proc, void *clientData)
{
serverAssert(g_eventLoopThisThread == NULL || g_eventLoopThisThread == eventLoop);
if (fd >= eventLoop->setsize) {
errno = ERANGE;
return AE_ERR;
}
aeFileEvent *fe = &eventLoop->events[fd];
if (aeApiAddEvent(eventLoop, fd, mask) == -1)
return AE_ERR;
fe->mask |= mask;
if (mask & AE_READABLE) fe->rfileProc = proc;
if (mask & AE_WRITABLE) fe->wfileProc = proc;
fe->clientData = clientData;
if (fd > eventLoop->maxfd)
eventLoop->maxfd = fd;
return AE_OK;
}
void aeDeleteFileEventAsync(aeEventLoop *eventLoop, int fd, int mask)
{
if (eventLoop == g_eventLoopThisThread)
return aeDeleteFileEvent(eventLoop, fd, mask);
aeCommand cmd = {};
cmd.op = AE_ASYNC_OP::DeleteFileEvent;
cmd.fd = fd;
cmd.mask = mask;
cmd.fLock = true;
auto cb = write(eventLoop->fdCmdWrite, &cmd, sizeof(cmd));
serverAssert(cb == sizeof(cmd));
}
extern "C" void aeDeleteFileEvent(aeEventLoop *eventLoop, int fd, int mask)
{
serverAssert(g_eventLoopThisThread == NULL || g_eventLoopThisThread == eventLoop);
if (fd >= eventLoop->setsize) return;
aeFileEvent *fe = &eventLoop->events[fd];
if (fe->mask == AE_NONE) return;
/* We want to always remove AE_BARRIER if set when AE_WRITABLE
* is removed. */
if (mask & AE_WRITABLE) mask |= AE_BARRIER;
if (mask & AE_WRITABLE) mask |= AE_WRITE_THREADSAFE;
if (mask & AE_READABLE) mask |= AE_READ_THREADSAFE;
aeApiDelEvent(eventLoop, fd, mask);
fe->mask = fe->mask & (~mask);
if (fd == eventLoop->maxfd && fe->mask == AE_NONE) {
/* Update the max fd */
int j;
for (j = eventLoop->maxfd-1; j >= 0; j--)
if (eventLoop->events[j].mask != AE_NONE) break;
eventLoop->maxfd = j;
}
}
extern "C" int aeGetFileEvents(aeEventLoop *eventLoop, int fd) {
if (fd >= eventLoop->setsize) return 0;
aeFileEvent *fe = &eventLoop->events[fd];
return fe->mask;
}
extern "C" long long aeCreateTimeEvent(aeEventLoop *eventLoop, long long milliseconds,
aeTimeProc *proc, void *clientData,
aeEventFinalizerProc *finalizerProc)
{
serverAssert(g_eventLoopThisThread == NULL || g_eventLoopThisThread == eventLoop);
long long id = eventLoop->timeEventNextId++;
aeTimeEvent *te;
te = (aeTimeEvent*)zmalloc(sizeof(*te), MALLOC_LOCAL);
if (te == NULL) return AE_ERR;
te->id = id;
te->when = getMonotonicUs() + milliseconds * 1000;
te->timeProc = proc;
te->finalizerProc = finalizerProc;
te->clientData = clientData;
te->prev = NULL;
te->next = eventLoop->timeEventHead;
te->refcount = 0;
if (te->next)
te->next->prev = te;
eventLoop->timeEventHead = te;
return id;
}
extern "C" int aeDeleteTimeEvent(aeEventLoop *eventLoop, long long id)
{
serverAssert(g_eventLoopThisThread == NULL || g_eventLoopThisThread == eventLoop);
aeTimeEvent *te = eventLoop->timeEventHead;
while(te) {
if (te->id == id) {
te->id = AE_DELETED_EVENT_ID;
return AE_OK;
}
te = te->next;
}
return AE_ERR; /* NO event with the specified ID found */
}
/* How many microseconds until the first timer should fire.
* If there are no timers, -1 is returned.
*
* Note that's O(N) since time events are unsorted.
* Possible optimizations (not needed by Redis so far, but...):
* 1) Insert the event in order, so that the nearest is just the head.
* Much better but still insertion or deletion of timers is O(N).
* 2) Use a skiplist to have this operation as O(1) and insertion as O(log(N)).
*/
static int64_t usUntilEarliestTimer(aeEventLoop *eventLoop) {
aeTimeEvent *te = eventLoop->timeEventHead;
if (te == NULL) return -1;
aeTimeEvent *earliest = NULL;
while (te) {
if (!earliest || te->when < earliest->when)
earliest = te;
te = te->next;
}
monotime now = getMonotonicUs();
return (now >= earliest->when) ? 0 : earliest->when - now;
}
/* Process time events */
static int processTimeEvents(aeEventLoop *eventLoop) {
std::unique_lock<decltype(g_lock)> ulock(g_lock, std::defer_lock);
int processed = 0;
aeTimeEvent *te;
long long maxId;
te = eventLoop->timeEventHead;
maxId = eventLoop->timeEventNextId-1;
monotime now = getMonotonicUs();
while(te) {
long long id;
/* Remove events scheduled for deletion. */
if (te->id == AE_DELETED_EVENT_ID) {
aeTimeEvent *next = te->next;
/* If a reference exists for this timer event,
* don't free it. This is currently incremented
* for recursive timerProc calls */
if (te->refcount) {
te = next;
continue;
}
if (te->prev)
te->prev->next = te->next;
else
eventLoop->timeEventHead = te->next;
if (te->next)
te->next->prev = te->prev;
if (te->finalizerProc) {
if (!ulock.owns_lock()) ulock.lock();
te->finalizerProc(eventLoop, te->clientData);
now = getMonotonicUs();
}
zfree(te);
te = next;
continue;
}
/* Make sure we don't process time events created by time events in
* this iteration. Note that this check is currently useless: we always
* add new timers on the head, however if we change the implementation
* detail, this check may be useful again: we keep it here for future
* defense. */
if (te->id > maxId) {
te = te->next;
continue;
}
if (te->when <= now) {
if (!ulock.owns_lock()) ulock.lock();
int retval;
id = te->id;
te->refcount++;
retval = te->timeProc(eventLoop, id, te->clientData);
te->refcount--;
processed++;
now = getMonotonicUs();
if (retval != AE_NOMORE) {
te->when = now + retval * 1000;
} else {
te->id = AE_DELETED_EVENT_ID;
}
}
te = te->next;
}
return processed;
}
extern "C" void ProcessEventCore(aeEventLoop *eventLoop, aeFileEvent *fe, int mask, int fd)
{
#define LOCK_IF_NECESSARY(fe, tsmask) \
std::unique_lock<decltype(g_lock)> ulock(g_lock, std::defer_lock); \
if (!(fe->mask & tsmask)) \
ulock.lock()
int fired = 0; /* Number of events fired for current fd. */
/* Normally we execute the readable event first, and the writable
* event laster. This is useful as sometimes we may be able
* to serve the reply of a query immediately after processing the
* query.
*
* However if AE_BARRIER is set in the mask, our application is
* asking us to do the reverse: never fire the writable event
* after the readable. In such a case, we invert the calls.
* This is useful when, for instance, we want to do things
* in the beforeSleep() hook, like fsynching a file to disk,
* before replying to a client. */
int invert = fe->mask & AE_BARRIER;
/* Note the "fe->mask & mask & ..." code: maybe an already
* processed event removed an element that fired and we still
* didn't processed, so we check if the event is still valid.
*
* Fire the readable event if the call sequence is not
* inverted. */
if (!invert && fe->mask & mask & AE_READABLE) {
LOCK_IF_NECESSARY(fe, AE_READ_THREADSAFE);
fe->rfileProc(eventLoop,fd,fe->clientData,mask | (fe->mask & AE_READ_THREADSAFE));
fired++;
fe = &eventLoop->events[fd]; /* Refresh in case of resize. */
}
/* Fire the writable event. */
if (fe->mask & mask & AE_WRITABLE) {
if (!fired || fe->wfileProc != fe->rfileProc) {
LOCK_IF_NECESSARY(fe, AE_WRITE_THREADSAFE);
fe->wfileProc(eventLoop,fd,fe->clientData,mask | (fe->mask & AE_WRITE_THREADSAFE));
fired++;
}
}
/* If we have to invert the call, fire the readable event now
* after the writable one. */
if (invert && fe->mask & mask & AE_READABLE) {
if (!fired || fe->wfileProc != fe->rfileProc) {
LOCK_IF_NECESSARY(fe, AE_READ_THREADSAFE);
fe->rfileProc(eventLoop,fd,fe->clientData,mask | (fe->mask & AE_READ_THREADSAFE));
fired++;
}
}
#undef LOCK_IF_NECESSARY
}
/* Process every pending time event, then every pending file event
* (that may be registered by time event callbacks just processed).
* Without special flags the function sleeps until some file event
* fires, or when the next time event occurs (if any).
*
* If flags is 0, the function does nothing and returns.
* if flags has AE_ALL_EVENTS set, all the kind of events are processed.
* if flags has AE_FILE_EVENTS set, file events are processed.
* if flags has AE_TIME_EVENTS set, time events are processed.
* if flags has AE_DONT_WAIT set the function returns ASAP until all
* the events that's possible to process without to wait are processed.
* if flags has AE_CALL_AFTER_SLEEP set, the aftersleep callback is called.
* if flags has AE_CALL_BEFORE_SLEEP set, the beforesleep callback is called.
*
* The function returns the number of events processed. */
int aeProcessEvents(aeEventLoop *eventLoop, int flags)
{
serverAssert(g_eventLoopThisThread == NULL || g_eventLoopThisThread == eventLoop);
int processed = 0, numevents;
/* Nothing to do? return ASAP */
if (!(flags & AE_TIME_EVENTS) && !(flags & AE_FILE_EVENTS)) return 0;
/* Note that we want to call select() even if there are no
* file events to process as long as we want to process time
* events, in order to sleep until the next time event is ready
* to fire. */
if (eventLoop->maxfd != -1 ||
((flags & AE_TIME_EVENTS) && !(flags & AE_DONT_WAIT))) {
int j;
struct timeval tv, *tvp;
int64_t usUntilTimer = -1;
if (flags & AE_TIME_EVENTS && !(flags & AE_DONT_WAIT))
usUntilTimer = usUntilEarliestTimer(eventLoop);
if (usUntilTimer >= 0) {
tv.tv_sec = usUntilTimer / 1000000;
tv.tv_usec = usUntilTimer % 1000000;
tvp = &tv;
} else {
/* If we have to check for events but need to return
* ASAP because of AE_DONT_WAIT we need to set the timeout
* to zero */
if (flags & AE_DONT_WAIT) {
tv.tv_sec = tv.tv_usec = 0;
tvp = &tv;
} else {
/* Otherwise we can block */
tvp = NULL; /* wait forever */
}
}
if (eventLoop->flags & AE_DONT_WAIT) {
tv.tv_sec = tv.tv_usec = 0;
tvp = &tv;
}
if (eventLoop->beforesleep != NULL && flags & AE_CALL_BEFORE_SLEEP) {
std::unique_lock<decltype(g_lock)> ulock(g_lock, std::defer_lock);
if (!(eventLoop->beforesleepFlags & AE_SLEEP_THREADSAFE))
ulock.lock();
eventLoop->beforesleep(eventLoop);
}
/* Call the multiplexing API, will return only on timeout or when
* some event fires. */
numevents = aeApiPoll(eventLoop, tvp);
/* After sleep callback. */
if (eventLoop->aftersleep != NULL && flags & AE_CALL_AFTER_SLEEP) {
std::unique_lock<decltype(g_lock)> ulock(g_lock, std::defer_lock);
if (!(eventLoop->aftersleepFlags & AE_SLEEP_THREADSAFE))
ulock.lock();
eventLoop->aftersleep(eventLoop);
}
for (j = 0; j < numevents; j++) {
aeFileEvent *fe = &eventLoop->events[eventLoop->fired[j].fd];
int mask = eventLoop->fired[j].mask;
int fd = eventLoop->fired[j].fd;
ProcessEventCore(eventLoop, fe, mask, fd);
processed++;
}
}
/* Check time events */
if (flags & AE_TIME_EVENTS)
processed += processTimeEvents(eventLoop);
eventLoop->cevents += processed;
return processed; /* return the number of processed file/time events */
}
/* Wait for milliseconds until the given file descriptor becomes
* writable/readable/exception */
int aeWait(int fd, int mask, long long milliseconds) {
struct pollfd pfd;
int retmask = 0, retval;
memset(&pfd, 0, sizeof(pfd));
pfd.fd = fd;
if (mask & AE_READABLE) pfd.events |= POLLIN;
if (mask & AE_WRITABLE) pfd.events |= POLLOUT;
if ((retval = poll(&pfd, 1, milliseconds))== 1) {
if (pfd.revents & POLLIN) retmask |= AE_READABLE;
if (pfd.revents & POLLOUT) retmask |= AE_WRITABLE;
if (pfd.revents & POLLERR) retmask |= AE_WRITABLE;
if (pfd.revents & POLLHUP) retmask |= AE_WRITABLE;
return retmask;
} else {
return retval;
}
}
void aeMain(aeEventLoop *eventLoop) {
eventLoop->stop = 0;
g_eventLoopThisThread = eventLoop;
while (!eventLoop->stop) {
serverAssert(!aeThreadOwnsLock()); // we should have relinquished it after processing
aeProcessEvents(eventLoop, AE_ALL_EVENTS|AE_CALL_BEFORE_SLEEP|AE_CALL_AFTER_SLEEP);
serverAssert(!aeThreadOwnsLock()); // we should have relinquished it after processing
}
}
const char *aeGetApiName(void) {
return aeApiName();
}
void aeSetBeforeSleepProc(aeEventLoop *eventLoop, aeBeforeSleepProc *beforesleep, int flags) {
eventLoop->beforesleep = beforesleep;
eventLoop->beforesleepFlags = flags;
}
void aeSetAfterSleepProc(aeEventLoop *eventLoop, aeBeforeSleepProc *aftersleep, int flags) {
eventLoop->aftersleep = aftersleep;
eventLoop->aftersleepFlags = flags;
}
thread_local spin_worker tl_worker = nullptr;
void setAeLockSetThreadSpinWorker(spin_worker worker)
{
tl_worker = worker;
}
void aeAcquireLock()
{
g_lock.lock(tl_worker);
}
int aeTryAcquireLock(int fWeak)
{
return g_lock.try_lock(!!fWeak);
}
void aeReleaseLock()
{
g_lock.unlock();
}
int aeThreadOwnsLock()
{
return g_lock.fOwnLock();
}
int aeLockContested(int threshold)
{
ticket ticketT;
__atomic_load(&g_lock.m_ticket.u, &ticketT.u, __ATOMIC_RELAXED);
return ticketT.m_active < static_cast<uint16_t>(ticketT.m_avail - threshold);
}
int aeLockContention()
{
ticket ticketT;
__atomic_load(&g_lock.m_ticket.u, &ticketT.u, __ATOMIC_RELAXED);
int32_t avail = ticketT.m_avail;
int32_t active = ticketT.m_active;
if (avail < active)
avail += 0x10000;
return avail - active;
}