futriix/src/module.c
zhaozhao.zz 3f21705a6c
Feature COMMANDLOG to record slow execution and large request/reply (#1294)
As discussed in PR #336.

We have different types of resources like CPU, memory, network, etc. The
`slowlog` can only record commands eat lots of CPU during the processing
phase (doesn't include read/write network time), but can not record
commands eat too many memory and network. For example:

1. run "SET key value(10 megabytes)" command would not be recored in
slowlog, since when processing it the SET command only insert the
value's pointer into db dict. But that command eats huge memory in query
buffer and bandwidth from network. In this case, just 1000 tps can cause
10GB/s network flow.
2. run "GET key" command and the key's value length is 10 megabytes. The
get command can eat huge memory in output buffer and bandwidth to
network.

This PR introduces a new command `COMMANDLOG`, to log commands that
consume significant network bandwidth, including both input and output.
Users can retrieve the results using `COMMANDLOG get <count>
large-request` and `COMMANDLOG get <count> large-reply`, all subcommands
for `COMMANDLOG` are:

* `COMMANDLOG HELP`
* `COMMANDLOG GET <count> <slow|large-request|large-reply>`
* `COMMANDLOG LEN <slow|large-request|large-reply>`
* `COMMANDLOG RESET <slow|large-request|large-reply>`

And the slowlog is also incorporated into the commandlog.

For each of these three types, additional configs have been added for
control:

* `commandlog-request-larger-than` and
`commandlog-large-request-max-len` represent the threshold for large
requests(the unit is Bytes) and the maximum number of commands that can
be recorded.
* `commandlog-reply-larger-than` and `commandlog-large-reply-max-len`
represent the threshold for large replies(the unit is Bytes) and the
maximum number of commands that can be recorded.
* `commandlog-execution-slower-than` and
`commandlog-slow-execution-max-len` represent the threshold for slow
executions(the unit is microseconds) and the maximum number of commands
that can be recorded.
* Additionally, `slowlog-log-slower-than` and `slowlog-max-len` are now
set as aliases for these two new configs.

---------

Signed-off-by: zhaozhao.zz <zhaozhao.zz@alibaba-inc.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: Ping Xie <pingxie@outlook.com>
2025-01-24 11:41:40 +08:00

14068 lines
582 KiB
C

/*
* Copyright (c) 2016, Redis Ltd.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/* --------------------------------------------------------------------------
* Modules API documentation information
*
* The comments in this file are used to generate the API documentation on the
* website.
*
* Each function starting with VM_ and preceded by a block comment is included
* in the API documentation. To hide a VM_ function, put a blank line between
* the comment and the function definition or put the comment inside the
* function body.
*
* The functions are divided into sections. Each section is preceded by a
* documentation block, which is comment block starting with a markdown level 2
* heading, i.e. a line starting with ##, on the first line of the comment block
* (with the exception of a ----- line which can appear first). Other comment
* blocks, which are not intended for the modules API user, such as this comment
* block, do NOT start with a markdown level 2 heading, so they are included in
* the generated a API documentation.
*
* The documentation comments may contain markdown formatting. Some automatic
* replacements are done, such as the replacement of RM with ValkeyModule in
* function names. For details, see the script src/modules/gendoc.rb.
* -------------------------------------------------------------------------- */
#include "server.h"
#include "cluster.h"
#include "commandlog.h"
#include "rdb.h"
#include "monotonic.h"
#include "script.h"
#include "call_reply.h"
#include "hdr_histogram.h"
#include "crc16_slottable.h"
#include "valkeymodule.h"
#include "io_threads.h"
#include "module.h"
#include "scripting_engine.h"
#include <dlfcn.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <string.h>
/* --------------------------------------------------------------------------
* Private data structures used by the modules system. Those are data
* structures that are never exposed to Modules, if not as void
* pointers that have an API the module can call with them)
* -------------------------------------------------------------------------- */
struct moduleLoadQueueEntry {
sds path;
int argc;
robj **argv;
};
struct ValkeyModuleInfoCtx {
struct ValkeyModule *module;
dict *requested_sections;
sds info; /* info string we collected so far */
int sections; /* number of sections we collected so far */
int in_section; /* indication if we're in an active section or not */
int in_dict_field; /* indication that we're currently appending to a dict */
};
/* This represents a shared API. Shared APIs will be used to populate
* the server.sharedapi dictionary, mapping names of APIs exported by
* modules for other modules to use, to their structure specifying the
* function pointer that can be called. */
struct ValkeyModuleSharedAPI {
void *func;
ValkeyModule *module;
};
typedef struct ValkeyModuleSharedAPI ValkeyModuleSharedAPI;
dict *modules; /* Hash table of modules. SDS -> ValkeyModule ptr.*/
/* Entries in the context->amqueue array, representing objects to free
* when the callback returns. */
struct AutoMemEntry {
void *ptr;
int type;
};
/* AutoMemEntry type field values. */
#define VALKEYMODULE_AM_KEY 0
#define VALKEYMODULE_AM_STRING 1
#define VALKEYMODULE_AM_REPLY 2
#define VALKEYMODULE_AM_FREED 3 /* Explicitly freed by user already. */
#define VALKEYMODULE_AM_DICT 4
#define VALKEYMODULE_AM_INFO 5
/* The pool allocator block. Modules can allocate memory via this special
* allocator that will automatically release it all once the callback returns.
* This means that it can only be used for ephemeral allocations. However
* there are two advantages for modules to use this API:
*
* 1) The memory is automatically released when the callback returns.
* 2) This allocator is faster for many small allocations since whole blocks
* are allocated, and small pieces returned to the caller just advancing
* the index of the allocation.
*
* Allocations are always rounded to the size of the void pointer in order
* to always return aligned memory chunks. */
#define VALKEYMODULE_POOL_ALLOC_MIN_SIZE (1024 * 8)
#define VALKEYMODULE_POOL_ALLOC_ALIGN (sizeof(void *))
typedef struct ValkeyModulePoolAllocBlock {
uint32_t size;
uint32_t used;
struct ValkeyModulePoolAllocBlock *next;
char memory[];
} ValkeyModulePoolAllocBlock;
/* This structure represents the context in which modules operate.
* Most APIs module can access, get a pointer to the context, so that the API
* implementation can hold state across calls, or remember what to free after
* the call and so forth.
*
* Note that not all the context structure is always filled with actual values
* but only the fields needed in a given context. */
struct ValkeyModuleBlockedClient;
struct ValkeyModuleUser;
struct ValkeyModuleCtx {
void *getapifuncptr; /* NOTE: Must be the first field. */
struct ValkeyModule *module; /* Module reference. */
client *client; /* Client calling a command. */
struct ValkeyModuleBlockedClient *blocked_client; /* Blocked client for
thread safe context. */
struct AutoMemEntry *amqueue; /* Auto memory queue of objects to free. */
int amqueue_len; /* Number of slots in amqueue. */
int amqueue_used; /* Number of used slots in amqueue. */
int flags; /* VALKEYMODULE_CTX_... flags. */
void **postponed_arrays; /* To set with VM_ReplySetArrayLength(). */
int postponed_arrays_count; /* Number of entries in postponed_arrays. */
void *blocked_privdata; /* Privdata set when unblocking a client. */
ValkeyModuleString *blocked_ready_key; /* Key ready when the reply callback
gets called for clients blocked
on keys. */
/* Used if there is the VALKEYMODULE_CTX_KEYS_POS_REQUEST or
* VALKEYMODULE_CTX_CHANNEL_POS_REQUEST flag set. */
getKeysResult *keys_result;
struct ValkeyModulePoolAllocBlock *pa_head;
long long next_yield_time;
const struct ValkeyModuleUser *user; /* ValkeyModuleUser commands executed via
VM_Call should be executed as, if set */
};
typedef struct ValkeyModuleCtx ValkeyModuleCtx;
#define VALKEYMODULE_CTX_NONE (0)
#define VALKEYMODULE_CTX_AUTO_MEMORY (1 << 0)
#define VALKEYMODULE_CTX_KEYS_POS_REQUEST (1 << 1)
#define VALKEYMODULE_CTX_BLOCKED_REPLY (1 << 2)
#define VALKEYMODULE_CTX_BLOCKED_TIMEOUT (1 << 3)
#define VALKEYMODULE_CTX_THREAD_SAFE (1 << 4)
#define VALKEYMODULE_CTX_BLOCKED_DISCONNECTED (1 << 5)
#define VALKEYMODULE_CTX_TEMP_CLIENT (1 << 6) /* Return client object to the pool \
when the context is destroyed */
#define VALKEYMODULE_CTX_NEW_CLIENT (1 << 7) /* Free client object when the \
context is destroyed */
#define VALKEYMODULE_CTX_CHANNELS_POS_REQUEST (1 << 8)
#define VALKEYMODULE_CTX_COMMAND (1 << 9) /* Context created to serve a command from call() or AOF (which calls cmd->proc directly) */
/* This represents a key opened with VM_OpenKey(). */
struct ValkeyModuleKey {
ValkeyModuleCtx *ctx;
serverDb *db;
robj *key; /* Key name object. */
robj *value; /* Value object, or NULL if the key was not found. */
void *iter; /* Iterator. */
int mode; /* Opening mode. */
union {
struct {
/* List, use only if value->type == OBJ_LIST */
listTypeEntry entry; /* Current entry in iteration. */
long index; /* Current 0-based index in iteration. */
} list;
struct {
/* Zset iterator, use only if value->type == OBJ_ZSET */
uint32_t type; /* VALKEYMODULE_ZSET_RANGE_* */
zrangespec rs; /* Score range. */
zlexrangespec lrs; /* Lex range. */
uint32_t start; /* Start pos for positional ranges. */
uint32_t end; /* End pos for positional ranges. */
void *current; /* Zset iterator current node. */
int er; /* Zset iterator end reached flag
(true if end was reached). */
} zset;
struct {
/* Stream, use only if value->type == OBJ_STREAM */
streamID currentid; /* Current entry while iterating. */
int64_t numfieldsleft; /* Fields left to fetch for current entry. */
int signalready; /* Flag that signalKeyAsReady() is needed. */
} stream;
} u;
};
/* ValkeyModuleKey 'ztype' values. */
#define VALKEYMODULE_ZSET_RANGE_NONE 0 /* This must always be 0. */
#define VALKEYMODULE_ZSET_RANGE_LEX 1
#define VALKEYMODULE_ZSET_RANGE_SCORE 2
#define VALKEYMODULE_ZSET_RANGE_POS 3
/* Function pointer type of a function representing a command inside
* a module. */
struct ValkeyModuleBlockedClient;
typedef int (*ValkeyModuleCmdFunc)(ValkeyModuleCtx *ctx, void **argv, int argc);
typedef int (*ValkeyModuleAuthCallback)(ValkeyModuleCtx *ctx, void *username, void *password, ValkeyModuleString **err);
typedef void (*ValkeyModuleDisconnectFunc)(ValkeyModuleCtx *ctx, struct ValkeyModuleBlockedClient *bc);
/* This struct holds the information about a command registered by a module.*/
struct ValkeyModuleCommand {
struct ValkeyModule *module;
ValkeyModuleCmdFunc func;
struct serverCommand *serverCmd;
};
typedef struct ValkeyModuleCommand ValkeyModuleCommand;
#define VALKEYMODULE_REPLYFLAG_NONE 0
#define VALKEYMODULE_REPLYFLAG_TOPARSE (1 << 0) /* Protocol must be parsed. */
#define VALKEYMODULE_REPLYFLAG_NESTED (1 << 1) /* Nested reply object. No proto \
or struct free. */
/* Reply of VM_Call() function. The function is filled in a lazy
* way depending on the function called on the reply structure. By default
* only the type, proto and protolen are filled. */
typedef struct CallReply ValkeyModuleCallReply;
/* Structure to hold the module auth callback & the Module implementing it. */
typedef struct ValkeyModuleAuthCtx {
struct ValkeyModule *module;
ValkeyModuleAuthCallback auth_cb;
} ValkeyModuleAuthCtx;
/* Structure representing a blocked client. We get a pointer to such
* an object when blocking from modules. */
typedef struct ValkeyModuleBlockedClient {
client *client; /* Pointer to the blocked client. or NULL if the client
was destroyed during the life of this object. */
ValkeyModule *module; /* Module blocking the client. */
ValkeyModuleCmdFunc reply_callback; /* Reply callback on normal completion.*/
ValkeyModuleAuthCallback auth_reply_cb; /* Reply callback on completing blocking
module authentication. */
ValkeyModuleCmdFunc timeout_callback; /* Reply callback on timeout. */
ValkeyModuleDisconnectFunc disconnect_callback; /* Called on disconnection.*/
void (*free_privdata)(ValkeyModuleCtx *, void *); /* privdata cleanup callback.*/
void *privdata; /* Module private data that may be used by the reply
or timeout callback. It is set via the
ValkeyModule_UnblockClient() API. */
client *thread_safe_ctx_client; /* Fake client to be used for thread safe
context so that no lock is required. */
client *reply_client; /* Fake client used to accumulate replies
in thread safe contexts. */
int dbid; /* Database number selected by the original client. */
int blocked_on_keys; /* If blocked via VM_BlockClientOnKeys(). */
int unblocked; /* Already on the moduleUnblocked list. */
monotime background_timer; /* Timer tracking the start of background work */
uint64_t background_duration; /* Current command background time duration.
Used for measuring latency of blocking cmds */
} ValkeyModuleBlockedClient;
/* This is a list of Module Auth Contexts. Each time a Module registers a callback, a new ctx is
* added to this list. Multiple modules can register auth callbacks and the same Module can have
* multiple auth callbacks. */
static list *moduleAuthCallbacks;
static pthread_mutex_t moduleUnblockedClientsMutex = PTHREAD_MUTEX_INITIALIZER;
static list *moduleUnblockedClients;
/* Pool for temporary client objects. Creating and destroying a client object is
* costly. We manage a pool of clients to avoid this cost. Pool expands when
* more clients are needed and shrinks when unused. Please see modulesCron()
* for more details. */
static client **moduleTempClients;
static size_t moduleTempClientCap = 0;
static size_t moduleTempClientCount = 0; /* Client count in pool */
static size_t moduleTempClientMinCount = 0; /* Min client count in pool since
the last cron. */
/* We need a mutex that is unlocked / relocked in beforeSleep() in order to
* allow thread safe contexts to execute commands at a safe moment. */
static pthread_mutex_t moduleGIL = PTHREAD_MUTEX_INITIALIZER;
/* Function pointer type for keyspace event notification subscriptions from modules. */
typedef int (*ValkeyModuleNotificationFunc)(ValkeyModuleCtx *ctx, int type, const char *event, ValkeyModuleString *key);
/* Function pointer type for post jobs */
typedef void (*ValkeyModulePostNotificationJobFunc)(ValkeyModuleCtx *ctx, void *pd);
/* Keyspace notification subscriber information.
* See VM_SubscribeToKeyspaceEvents() for more information. */
typedef struct ValkeyModuleKeyspaceSubscriber {
/* The module subscribed to the event */
ValkeyModule *module;
/* Notification callback in the module*/
ValkeyModuleNotificationFunc notify_callback;
/* A bit mask of the events the module is interested in */
int event_mask;
/* Active flag set on entry, to avoid reentrant subscribers
* calling themselves */
int active;
} ValkeyModuleKeyspaceSubscriber;
typedef struct ValkeyModulePostExecUnitJob {
/* The module subscribed to the event */
ValkeyModule *module;
ValkeyModulePostNotificationJobFunc callback;
void *pd;
void (*free_pd)(void *);
int dbid;
} ValkeyModulePostExecUnitJob;
/* The module keyspace notification subscribers list */
static list *moduleKeyspaceSubscribers;
/* The module post keyspace jobs list */
static list *modulePostExecUnitJobs;
/* Data structures related to the exported dictionary data structure. */
typedef struct ValkeyModuleDict {
rax *rax; /* The radix tree. */
} ValkeyModuleDict;
typedef struct ValkeyModuleDictIter {
ValkeyModuleDict *dict;
raxIterator ri;
} ValkeyModuleDictIter;
typedef struct ValkeyModuleCommandFilterCtx {
ValkeyModuleString **argv;
int argv_len;
int argc;
client *c;
} ValkeyModuleCommandFilterCtx;
typedef void (*ValkeyModuleCommandFilterFunc)(ValkeyModuleCommandFilterCtx *filter);
typedef struct ValkeyModuleCommandFilter {
/* The module that registered the filter */
ValkeyModule *module;
/* Filter callback function */
ValkeyModuleCommandFilterFunc callback;
/* VALKEYMODULE_CMDFILTER_* flags */
int flags;
} ValkeyModuleCommandFilter;
/* Registered filters */
static list *moduleCommandFilters;
typedef void (*ValkeyModuleForkDoneHandler)(int exitcode, int bysignal, void *user_data);
static struct ValkeyModuleForkInfo {
ValkeyModuleForkDoneHandler done_handler;
void *done_handler_user_data;
} moduleForkInfo = {0};
typedef struct ValkeyModuleServerInfoData {
rax *rax; /* parsed info data. */
} ValkeyModuleServerInfoData;
/* Flags for moduleCreateArgvFromUserFormat(). */
#define VALKEYMODULE_ARGV_REPLICATE (1 << 0)
#define VALKEYMODULE_ARGV_NO_AOF (1 << 1)
#define VALKEYMODULE_ARGV_NO_REPLICAS (1 << 2)
#define VALKEYMODULE_ARGV_RESP_3 (1 << 3)
#define VALKEYMODULE_ARGV_RESP_AUTO (1 << 4)
#define VALKEYMODULE_ARGV_RUN_AS_USER (1 << 5)
#define VALKEYMODULE_ARGV_SCRIPT_MODE (1 << 6)
#define VALKEYMODULE_ARGV_NO_WRITES (1 << 7)
#define VALKEYMODULE_ARGV_CALL_REPLIES_AS_ERRORS (1 << 8)
#define VALKEYMODULE_ARGV_RESPECT_DENY_OOM (1 << 9)
#define VALKEYMODULE_ARGV_DRY_RUN (1 << 10)
#define VALKEYMODULE_ARGV_ALLOW_BLOCK (1 << 11)
/* Determine whether the server should signalModifiedKey implicitly.
* In case 'ctx' has no 'module' member (and therefore no module->options),
* we assume default behavior, that is, the server signals.
* (see VM_GetThreadSafeContext) */
#define SHOULD_SIGNAL_MODIFIED_KEYS(ctx) \
((ctx)->module ? !((ctx)->module->options & VALKEYMODULE_OPTION_NO_IMPLICIT_SIGNAL_MODIFIED) : 1)
/* Server events hooks data structures and defines: this modules API
* allow modules to subscribe to certain events in the server, such as
* the start and end of an RDB or AOF save, the change of role in replication,
* and similar other events. */
typedef struct ValkeyModuleEventListener {
ValkeyModule *module;
ValkeyModuleEvent event;
ValkeyModuleEventCallback callback;
} ValkeyModuleEventListener;
list *ValkeyModule_EventListeners; /* Global list of all the active events. */
/* Data structures related to the module users */
/* This is the object returned by VM_CreateModuleUser(). The module API is
* able to create users, set ACLs to such users, and later authenticate
* clients using such newly created users. */
typedef struct ValkeyModuleUser {
user *user; /* Reference to the real user */
int free_user; /* Indicates that user should also be freed when this object is freed */
} ValkeyModuleUser;
/* This is a structure used to export some meta-information such as dbid to the module. */
typedef struct ValkeyModuleKeyOptCtx {
struct serverObject *from_key, *to_key; /* Optional name of key processed, NULL when unknown.
In most cases, only 'from_key' is valid, but in callbacks
such as `copy2`, both 'from_key' and 'to_key' are valid. */
int from_dbid, to_dbid; /* The dbid of the key being processed, -1 when unknown.
In most cases, only 'from_dbid' is valid, but in callbacks such
as `copy2`, 'from_dbid' and 'to_dbid' are both valid. */
} ValkeyModuleKeyOptCtx;
/* Data structures related to module configurations */
/* The function signatures for module config get callbacks. These are identical to the ones exposed in valkeymodule.h. */
typedef ValkeyModuleString *(*ValkeyModuleConfigGetStringFunc)(const char *name, void *privdata);
typedef long long (*ValkeyModuleConfigGetNumericFunc)(const char *name, void *privdata);
typedef int (*ValkeyModuleConfigGetBoolFunc)(const char *name, void *privdata);
typedef int (*ValkeyModuleConfigGetEnumFunc)(const char *name, void *privdata);
/* The function signatures for module config set callbacks. These are identical to the ones exposed in valkeymodule.h. */
typedef int (*ValkeyModuleConfigSetStringFunc)(const char *name,
ValkeyModuleString *val,
void *privdata,
ValkeyModuleString **err);
typedef int (*ValkeyModuleConfigSetNumericFunc)(const char *name,
long long val,
void *privdata,
ValkeyModuleString **err);
typedef int (*ValkeyModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, ValkeyModuleString **err);
typedef int (*ValkeyModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, ValkeyModuleString **err);
/* Apply signature, identical to valkeymodule.h */
typedef int (*ValkeyModuleConfigApplyFunc)(ValkeyModuleCtx *ctx, void *privdata, ValkeyModuleString **err);
/* Struct representing a module config. These are stored in a list in the module struct */
struct ModuleConfig {
sds name; /* Name of config without the module name appended to the front */
void *privdata; /* Optional data passed into the module config callbacks */
union get_fn { /* The get callback specified by the module */
ValkeyModuleConfigGetStringFunc get_string;
ValkeyModuleConfigGetNumericFunc get_numeric;
ValkeyModuleConfigGetBoolFunc get_bool;
ValkeyModuleConfigGetEnumFunc get_enum;
} get_fn;
union set_fn { /* The set callback specified by the module */
ValkeyModuleConfigSetStringFunc set_string;
ValkeyModuleConfigSetNumericFunc set_numeric;
ValkeyModuleConfigSetBoolFunc set_bool;
ValkeyModuleConfigSetEnumFunc set_enum;
} set_fn;
ValkeyModuleConfigApplyFunc apply_fn;
ValkeyModule *module;
};
typedef struct ValkeyModuleAsyncRMCallPromise {
size_t ref_count;
void *private_data;
ValkeyModule *module;
ValkeyModuleOnUnblocked on_unblocked;
client *c;
ValkeyModuleCtx *ctx;
} ValkeyModuleAsyncRMCallPromise;
/* --------------------------------------------------------------------------
* Prototypes
* -------------------------------------------------------------------------- */
void VM_FreeCallReply(ValkeyModuleCallReply *reply);
void VM_CloseKey(ValkeyModuleKey *key);
void autoMemoryCollect(ValkeyModuleCtx *ctx);
robj **moduleCreateArgvFromUserFormat(const char *cmdname, const char *fmt, int *argcp, int *flags, va_list ap);
void VM_ZsetRangeStop(ValkeyModuleKey *kp);
static void zsetKeyReset(ValkeyModuleKey *key);
static void moduleInitKeyTypeSpecific(ValkeyModuleKey *key);
void VM_FreeDict(ValkeyModuleCtx *ctx, ValkeyModuleDict *d);
void VM_FreeServerInfo(ValkeyModuleCtx *ctx, ValkeyModuleServerInfoData *data);
/* Helpers for VM_SetCommandInfo. */
static int moduleValidateCommandInfo(const ValkeyModuleCommandInfo *info);
static int64_t moduleConvertKeySpecsFlags(int64_t flags, int from_api);
static int moduleValidateCommandArgs(ValkeyModuleCommandArg *args, const ValkeyModuleCommandInfoVersion *version);
static struct serverCommandArg *moduleCopyCommandArgs(ValkeyModuleCommandArg *args,
const ValkeyModuleCommandInfoVersion *version);
static serverCommandArgType moduleConvertArgType(ValkeyModuleCommandArgType type, int *error);
static int moduleConvertArgFlags(int flags);
void moduleCreateContext(ValkeyModuleCtx *out_ctx, ValkeyModule *module, int ctx_flags);
/* Common helper functions. */
int moduleVerifyResourceName(const char *name);
/* --------------------------------------------------------------------------
* ## Heap allocation raw functions
*
* Memory allocated with these functions are taken into account by key
* eviction algorithms and are reported in memory usage information.
* -------------------------------------------------------------------------- */
/* Use like malloc(). Memory allocated with this function is reported in
* INFO memory, used for keys eviction according to maxmemory settings
* and in general is taken into account as memory allocated by the server.
* You should avoid using malloc().
* This function panics if unable to allocate enough memory. */
void *VM_Alloc(size_t bytes) {
/* Use 'zmalloc_usable()' instead of 'zmalloc()' to allow the compiler
* to recognize the additional memory size, which means that modules can
* use the memory reported by 'VM_MallocUsableSize()' safely. In theory this
* isn't really needed since this API can't be inlined (not even for embedded
* modules like TLS (we use function pointers for module APIs), and the API doesn't
* have the malloc_size attribute, but it's hard to predict how smart future compilers
* will be, so better safe than sorry. */
return zmalloc_usable(bytes, NULL);
}
/* Similar to VM_Alloc, but returns NULL in case of allocation failure, instead
* of panicking. */
void *VM_TryAlloc(size_t bytes) {
return ztrymalloc_usable(bytes, NULL);
}
/* Use like calloc(). Memory allocated with this function is reported in
* INFO memory, used for keys eviction according to maxmemory settings
* and in general is taken into account as memory allocated by the server.
* You should avoid using calloc() directly. */
void *VM_Calloc(size_t nmemb, size_t size) {
return zcalloc_usable(nmemb * size, NULL);
}
/* Similar to VM_Calloc, but returns NULL in case of allocation failure, instead
* of panicking. */
void *VM_TryCalloc(size_t nmemb, size_t size) {
return ztrycalloc_usable(nmemb * size, NULL);
}
/* Use like realloc() for memory obtained with ValkeyModule_Alloc(). */
void *VM_Realloc(void *ptr, size_t bytes) {
return zrealloc_usable(ptr, bytes, NULL);
}
/* Similar to VM_Realloc, but returns NULL in case of allocation failure,
* instead of panicking. */
void *VM_TryRealloc(void *ptr, size_t bytes) {
return ztryrealloc_usable(ptr, bytes, NULL);
}
/* Use like free() for memory obtained by ValkeyModule_Alloc() and
* ValkeyModule_Realloc(). However you should never try to free with
* ValkeyModule_Free() memory allocated with malloc() inside your module. */
void VM_Free(void *ptr) {
zfree(ptr);
}
/* Like strdup() but returns memory allocated with ValkeyModule_Alloc(). */
char *VM_Strdup(const char *str) {
return zstrdup(str);
}
/* --------------------------------------------------------------------------
* Pool allocator
* -------------------------------------------------------------------------- */
/* Release the chain of blocks used for pool allocations. */
void poolAllocRelease(ValkeyModuleCtx *ctx) {
ValkeyModulePoolAllocBlock *head = ctx->pa_head, *next;
while (head != NULL) {
next = head->next;
zfree(head);
head = next;
}
ctx->pa_head = NULL;
}
/* Return heap allocated memory that will be freed automatically when the
* module callback function returns. Mostly suitable for small allocations
* that are short living and must be released when the callback returns
* anyway. The returned memory is aligned to the architecture word size
* if at least word size bytes are requested, otherwise it is just
* aligned to the next power of two, so for example a 3 bytes request is
* 4 bytes aligned while a 2 bytes request is 2 bytes aligned.
*
* There is no realloc style function since when this is needed to use the
* pool allocator is not a good idea.
*
* The function returns NULL if `bytes` is 0. */
void *VM_PoolAlloc(ValkeyModuleCtx *ctx, size_t bytes) {
if (bytes == 0) return NULL;
ValkeyModulePoolAllocBlock *b = ctx->pa_head;
size_t left = b ? b->size - b->used : 0;
/* Fix alignment. */
if (left >= bytes) {
size_t alignment = VALKEYMODULE_POOL_ALLOC_ALIGN;
while (bytes < alignment && alignment / 2 >= bytes) alignment /= 2;
if (b->used % alignment) b->used += alignment - (b->used % alignment);
left = (b->used > b->size) ? 0 : b->size - b->used;
}
/* Create a new block if needed. */
if (left < bytes) {
size_t blocksize = VALKEYMODULE_POOL_ALLOC_MIN_SIZE;
if (blocksize < bytes) blocksize = bytes;
b = zmalloc(sizeof(*b) + blocksize);
b->size = blocksize;
b->used = 0;
b->next = ctx->pa_head;
ctx->pa_head = b;
}
char *retval = b->memory + b->used;
b->used += bytes;
return retval;
}
/* --------------------------------------------------------------------------
* Helpers for modules API implementation
* -------------------------------------------------------------------------- */
static void initClientModuleData(client *c) {
if (c->module_data) return;
c->module_data = zcalloc(sizeof(ClientModuleData));
}
void freeClientModuleData(client *c) {
if (!c->module_data) return;
/* Free the ValkeyModuleBlockedClient held onto for reprocessing if not already freed. */
zfree(c->module_data->module_blocked_client);
zfree(c->module_data);
c->module_data = NULL;
}
void moduleEnqueueLoadModule(sds path, sds *argv, int argc) {
int i;
struct moduleLoadQueueEntry *loadmod;
loadmod = zmalloc(sizeof(struct moduleLoadQueueEntry));
loadmod->argv = argc ? zmalloc(sizeof(robj *) * argc) : NULL;
loadmod->path = sdsnew(path);
loadmod->argc = argc;
for (i = 0; i < argc; i++) {
loadmod->argv[i] = createRawStringObject(argv[i], sdslen(argv[i]));
}
listAddNodeTail(server.loadmodule_queue, loadmod);
}
sds moduleLoadQueueEntryToLoadmoduleOptionStr(ValkeyModule *module,
const char *config_option_str) {
sds line;
line = sdsnew(config_option_str);
line = sdscatlen(line, " ", 1);
line = sdscatsds(line, module->loadmod->path);
for (int i = 0; i < module->loadmod->argc; i++) {
line = sdscatlen(line, " ", 1);
line = sdscatsds(line, module->loadmod->argv[i]->ptr);
}
return line;
}
client *moduleAllocTempClient(void) {
client *c = NULL;
if (moduleTempClientCount > 0) {
c = moduleTempClients[--moduleTempClientCount];
if (moduleTempClientCount < moduleTempClientMinCount) moduleTempClientMinCount = moduleTempClientCount;
} else {
c = createClient(NULL);
c->flag.module = 1;
c->flag.fake = 1;
c->user = NULL; /* Root user */
}
return c;
}
static void freeValkeyModuleAsyncRMCallPromise(ValkeyModuleAsyncRMCallPromise *promise) {
if (--promise->ref_count > 0) {
return;
}
/* When the promise is finally freed it can not have a client attached to it.
* Either releasing the client or VM_CallReplyPromiseAbort would have removed it. */
serverAssert(!promise->c);
zfree(promise);
}
void moduleReleaseTempClient(client *c) {
if (moduleTempClientCount == moduleTempClientCap) {
moduleTempClientCap = moduleTempClientCap ? moduleTempClientCap * 2 : 32;
moduleTempClients = zrealloc(moduleTempClients, sizeof(c) * moduleTempClientCap);
}
clearClientConnectionState(c);
listEmpty(c->reply);
c->reply_bytes = 0;
c->duration = 0;
resetClient(c);
c->bufpos = 0;
c->raw_flag = 0;
c->flag.module = 1;
c->flag.fake = 1;
c->user = NULL; /* Root user */
c->cmd = c->lastcmd = c->realcmd = c->io_parsed_cmd = NULL;
if (c->bstate && c->bstate->async_rm_call_handle) {
ValkeyModuleAsyncRMCallPromise *promise = c->bstate->async_rm_call_handle;
promise->c = NULL; /* Remove the client from the promise so it will no longer be possible to abort it. */
freeValkeyModuleAsyncRMCallPromise(promise);
c->bstate->async_rm_call_handle = NULL;
}
moduleTempClients[moduleTempClientCount++] = c;
}
/* Create an empty key of the specified type. `key` must point to a key object
* opened for writing where the `.value` member is set to NULL because the
* key was found to be non existing.
*
* On success VALKEYMODULE_OK is returned and the key is populated with
* the value of the specified type. The function fails and returns
* VALKEYMODULE_ERR if:
*
* 1. The key is not open for writing.
* 2. The key is not empty.
* 3. The specified type is unknown.
*/
int moduleCreateEmptyKey(ValkeyModuleKey *key, int type) {
robj *obj;
/* The key must be open for writing and non existing to proceed. */
if (!(key->mode & VALKEYMODULE_WRITE) || key->value) return VALKEYMODULE_ERR;
switch (type) {
case VALKEYMODULE_KEYTYPE_LIST: obj = createListListpackObject(); break;
case VALKEYMODULE_KEYTYPE_ZSET: obj = createZsetListpackObject(); break;
case VALKEYMODULE_KEYTYPE_HASH: obj = createHashObject(); break;
case VALKEYMODULE_KEYTYPE_STREAM: obj = createStreamObject(); break;
default: return VALKEYMODULE_ERR;
}
dbAdd(key->db, key->key, &obj);
key->value = obj;
moduleInitKeyTypeSpecific(key);
return VALKEYMODULE_OK;
}
/* Frees key->iter and sets it to NULL. */
static void moduleFreeKeyIterator(ValkeyModuleKey *key) {
serverAssert(key->iter != NULL);
switch (key->value->type) {
case OBJ_LIST: listTypeReleaseIterator(key->iter); break;
case OBJ_STREAM:
streamIteratorStop(key->iter);
zfree(key->iter);
break;
default: serverAssert(0); /* No key->iter for other types. */
}
key->iter = NULL;
}
/* Callback for listTypeTryConversion().
* Frees list iterator and sets it to NULL. */
static void moduleFreeListIterator(void *data) {
ValkeyModuleKey *key = (ValkeyModuleKey *)data;
serverAssert(key->value->type == OBJ_LIST);
if (key->iter) moduleFreeKeyIterator(key);
}
/* This function is called in low-level API implementation functions in order
* to check if the value associated with the key remained empty after an
* operation that removed elements from an aggregate data type.
*
* If this happens, the key is deleted from the DB and the key object state
* is set to the right one in order to be targeted again by write operations
* possibly recreating the key if needed.
*
* The function returns 1 if the key value object is found empty and is
* deleted, otherwise 0 is returned. */
int moduleDelKeyIfEmpty(ValkeyModuleKey *key) {
if (!(key->mode & VALKEYMODULE_WRITE) || key->value == NULL) return 0;
int isempty;
robj *o = key->value;
switch (o->type) {
case OBJ_LIST: isempty = listTypeLength(o) == 0; break;
case OBJ_SET: isempty = setTypeSize(o) == 0; break;
case OBJ_ZSET: isempty = zsetLength(o) == 0; break;
case OBJ_HASH: isempty = hashTypeLength(o) == 0; break;
case OBJ_STREAM: isempty = streamLength(o) == 0; break;
default: isempty = 0;
}
if (isempty) {
if (key->iter) moduleFreeKeyIterator(key);
dbDelete(key->db, key->key);
key->value = NULL;
return 1;
} else {
return 0;
}
}
/* --------------------------------------------------------------------------
* Service API exported to modules
*
* Note that all the exported APIs are called VM_<funcname> in the core
* and ValkeyModule_<funcname> in the module side (defined as function
* pointers in valkeymodule.h). In this way the dynamic linker does not
* mess with our global function pointers, overriding it with the symbols
* defined in the main executable having the same names.
* -------------------------------------------------------------------------- */
int VM_GetApi(const char *funcname, void **targetPtrPtr) {
/* Lookup the requested module API and store the function pointer into the
* target pointer. The function returns VALKEYMODULE_ERR if there is no such
* named API, otherwise VALKEYMODULE_OK.
*
* This function is not meant to be used by modules developer, it is only
* used implicitly by including valkeymodule.h. */
dictEntry *he = dictFind(server.moduleapi, funcname);
if (!he) return VALKEYMODULE_ERR;
*targetPtrPtr = dictGetVal(he);
return VALKEYMODULE_OK;
}
void modulePostExecutionUnitOperations(void) {
if (server.execution_nesting) return;
if (server.busy_module_yield_flags) {
blockingOperationEnds();
server.busy_module_yield_flags = BUSY_MODULE_YIELD_NONE;
if (server.current_client) unprotectClient(server.current_client);
unblockPostponedClients();
}
}
/* Free the context after the user function was called. */
void moduleFreeContext(ValkeyModuleCtx *ctx) {
/* See comment in moduleCreateContext */
if (!(ctx->flags & (VALKEYMODULE_CTX_THREAD_SAFE | VALKEYMODULE_CTX_COMMAND))) {
exitExecutionUnit();
postExecutionUnitOperations();
}
autoMemoryCollect(ctx);
poolAllocRelease(ctx);
if (ctx->postponed_arrays) {
zfree(ctx->postponed_arrays);
ctx->postponed_arrays_count = 0;
serverLog(LL_WARNING,
"API misuse detected in module %s: "
"ValkeyModule_ReplyWith*(VALKEYMODULE_POSTPONED_LEN) "
"not matched by the same number of ValkeyModule_SetReply*Len() "
"calls.",
ctx->module->name);
}
/* If this context has a temp client, we return it back to the pool.
* If this context created a new client (e.g detached context), we free it.
* If the client is assigned manually, e.g ctx->client = someClientInstance,
* none of these flags will be set and we do not attempt to free it. */
if (ctx->flags & VALKEYMODULE_CTX_TEMP_CLIENT)
moduleReleaseTempClient(ctx->client);
else if (ctx->flags & VALKEYMODULE_CTX_NEW_CLIENT)
freeClient(ctx->client);
}
static CallReply *moduleParseReply(client *c, ValkeyModuleCtx *ctx) {
/* Convert the result of the command into a module reply. */
sds proto = sdsnewlen(c->buf, c->bufpos);
c->bufpos = 0;
while (listLength(c->reply)) {
clientReplyBlock *o = listNodeValue(listFirst(c->reply));
proto = sdscatlen(proto, o->buf, o->used);
listDelNode(c->reply, listFirst(c->reply));
}
CallReply *reply = callReplyCreate(proto, c->deferred_reply_errors, ctx);
c->deferred_reply_errors = NULL; /* now the responsibility of the reply object. */
return reply;
}
void moduleCallCommandUnblockedHandler(client *c) {
ValkeyModuleCtx ctx;
ValkeyModuleAsyncRMCallPromise *promise = c->bstate->async_rm_call_handle;
serverAssert(promise);
ValkeyModule *module = promise->module;
if (!promise->on_unblocked) {
moduleReleaseTempClient(c);
return; /* module did not set any unblock callback. */
}
moduleCreateContext(&ctx, module, VALKEYMODULE_CTX_TEMP_CLIENT);
selectDb(ctx.client, c->db->id);
CallReply *reply = moduleParseReply(c, NULL);
module->in_call++;
promise->on_unblocked(&ctx, reply, promise->private_data);
module->in_call--;
moduleFreeContext(&ctx);
moduleReleaseTempClient(c);
}
/* Allocates the memory necessary to hold the ValkeyModuleCtx structure, and
* returns the pointer to the allocated memory.
*
* Used by the scripting engines implementation to cache the context structure.
*/
ValkeyModuleCtx *moduleAllocateContext(void) {
return (ValkeyModuleCtx *)zcalloc(sizeof(ValkeyModuleCtx));
}
/* Create a module ctx and keep track of the nesting level.
*
* Note: When creating ctx for threads (VM_GetThreadSafeContext and
* VM_GetDetachedThreadSafeContext) we do not bump up the nesting level
* because we only need to track of nesting level in the main thread
* (only the main thread uses propagatePendingCommands) */
void moduleCreateContext(ValkeyModuleCtx *out_ctx, ValkeyModule *module, int ctx_flags) {
memset(out_ctx, 0, sizeof(ValkeyModuleCtx));
out_ctx->getapifuncptr = (void *)(unsigned long)&VM_GetApi;
out_ctx->module = module;
out_ctx->flags = ctx_flags;
if (ctx_flags & VALKEYMODULE_CTX_TEMP_CLIENT)
out_ctx->client = moduleAllocTempClient();
else if (ctx_flags & VALKEYMODULE_CTX_NEW_CLIENT) {
out_ctx->client = createClient(NULL);
out_ctx->client->flag.fake = 1;
}
/* Calculate the initial yield time for long blocked contexts.
* in loading we depend on the server hz, but in other cases we also wait
* for busy_reply_threshold.
* Note that in theory we could have started processing BUSY_MODULE_YIELD_EVENTS
* sooner, and only delay the processing for clients till the busy_reply_threshold,
* but this carries some overheads of frequently marking clients with BLOCKED_POSTPONE
* and releasing them, i.e. if modules only block for short periods. */
if (server.loading)
out_ctx->next_yield_time = getMonotonicUs() + 1000000 / server.hz;
else
out_ctx->next_yield_time = getMonotonicUs() + server.busy_reply_threshold * 1000;
/* Increment the execution_nesting counter (module is about to execute some code),
* except in the following cases:
* 1. We came here from cmd->proc (either call() or AOF load).
* In the former, the counter has been already incremented from within
* call() and in the latter we don't care about execution_nesting
* 2. If we are running in a thread (execution_nesting will be dealt with
* when locking/unlocking the GIL) */
if (!(ctx_flags & (VALKEYMODULE_CTX_THREAD_SAFE | VALKEYMODULE_CTX_COMMAND))) {
enterExecutionUnit(1, 0);
}
}
/* Initialize a module context to be used by scripting engines callback
* functions.
*/
void moduleScriptingEngineInitContext(ValkeyModuleCtx *out_ctx,
ValkeyModule *module,
client *client) {
moduleCreateContext(out_ctx, module, VALKEYMODULE_CTX_NONE);
out_ctx->client = client;
}
/* This command binds the normal command invocation with commands
* exported by modules. */
void ValkeyModuleCommandDispatcher(client *c) {
ValkeyModuleCommand *cp = c->cmd->module_cmd;
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, cp->module, VALKEYMODULE_CTX_COMMAND);
ctx.client = c;
cp->func(&ctx, (void **)c->argv, c->argc);
moduleFreeContext(&ctx);
/* In some cases processMultibulkBuffer uses sdsMakeRoomFor to
* expand the query buffer, and in order to avoid a big object copy
* the query buffer SDS may be used directly as the SDS string backing
* the client argument vectors: sometimes this will result in the SDS
* string having unused space at the end. Later if a module takes ownership
* of the RedisString, such space will be wasted forever. Inside the
* server core this is not a problem because tryObjectEncoding() is called
* before storing strings in the key space. Here we need to do it
* for the module. */
for (int i = 0; i < c->argc; i++) {
/* Only do the work if the module took ownership of the object:
* in that case the refcount is no longer 1. */
if (c->argv[i]->refcount > 1) trimStringObjectIfNeeded(c->argv[i], 0);
}
}
/* This function returns the list of keys, with the same interface as the
* 'getkeys' function of the native commands, for module commands that exported
* the "getkeys-api" flag during the registration. This is done when the
* list of keys are not at fixed positions, so that first/last/step cannot
* be used.
*
* In order to accomplish its work, the module command is called, flagging
* the context in a way that the command can recognize this is a special
* "get keys" call by calling ValkeyModule_IsKeysPositionRequest(ctx). */
int moduleGetCommandKeysViaAPI(struct serverCommand *cmd, robj **argv, int argc, getKeysResult *result) {
ValkeyModuleCommand *cp = cmd->module_cmd;
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, cp->module, VALKEYMODULE_CTX_KEYS_POS_REQUEST);
/* Initialize getKeysResult */
getKeysPrepareResult(result, MAX_KEYS_BUFFER);
ctx.keys_result = result;
cp->func(&ctx, (void **)argv, argc);
/* We currently always use the array allocated by VM_KeyAtPos() and don't try
* to optimize for the pre-allocated buffer.
*/
moduleFreeContext(&ctx);
return result->numkeys;
}
/* This function returns the list of channels, with the same interface as
* moduleGetCommandKeysViaAPI, for modules that declare "getchannels-api"
* during registration. Unlike keys, this is the only way to declare channels. */
int moduleGetCommandChannelsViaAPI(struct serverCommand *cmd, robj **argv, int argc, getKeysResult *result) {
ValkeyModuleCommand *cp = cmd->module_cmd;
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, cp->module, VALKEYMODULE_CTX_CHANNELS_POS_REQUEST);
/* Initialize getKeysResult */
getKeysPrepareResult(result, MAX_KEYS_BUFFER);
ctx.keys_result = result;
cp->func(&ctx, (void **)argv, argc);
/* We currently always use the array allocated by VM_RM_ChannelAtPosWithFlags() and don't try
* to optimize for the pre-allocated buffer. */
moduleFreeContext(&ctx);
return result->numkeys;
}
/* --------------------------------------------------------------------------
* ## Commands API
*
* These functions are used to implement custom commands.
*
* For examples, see https://valkey.io/topics/modules-intro.
* -------------------------------------------------------------------------- */
/* Return non-zero if a module command, that was declared with the
* flag "getkeys-api", is called in a special way to get the keys positions
* and not to get executed. Otherwise zero is returned. */
int VM_IsKeysPositionRequest(ValkeyModuleCtx *ctx) {
return (ctx->flags & VALKEYMODULE_CTX_KEYS_POS_REQUEST) != 0;
}
/* When a module command is called in order to obtain the position of
* keys, since it was flagged as "getkeys-api" during the registration,
* the command implementation checks for this special call using the
* ValkeyModule_IsKeysPositionRequest() API and uses this function in
* order to report keys.
*
* The supported flags are the ones used by VM_SetCommandInfo, see VALKEYMODULE_CMD_KEY_*.
*
*
* The following is an example of how it could be used:
*
* if (ValkeyModule_IsKeysPositionRequest(ctx)) {
* ValkeyModule_KeyAtPosWithFlags(ctx, 2, VALKEYMODULE_CMD_KEY_RO | VALKEYMODULE_CMD_KEY_ACCESS);
* ValkeyModule_KeyAtPosWithFlags(ctx, 1, VALKEYMODULE_CMD_KEY_RW | VALKEYMODULE_CMD_KEY_UPDATE |
* VALKEYMODULE_CMD_KEY_ACCESS);
* }
*
* Note: in the example above the get keys API could have been handled by key-specs (preferred).
* Implementing the getkeys-api is required only when is it not possible to declare key-specs that cover all keys.
*
*/
void VM_KeyAtPosWithFlags(ValkeyModuleCtx *ctx, int pos, int flags) {
if (!(ctx->flags & VALKEYMODULE_CTX_KEYS_POS_REQUEST) || !ctx->keys_result) return;
if (pos <= 0) return;
getKeysResult *res = ctx->keys_result;
/* Check overflow */
if (res->numkeys == res->size) {
int newsize = res->size + (res->size > 8192 ? 8192 : res->size);
getKeysPrepareResult(res, newsize);
}
res->keys[res->numkeys].pos = pos;
res->keys[res->numkeys].flags = moduleConvertKeySpecsFlags(flags, 1);
res->numkeys++;
}
/* This API existed before VM_KeyAtPosWithFlags was added, now deprecated and
* can be used for compatibility with older versions, before key-specs and flags
* were introduced. */
void VM_KeyAtPos(ValkeyModuleCtx *ctx, int pos) {
/* Default flags require full access */
int flags = moduleConvertKeySpecsFlags(CMD_KEY_FULL_ACCESS, 0);
VM_KeyAtPosWithFlags(ctx, pos, flags);
}
/* Return non-zero if a module command, that was declared with the
* flag "getchannels-api", is called in a special way to get the channel positions
* and not to get executed. Otherwise zero is returned. */
int VM_IsChannelsPositionRequest(ValkeyModuleCtx *ctx) {
return (ctx->flags & VALKEYMODULE_CTX_CHANNELS_POS_REQUEST) != 0;
}
/* When a module command is called in order to obtain the position of
* channels, since it was flagged as "getchannels-api" during the
* registration, the command implementation checks for this special call
* using the ValkeyModule_IsChannelsPositionRequest() API and uses this
* function in order to report the channels.
*
* The supported flags are:
* * VALKEYMODULE_CMD_CHANNEL_SUBSCRIBE: This command will subscribe to the channel.
* * VALKEYMODULE_CMD_CHANNEL_UNSUBSCRIBE: This command will unsubscribe from this channel.
* * VALKEYMODULE_CMD_CHANNEL_PUBLISH: This command will publish to this channel.
* * VALKEYMODULE_CMD_CHANNEL_PATTERN: Instead of acting on a specific channel, will act on any
* channel specified by the pattern. This is the same access
* used by the PSUBSCRIBE and PUNSUBSCRIBE commands.
* Not intended to be used with PUBLISH permissions.
*
* The following is an example of how it could be used:
*
* if (ValkeyModule_IsChannelsPositionRequest(ctx)) {
* ValkeyModule_ChannelAtPosWithFlags(ctx, 1, VALKEYMODULE_CMD_CHANNEL_SUBSCRIBE |
* VALKEYMODULE_CMD_CHANNEL_PATTERN); ValkeyModule_ChannelAtPosWithFlags(ctx, 1, VALKEYMODULE_CMD_CHANNEL_PUBLISH);
* }
*
* Note: One usage of declaring channels is for evaluating ACL permissions. In this context,
* unsubscribing is always allowed, so commands will only be checked against subscribe and
* publish permissions. This is preferred over using VM_ACLCheckChannelPermissions, since
* it allows the ACLs to be checked before the command is executed. */
void VM_ChannelAtPosWithFlags(ValkeyModuleCtx *ctx, int pos, int flags) {
if (!(ctx->flags & VALKEYMODULE_CTX_CHANNELS_POS_REQUEST) || !ctx->keys_result) return;
if (pos <= 0) return;
getKeysResult *res = ctx->keys_result;
/* Check overflow */
if (res->numkeys == res->size) {
int newsize = res->size + (res->size > 8192 ? 8192 : res->size);
getKeysPrepareResult(res, newsize);
}
int new_flags = 0;
if (flags & VALKEYMODULE_CMD_CHANNEL_SUBSCRIBE) new_flags |= CMD_CHANNEL_SUBSCRIBE;
if (flags & VALKEYMODULE_CMD_CHANNEL_UNSUBSCRIBE) new_flags |= CMD_CHANNEL_UNSUBSCRIBE;
if (flags & VALKEYMODULE_CMD_CHANNEL_PUBLISH) new_flags |= CMD_CHANNEL_PUBLISH;
if (flags & VALKEYMODULE_CMD_CHANNEL_PATTERN) new_flags |= CMD_CHANNEL_PATTERN;
res->keys[res->numkeys].pos = pos;
res->keys[res->numkeys].flags = new_flags;
res->numkeys++;
}
/* Returns 1 if name is valid, otherwise returns 0.
*
* We want to block some chars in module command names that we know can
* mess things up.
*
* There are these characters:
* ' ' (space) - issues with old inline protocol.
* '\r', '\n' (newline) - can mess up the protocol on acl error replies.
* '|' - sub-commands.
* '@' - ACL categories.
* '=', ',' - info and client list fields (':' handled by getSafeInfoString).
* */
int isCommandNameValid(const char *name) {
const char *block_chars = " \r\n|@=,";
if (strpbrk(name, block_chars)) return 0;
return 1;
}
/* Helper for VM_CreateCommand(). Turns a string representing command
* flags into the command flags used by the server core.
*
* It returns the set of flags, or -1 if unknown flags are found. */
int64_t commandFlagsFromString(char *s) {
int count, j;
int64_t flags = 0;
sds *tokens = sdssplitlen(s, strlen(s), " ", 1, &count);
for (j = 0; j < count; j++) {
char *t = tokens[j];
/* clang-format off */
if (!strcasecmp(t,"write")) flags |= CMD_WRITE;
else if (!strcasecmp(t,"readonly")) flags |= CMD_READONLY;
else if (!strcasecmp(t,"admin")) flags |= CMD_ADMIN;
else if (!strcasecmp(t,"deny-oom")) flags |= CMD_DENYOOM;
else if (!strcasecmp(t,"deny-script")) flags |= CMD_NOSCRIPT;
else if (!strcasecmp(t,"allow-loading")) flags |= CMD_LOADING;
else if (!strcasecmp(t,"pubsub")) flags |= CMD_PUBSUB;
else if (!strcasecmp(t,"random")) { /* Deprecated. Silently ignore. */ }
else if (!strcasecmp(t,"blocking")) flags |= CMD_BLOCKING;
else if (!strcasecmp(t,"allow-stale")) flags |= CMD_STALE;
else if (!strcasecmp(t,"no-monitor")) flags |= CMD_SKIP_MONITOR;
else if (!strcasecmp(t,"no-slowlog")) flags |= CMD_SKIP_COMMANDLOG;
else if (!strcasecmp(t,"no-commandlog")) flags |= CMD_SKIP_COMMANDLOG;
else if (!strcasecmp(t,"fast")) flags |= CMD_FAST;
else if (!strcasecmp(t,"no-auth")) flags |= CMD_NO_AUTH;
else if (!strcasecmp(t,"may-replicate")) flags |= CMD_MAY_REPLICATE;
else if (!strcasecmp(t,"getkeys-api")) flags |= CMD_MODULE_GETKEYS;
else if (!strcasecmp(t,"getchannels-api")) flags |= CMD_MODULE_GETCHANNELS;
else if (!strcasecmp(t,"no-cluster")) flags |= CMD_MODULE_NO_CLUSTER;
else if (!strcasecmp(t,"no-mandatory-keys")) flags |= CMD_NO_MANDATORY_KEYS;
else if (!strcasecmp(t,"allow-busy")) flags |= CMD_ALLOW_BUSY;
else break;
/* clang-format on */
}
sdsfreesplitres(tokens, count);
if (j != count) return -1; /* Some token not processed correctly. */
return flags;
}
ValkeyModuleCommand *moduleCreateCommandProxy(struct ValkeyModule *module,
sds declared_name,
sds fullname,
ValkeyModuleCmdFunc cmdfunc,
int64_t flags,
int firstkey,
int lastkey,
int keystep);
/* Register a new command in the server, that will be handled by
* calling the function pointer 'cmdfunc' using the ValkeyModule calling
* convention.
*
* The function returns VALKEYMODULE_ERR in these cases:
* - If creation of module command is called outside the ValkeyModule_OnLoad.
* - The specified command is already busy.
* - The command name contains some chars that are not allowed.
* - A set of invalid flags were passed.
*
* Otherwise VALKEYMODULE_OK is returned and the new command is registered.
*
* This function must be called during the initialization of the module
* inside the ValkeyModule_OnLoad() function. Calling this function outside
* of the initialization function is not defined.
*
* The command function type is the following:
*
* int MyCommand_ValkeyCommand(ValkeyModuleCtx *ctx, ValkeyModuleString **argv, int argc);
*
* And is supposed to always return VALKEYMODULE_OK.
*
* The set of flags 'strflags' specify the behavior of the command, and should
* be passed as a C string composed of space separated words, like for
* example "write deny-oom". The set of flags are:
*
* * **"write"**: The command may modify the data set (it may also read
* from it).
* * **"readonly"**: The command returns data from keys but never writes.
* * **"admin"**: The command is an administrative command (may change
* replication or perform similar tasks).
* * **"deny-oom"**: The command may use additional memory and should be
* denied during out of memory conditions.
* * **"deny-script"**: Don't allow this command in Lua scripts.
* * **"allow-loading"**: Allow this command while the server is loading data.
* Only commands not interacting with the data set
* should be allowed to run in this mode. If not sure
* don't use this flag.
* * **"pubsub"**: The command publishes things on Pub/Sub channels.
* * **"random"**: The command may have different outputs even starting
* from the same input arguments and key values.
* Starting from Redis OSS 7.0 this flag has been deprecated.
* Declaring a command as "random" can be done using
* command tips, see https://valkey.io/topics/command-tips.
* * **"allow-stale"**: The command is allowed to run on replicas that don't
* serve stale data. Don't use if you don't know what
* this means.
* * **"no-monitor"**: Don't propagate the command on monitor. Use this if
* the command has sensitive data among the arguments.
* * **"no-slowlog"**: Deprecated, please use "no-commandlog".
* * **"no-commandlog"**: Don't log this command in the commandlog. Use this if
* the command has sensitive data among the arguments.
* * **"fast"**: The command time complexity is not greater
* than O(log(N)) where N is the size of the collection or
* anything else representing the normal scalability
* issue with the command.
* * **"getkeys-api"**: The command implements the interface to return
* the arguments that are keys. Used when start/stop/step
* is not enough because of the command syntax.
* * **"no-cluster"**: The command should not register in Cluster
* since is not designed to work with it because, for
* example, is unable to report the position of the
* keys, programmatically creates key names, or any
* other reason.
* * **"no-auth"**: This command can be run by an un-authenticated client.
* Normally this is used by a command that is used
* to authenticate a client.
* * **"may-replicate"**: This command may generate replication traffic, even
* though it's not a write command.
* * **"no-mandatory-keys"**: All the keys this command may take are optional
* * **"blocking"**: The command has the potential to block the client.
* * **"allow-busy"**: Permit the command while the server is blocked either by
* a script or by a slow module command, see
* VM_Yield.
* * **"getchannels-api"**: The command implements the interface to return
* the arguments that are channels.
*
* The last three parameters specify which arguments of the new command are
* keys. See https://valkey.io/commands/command for more information.
*
* * `firstkey`: One-based index of the first argument that's a key.
* Position 0 is always the command name itself.
* 0 for commands with no keys.
* * `lastkey`: One-based index of the last argument that's a key.
* Negative numbers refer to counting backwards from the last
* argument (-1 means the last argument provided)
* 0 for commands with no keys.
* * `keystep`: Step between first and last key indexes.
* 0 for commands with no keys.
*
* This information is used by ACL, Cluster and the `COMMAND` command.
*
* NOTE: The scheme described above serves a limited purpose and can
* only be used to find keys that exist at constant indices.
* For non-trivial key arguments, you may pass 0,0,0 and use
* ValkeyModule_SetCommandInfo to set key specs using a more advanced scheme and use
* ValkeyModule_SetCommandACLCategories to set ACL categories of the commands. */
int VM_CreateCommand(ValkeyModuleCtx *ctx,
const char *name,
ValkeyModuleCmdFunc cmdfunc,
const char *strflags,
int firstkey,
int lastkey,
int keystep) {
if (!ctx->module->onload) return VALKEYMODULE_ERR;
int64_t flags = strflags ? commandFlagsFromString((char *)strflags) : 0;
if (flags == -1) return VALKEYMODULE_ERR;
if ((flags & CMD_MODULE_NO_CLUSTER) && server.cluster_enabled) return VALKEYMODULE_ERR;
/* Check if the command name is valid. */
if (!isCommandNameValid(name)) return VALKEYMODULE_ERR;
/* Check if the command name is busy. */
if (lookupCommandByCString(name) != NULL) return VALKEYMODULE_ERR;
sds declared_name = sdsnew(name);
ValkeyModuleCommand *cp = moduleCreateCommandProxy(ctx->module, declared_name, sdsdup(declared_name), cmdfunc,
flags, firstkey, lastkey, keystep);
cp->serverCmd->arity = cmdfunc ? -1 : -2; /* Default value, can be changed later via dedicated API */
/* Drain IO queue before modifying commands dictionary to prevent concurrent access while modifying it. */
drainIOThreadsQueue();
serverAssert(hashtableAdd(server.commands, cp->serverCmd));
serverAssert(hashtableAdd(server.orig_commands, cp->serverCmd));
cp->serverCmd->id = ACLGetCommandID(declared_name); /* ID used for ACL. */
return VALKEYMODULE_OK;
}
/* A proxy that help create a module command / subcommand.
*
* 'declared_name': it contains the sub_name, which is just the fullname for non-subcommands.
* 'fullname': sds string representing the command fullname.
*
* Function will take the ownership of both 'declared_name' and 'fullname' SDS.
*/
ValkeyModuleCommand *moduleCreateCommandProxy(struct ValkeyModule *module,
sds declared_name,
sds fullname,
ValkeyModuleCmdFunc cmdfunc,
int64_t flags,
int firstkey,
int lastkey,
int keystep) {
struct serverCommand *serverCmd;
ValkeyModuleCommand *cp;
/* Create a command "proxy", which is a structure that is referenced
* in the command table, so that the generic command that works as
* binding between modules and the server, can know what function to call
* and what the module is. */
cp = zcalloc(sizeof(*cp));
cp->module = module;
cp->func = cmdfunc;
cp->serverCmd = zcalloc(sizeof(*serverCmd));
cp->serverCmd->declared_name = declared_name; /* SDS for module commands */
cp->serverCmd->fullname = fullname;
cp->serverCmd->group = COMMAND_GROUP_MODULE;
cp->serverCmd->proc = ValkeyModuleCommandDispatcher;
cp->serverCmd->flags = flags | CMD_MODULE;
cp->serverCmd->module_cmd = cp;
if (firstkey != 0) {
cp->serverCmd->key_specs_num = 1;
cp->serverCmd->key_specs = zcalloc(sizeof(keySpec));
cp->serverCmd->key_specs[0].flags = CMD_KEY_FULL_ACCESS;
if (flags & CMD_MODULE_GETKEYS) cp->serverCmd->key_specs[0].flags |= CMD_KEY_VARIABLE_FLAGS;
cp->serverCmd->key_specs[0].begin_search_type = KSPEC_BS_INDEX;
cp->serverCmd->key_specs[0].bs.index.pos = firstkey;
cp->serverCmd->key_specs[0].find_keys_type = KSPEC_FK_RANGE;
cp->serverCmd->key_specs[0].fk.range.lastkey = lastkey < 0 ? lastkey : (lastkey - firstkey);
cp->serverCmd->key_specs[0].fk.range.keystep = keystep;
cp->serverCmd->key_specs[0].fk.range.limit = 0;
} else {
cp->serverCmd->key_specs_num = 0;
cp->serverCmd->key_specs = NULL;
}
populateCommandLegacyRangeSpec(cp->serverCmd);
cp->serverCmd->microseconds = 0;
cp->serverCmd->calls = 0;
cp->serverCmd->rejected_calls = 0;
cp->serverCmd->failed_calls = 0;
return cp;
}
/* Get an opaque structure, representing a module command, by command name.
* This structure is used in some of the command-related APIs.
*
* NULL is returned in case of the following errors:
*
* * Command not found
* * The command is not a module command
* * The command doesn't belong to the calling module
*/
ValkeyModuleCommand *VM_GetCommand(ValkeyModuleCtx *ctx, const char *name) {
struct serverCommand *cmd = lookupCommandByCString(name);
if (!cmd || !(cmd->flags & CMD_MODULE)) return NULL;
ValkeyModuleCommand *cp = cmd->module_cmd;
if (cp->module != ctx->module) return NULL;
return cp;
}
/* Very similar to ValkeyModule_CreateCommand except that it is used to create
* a subcommand, associated with another, container, command.
*
* Example: If a module has a configuration command, MODULE.CONFIG, then
* GET and SET should be individual subcommands, while MODULE.CONFIG is
* a command, but should not be registered with a valid `funcptr`:
*
* if (ValkeyModule_CreateCommand(ctx,"module.config",NULL,"",0,0,0) == VALKEYMODULE_ERR)
* return VALKEYMODULE_ERR;
*
* ValkeyModuleCommand *parent = ValkeyModule_GetCommand(ctx,,"module.config");
*
* if (ValkeyModule_CreateSubcommand(parent,"set",cmd_config_set,"",0,0,0) == VALKEYMODULE_ERR)
* return VALKEYMODULE_ERR;
*
* if (ValkeyModule_CreateSubcommand(parent,"get",cmd_config_get,"",0,0,0) == VALKEYMODULE_ERR)
* return VALKEYMODULE_ERR;
*
* Returns VALKEYMODULE_OK on success and VALKEYMODULE_ERR in case of the following errors:
*
* * Error while parsing `strflags`
* * Command is marked as `no-cluster` but cluster mode is enabled
* * `parent` is already a subcommand (we do not allow more than one level of command nesting)
* * `parent` is a command with an implementation (ValkeyModuleCmdFunc) (A parent command should be a pure container of
* subcommands)
* * `parent` already has a subcommand called `name`
* * Creating a subcommand is called outside of ValkeyModule_OnLoad.
*/
int VM_CreateSubcommand(ValkeyModuleCommand *parent,
const char *name,
ValkeyModuleCmdFunc cmdfunc,
const char *strflags,
int firstkey,
int lastkey,
int keystep) {
if (!parent->module->onload) return VALKEYMODULE_ERR;
int64_t flags = strflags ? commandFlagsFromString((char *)strflags) : 0;
if (flags == -1) return VALKEYMODULE_ERR;
if ((flags & CMD_MODULE_NO_CLUSTER) && server.cluster_enabled) return VALKEYMODULE_ERR;
struct serverCommand *parent_cmd = parent->serverCmd;
if (parent_cmd->parent) return VALKEYMODULE_ERR; /* We don't allow more than one level of subcommands */
ValkeyModuleCommand *parent_cp = parent_cmd->module_cmd;
if (parent_cp->func) return VALKEYMODULE_ERR; /* A parent command should be a pure container of subcommands */
/* Check if the command name is valid. */
if (!isCommandNameValid(name)) return VALKEYMODULE_ERR;
/* Check if the command name is busy within the parent command. */
sds declared_name = sdsnew(name);
if (parent_cmd->subcommands_ht && lookupSubcommand(parent_cmd, declared_name) != NULL) {
sdsfree(declared_name);
return VALKEYMODULE_ERR;
}
sds fullname = catSubCommandFullname(parent_cmd->fullname, name);
ValkeyModuleCommand *cp =
moduleCreateCommandProxy(parent->module, declared_name, fullname, cmdfunc, flags, firstkey, lastkey, keystep);
cp->serverCmd->arity = -2;
commandAddSubcommand(parent_cmd, cp->serverCmd);
return VALKEYMODULE_OK;
}
/* Accessors of array elements of structs where the element size is stored
* separately in the version struct. */
static ValkeyModuleCommandHistoryEntry *moduleCmdHistoryEntryAt(const ValkeyModuleCommandInfoVersion *version,
ValkeyModuleCommandHistoryEntry *entries,
int index) {
off_t offset = index * version->sizeof_historyentry;
return (ValkeyModuleCommandHistoryEntry *)((char *)(entries) + offset);
}
static ValkeyModuleCommandKeySpec *
moduleCmdKeySpecAt(const ValkeyModuleCommandInfoVersion *version, ValkeyModuleCommandKeySpec *keyspecs, int index) {
off_t offset = index * version->sizeof_keyspec;
return (ValkeyModuleCommandKeySpec *)((char *)(keyspecs) + offset);
}
static ValkeyModuleCommandArg *
moduleCmdArgAt(const ValkeyModuleCommandInfoVersion *version, const ValkeyModuleCommandArg *args, int index) {
off_t offset = index * version->sizeof_arg;
return (ValkeyModuleCommandArg *)((char *)(args) + offset);
}
/* Recursively populate the args structure (setting num_args to the number of
* subargs) and return the number of args. */
int populateArgsStructure(struct serverCommandArg *args) {
if (!args) return 0;
int count = 0;
while (args->name) {
serverAssert(count < INT_MAX);
args->num_args = populateArgsStructure(args->subargs);
count++;
args++;
}
return count;
}
/* ValkeyModule_AddACLCategory can be used to add new ACL command categories. Category names
* can only contain alphanumeric characters, underscores, or dashes. Categories can only be added
* during the ValkeyModule_OnLoad function. Once a category has been added, it can not be removed.
* Any module can register a command to any added categories using ValkeyModule_SetCommandACLCategories.
*
* Returns:
* - VALKEYMODULE_OK on successfully adding the new ACL category.
* - VALKEYMODULE_ERR on failure.
*
* On error the errno is set to:
* - EINVAL if the name contains invalid characters.
* - EBUSY if the category name already exists.
* - ENOMEM if the number of categories reached the max limit of 64 categories.
*/
int VM_AddACLCategory(ValkeyModuleCtx *ctx, const char *name) {
if (!ctx->module->onload) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
if (moduleVerifyResourceName(name) == VALKEYMODULE_ERR) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
if (ACLGetCommandCategoryFlagByName(name)) {
errno = EBUSY;
return VALKEYMODULE_ERR;
}
if (ACLAddCommandCategory(name, 0)) {
ctx->module->num_acl_categories_added++;
return VALKEYMODULE_OK;
} else {
errno = ENOMEM;
return VALKEYMODULE_ERR;
}
}
/* Helper for categoryFlagsFromString(). Attempts to find an acl flag representing the provided flag string
* and adds that flag to acl_categories_flags if a match is found.
*
* Returns '1' if acl category flag is recognized or
* returns '0' if not recognized */
int matchAclCategoryFlag(char *flag, int64_t *acl_categories_flags) {
uint64_t this_flag = ACLGetCommandCategoryFlagByName(flag);
if (this_flag) {
*acl_categories_flags |= (int64_t)this_flag;
return 1;
}
return 0; /* Unrecognized */
}
/* Helper for VM_SetCommandACLCategories(). Turns a string representing acl category
* flags into the acl category flags used by the server ACL which allows users to access
* the module commands by acl categories.
*
* It returns the set of acl flags, or -1 if unknown flags are found. */
int64_t categoryFlagsFromString(char *aclflags) {
int count, j;
int64_t acl_categories_flags = 0;
sds *tokens = sdssplitlen(aclflags, strlen(aclflags), " ", 1, &count);
for (j = 0; j < count; j++) {
char *t = tokens[j];
if (!matchAclCategoryFlag(t, &acl_categories_flags)) {
serverLog(LL_WARNING, "Unrecognized categories flag %s on module load", t);
break;
}
}
sdsfreesplitres(tokens, count);
if (j != count) return -1; /* Some token not processed correctly. */
return acl_categories_flags;
}
/* ValkeyModule_SetCommandACLCategories can be used to set ACL categories to module
* commands and subcommands. The set of ACL categories should be passed as
* a space separated C string 'aclflags'.
*
* Example, the acl flags 'write slow' marks the command as part of the write and
* slow ACL categories.
*
* On success VALKEYMODULE_OK is returned. On error VALKEYMODULE_ERR is returned.
*
* This function can only be called during the ValkeyModule_OnLoad function. If called
* outside of this function, an error is returned.
*/
int VM_SetCommandACLCategories(ValkeyModuleCommand *command, const char *aclflags) {
if (!command || !command->module || !command->module->onload) return VALKEYMODULE_ERR;
int64_t categories_flags = aclflags ? categoryFlagsFromString((char *)aclflags) : 0;
if (categories_flags == -1) return VALKEYMODULE_ERR;
struct serverCommand *rcmd = command->serverCmd;
rcmd->acl_categories = categories_flags; /* ACL categories flags for module command */
command->module->num_commands_with_acl_categories++;
return VALKEYMODULE_OK;
}
/* Set additional command information.
*
* Affects the output of `COMMAND`, `COMMAND INFO` and `COMMAND DOCS`, Cluster,
* ACL and is used to filter commands with the wrong number of arguments before
* the call reaches the module code.
*
* This function can be called after creating a command using VM_CreateCommand
* and fetching the command pointer using VM_GetCommand. The information can
* only be set once for each command and has the following structure:
*
* typedef struct ValkeyModuleCommandInfo {
* const ValkeyModuleCommandInfoVersion *version;
* const char *summary;
* const char *complexity;
* const char *since;
* ValkeyModuleCommandHistoryEntry *history;
* const char *tips;
* int arity;
* ValkeyModuleCommandKeySpec *key_specs;
* ValkeyModuleCommandArg *args;
* } ValkeyModuleCommandInfo;
*
* All fields except `version` are optional. Explanation of the fields:
*
* - `version`: This field enables compatibility with different server versions.
* Always set this field to VALKEYMODULE_COMMAND_INFO_VERSION.
*
* - `summary`: A short description of the command (optional).
*
* - `complexity`: Complexity description (optional).
*
* - `since`: The version where the command was introduced (optional).
* Note: The version specified should be the module's, not the server version.
*
* - `history`: An array of ValkeyModuleCommandHistoryEntry (optional), which is
* a struct with the following fields:
*
* const char *since;
* const char *changes;
*
* `since` is a version string and `changes` is a string describing the
* changes. The array is terminated by a zeroed entry, i.e. an entry with
* both strings set to NULL.
*
* - `tips`: A string of space-separated tips regarding this command, meant for
* clients and proxies. See https://valkey.io/topics/command-tips.
*
* - `arity`: Number of arguments, including the command name itself. A positive
* number specifies an exact number of arguments and a negative number
* specifies a minimum number of arguments, so use -N to say >= N. The server
* validates a call before passing it to a module, so this can replace an
* arity check inside the module command implementation. A value of 0 (or an
* omitted arity field) is equivalent to -2 if the command has sub commands
* and -1 otherwise.
*
* - `key_specs`: An array of ValkeyModuleCommandKeySpec, terminated by an
* element memset to zero. This is a scheme that tries to describe the
* positions of key arguments better than the old VM_CreateCommand arguments
* `firstkey`, `lastkey`, `keystep` and is needed if those three are not
* enough to describe the key positions. There are two steps to retrieve key
* positions: *begin search* (BS) in which index should find the first key and
* *find keys* (FK) which, relative to the output of BS, describes how can we
* will which arguments are keys. Additionally, there are key specific flags.
*
* Key-specs cause the triplet (firstkey, lastkey, keystep) given in
* VM_CreateCommand to be recomputed, but it is still useful to provide
* these three parameters in VM_CreateCommand, to better support old server
* versions where VM_SetCommandInfo is not available.
*
* Note that key-specs don't fully replace the "getkeys-api" (see
* VM_CreateCommand, VM_IsKeysPositionRequest and VM_KeyAtPosWithFlags) so
* it may be a good idea to supply both key-specs and implement the
* getkeys-api.
*
* A key-spec has the following structure:
*
* typedef struct ValkeyModuleCommandKeySpec {
* const char *notes;
* uint64_t flags;
* ValkeyModuleKeySpecBeginSearchType begin_search_type;
* union {
* struct {
* int pos;
* } index;
* struct {
* const char *keyword;
* int startfrom;
* } keyword;
* } bs;
* ValkeyModuleKeySpecFindKeysType find_keys_type;
* union {
* struct {
* int lastkey;
* int keystep;
* int limit;
* } range;
* struct {
* int keynumidx;
* int firstkey;
* int keystep;
* } keynum;
* } fk;
* } ValkeyModuleCommandKeySpec;
*
* Explanation of the fields of ValkeyModuleCommandKeySpec:
*
* * `notes`: Optional notes or clarifications about this key spec.
*
* * `flags`: A bitwise or of key-spec flags described below.
*
* * `begin_search_type`: This describes how the first key is discovered.
* There are two ways to determine the first key:
*
* * `VALKEYMODULE_KSPEC_BS_UNKNOWN`: There is no way to tell where the
* key args start.
* * `VALKEYMODULE_KSPEC_BS_INDEX`: Key args start at a constant index.
* * `VALKEYMODULE_KSPEC_BS_KEYWORD`: Key args start just after a
* specific keyword.
*
* * `bs`: This is a union in which the `index` or `keyword` branch is used
* depending on the value of the `begin_search_type` field.
*
* * `bs.index.pos`: The index from which we start the search for keys.
* (`VALKEYMODULE_KSPEC_BS_INDEX` only.)
*
* * `bs.keyword.keyword`: The keyword (string) that indicates the
* beginning of key arguments. (`VALKEYMODULE_KSPEC_BS_KEYWORD` only.)
*
* * `bs.keyword.startfrom`: An index in argv from which to start
* searching. Can be negative, which means start search from the end,
* in reverse. Example: -2 means to start in reverse from the
* penultimate argument. (`VALKEYMODULE_KSPEC_BS_KEYWORD` only.)
*
* * `find_keys_type`: After the "begin search", this describes which
* arguments are keys. The strategies are:
*
* * `VALKEYMODULE_KSPEC_BS_UNKNOWN`: There is no way to tell where the
* key args are located.
* * `VALKEYMODULE_KSPEC_FK_RANGE`: Keys end at a specific index (or
* relative to the last argument).
* * `VALKEYMODULE_KSPEC_FK_KEYNUM`: There's an argument that contains
* the number of key args somewhere before the keys themselves.
*
* `find_keys_type` and `fk` can be omitted if this keyspec describes
* exactly one key.
*
* * `fk`: This is a union in which the `range` or `keynum` branch is used
* depending on the value of the `find_keys_type` field.
*
* * `fk.range` (for `VALKEYMODULE_KSPEC_FK_RANGE`): A struct with the
* following fields:
*
* * `lastkey`: Index of the last key relative to the result of the
* begin search step. Can be negative, in which case it's not
* relative. -1 indicates the last argument, -2 one before the
* last and so on.
*
* * `keystep`: How many arguments should we skip after finding a
* key, in order to find the next one?
*
* * `limit`: If `lastkey` is -1, we use `limit` to stop the search
* by a factor. 0 and 1 mean no limit. 2 means 1/2 of the
* remaining args, 3 means 1/3, and so on.
*
* * `fk.keynum` (for `VALKEYMODULE_KSPEC_FK_KEYNUM`): A struct with the
* following fields:
*
* * `keynumidx`: Index of the argument containing the number of
* keys to come, relative to the result of the begin search step.
*
* * `firstkey`: Index of the fist key relative to the result of the
* begin search step. (Usually it's just after `keynumidx`, in
* which case it should be set to `keynumidx + 1`.)
*
* * `keystep`: How many arguments should we skip after finding a
* key, in order to find the next one?
*
* Key-spec flags:
*
* The first four refer to what the command actually does with the *value or
* metadata of the key*, and not necessarily the user data or how it affects
* it. Each key-spec may must have exactly one of these. Any operation
* that's not distinctly deletion, overwrite or read-only would be marked as
* RW.
*
* * `VALKEYMODULE_CMD_KEY_RO`: Read-Only. Reads the value of the key, but
* doesn't necessarily return it.
*
* * `VALKEYMODULE_CMD_KEY_RW`: Read-Write. Modifies the data stored in the
* value of the key or its metadata.
*
* * `VALKEYMODULE_CMD_KEY_OW`: Overwrite. Overwrites the data stored in the
* value of the key.
*
* * `VALKEYMODULE_CMD_KEY_RM`: Deletes the key.
*
* The next four refer to *user data inside the value of the key*, not the
* metadata like LRU, type, cardinality. It refers to the logical operation
* on the user's data (actual input strings or TTL), being
* used/returned/copied/changed. It doesn't refer to modification or
* returning of metadata (like type, count, presence of data). ACCESS can be
* combined with one of the write operations INSERT, DELETE or UPDATE. Any
* write that's not an INSERT or a DELETE would be UPDATE.
*
* * `VALKEYMODULE_CMD_KEY_ACCESS`: Returns, copies or uses the user data
* from the value of the key.
*
* * `VALKEYMODULE_CMD_KEY_UPDATE`: Updates data to the value, new value may
* depend on the old value.
*
* * `VALKEYMODULE_CMD_KEY_INSERT`: Adds data to the value with no chance of
* modification or deletion of existing data.
*
* * `VALKEYMODULE_CMD_KEY_DELETE`: Explicitly deletes some content from the
* value of the key.
*
* Other flags:
*
* * `VALKEYMODULE_CMD_KEY_NOT_KEY`: The key is not actually a key, but
* should be routed in cluster mode as if it was a key.
*
* * `VALKEYMODULE_CMD_KEY_INCOMPLETE`: The keyspec might not point out all
* the keys it should cover.
*
* * `VALKEYMODULE_CMD_KEY_VARIABLE_FLAGS`: Some keys might have different
* flags depending on arguments.
*
* - `args`: An array of ValkeyModuleCommandArg, terminated by an element memset
* to zero. ValkeyModuleCommandArg is a structure with at the fields described
* below.
*
* typedef struct ValkeyModuleCommandArg {
* const char *name;
* ValkeyModuleCommandArgType type;
* int key_spec_index;
* const char *token;
* const char *summary;
* const char *since;
* int flags;
* struct ValkeyModuleCommandArg *subargs;
* } ValkeyModuleCommandArg;
*
* Explanation of the fields:
*
* * `name`: Name of the argument.
*
* * `type`: The type of the argument. See below for details. The types
* `VALKEYMODULE_ARG_TYPE_ONEOF` and `VALKEYMODULE_ARG_TYPE_BLOCK` require
* an argument to have sub-arguments, i.e. `subargs`.
*
* * `key_spec_index`: If the `type` is `VALKEYMODULE_ARG_TYPE_KEY` you must
* provide the index of the key-spec associated with this argument. See
* `key_specs` above. If the argument is not a key, you may specify -1.
*
* * `token`: The token preceding the argument (optional). Example: the
* argument `seconds` in `SET` has a token `EX`. If the argument consists
* of only a token (for example `NX` in `SET`) the type should be
* `VALKEYMODULE_ARG_TYPE_PURE_TOKEN` and `value` should be NULL.
*
* * `summary`: A short description of the argument (optional).
*
* * `since`: The first version which included this argument (optional).
*
* * `flags`: A bitwise or of the macros `VALKEYMODULE_CMD_ARG_*`. See below.
*
* * `value`: The display-value of the argument. This string is what should
* be displayed when creating the command syntax from the output of
* `COMMAND`. If `token` is not NULL, it should also be displayed.
*
* Explanation of `ValkeyModuleCommandArgType`:
*
* * `VALKEYMODULE_ARG_TYPE_STRING`: String argument.
* * `VALKEYMODULE_ARG_TYPE_INTEGER`: Integer argument.
* * `VALKEYMODULE_ARG_TYPE_DOUBLE`: Double-precision float argument.
* * `VALKEYMODULE_ARG_TYPE_KEY`: String argument representing a keyname.
* * `VALKEYMODULE_ARG_TYPE_PATTERN`: String, but regex pattern.
* * `VALKEYMODULE_ARG_TYPE_UNIX_TIME`: Integer, but Unix timestamp.
* * `VALKEYMODULE_ARG_TYPE_PURE_TOKEN`: Argument doesn't have a placeholder.
* It's just a token without a value. Example: the `KEEPTTL` option of the
* `SET` command.
* * `VALKEYMODULE_ARG_TYPE_ONEOF`: Used when the user can choose only one of
* a few sub-arguments. Requires `subargs`. Example: the `NX` and `XX`
* options of `SET`.
* * `VALKEYMODULE_ARG_TYPE_BLOCK`: Used when one wants to group together
* several sub-arguments, usually to apply something on all of them, like
* making the entire group "optional". Requires `subargs`. Example: the
* `LIMIT offset count` parameters in `ZRANGE`.
*
* Explanation of the command argument flags:
*
* * `VALKEYMODULE_CMD_ARG_OPTIONAL`: The argument is optional (like GET in
* the SET command).
* * `VALKEYMODULE_CMD_ARG_MULTIPLE`: The argument may repeat itself (like
* key in DEL).
* * `VALKEYMODULE_CMD_ARG_MULTIPLE_TOKEN`: The argument may repeat itself,
* and so does its token (like `GET pattern` in SORT).
*
* On success VALKEYMODULE_OK is returned. On error VALKEYMODULE_ERR is returned
* and `errno` is set to EINVAL if invalid info was provided or EEXIST if info
* has already been set. If the info is invalid, a warning is logged explaining
* which part of the info is invalid and why. */
int VM_SetCommandInfo(ValkeyModuleCommand *command, const ValkeyModuleCommandInfo *info) {
if (!moduleValidateCommandInfo(info)) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
struct serverCommand *cmd = command->serverCmd;
/* Check if any info has already been set. Overwriting info involves freeing
* the old info, which is not implemented. */
if (cmd->summary || cmd->complexity || cmd->since || cmd->history || cmd->tips || cmd->args ||
!(cmd->key_specs_num == 0 ||
/* Allow key spec populated from legacy (first,last,step) to exist. */
(cmd->key_specs_num == 1 && cmd->key_specs[0].begin_search_type == KSPEC_BS_INDEX &&
cmd->key_specs[0].find_keys_type == KSPEC_FK_RANGE))) {
errno = EEXIST;
return VALKEYMODULE_ERR;
}
if (info->summary) cmd->summary = zstrdup(info->summary);
if (info->complexity) cmd->complexity = zstrdup(info->complexity);
if (info->since) cmd->since = zstrdup(info->since);
const ValkeyModuleCommandInfoVersion *version = info->version;
if (info->history) {
size_t count = 0;
while (moduleCmdHistoryEntryAt(version, info->history, count)->since) count++;
serverAssert(count < SIZE_MAX / sizeof(commandHistory));
cmd->history = zmalloc(sizeof(commandHistory) * (count + 1));
for (size_t j = 0; j < count; j++) {
ValkeyModuleCommandHistoryEntry *entry = moduleCmdHistoryEntryAt(version, info->history, j);
cmd->history[j].since = zstrdup(entry->since);
cmd->history[j].changes = zstrdup(entry->changes);
}
cmd->history[count].since = NULL;
cmd->history[count].changes = NULL;
cmd->num_history = count;
}
if (info->tips) {
int count;
sds *tokens = sdssplitlen(info->tips, strlen(info->tips), " ", 1, &count);
if (tokens) {
cmd->tips = zmalloc(sizeof(char *) * (count + 1));
for (int j = 0; j < count; j++) {
cmd->tips[j] = zstrdup(tokens[j]);
}
cmd->tips[count] = NULL;
cmd->num_tips = count;
sdsfreesplitres(tokens, count);
}
}
if (info->arity) cmd->arity = info->arity;
if (info->key_specs) {
/* Count and allocate the key specs. */
size_t count = 0;
while (moduleCmdKeySpecAt(version, info->key_specs, count)->begin_search_type) count++;
serverAssert(count < INT_MAX);
zfree(cmd->key_specs);
cmd->key_specs = zmalloc(sizeof(keySpec) * count);
/* Copy the contents of the ValkeyModuleCommandKeySpec array. */
cmd->key_specs_num = count;
for (size_t j = 0; j < count; j++) {
ValkeyModuleCommandKeySpec *spec = moduleCmdKeySpecAt(version, info->key_specs, j);
cmd->key_specs[j].notes = spec->notes ? zstrdup(spec->notes) : NULL;
cmd->key_specs[j].flags = moduleConvertKeySpecsFlags(spec->flags, 1);
switch (spec->begin_search_type) {
case VALKEYMODULE_KSPEC_BS_UNKNOWN: cmd->key_specs[j].begin_search_type = KSPEC_BS_UNKNOWN; break;
case VALKEYMODULE_KSPEC_BS_INDEX:
cmd->key_specs[j].begin_search_type = KSPEC_BS_INDEX;
cmd->key_specs[j].bs.index.pos = spec->bs.index.pos;
break;
case VALKEYMODULE_KSPEC_BS_KEYWORD:
cmd->key_specs[j].begin_search_type = KSPEC_BS_KEYWORD;
cmd->key_specs[j].bs.keyword.keyword = zstrdup(spec->bs.keyword.keyword);
cmd->key_specs[j].bs.keyword.startfrom = spec->bs.keyword.startfrom;
break;
default:
/* Can't happen; stopped in moduleValidateCommandInfo(). */
serverPanic("Unknown begin_search_type");
}
switch (spec->find_keys_type) {
case VALKEYMODULE_KSPEC_FK_OMITTED:
/* Omitted field is shorthand to say that it's a single key. */
cmd->key_specs[j].find_keys_type = KSPEC_FK_RANGE;
cmd->key_specs[j].fk.range.lastkey = 0;
cmd->key_specs[j].fk.range.keystep = 1;
cmd->key_specs[j].fk.range.limit = 0;
break;
case VALKEYMODULE_KSPEC_FK_UNKNOWN: cmd->key_specs[j].find_keys_type = KSPEC_FK_UNKNOWN; break;
case VALKEYMODULE_KSPEC_FK_RANGE:
cmd->key_specs[j].find_keys_type = KSPEC_FK_RANGE;
cmd->key_specs[j].fk.range.lastkey = spec->fk.range.lastkey;
cmd->key_specs[j].fk.range.keystep = spec->fk.range.keystep;
cmd->key_specs[j].fk.range.limit = spec->fk.range.limit;
break;
case VALKEYMODULE_KSPEC_FK_KEYNUM:
cmd->key_specs[j].find_keys_type = KSPEC_FK_KEYNUM;
cmd->key_specs[j].fk.keynum.keynumidx = spec->fk.keynum.keynumidx;
cmd->key_specs[j].fk.keynum.firstkey = spec->fk.keynum.firstkey;
cmd->key_specs[j].fk.keynum.keystep = spec->fk.keynum.keystep;
break;
default:
/* Can't happen; stopped in moduleValidateCommandInfo(). */
serverPanic("Unknown find_keys_type");
}
}
/* Update the legacy (first,last,step) spec and "movablekeys" flag used by the COMMAND command,
* by trying to "glue" consecutive range key specs. */
populateCommandLegacyRangeSpec(cmd);
}
if (info->args) {
cmd->args = moduleCopyCommandArgs(info->args, version);
/* Populate arg.num_args with the number of subargs, recursively */
cmd->num_args = populateArgsStructure(cmd->args);
}
/* Fields added in future versions to be added here, under conditions like
* `if (info->version >= 2) { access version 2 fields here }` */
return VALKEYMODULE_OK;
}
/* Returns 1 if v is a power of two, 0 otherwise. */
static inline int isPowerOfTwo(uint64_t v) {
return v && !(v & (v - 1));
}
/* Returns 1 if the command info is valid and 0 otherwise. */
static int moduleValidateCommandInfo(const ValkeyModuleCommandInfo *info) {
const ValkeyModuleCommandInfoVersion *version = info->version;
if (!version) {
serverLog(LL_WARNING, "Invalid command info: version missing");
return 0;
}
/* No validation for the fields summary, complexity, since, tips (strings or
* NULL) and arity (any integer). */
/* History: If since is set, changes must also be set. */
if (info->history) {
for (size_t j = 0; moduleCmdHistoryEntryAt(version, info->history, j)->since; j++) {
if (!moduleCmdHistoryEntryAt(version, info->history, j)->changes) {
serverLog(LL_WARNING, "Invalid command info: history[%zd].changes missing", j);
return 0;
}
}
}
/* Key specs. */
if (info->key_specs) {
for (size_t j = 0; moduleCmdKeySpecAt(version, info->key_specs, j)->begin_search_type; j++) {
ValkeyModuleCommandKeySpec *spec = moduleCmdKeySpecAt(version, info->key_specs, j);
if (j >= INT_MAX) {
serverLog(LL_WARNING, "Invalid command info: Too many key specs");
return 0; /* serverCommand.key_specs_num is an int. */
}
/* Flags. Exactly one flag in a group is set if and only if the
* masked bits is a power of two. */
uint64_t key_flags =
VALKEYMODULE_CMD_KEY_RO | VALKEYMODULE_CMD_KEY_RW | VALKEYMODULE_CMD_KEY_OW | VALKEYMODULE_CMD_KEY_RM;
uint64_t write_flags =
VALKEYMODULE_CMD_KEY_INSERT | VALKEYMODULE_CMD_KEY_DELETE | VALKEYMODULE_CMD_KEY_UPDATE;
if (!isPowerOfTwo(spec->flags & key_flags)) {
serverLog(LL_WARNING,
"Invalid command info: key_specs[%zd].flags: "
"Exactly one of the flags RO, RW, OW, RM required",
j);
return 0;
}
if ((spec->flags & write_flags) != 0 && !isPowerOfTwo(spec->flags & write_flags)) {
serverLog(LL_WARNING,
"Invalid command info: key_specs[%zd].flags: "
"INSERT, DELETE and UPDATE are mutually exclusive",
j);
return 0;
}
switch (spec->begin_search_type) {
case VALKEYMODULE_KSPEC_BS_UNKNOWN: break;
case VALKEYMODULE_KSPEC_BS_INDEX: break;
case VALKEYMODULE_KSPEC_BS_KEYWORD:
if (spec->bs.keyword.keyword == NULL) {
serverLog(LL_WARNING,
"Invalid command info: key_specs[%zd].bs.keyword.keyword "
"required when begin_search_type is KEYWORD",
j);
return 0;
}
break;
default:
serverLog(LL_WARNING,
"Invalid command info: key_specs[%zd].begin_search_type: "
"Invalid value %d",
j, spec->begin_search_type);
return 0;
}
/* Validate find_keys_type. */
switch (spec->find_keys_type) {
case VALKEYMODULE_KSPEC_FK_OMITTED: break; /* short for RANGE {0,1,0} */
case VALKEYMODULE_KSPEC_FK_UNKNOWN: break;
case VALKEYMODULE_KSPEC_FK_RANGE: break;
case VALKEYMODULE_KSPEC_FK_KEYNUM: break;
default:
serverLog(LL_WARNING,
"Invalid command info: key_specs[%zd].find_keys_type: "
"Invalid value %d",
j, spec->find_keys_type);
return 0;
}
}
}
/* Args, subargs (recursive) */
return moduleValidateCommandArgs(info->args, version);
}
/* When from_api is true, converts from VALKEYMODULE_CMD_KEY_* flags to CMD_KEY_* flags.
* When from_api is false, converts from CMD_KEY_* flags to VALKEYMODULE_CMD_KEY_* flags. */
static int64_t moduleConvertKeySpecsFlags(int64_t flags, int from_api) {
int64_t out = 0;
int64_t map[][2] = {{VALKEYMODULE_CMD_KEY_RO, CMD_KEY_RO},
{VALKEYMODULE_CMD_KEY_RW, CMD_KEY_RW},
{VALKEYMODULE_CMD_KEY_OW, CMD_KEY_OW},
{VALKEYMODULE_CMD_KEY_RM, CMD_KEY_RM},
{VALKEYMODULE_CMD_KEY_ACCESS, CMD_KEY_ACCESS},
{VALKEYMODULE_CMD_KEY_INSERT, CMD_KEY_INSERT},
{VALKEYMODULE_CMD_KEY_UPDATE, CMD_KEY_UPDATE},
{VALKEYMODULE_CMD_KEY_DELETE, CMD_KEY_DELETE},
{VALKEYMODULE_CMD_KEY_NOT_KEY, CMD_KEY_NOT_KEY},
{VALKEYMODULE_CMD_KEY_INCOMPLETE, CMD_KEY_INCOMPLETE},
{VALKEYMODULE_CMD_KEY_VARIABLE_FLAGS, CMD_KEY_VARIABLE_FLAGS},
{0, 0}};
int from_idx = from_api ? 0 : 1, to_idx = !from_idx;
for (int i = 0; map[i][0]; i++)
if (flags & map[i][from_idx]) out |= map[i][to_idx];
return out;
}
/* Validates an array of ValkeyModuleCommandArg. Returns 1 if it's valid and 0 if
* it's invalid. */
static int moduleValidateCommandArgs(ValkeyModuleCommandArg *args, const ValkeyModuleCommandInfoVersion *version) {
if (args == NULL) return 1; /* Missing args is OK. */
for (size_t j = 0; moduleCmdArgAt(version, args, j)->name != NULL; j++) {
ValkeyModuleCommandArg *arg = moduleCmdArgAt(version, args, j);
int arg_type_error = 0;
moduleConvertArgType(arg->type, &arg_type_error);
if (arg_type_error) {
serverLog(LL_WARNING, "Invalid command info: Argument \"%s\": Undefined type %d", arg->name, arg->type);
return 0;
}
if (arg->type == VALKEYMODULE_ARG_TYPE_PURE_TOKEN && !arg->token) {
serverLog(LL_WARNING,
"Invalid command info: Argument \"%s\": "
"token required when type is PURE_TOKEN",
args[j].name);
return 0;
}
if (arg->type == VALKEYMODULE_ARG_TYPE_KEY) {
if (arg->key_spec_index < 0) {
serverLog(LL_WARNING,
"Invalid command info: Argument \"%s\": "
"key_spec_index required when type is KEY",
arg->name);
return 0;
}
} else if (arg->key_spec_index != -1 && arg->key_spec_index != 0) {
/* 0 is allowed for convenience, to allow it to be omitted in
* compound struct literals on the form `.field = value`. */
serverLog(LL_WARNING,
"Invalid command info: Argument \"%s\": "
"key_spec_index specified but type isn't KEY",
arg->name);
return 0;
}
if (arg->flags & ~(_VALKEYMODULE_CMD_ARG_NEXT - 1)) {
serverLog(LL_WARNING, "Invalid command info: Argument \"%s\": Invalid flags", arg->name);
return 0;
}
if (arg->type == VALKEYMODULE_ARG_TYPE_ONEOF || arg->type == VALKEYMODULE_ARG_TYPE_BLOCK) {
if (arg->subargs == NULL) {
serverLog(LL_WARNING,
"Invalid command info: Argument \"%s\": "
"subargs required when type is ONEOF or BLOCK",
arg->name);
return 0;
}
if (!moduleValidateCommandArgs(arg->subargs, version)) return 0;
} else {
if (arg->subargs != NULL) {
serverLog(LL_WARNING,
"Invalid command info: Argument \"%s\": "
"subargs specified but type isn't ONEOF nor BLOCK",
arg->name);
return 0;
}
}
}
return 1;
}
/* Converts an array of ValkeyModuleCommandArg into a freshly allocated array of
* struct serverCommandArg. */
static struct serverCommandArg *moduleCopyCommandArgs(ValkeyModuleCommandArg *args,
const ValkeyModuleCommandInfoVersion *version) {
size_t count = 0;
while (moduleCmdArgAt(version, args, count)->name) count++;
serverAssert(count < SIZE_MAX / sizeof(struct serverCommandArg));
struct serverCommandArg *realargs = zcalloc((count + 1) * sizeof(serverCommandArg));
for (size_t j = 0; j < count; j++) {
ValkeyModuleCommandArg *arg = moduleCmdArgAt(version, args, j);
realargs[j].name = zstrdup(arg->name);
realargs[j].type = moduleConvertArgType(arg->type, NULL);
if (arg->type == VALKEYMODULE_ARG_TYPE_KEY)
realargs[j].key_spec_index = arg->key_spec_index;
else
realargs[j].key_spec_index = -1;
if (arg->token) realargs[j].token = zstrdup(arg->token);
if (arg->summary) realargs[j].summary = zstrdup(arg->summary);
if (arg->since) realargs[j].since = zstrdup(arg->since);
if (arg->deprecated_since) realargs[j].deprecated_since = zstrdup(arg->deprecated_since);
if (arg->display_text) realargs[j].display_text = zstrdup(arg->display_text);
realargs[j].flags = moduleConvertArgFlags(arg->flags);
if (arg->subargs) realargs[j].subargs = moduleCopyCommandArgs(arg->subargs, version);
}
return realargs;
}
static serverCommandArgType moduleConvertArgType(ValkeyModuleCommandArgType type, int *error) {
if (error) *error = 0;
switch (type) {
case VALKEYMODULE_ARG_TYPE_STRING: return ARG_TYPE_STRING;
case VALKEYMODULE_ARG_TYPE_INTEGER: return ARG_TYPE_INTEGER;
case VALKEYMODULE_ARG_TYPE_DOUBLE: return ARG_TYPE_DOUBLE;
case VALKEYMODULE_ARG_TYPE_KEY: return ARG_TYPE_KEY;
case VALKEYMODULE_ARG_TYPE_PATTERN: return ARG_TYPE_PATTERN;
case VALKEYMODULE_ARG_TYPE_UNIX_TIME: return ARG_TYPE_UNIX_TIME;
case VALKEYMODULE_ARG_TYPE_PURE_TOKEN: return ARG_TYPE_PURE_TOKEN;
case VALKEYMODULE_ARG_TYPE_ONEOF: return ARG_TYPE_ONEOF;
case VALKEYMODULE_ARG_TYPE_BLOCK: return ARG_TYPE_BLOCK;
default:
if (error) *error = 1;
return -1;
}
}
static int moduleConvertArgFlags(int flags) {
int realflags = 0;
if (flags & VALKEYMODULE_CMD_ARG_OPTIONAL) realflags |= CMD_ARG_OPTIONAL;
if (flags & VALKEYMODULE_CMD_ARG_MULTIPLE) realflags |= CMD_ARG_MULTIPLE;
if (flags & VALKEYMODULE_CMD_ARG_MULTIPLE_TOKEN) realflags |= CMD_ARG_MULTIPLE_TOKEN;
return realflags;
}
/* Return `struct ValkeyModule *` as `void *` to avoid exposing it outside of module.c. */
void *moduleGetHandleByName(char *modulename) {
return dictFetchValue(modules, modulename);
}
/* Returns 1 if `cmd` is a command of the module `modulename`. 0 otherwise. */
int moduleIsModuleCommand(void *module_handle, struct serverCommand *cmd) {
if (cmd->proc != ValkeyModuleCommandDispatcher) return 0;
if (module_handle == NULL) return 0;
ValkeyModuleCommand *cp = cmd->module_cmd;
return (cp->module == module_handle);
}
/* ValkeyModule_UpdateRuntimeArgs can be used to update the module argument values.
* The function parameter 'argc' indicates the number of updated arguments, and 'argv'
* represents the values of the updated arguments.
* Once 'CONFIG REWRITE' command is called, the updated argument values can be saved into conf file.
*
* The function always returns VALKEYMODULE_OK. */
int VM_UpdateRuntimeArgs(ValkeyModuleCtx *ctx, ValkeyModuleString **argv, int argc) {
struct moduleLoadQueueEntry *loadmod = ctx->module->loadmod;
for (int i = 0; i < loadmod->argc; i++) {
decrRefCount(loadmod->argv[i]);
}
zfree(loadmod->argv);
loadmod->argv = argc - 1 ? zmalloc(sizeof(robj *) * (argc - 1)) : NULL;
loadmod->argc = argc - 1;
for (int i = 1; i < argc; i++) {
loadmod->argv[i - 1] = argv[i];
incrRefCount(loadmod->argv[i - 1]);
}
return VALKEYMODULE_OK;
}
/* --------------------------------------------------------------------------
* ## Module information and time measurement
* -------------------------------------------------------------------------- */
int moduleListConfigMatch(void *config, void *name) {
return strcasecmp(((ModuleConfig *)config)->name, (char *)name) == 0;
}
void moduleListFree(void *config) {
ModuleConfig *module_config = (ModuleConfig *)config;
sdsfree(module_config->name);
zfree(config);
}
void VM_SetModuleAttribs(ValkeyModuleCtx *ctx, const char *name, int ver, int apiver) {
/* Called by VM_Init() to setup the `ctx->module` structure.
*
* This is an internal function, module developers don't need
* to use it. */
ValkeyModule *module;
if (ctx->module != NULL) return;
module = zmalloc(sizeof(*module));
module->name = sdsnew(name);
module->ver = ver;
module->apiver = apiver;
module->types = listCreate();
module->usedby = listCreate();
module->using = listCreate();
module->filters = listCreate();
module->module_configs = listCreate();
listSetMatchMethod(module->module_configs, moduleListConfigMatch);
listSetFreeMethod(module->module_configs, moduleListFree);
module->in_call = 0;
module->configs_initialized = 0;
module->in_hook = 0;
module->options = 0;
module->info_cb = 0;
module->defrag_cb = 0;
module->loadmod = NULL;
module->num_commands_with_acl_categories = 0;
module->onload = 1;
module->num_acl_categories_added = 0;
ctx->module = module;
}
/* Return non-zero if the module name is busy.
* Otherwise zero is returned. */
int VM_IsModuleNameBusy(const char *name) {
sds modulename = sdsnew(name);
dictEntry *de = dictFind(modules, modulename);
sdsfree(modulename);
return de != NULL;
}
/* Return the current UNIX time in milliseconds. */
mstime_t VM_Milliseconds(void) {
return mstime();
}
/* Return counter of micro-seconds relative to an arbitrary point in time. */
uint64_t VM_MonotonicMicroseconds(void) {
return getMonotonicUs();
}
/* Return the current UNIX time in microseconds */
ustime_t VM_Microseconds(void) {
return ustime();
}
/* Return the cached UNIX time in microseconds.
* It is updated in the server cron job and before executing a command.
* It is useful for complex call stacks, such as a command causing a
* key space notification, causing a module to execute a ValkeyModule_Call,
* causing another notification, etc.
* It makes sense that all this callbacks would use the same clock. */
ustime_t VM_CachedMicroseconds(void) {
return server.ustime;
}
/* Mark a point in time that will be used as the start time to calculate
* the elapsed execution time when VM_BlockedClientMeasureTimeEnd() is called.
* Within the same command, you can call multiple times
* VM_BlockedClientMeasureTimeStart() and VM_BlockedClientMeasureTimeEnd()
* to accumulate independent time intervals to the background duration.
* This method always return VALKEYMODULE_OK.
*
* This function is not thread safe, If used in module thread and blocked callback (possibly main thread)
* simultaneously, it's recommended to protect them with lock owned by caller instead of GIL. */
int VM_BlockedClientMeasureTimeStart(ValkeyModuleBlockedClient *bc) {
elapsedStart(&(bc->background_timer));
return VALKEYMODULE_OK;
}
/* Mark a point in time that will be used as the end time
* to calculate the elapsed execution time.
* On success VALKEYMODULE_OK is returned.
* This method only returns VALKEYMODULE_ERR if no start time was
* previously defined ( meaning VM_BlockedClientMeasureTimeStart was not called ).
*
* This function is not thread safe, If used in module thread and blocked callback (possibly main thread)
* simultaneously, it's recommended to protect them with lock owned by caller instead of GIL. */
int VM_BlockedClientMeasureTimeEnd(ValkeyModuleBlockedClient *bc) {
// If the counter is 0 then we haven't called VM_BlockedClientMeasureTimeStart
if (!bc->background_timer) return VALKEYMODULE_ERR;
bc->background_duration += elapsedUs(bc->background_timer);
return VALKEYMODULE_OK;
}
/* This API allows modules to let the server process background tasks, and some
* commands during long blocking execution of a module command.
* The module can call this API periodically.
* The flags is a bit mask of these:
*
* - `VALKEYMODULE_YIELD_FLAG_NONE`: No special flags, can perform some background
* operations, but not process client commands.
* - `VALKEYMODULE_YIELD_FLAG_CLIENTS`: The server can also process client commands.
*
* The `busy_reply` argument is optional, and can be used to control the verbose
* error string after the `-BUSY` error code.
*
* When the `VALKEYMODULE_YIELD_FLAG_CLIENTS` is used, the server will only start
* processing client commands after the time defined by the
* `busy-reply-threshold` config, in which case the server will start rejecting most
* commands with `-BUSY` error, but allow the ones marked with the `allow-busy`
* flag to be executed.
* This API can also be used in thread safe context (while locked), and during
* loading (in the `rdb_load` callback, in which case it'll reject commands with
* the -LOADING error)
*/
void VM_Yield(ValkeyModuleCtx *ctx, int flags, const char *busy_reply) {
static int yield_nesting = 0;
/* Avoid nested calls to VM_Yield */
if (yield_nesting) return;
yield_nesting++;
long long now = getMonotonicUs();
if (now >= ctx->next_yield_time) {
/* In loading mode, there's no need to handle busy_module_yield_reply,
* and busy_module_yield_flags, since the server is anyway rejecting all
* commands with -LOADING. */
if (server.loading) {
/* Let the server process events */
processEventsWhileBlocked();
} else {
const char *prev_busy_module_yield_reply = server.busy_module_yield_reply;
server.busy_module_yield_reply = busy_reply;
/* start the blocking operation if not already started. */
if (!server.busy_module_yield_flags) {
server.busy_module_yield_flags = BUSY_MODULE_YIELD_EVENTS;
blockingOperationStarts();
if (server.current_client) protectClient(server.current_client);
}
if (flags & VALKEYMODULE_YIELD_FLAG_CLIENTS) server.busy_module_yield_flags |= BUSY_MODULE_YIELD_CLIENTS;
/* Let the server process events */
if (!pthread_equal(server.main_thread_id, pthread_self())) {
/* If we are not in the main thread, we defer event loop processing to the main thread
* after the main thread enters acquiring GIL state in order to protect the event
* loop (ae.c) and avoid potential race conditions. */
int acquiring = atomic_load_explicit(&server.module_gil_acquiring, memory_order_relaxed);
if (!acquiring) {
/* If the main thread has not yet entered the acquiring GIL state,
* we attempt to wake it up and exit without waiting for it to
* acquire the GIL. This avoids blocking the caller, allowing them to
* continue with unfinished tasks before the next yield.
* We assume the caller keeps the GIL locked. */
if (write(server.module_pipe[1], "A", 1) != 1) {
/* Ignore the error, this is best-effort. */
}
} else {
/* Release the GIL, yielding CPU to give the main thread an opportunity to start
* event processing, and then acquire the GIL again until the main thread releases it. */
moduleReleaseGIL();
sched_yield();
moduleAcquireGIL();
}
} else {
/* If we are in the main thread, we can safely process events. */
processEventsWhileBlocked();
}
server.busy_module_yield_reply = prev_busy_module_yield_reply;
/* Possibly restore the previous flags in case of two nested contexts
* that use this API with different flags, but keep the first bit
* (PROCESS_EVENTS) set, so we know to call blockingOperationEnds on time. */
server.busy_module_yield_flags &= ~BUSY_MODULE_YIELD_CLIENTS;
}
/* decide when the next event should fire. */
ctx->next_yield_time = now + 1000000 / server.hz;
}
yield_nesting--;
}
/* Set flags defining capabilities or behavior bit flags.
*
* VALKEYMODULE_OPTIONS_HANDLE_IO_ERRORS:
* Generally, modules don't need to bother with this, as the process will just
* terminate if a read error happens, however, setting this flag would allow
* repl-diskless-load to work if enabled.
* The module should use ValkeyModule_IsIOError after reads, before using the
* data that was read, and in case of error, propagate it upwards, and also be
* able to release the partially populated value and all it's allocations.
*
* VALKEYMODULE_OPTION_NO_IMPLICIT_SIGNAL_MODIFIED:
* See VM_SignalModifiedKey().
*
* VALKEYMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD:
* Setting this flag indicates module awareness of diskless async replication (repl-diskless-load=swapdb)
* and that the server could be serving reads during replication instead of blocking with LOADING status.
*
* VALKEYMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS:
* Declare that the module wants to get nested key-space notifications.
* By default, the server will not fire key-space notifications that happened inside
* a key-space notification callback. This flag allows to change this behavior
* and fire nested key-space notifications. Notice: if enabled, the module
* should protected itself from infinite recursion. */
void VM_SetModuleOptions(ValkeyModuleCtx *ctx, int options) {
ctx->module->options = options;
}
/* Signals that the key is modified from user's perspective (i.e. invalidate WATCH
* and client side caching).
*
* This is done automatically when a key opened for writing is closed, unless
* the option VALKEYMODULE_OPTION_NO_IMPLICIT_SIGNAL_MODIFIED has been set using
* VM_SetModuleOptions().
*/
int VM_SignalModifiedKey(ValkeyModuleCtx *ctx, ValkeyModuleString *keyname) {
signalModifiedKey(ctx->client, ctx->client->db, keyname);
return VALKEYMODULE_OK;
}
/* --------------------------------------------------------------------------
* ## Automatic memory management for modules
* -------------------------------------------------------------------------- */
/* Enable automatic memory management.
*
* The function must be called as the first function of a command implementation
* that wants to use automatic memory.
*
* When enabled, automatic memory management tracks and automatically frees
* keys, call replies and ValkeyModuleString objects once the command returns. In most
* cases this eliminates the need of calling the following functions:
*
* 1. ValkeyModule_CloseKey()
* 2. ValkeyModule_FreeCallReply()
* 3. ValkeyModule_FreeString()
*
* These functions can still be used with automatic memory management enabled,
* to optimize loops that make numerous allocations for example. */
void VM_AutoMemory(ValkeyModuleCtx *ctx) {
ctx->flags |= VALKEYMODULE_CTX_AUTO_MEMORY;
}
/* Add a new object to release automatically when the callback returns. */
void autoMemoryAdd(ValkeyModuleCtx *ctx, int type, void *ptr) {
if (!(ctx->flags & VALKEYMODULE_CTX_AUTO_MEMORY)) return;
if (ctx->amqueue_used == ctx->amqueue_len) {
ctx->amqueue_len *= 2;
if (ctx->amqueue_len < 16) ctx->amqueue_len = 16;
ctx->amqueue = zrealloc(ctx->amqueue, sizeof(struct AutoMemEntry) * ctx->amqueue_len);
}
ctx->amqueue[ctx->amqueue_used].type = type;
ctx->amqueue[ctx->amqueue_used].ptr = ptr;
ctx->amqueue_used++;
}
/* Mark an object as freed in the auto release queue, so that users can still
* free things manually if they want.
*
* The function returns 1 if the object was actually found in the auto memory
* pool, otherwise 0 is returned. */
int autoMemoryFreed(ValkeyModuleCtx *ctx, int type, void *ptr) {
if (!(ctx->flags & VALKEYMODULE_CTX_AUTO_MEMORY)) return 0;
int count = (ctx->amqueue_used + 1) / 2;
for (int j = 0; j < count; j++) {
for (int side = 0; side < 2; side++) {
/* For side = 0 check right side of the array, for
* side = 1 check the left side instead (zig-zag scanning). */
int i = (side == 0) ? (ctx->amqueue_used - 1 - j) : j;
if (ctx->amqueue[i].type == type && ctx->amqueue[i].ptr == ptr) {
ctx->amqueue[i].type = VALKEYMODULE_AM_FREED;
/* Switch the freed element and the last element, to avoid growing
* the queue unnecessarily if we allocate/free in a loop */
if (i != ctx->amqueue_used - 1) {
ctx->amqueue[i] = ctx->amqueue[ctx->amqueue_used - 1];
}
/* Reduce the size of the queue because we either moved the top
* element elsewhere or freed it */
ctx->amqueue_used--;
return 1;
}
}
}
return 0;
}
/* Release all the objects in queue. */
void autoMemoryCollect(ValkeyModuleCtx *ctx) {
if (!(ctx->flags & VALKEYMODULE_CTX_AUTO_MEMORY)) return;
/* Clear the AUTO_MEMORY flag from the context, otherwise the functions
* we call to free the resources, will try to scan the auto release
* queue to mark the entries as freed. */
ctx->flags &= ~VALKEYMODULE_CTX_AUTO_MEMORY;
int j;
for (j = 0; j < ctx->amqueue_used; j++) {
void *ptr = ctx->amqueue[j].ptr;
switch (ctx->amqueue[j].type) {
case VALKEYMODULE_AM_STRING: decrRefCount(ptr); break;
case VALKEYMODULE_AM_REPLY: VM_FreeCallReply(ptr); break;
case VALKEYMODULE_AM_KEY: VM_CloseKey(ptr); break;
case VALKEYMODULE_AM_DICT: VM_FreeDict(NULL, ptr); break;
case VALKEYMODULE_AM_INFO: VM_FreeServerInfo(NULL, ptr); break;
}
}
ctx->flags |= VALKEYMODULE_CTX_AUTO_MEMORY;
zfree(ctx->amqueue);
ctx->amqueue = NULL;
ctx->amqueue_len = 0;
ctx->amqueue_used = 0;
}
/* --------------------------------------------------------------------------
* ## String objects APIs
* -------------------------------------------------------------------------- */
/* Create a new module string object. The returned string must be freed
* with ValkeyModule_FreeString(), unless automatic memory is enabled.
*
* The string is created by copying the `len` bytes starting
* at `ptr`. No reference is retained to the passed buffer.
*
* The module context 'ctx' is optional and may be NULL if you want to create
* a string out of the context scope. However in that case, the automatic
* memory management will not be available, and the string memory must be
* managed manually. */
ValkeyModuleString *VM_CreateString(ValkeyModuleCtx *ctx, const char *ptr, size_t len) {
ValkeyModuleString *o = createStringObject(ptr, len);
if (ctx != NULL) autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, o);
return o;
}
/* Create a new module string object from a printf format and arguments.
* The returned string must be freed with ValkeyModule_FreeString(), unless
* automatic memory is enabled.
*
* The string is created using the sds formatter function sdscatvprintf().
*
* The passed context 'ctx' may be NULL if necessary, see the
* ValkeyModule_CreateString() documentation for more info. */
ValkeyModuleString *VM_CreateStringPrintf(ValkeyModuleCtx *ctx, const char *fmt, ...) {
sds s = sdsempty();
va_list ap;
va_start(ap, fmt);
s = sdscatvprintf(s, fmt, ap);
va_end(ap);
ValkeyModuleString *o = createObject(OBJ_STRING, s);
if (ctx != NULL) autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, o);
return o;
}
/* Like ValkeyModule_CreateString(), but creates a string starting from a `long long`
* integer instead of taking a buffer and its length.
*
* The returned string must be released with ValkeyModule_FreeString() or by
* enabling automatic memory management.
*
* The passed context 'ctx' may be NULL if necessary, see the
* ValkeyModule_CreateString() documentation for more info. */
ValkeyModuleString *VM_CreateStringFromLongLong(ValkeyModuleCtx *ctx, long long ll) {
char buf[LONG_STR_SIZE];
size_t len = ll2string(buf, sizeof(buf), ll);
return VM_CreateString(ctx, buf, len);
}
/* Like ValkeyModule_CreateString(), but creates a string starting from a `unsigned long long`
* integer instead of taking a buffer and its length.
*
* The returned string must be released with ValkeyModule_FreeString() or by
* enabling automatic memory management.
*
* The passed context 'ctx' may be NULL if necessary, see the
* ValkeyModule_CreateString() documentation for more info. */
ValkeyModuleString *VM_CreateStringFromULongLong(ValkeyModuleCtx *ctx, unsigned long long ull) {
char buf[LONG_STR_SIZE];
size_t len = ull2string(buf, sizeof(buf), ull);
return VM_CreateString(ctx, buf, len);
}
/* Like ValkeyModule_CreateString(), but creates a string starting from a double
* instead of taking a buffer and its length.
*
* The returned string must be released with ValkeyModule_FreeString() or by
* enabling automatic memory management. */
ValkeyModuleString *VM_CreateStringFromDouble(ValkeyModuleCtx *ctx, double d) {
char buf[MAX_D2STRING_CHARS];
size_t len = d2string(buf, sizeof(buf), d);
return VM_CreateString(ctx, buf, len);
}
/* Like ValkeyModule_CreateString(), but creates a string starting from a long
* double.
*
* The returned string must be released with ValkeyModule_FreeString() or by
* enabling automatic memory management.
*
* The passed context 'ctx' may be NULL if necessary, see the
* ValkeyModule_CreateString() documentation for more info. */
ValkeyModuleString *VM_CreateStringFromLongDouble(ValkeyModuleCtx *ctx, long double ld, int humanfriendly) {
char buf[MAX_LONG_DOUBLE_CHARS];
size_t len = ld2string(buf, sizeof(buf), ld, (humanfriendly ? LD_STR_HUMAN : LD_STR_AUTO));
return VM_CreateString(ctx, buf, len);
}
/* Like ValkeyModule_CreateString(), but creates a string starting from another
* ValkeyModuleString.
*
* The returned string must be released with ValkeyModule_FreeString() or by
* enabling automatic memory management.
*
* The passed context 'ctx' may be NULL if necessary, see the
* ValkeyModule_CreateString() documentation for more info. */
ValkeyModuleString *VM_CreateStringFromString(ValkeyModuleCtx *ctx, const ValkeyModuleString *str) {
ValkeyModuleString *o = dupStringObject(str);
if (ctx != NULL) autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, o);
return o;
}
/* Creates a string from a stream ID. The returned string must be released with
* ValkeyModule_FreeString(), unless automatic memory is enabled.
*
* The passed context `ctx` may be NULL if necessary. See the
* ValkeyModule_CreateString() documentation for more info. */
ValkeyModuleString *VM_CreateStringFromStreamID(ValkeyModuleCtx *ctx, const ValkeyModuleStreamID *id) {
streamID streamid = {id->ms, id->seq};
ValkeyModuleString *o = createObjectFromStreamID(&streamid);
if (ctx != NULL) autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, o);
return o;
}
/* Free a module string object obtained with one of the module API calls
* that return new string objects.
*
* It is possible to call this function even when automatic memory management
* is enabled. In that case the string will be released ASAP and removed
* from the pool of string to release at the end.
*
* If the string was created with a NULL context 'ctx', it is also possible to
* pass ctx as NULL when releasing the string (but passing a context will not
* create any issue). Strings created with a context should be freed also passing
* the context, so if you want to free a string out of context later, make sure
* to create it using a NULL context.
*
* This API is not thread safe, access to these retained strings (if they originated
* from a client command arguments) must be done with GIL locked. */
void VM_FreeString(ValkeyModuleCtx *ctx, ValkeyModuleString *str) {
decrRefCount(str);
if (ctx != NULL) autoMemoryFreed(ctx, VALKEYMODULE_AM_STRING, str);
}
/* Every call to this function, will make the string 'str' requiring
* an additional call to ValkeyModule_FreeString() in order to really
* free the string. Note that the automatic freeing of the string obtained
* enabling modules automatic memory management counts for one
* ValkeyModule_FreeString() call (it is just executed automatically).
*
* Normally you want to call this function when, at the same time
* the following conditions are true:
*
* 1. You have automatic memory management enabled.
* 2. You want to create string objects.
* 3. Those string objects you create need to live *after* the callback
* function(for example a command implementation) creating them returns.
*
* Usually you want this in order to store the created string object
* into your own data structure, for example when implementing a new data
* type.
*
* Note that when memory management is turned off, you don't need
* any call to RetainString() since creating a string will always result
* into a string that lives after the callback function returns, if
* no FreeString() call is performed.
*
* It is possible to call this function with a NULL context.
*
* When strings are going to be retained for an extended duration, it is good
* practice to also call ValkeyModule_TrimStringAllocation() in order to
* optimize memory usage.
*
* Threaded modules that reference retained strings from other threads *must*
* explicitly trim the allocation as soon as the string is retained. Not doing
* so may result with automatic trimming which is not thread safe.
*
* This API is not thread safe, access to these retained strings (if they originated
* from a client command arguments) must be done with GIL locked. */
void VM_RetainString(ValkeyModuleCtx *ctx, ValkeyModuleString *str) {
if (ctx == NULL || !autoMemoryFreed(ctx, VALKEYMODULE_AM_STRING, str)) {
/* Increment the string reference counting only if we can't
* just remove the object from the list of objects that should
* be reclaimed. Why we do that, instead of just incrementing
* the refcount in any case, and let the automatic FreeString()
* call at the end to bring the refcount back at the desired
* value? Because this way we ensure that the object refcount
* value is 1 (instead of going to 2 to be dropped later to 1)
* after the call to this function. This is needed for functions
* like ValkeyModule_StringAppendBuffer() to work. */
incrRefCount(str);
}
}
/**
* This function can be used instead of ValkeyModule_RetainString().
* The main difference between the two is that this function will always
* succeed, whereas ValkeyModule_RetainString() may fail because of an
* assertion.
*
* The function returns a pointer to ValkeyModuleString, which is owned
* by the caller. It requires a call to ValkeyModule_FreeString() to free
* the string when automatic memory management is disabled for the context.
* When automatic memory management is enabled, you can either call
* ValkeyModule_FreeString() or let the automation free it.
*
* This function is more efficient than ValkeyModule_CreateStringFromString()
* because whenever possible, it avoids copying the underlying
* ValkeyModuleString. The disadvantage of using this function is that it
* might not be possible to use ValkeyModule_StringAppendBuffer() on the
* returned ValkeyModuleString.
*
* It is possible to call this function with a NULL context.
*
* When strings are going to be held for an extended duration, it is good
* practice to also call ValkeyModule_TrimStringAllocation() in order to
* optimize memory usage.
*
* Threaded modules that reference held strings from other threads *must*
* explicitly trim the allocation as soon as the string is held. Not doing
* so may result with automatic trimming which is not thread safe.
*
* This API is not thread safe, access to these retained strings (if they originated
* from a client command arguments) must be done with GIL locked. */
ValkeyModuleString *VM_HoldString(ValkeyModuleCtx *ctx, ValkeyModuleString *str) {
if (str->refcount == OBJ_STATIC_REFCOUNT) {
return VM_CreateStringFromString(ctx, str);
}
incrRefCount(str);
if (ctx != NULL) {
/*
* Put the str in the auto memory management of the ctx.
* It might already be there, in this case, the ref count will
* be 2 and we will decrease the ref count twice and free the
* object in the auto memory free function.
*
* Why we can not do the same trick of just remove the object
* from the auto memory (like in VM_RetainString)?
* This code shows the issue:
*
* VM_AutoMemory(ctx);
* str1 = VM_CreateString(ctx, "test", 4);
* str2 = VM_HoldString(ctx, str1);
* VM_FreeString(str1);
* VM_FreeString(str2);
*
* If after the VM_HoldString we would just remove the string from
* the auto memory, this example will cause access to a freed memory
* on 'VM_FreeString(str2);' because the String will be free
* on 'VM_FreeString(str1);'.
*
* So it's safer to just increase the ref count
* and add the String to auto memory again.
*
* The limitation is that it is not possible to use ValkeyModule_StringAppendBuffer
* on the String.
*/
autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, str);
}
return str;
}
/* Given a string module object, this function returns the string pointer
* and length of the string. The returned pointer and length should only
* be used for read only accesses and never modified. */
const char *VM_StringPtrLen(const ValkeyModuleString *str, size_t *len) {
if (str == NULL) {
const char *errmsg = "(NULL string reply referenced in module)";
if (len) *len = strlen(errmsg);
return errmsg;
}
if (len) *len = sdslen(str->ptr);
return str->ptr;
}
/* --------------------------------------------------------------------------
* Higher level string operations
* ------------------------------------------------------------------------- */
/* Convert the string into a `long long` integer, storing it at `*ll`.
* Returns VALKEYMODULE_OK on success. If the string can't be parsed
* as a valid, strict `long long` (no spaces before/after), VALKEYMODULE_ERR
* is returned. */
int VM_StringToLongLong(const ValkeyModuleString *str, long long *ll) {
return string2ll(str->ptr, sdslen(str->ptr), ll) ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* Convert the string into a `unsigned long long` integer, storing it at `*ull`.
* Returns VALKEYMODULE_OK on success. If the string can't be parsed
* as a valid, strict `unsigned long long` (no spaces before/after), VALKEYMODULE_ERR
* is returned. */
int VM_StringToULongLong(const ValkeyModuleString *str, unsigned long long *ull) {
return string2ull(str->ptr, ull) ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* Convert the string into a double, storing it at `*d`.
* Returns VALKEYMODULE_OK on success or VALKEYMODULE_ERR if the string is
* not a valid string representation of a double value. */
int VM_StringToDouble(const ValkeyModuleString *str, double *d) {
int retval = getDoubleFromObject(str, d);
return (retval == C_OK) ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* Convert the string into a long double, storing it at `*ld`.
* Returns VALKEYMODULE_OK on success or VALKEYMODULE_ERR if the string is
* not a valid string representation of a double value. */
int VM_StringToLongDouble(const ValkeyModuleString *str, long double *ld) {
int retval = string2ld(str->ptr, sdslen(str->ptr), ld);
return retval ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* Convert the string into a stream ID, storing it at `*id`.
* Returns VALKEYMODULE_OK on success and returns VALKEYMODULE_ERR if the string
* is not a valid string representation of a stream ID. The special IDs "+" and
* "-" are allowed.
*/
int VM_StringToStreamID(const ValkeyModuleString *str, ValkeyModuleStreamID *id) {
streamID streamid;
if (streamParseID(str, &streamid) == C_OK) {
id->ms = streamid.ms;
id->seq = streamid.seq;
return VALKEYMODULE_OK;
} else {
return VALKEYMODULE_ERR;
}
}
/* Compare two string objects, returning -1, 0 or 1 respectively if
* a < b, a == b, a > b. Strings are compared byte by byte as two
* binary blobs without any encoding care / collation attempt. */
int VM_StringCompare(const ValkeyModuleString *a, const ValkeyModuleString *b) {
return compareStringObjects(a, b);
}
/* Return the (possibly modified in encoding) input 'str' object if
* the string is unshared, otherwise NULL is returned. */
ValkeyModuleString *moduleAssertUnsharedString(ValkeyModuleString *str) {
if (str->refcount != 1) {
serverLog(LL_WARNING, "Module attempted to use an in-place string modify operation "
"with a string referenced multiple times. Please check the code "
"for API usage correctness.");
return NULL;
}
if (str->encoding == OBJ_ENCODING_EMBSTR) {
/* Note: here we "leak" the additional allocation that was
* used in order to store the embedded string in the object. */
str->ptr = sdsnewlen(str->ptr, sdslen(str->ptr));
str->encoding = OBJ_ENCODING_RAW;
} else if (str->encoding == OBJ_ENCODING_INT) {
/* Convert the string from integer to raw encoding. */
str->ptr = sdsfromlonglong((long)str->ptr);
str->encoding = OBJ_ENCODING_RAW;
}
return str;
}
/* Append the specified buffer to the string 'str'. The string must be a
* string created by the user that is referenced only a single time, otherwise
* VALKEYMODULE_ERR is returned and the operation is not performed. */
int VM_StringAppendBuffer(ValkeyModuleCtx *ctx, ValkeyModuleString *str, const char *buf, size_t len) {
UNUSED(ctx);
str = moduleAssertUnsharedString(str);
if (str == NULL) return VALKEYMODULE_ERR;
str->ptr = sdscatlen(str->ptr, buf, len);
return VALKEYMODULE_OK;
}
/* Trim possible excess memory allocated for a ValkeyModuleString.
*
* Sometimes a ValkeyModuleString may have more memory allocated for
* it than required, typically for argv arguments that were constructed
* from network buffers. This function optimizes such strings by reallocating
* their memory, which is useful for strings that are not short lived but
* retained for an extended duration.
*
* This operation is *not thread safe* and should only be called when
* no concurrent access to the string is guaranteed. Using it for an argv
* string in a module command before the string is potentially available
* to other threads is generally safe.
*
* Currently, the server may also automatically trim retained strings when a
* module command returns. However, doing this explicitly should still be
* a preferred option:
*
* 1. Future versions of the server may abandon auto-trimming.
* 2. Auto-trimming as currently implemented is *not thread safe*.
* A background thread manipulating a recently retained string may end up
* in a race condition with the auto-trim, which could result with
* data corruption.
*/
void VM_TrimStringAllocation(ValkeyModuleString *str) {
if (!str) return;
trimStringObjectIfNeeded(str, 1);
}
/* --------------------------------------------------------------------------
* ## Reply APIs
*
* These functions are used for sending replies to the client.
*
* Most functions always return VALKEYMODULE_OK so you can use it with
* 'return' in order to return from the command implementation with:
*
* if (... some condition ...)
* return ValkeyModule_ReplyWithLongLong(ctx,mycount);
*
* ### Reply with collection functions
*
* After starting a collection reply, the module must make calls to other
* `ReplyWith*` style functions in order to emit the elements of the collection.
* Collection types include: Array, Map, Set and Attribute.
*
* When producing collections with a number of elements that is not known
* beforehand, the function can be called with a special flag
* VALKEYMODULE_POSTPONED_LEN (VALKEYMODULE_POSTPONED_ARRAY_LEN in the past),
* and the actual number of elements can be later set with VM_ReplySet*Length()
* call (which will set the latest "open" count if there are multiple ones).
* -------------------------------------------------------------------------- */
/* Send an error about the number of arguments given to the command,
* citing the command name in the error message. Returns VALKEYMODULE_OK.
*
* Example:
*
* if (argc != 3) return ValkeyModule_WrongArity(ctx);
*/
int VM_WrongArity(ValkeyModuleCtx *ctx) {
addReplyErrorArity(ctx->client);
return VALKEYMODULE_OK;
}
/* Return the client object the `VM_Reply*` functions should target.
* Normally this is just `ctx->client`, that is the client that called
* the module command, however in the case of thread safe contexts there
* is no directly associated client (since it would not be safe to access
* the client from a thread), so instead the blocked client object referenced
* in the thread safe context, has a fake client that we just use to accumulate
* the replies. Later, when the client is unblocked, the accumulated replies
* are appended to the actual client.
*
* The function returns the client pointer depending on the context, or
* NULL if there is no potential client. This happens when we are in the
* context of a thread safe context that was not initialized with a blocked
* client object. Other contexts without associated clients are the ones
* initialized to run the timers callbacks. */
client *moduleGetReplyClient(ValkeyModuleCtx *ctx) {
if (ctx->flags & VALKEYMODULE_CTX_THREAD_SAFE) {
if (ctx->blocked_client)
return ctx->blocked_client->reply_client;
else
return NULL;
} else {
/* If this is a non thread safe context, just return the client
* that is running the command if any. This may be NULL as well
* in the case of contexts that are not executed with associated
* clients, like timer contexts. */
return ctx->client;
}
}
/* Send an integer reply to the client, with the specified `long long` value.
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithLongLong(ValkeyModuleCtx *ctx, long long ll) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyLongLong(c, ll);
return VALKEYMODULE_OK;
}
/* Reply with the error 'err'.
*
* Note that 'err' must contain all the error, including
* the initial error code. The function only provides the initial "-", so
* the usage is, for example:
*
* ValkeyModule_ReplyWithError(ctx,"ERR Wrong Type");
*
* and not just:
*
* ValkeyModule_ReplyWithError(ctx,"Wrong Type");
*
* The function always returns VALKEYMODULE_OK.
*/
int VM_ReplyWithError(ValkeyModuleCtx *ctx, const char *err) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyErrorFormat(c, "-%s", err);
return VALKEYMODULE_OK;
}
/* Reply with the error create from a printf format and arguments.
*
* Note that 'fmt' must contain all the error, including
* the initial error code. The function only provides the initial "-", so
* the usage is, for example:
*
* ValkeyModule_ReplyWithErrorFormat(ctx,"ERR Wrong Type: %s",type);
*
* and not just:
*
* ValkeyModule_ReplyWithErrorFormat(ctx,"Wrong Type: %s",type);
*
* The function always returns VALKEYMODULE_OK.
*/
int VM_ReplyWithErrorFormat(ValkeyModuleCtx *ctx, const char *fmt, ...) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
int len = strlen(fmt) + 2; /* 1 for the \0 and 1 for the hyphen */
char *hyphenfmt = zmalloc(len);
snprintf(hyphenfmt, len, "-%s", fmt);
va_list ap;
va_start(ap, fmt);
addReplyErrorFormatInternal(c, 0, hyphenfmt, ap);
va_end(ap);
zfree(hyphenfmt);
return VALKEYMODULE_OK;
}
/* Reply with a simple string (`+... \r\n` in RESP protocol). This replies
* are suitable only when sending a small non-binary string with small
* overhead, like "OK" or similar replies.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithSimpleString(ValkeyModuleCtx *ctx, const char *msg) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyProto(c, "+", 1);
addReplyProto(c, msg, strlen(msg));
addReplyProto(c, "\r\n", 2);
return VALKEYMODULE_OK;
}
#define COLLECTION_REPLY_ARRAY 1
#define COLLECTION_REPLY_MAP 2
#define COLLECTION_REPLY_SET 3
#define COLLECTION_REPLY_ATTRIBUTE 4
int moduleReplyWithCollection(ValkeyModuleCtx *ctx, long len, int type) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
if (len == VALKEYMODULE_POSTPONED_LEN) {
ctx->postponed_arrays = zrealloc(ctx->postponed_arrays, sizeof(void *) * (ctx->postponed_arrays_count + 1));
ctx->postponed_arrays[ctx->postponed_arrays_count] = addReplyDeferredLen(c);
ctx->postponed_arrays_count++;
} else if (len == 0) {
switch (type) {
case COLLECTION_REPLY_ARRAY: addReply(c, shared.emptyarray); break;
case COLLECTION_REPLY_MAP: addReply(c, shared.emptymap[c->resp]); break;
case COLLECTION_REPLY_SET: addReply(c, shared.emptyset[c->resp]); break;
case COLLECTION_REPLY_ATTRIBUTE: addReplyAttributeLen(c, len); break;
default: serverPanic("Invalid module empty reply type %d", type);
}
} else {
switch (type) {
case COLLECTION_REPLY_ARRAY: addReplyArrayLen(c, len); break;
case COLLECTION_REPLY_MAP: addReplyMapLen(c, len); break;
case COLLECTION_REPLY_SET: addReplySetLen(c, len); break;
case COLLECTION_REPLY_ATTRIBUTE: addReplyAttributeLen(c, len); break;
default: serverPanic("Invalid module reply type %d", type);
}
}
return VALKEYMODULE_OK;
}
/* Reply with an array type of 'len' elements.
*
* After starting an array reply, the module must make `len` calls to other
* `ReplyWith*` style functions in order to emit the elements of the array.
* See Reply APIs section for more details.
*
* Use VM_ReplySetArrayLength() to set deferred length.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithArray(ValkeyModuleCtx *ctx, long len) {
return moduleReplyWithCollection(ctx, len, COLLECTION_REPLY_ARRAY);
}
/* Reply with a RESP3 Map type of 'len' pairs.
* Visit https://valkey.io/topics/protocol for more info about RESP3.
*
* After starting a map reply, the module must make `len*2` calls to other
* `ReplyWith*` style functions in order to emit the elements of the map.
* See Reply APIs section for more details.
*
* If the connected client is using RESP2, the reply will be converted to a flat
* array.
*
* Use VM_ReplySetMapLength() to set deferred length.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithMap(ValkeyModuleCtx *ctx, long len) {
return moduleReplyWithCollection(ctx, len, COLLECTION_REPLY_MAP);
}
/* Reply with a RESP3 Set type of 'len' elements.
* Visit https://valkey.io/topics/protocol for more info about RESP3.
*
* After starting a set reply, the module must make `len` calls to other
* `ReplyWith*` style functions in order to emit the elements of the set.
* See Reply APIs section for more details.
*
* If the connected client is using RESP2, the reply will be converted to an
* array type.
*
* Use VM_ReplySetSetLength() to set deferred length.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithSet(ValkeyModuleCtx *ctx, long len) {
return moduleReplyWithCollection(ctx, len, COLLECTION_REPLY_SET);
}
/* Add attributes (metadata) to the reply. Should be done before adding the
* actual reply. see https://valkey.io/topics/protocol#attribute-type
*
* After starting an attribute's reply, the module must make `len*2` calls to other
* `ReplyWith*` style functions in order to emit the elements of the attribute map.
* See Reply APIs section for more details.
*
* Use VM_ReplySetAttributeLength() to set deferred length.
*
* Not supported by RESP2 and will return VALKEYMODULE_ERR, otherwise
* the function always returns VALKEYMODULE_OK. */
int VM_ReplyWithAttribute(ValkeyModuleCtx *ctx, long len) {
if (ctx->client->resp == 2) return VALKEYMODULE_ERR;
return moduleReplyWithCollection(ctx, len, COLLECTION_REPLY_ATTRIBUTE);
}
/* Reply to the client with a null array, simply null in RESP3,
* null array in RESP2.
*
* Note: In RESP3 there's no difference between Null reply and
* NullArray reply, so to prevent ambiguity it's better to avoid
* using this API and use ValkeyModule_ReplyWithNull instead.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithNullArray(ValkeyModuleCtx *ctx) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyNullArray(c);
return VALKEYMODULE_OK;
}
/* Reply to the client with an empty array.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithEmptyArray(ValkeyModuleCtx *ctx) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReply(c, shared.emptyarray);
return VALKEYMODULE_OK;
}
void moduleReplySetCollectionLength(ValkeyModuleCtx *ctx, long len, int type) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return;
if (ctx->postponed_arrays_count == 0) {
serverLog(LL_WARNING,
"API misuse detected in module %s: "
"ValkeyModule_ReplySet*Length() called without previous "
"ValkeyModule_ReplyWith*(ctx,VALKEYMODULE_POSTPONED_LEN) "
"call.",
ctx->module->name);
return;
}
ctx->postponed_arrays_count--;
switch (type) {
case COLLECTION_REPLY_ARRAY: setDeferredArrayLen(c, ctx->postponed_arrays[ctx->postponed_arrays_count], len); break;
case COLLECTION_REPLY_MAP: setDeferredMapLen(c, ctx->postponed_arrays[ctx->postponed_arrays_count], len); break;
case COLLECTION_REPLY_SET: setDeferredSetLen(c, ctx->postponed_arrays[ctx->postponed_arrays_count], len); break;
case COLLECTION_REPLY_ATTRIBUTE:
setDeferredAttributeLen(c, ctx->postponed_arrays[ctx->postponed_arrays_count], len);
break;
default: serverPanic("Invalid module reply type %d", type);
}
if (ctx->postponed_arrays_count == 0) {
zfree(ctx->postponed_arrays);
ctx->postponed_arrays = NULL;
}
}
/* When ValkeyModule_ReplyWithArray() is used with the argument
* VALKEYMODULE_POSTPONED_LEN, because we don't know beforehand the number
* of items we are going to output as elements of the array, this function
* will take care to set the array length.
*
* Since it is possible to have multiple array replies pending with unknown
* length, this function guarantees to always set the latest array length
* that was created in a postponed way.
*
* For example in order to output an array like [1,[10,20,30]] we
* could write:
*
* ValkeyModule_ReplyWithArray(ctx,VALKEYMODULE_POSTPONED_LEN);
* ValkeyModule_ReplyWithLongLong(ctx,1);
* ValkeyModule_ReplyWithArray(ctx,VALKEYMODULE_POSTPONED_LEN);
* ValkeyModule_ReplyWithLongLong(ctx,10);
* ValkeyModule_ReplyWithLongLong(ctx,20);
* ValkeyModule_ReplyWithLongLong(ctx,30);
* ValkeyModule_ReplySetArrayLength(ctx,3); // Set len of 10,20,30 array.
* ValkeyModule_ReplySetArrayLength(ctx,2); // Set len of top array
*
* Note that in the above example there is no reason to postpone the array
* length, since we produce a fixed number of elements, but in the practice
* the code may use an iterator or other ways of creating the output so
* that is not easy to calculate in advance the number of elements.
*/
void VM_ReplySetArrayLength(ValkeyModuleCtx *ctx, long len) {
moduleReplySetCollectionLength(ctx, len, COLLECTION_REPLY_ARRAY);
}
/* Very similar to ValkeyModule_ReplySetArrayLength except `len` should
* exactly half of the number of `ReplyWith*` functions called in the
* context of the map.
* Visit https://valkey.io/topics/protocol for more info about RESP3. */
void VM_ReplySetMapLength(ValkeyModuleCtx *ctx, long len) {
moduleReplySetCollectionLength(ctx, len, COLLECTION_REPLY_MAP);
}
/* Very similar to ValkeyModule_ReplySetArrayLength
* Visit https://valkey.io/topics/protocol for more info about RESP3. */
void VM_ReplySetSetLength(ValkeyModuleCtx *ctx, long len) {
moduleReplySetCollectionLength(ctx, len, COLLECTION_REPLY_SET);
}
/* Very similar to ValkeyModule_ReplySetMapLength
* Visit https://valkey.io/topics/protocol for more info about RESP3.
*
* Must not be called if VM_ReplyWithAttribute returned an error. */
void VM_ReplySetAttributeLength(ValkeyModuleCtx *ctx, long len) {
if (ctx->client->resp == 2) return;
moduleReplySetCollectionLength(ctx, len, COLLECTION_REPLY_ATTRIBUTE);
}
/* Reply with a bulk string, taking in input a C buffer pointer and length.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithStringBuffer(ValkeyModuleCtx *ctx, const char *buf, size_t len) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyBulkCBuffer(c, (char *)buf, len);
return VALKEYMODULE_OK;
}
/* Reply with a bulk string, taking in input a C buffer pointer that is
* assumed to be null-terminated.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithCString(ValkeyModuleCtx *ctx, const char *buf) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyBulkCString(c, (char *)buf);
return VALKEYMODULE_OK;
}
/* Reply with a bulk string, taking in input a ValkeyModuleString object.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithString(ValkeyModuleCtx *ctx, ValkeyModuleString *str) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyBulk(c, str);
return VALKEYMODULE_OK;
}
/* Reply with an empty string.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithEmptyString(ValkeyModuleCtx *ctx) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReply(c, shared.emptybulk);
return VALKEYMODULE_OK;
}
/* Reply with a binary safe string, which should not be escaped or filtered
* taking in input a C buffer pointer, length and a 3 character type/extension.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithVerbatimStringType(ValkeyModuleCtx *ctx, const char *buf, size_t len, const char *ext) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyVerbatim(c, buf, len, ext);
return VALKEYMODULE_OK;
}
/* Reply with a binary safe string, which should not be escaped or filtered
* taking in input a C buffer pointer and length.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithVerbatimString(ValkeyModuleCtx *ctx, const char *buf, size_t len) {
return VM_ReplyWithVerbatimStringType(ctx, buf, len, "txt");
}
/* Reply to the client with a NULL.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithNull(ValkeyModuleCtx *ctx) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyNull(c);
return VALKEYMODULE_OK;
}
/* Reply with a RESP3 Boolean type.
* Visit https://valkey.io/topics/protocol for more info about RESP3.
*
* In RESP3, this is boolean type
* In RESP2, it's a string response of "1" and "0" for true and false respectively.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithBool(ValkeyModuleCtx *ctx, int b) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyBool(c, b);
return VALKEYMODULE_OK;
}
/* Reply exactly what a command returned us with ValkeyModule_Call().
* This function is useful when we use ValkeyModule_Call() in order to
* execute some command, as we want to reply to the client exactly the
* same reply we obtained by the command.
*
* Return:
* - VALKEYMODULE_OK on success.
* - VALKEYMODULE_ERR if the given reply is in RESP3 format but the client expects RESP2.
* In case of an error, it's the module writer responsibility to translate the reply
* to RESP2 (or handle it differently by returning an error). Notice that for
* module writer convenience, it is possible to pass `0` as a parameter to the fmt
* argument of `VM_Call` so that the ValkeyModuleCallReply will return in the same
* protocol (RESP2 or RESP3) as set in the current client's context. */
int VM_ReplyWithCallReply(ValkeyModuleCtx *ctx, ValkeyModuleCallReply *reply) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
if (c->resp == 2 && callReplyIsResp3(reply)) {
/* The reply is in RESP3 format and the client is RESP2,
* so it isn't possible to send this reply to the client. */
return VALKEYMODULE_ERR;
}
size_t proto_len;
const char *proto = callReplyGetProto(reply, &proto_len);
addReplyProto(c, proto, proto_len);
/* Propagate the error list from that reply to the other client, to do some
* post error reply handling, like statistics.
* Note that if the original reply had an array with errors, and the module
* replied with just a portion of the original reply, and not the entire
* reply, the errors are currently not propagated and the errors stats
* will not get propagated. */
list *errors = callReplyDeferredErrorList(reply);
if (errors) deferredAfterErrorReply(c, errors);
return VALKEYMODULE_OK;
}
/* Reply with a RESP3 Double type.
* Visit https://valkey.io/topics/protocol for more info about RESP3.
*
* Send a string reply obtained converting the double 'd' into a bulk string.
* This function is basically equivalent to converting a double into
* a string into a C buffer, and then calling the function
* ValkeyModule_ReplyWithStringBuffer() with the buffer and length.
*
* In RESP3 the string is tagged as a double, while in RESP2 it's just a plain string
* that the user will have to parse.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithDouble(ValkeyModuleCtx *ctx, double d) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyDouble(c, d);
return VALKEYMODULE_OK;
}
/* Reply with a RESP3 BigNumber type.
* Visit https://valkey.io/topics/protocol for more info about RESP3.
*
* In RESP3, this is a string of length `len` that is tagged as a BigNumber,
* however, it's up to the caller to ensure that it's a valid BigNumber.
* In RESP2, this is just a plain bulk string response.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithBigNumber(ValkeyModuleCtx *ctx, const char *bignum, size_t len) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyBigNum(c, bignum, len);
return VALKEYMODULE_OK;
}
/* Send a string reply obtained converting the long double 'ld' into a bulk
* string. This function is basically equivalent to converting a long double
* into a string into a C buffer, and then calling the function
* ValkeyModule_ReplyWithStringBuffer() with the buffer and length.
* The double string uses human readable formatting (see
* `addReplyHumanLongDouble` in networking.c).
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithLongDouble(ValkeyModuleCtx *ctx, long double ld) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyHumanLongDouble(c, ld);
return VALKEYMODULE_OK;
}
/* --------------------------------------------------------------------------
* ## Commands replication API
* -------------------------------------------------------------------------- */
/* Replicate the specified command and arguments to replicas and AOF, as effect
* of execution of the calling command implementation.
*
* The replicated commands are always wrapped into the MULTI/EXEC that
* contains all the commands replicated in a given module command
* execution. However the commands replicated with ValkeyModule_Call()
* are the first items, the ones replicated with ValkeyModule_Replicate()
* will all follow before the EXEC.
*
* Modules should try to use one interface or the other.
*
* This command follows exactly the same interface of ValkeyModule_Call(),
* so a set of format specifiers must be passed, followed by arguments
* matching the provided format specifiers.
*
* Please refer to ValkeyModule_Call() for more information.
*
* Using the special "A" and "R" modifiers, the caller can exclude either
* the AOF or the replicas from the propagation of the specified command.
* Otherwise, by default, the command will be propagated in both channels.
*
* #### Note about calling this function from a thread safe context:
*
* Normally when you call this function from the callback implementing a
* module command, or any other callback provided by the Module API,
* The server will accumulate all the calls to this function in the context of
* the callback, and will propagate all the commands wrapped in a MULTI/EXEC
* transaction. However when calling this function from a threaded safe context
* that can live an undefined amount of time, and can be locked/unlocked in
* at will, the behavior is different: MULTI/EXEC wrapper is not emitted
* and the command specified is inserted in the AOF and replication stream
* immediately.
*
* #### Return value
*
* The command returns VALKEYMODULE_ERR if the format specifiers are invalid
* or the command name does not belong to a known command. */
int VM_Replicate(ValkeyModuleCtx *ctx, const char *cmdname, const char *fmt, ...) {
struct serverCommand *cmd;
robj **argv = NULL;
int argc = 0, flags = 0, j;
va_list ap;
cmd = lookupCommandByCString((char *)cmdname);
if (!cmd) return VALKEYMODULE_ERR;
/* Create the client and dispatch the command. */
va_start(ap, fmt);
argv = moduleCreateArgvFromUserFormat(cmdname, fmt, &argc, &flags, ap);
va_end(ap);
if (argv == NULL) return VALKEYMODULE_ERR;
/* Select the propagation target. Usually is AOF + replicas, however
* the caller can exclude one or the other using the "A" or "R"
* modifiers. */
int target = 0;
if (!(flags & VALKEYMODULE_ARGV_NO_AOF)) target |= PROPAGATE_AOF;
if (!(flags & VALKEYMODULE_ARGV_NO_REPLICAS)) target |= PROPAGATE_REPL;
alsoPropagate(ctx->client->db->id, argv, argc, target);
/* Release the argv. */
for (j = 0; j < argc; j++) decrRefCount(argv[j]);
zfree(argv);
server.dirty++;
return VALKEYMODULE_OK;
}
/* This function will replicate the command exactly as it was invoked
* by the client. Note that this function will not wrap the command into
* a MULTI/EXEC stanza, so it should not be mixed with other replication
* commands.
*
* Basically this form of replication is useful when you want to propagate
* the command to the replicas and AOF file exactly as it was called, since
* the command can just be re-executed to deterministically re-create the
* new state starting from the old one.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplicateVerbatim(ValkeyModuleCtx *ctx) {
alsoPropagate(ctx->client->db->id, ctx->client->argv, ctx->client->argc, PROPAGATE_AOF | PROPAGATE_REPL);
server.dirty++;
return VALKEYMODULE_OK;
}
/* --------------------------------------------------------------------------
* ## DB and Key APIs -- Generic API
* -------------------------------------------------------------------------- */
/* Return the ID of the current client calling the currently active module
* command. The returned ID has a few guarantees:
*
* 1. The ID is different for each different client, so if the same client
* executes a module command multiple times, it can be recognized as
* having the same ID, otherwise the ID will be different.
* 2. The ID increases monotonically. Clients connecting to the server later
* are guaranteed to get IDs greater than any past ID previously seen.
*
* Valid IDs are from 1 to 2^64 - 1. If 0 is returned it means there is no way
* to fetch the ID in the context the function was currently called.
*
* After obtaining the ID, it is possible to check if the command execution
* is actually happening in the context of AOF loading, using this macro:
*
* if (ValkeyModule_IsAOFClient(ValkeyModule_GetClientId(ctx)) {
* // Handle it differently.
* }
*/
unsigned long long VM_GetClientId(ValkeyModuleCtx *ctx) {
if (ctx->client == NULL) return 0;
return ctx->client->id;
}
/* Return the ACL user name used by the client with the specified client ID.
* Client ID can be obtained with VM_GetClientId() API. If the client does not
* exist, NULL is returned and errno is set to ENOENT. If the client isn't
* using an ACL user, NULL is returned and errno is set to ENOTSUP */
ValkeyModuleString *VM_GetClientUserNameById(ValkeyModuleCtx *ctx, uint64_t id) {
client *client = lookupClientByID(id);
if (client == NULL) {
errno = ENOENT;
return NULL;
}
if (client->user == NULL) {
errno = ENOTSUP;
return NULL;
}
sds name = sdsnew(client->user->name);
robj *str = createObject(OBJ_STRING, name);
autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, str);
return str;
}
/* This is a helper for VM_GetClientInfoById() and other functions: given
* a client, it populates the client info structure with the appropriate
* fields depending on the version provided. If the version is not valid
* then VALKEYMODULE_ERR is returned. Otherwise the function returns
* VALKEYMODULE_OK and the structure pointed by 'ci' gets populated. */
int modulePopulateClientInfoStructure(void *ci, client *client, int structver) {
if (structver != 1) return VALKEYMODULE_ERR;
ValkeyModuleClientInfoV1 *ci1 = ci;
memset(ci1, 0, sizeof(*ci1));
ci1->version = structver;
if (client->flag.multi) ci1->flags |= VALKEYMODULE_CLIENTINFO_FLAG_MULTI;
if (client->flag.pubsub) ci1->flags |= VALKEYMODULE_CLIENTINFO_FLAG_PUBSUB;
if (client->flag.unix_socket) ci1->flags |= VALKEYMODULE_CLIENTINFO_FLAG_UNIXSOCKET;
if (client->flag.tracking) ci1->flags |= VALKEYMODULE_CLIENTINFO_FLAG_TRACKING;
if (client->flag.blocked) ci1->flags |= VALKEYMODULE_CLIENTINFO_FLAG_BLOCKED;
if (client->conn->type == connectionTypeTls()) ci1->flags |= VALKEYMODULE_CLIENTINFO_FLAG_SSL;
int port;
connAddrPeerName(client->conn, ci1->addr, sizeof(ci1->addr), &port);
ci1->port = port;
ci1->db = client->db->id;
ci1->id = client->id;
return VALKEYMODULE_OK;
}
/* This is a helper for moduleFireServerEvent() and other functions:
* It populates the replication info structure with the appropriate
* fields depending on the version provided. If the version is not valid
* then VALKEYMODULE_ERR is returned. Otherwise the function returns
* VALKEYMODULE_OK and the structure pointed by 'ri' gets populated. */
int modulePopulateReplicationInfoStructure(void *ri, int structver) {
if (structver != 1) return VALKEYMODULE_ERR;
ValkeyModuleReplicationInfoV1 *ri1 = ri;
memset(ri1, 0, sizeof(*ri1));
ri1->version = structver;
ri1->primary = server.primary_host == NULL;
ri1->primary_host = server.primary_host ? server.primary_host : "";
ri1->primary_port = server.primary_port;
ri1->replid1 = server.replid;
ri1->replid2 = server.replid2;
ri1->repl1_offset = server.primary_repl_offset;
ri1->repl2_offset = server.second_replid_offset;
return VALKEYMODULE_OK;
}
/* Return information about the client with the specified ID (that was
* previously obtained via the ValkeyModule_GetClientId() API). If the
* client exists, VALKEYMODULE_OK is returned, otherwise VALKEYMODULE_ERR
* is returned.
*
* When the client exist and the `ci` pointer is not NULL, but points to
* a structure of type ValkeyModuleClientInfoV1, previously initialized with
* the correct VALKEYMODULE_CLIENTINFO_INITIALIZER_V1, the structure is populated
* with the following fields:
*
* uint64_t flags; // VALKEYMODULE_CLIENTINFO_FLAG_*
* uint64_t id; // Client ID
* char addr[46]; // IPv4 or IPv6 address.
* uint16_t port; // TCP port.
* uint16_t db; // Selected DB.
*
* Note: the client ID is useless in the context of this call, since we
* already know, however the same structure could be used in other
* contexts where we don't know the client ID, yet the same structure
* is returned.
*
* With flags having the following meaning:
*
* VALKEYMODULE_CLIENTINFO_FLAG_SSL Client using SSL connection.
* VALKEYMODULE_CLIENTINFO_FLAG_PUBSUB Client in Pub/Sub mode.
* VALKEYMODULE_CLIENTINFO_FLAG_BLOCKED Client blocked in command.
* VALKEYMODULE_CLIENTINFO_FLAG_TRACKING Client with keys tracking on.
* VALKEYMODULE_CLIENTINFO_FLAG_UNIXSOCKET Client using unix domain socket.
* VALKEYMODULE_CLIENTINFO_FLAG_MULTI Client in MULTI state.
*
* However passing NULL is a way to just check if the client exists in case
* we are not interested in any additional information.
*
* This is the correct usage when we want the client info structure
* returned:
*
* ValkeyModuleClientInfo ci = VALKEYMODULE_CLIENTINFO_INITIALIZER;
* int retval = ValkeyModule_GetClientInfoById(&ci,client_id);
* if (retval == VALKEYMODULE_OK) {
* printf("Address: %s\n", ci.addr);
* }
*/
int VM_GetClientInfoById(void *ci, uint64_t id) {
client *client = lookupClientByID(id);
if (client == NULL) return VALKEYMODULE_ERR;
if (ci == NULL) return VALKEYMODULE_OK;
/* Fill the info structure if passed. */
uint64_t structver = ((uint64_t *)ci)[0];
return modulePopulateClientInfoStructure(ci, client, structver);
}
/* Returns the name of the client connection with the given ID.
*
* If the client ID does not exist or if the client has no name associated with
* it, NULL is returned. */
ValkeyModuleString *VM_GetClientNameById(ValkeyModuleCtx *ctx, uint64_t id) {
client *client = lookupClientByID(id);
if (client == NULL || client->name == NULL) return NULL;
robj *name = client->name;
incrRefCount(name);
autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, name);
return name;
}
/* Sets the name of the client with the given ID. This is equivalent to the client calling
* `CLIENT SETNAME name`.
*
* Returns VALKEYMODULE_OK on success. On failure, VALKEYMODULE_ERR is returned
* and errno is set as follows:
*
* - ENOENT if the client does not exist
* - EINVAL if the name contains invalid characters */
int VM_SetClientNameById(uint64_t id, ValkeyModuleString *name) {
client *client = lookupClientByID(id);
if (client == NULL) {
errno = ENOENT;
return VALKEYMODULE_ERR;
}
if (clientSetName(client, name, NULL) == C_ERR) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
}
/* Publish a message to subscribers (see PUBLISH command). */
int VM_PublishMessage(ValkeyModuleCtx *ctx, ValkeyModuleString *channel, ValkeyModuleString *message) {
UNUSED(ctx);
return pubsubPublishMessageAndPropagateToCluster(channel, message, 0);
}
/* Publish a message to shard-subscribers (see SPUBLISH command). */
int VM_PublishMessageShard(ValkeyModuleCtx *ctx, ValkeyModuleString *channel, ValkeyModuleString *message) {
UNUSED(ctx);
return pubsubPublishMessageAndPropagateToCluster(channel, message, 1);
}
/* Return the currently selected DB. */
int VM_GetSelectedDb(ValkeyModuleCtx *ctx) {
return ctx->client->db->id;
}
/* Return the current context's flags. The flags provide information on the
* current request context (whether the client is a Lua script or in a MULTI),
* and about the instance in general, i.e replication and persistence.
*
* It is possible to call this function even with a NULL context, however
* in this case the following flags will not be reported:
*
* * LUA, MULTI, REPLICATED, DIRTY (see below for more info).
*
* Available flags and their meaning:
*
* * VALKEYMODULE_CTX_FLAGS_LUA: The command is running in a Lua script
*
* * VALKEYMODULE_CTX_FLAGS_MULTI: The command is running inside a transaction
*
* * VALKEYMODULE_CTX_FLAGS_REPLICATED: The command was sent over the replication
* link by the PRIMARY
*
* * VALKEYMODULE_CTX_FLAGS_PRIMARY: The instance is a primary
*
* * VALKEYMODULE_CTX_FLAGS_REPLICA: The instance is a replica
*
* * VALKEYMODULE_CTX_FLAGS_READONLY: The instance is read-only
*
* * VALKEYMODULE_CTX_FLAGS_CLUSTER: The instance is in cluster mode
*
* * VALKEYMODULE_CTX_FLAGS_AOF: The instance has AOF enabled
*
* * VALKEYMODULE_CTX_FLAGS_RDB: The instance has RDB enabled
*
* * VALKEYMODULE_CTX_FLAGS_MAXMEMORY: The instance has Maxmemory set
*
* * VALKEYMODULE_CTX_FLAGS_EVICT: Maxmemory is set and has an eviction
* policy that may delete keys
*
* * VALKEYMODULE_CTX_FLAGS_OOM: The server is out of memory according to the
* maxmemory setting.
*
* * VALKEYMODULE_CTX_FLAGS_OOM_WARNING: Less than 25% of memory remains before
* reaching the maxmemory level.
*
* * VALKEYMODULE_CTX_FLAGS_LOADING: Server is loading RDB/AOF
*
* * VALKEYMODULE_CTX_FLAGS_REPLICA_IS_STALE: No active link with the primary.
*
* * VALKEYMODULE_CTX_FLAGS_REPLICA_IS_CONNECTING: The replica is trying to
* connect with the primary.
*
* * VALKEYMODULE_CTX_FLAGS_REPLICA_IS_TRANSFERRING: primary -> Replica RDB
* transfer is in progress.
*
* * VALKEYMODULE_CTX_FLAGS_REPLICA_IS_ONLINE: The replica has an active link
* with its primary. This is the
* contrary of STALE state.
*
* * VALKEYMODULE_CTX_FLAGS_ACTIVE_CHILD: There is currently some background
* process active (RDB, AUX or module).
*
* * VALKEYMODULE_CTX_FLAGS_MULTI_DIRTY: The next EXEC will fail due to dirty
* CAS (touched keys).
*
* * VALKEYMODULE_CTX_FLAGS_IS_CHILD: The server is currently running inside
* background child process.
*
* * VALKEYMODULE_CTX_FLAGS_RESP3: Indicate the that client attached to this
* context is using RESP3.
*
* * VALKEYMODULE_CTX_FLAGS_SERVER_STARTUP: The instance is starting
*/
int VM_GetContextFlags(ValkeyModuleCtx *ctx) {
int flags = 0;
/* Client specific flags */
if (ctx) {
if (ctx->client) {
if (ctx->client->flag.deny_blocking) flags |= VALKEYMODULE_CTX_FLAGS_DENY_BLOCKING;
/* Module command received from PRIMARY, is replicated. */
if (ctx->client->flag.primary) flags |= VALKEYMODULE_CTX_FLAGS_REPLICATED;
if (ctx->client->resp == 3) {
flags |= VALKEYMODULE_CTX_FLAGS_RESP3;
}
}
/* For DIRTY flags, we need the blocked client if used */
client *c = ctx->blocked_client ? ctx->blocked_client->client : ctx->client;
if (c && (c->flag.dirty_cas || c->flag.dirty_exec)) {
flags |= VALKEYMODULE_CTX_FLAGS_MULTI_DIRTY;
}
}
if (scriptIsRunning()) flags |= VALKEYMODULE_CTX_FLAGS_LUA;
if (server.in_exec) flags |= VALKEYMODULE_CTX_FLAGS_MULTI;
if (server.cluster_enabled) flags |= VALKEYMODULE_CTX_FLAGS_CLUSTER;
if (server.async_loading)
flags |= VALKEYMODULE_CTX_FLAGS_ASYNC_LOADING;
else if (server.loading)
flags |= VALKEYMODULE_CTX_FLAGS_LOADING;
/* Maxmemory and eviction policy */
if (server.maxmemory > 0 && (!server.primary_host || !server.repl_replica_ignore_maxmemory)) {
flags |= VALKEYMODULE_CTX_FLAGS_MAXMEMORY;
if (server.maxmemory_policy != MAXMEMORY_NO_EVICTION) flags |= VALKEYMODULE_CTX_FLAGS_EVICT;
}
/* Persistence flags */
if (server.aof_state != AOF_OFF) flags |= VALKEYMODULE_CTX_FLAGS_AOF;
if (server.saveparamslen > 0) flags |= VALKEYMODULE_CTX_FLAGS_RDB;
/* Replication flags */
if (server.primary_host == NULL) {
flags |= VALKEYMODULE_CTX_FLAGS_PRIMARY;
} else {
flags |= VALKEYMODULE_CTX_FLAGS_REPLICA;
if (server.repl_replica_ro) flags |= VALKEYMODULE_CTX_FLAGS_READONLY;
/* Replica state flags. */
if (server.repl_state == REPL_STATE_CONNECT || server.repl_state == REPL_STATE_CONNECTING) {
flags |= VALKEYMODULE_CTX_FLAGS_REPLICA_IS_CONNECTING;
} else if (server.repl_state == REPL_STATE_TRANSFER) {
flags |= VALKEYMODULE_CTX_FLAGS_REPLICA_IS_TRANSFERRING;
} else if (server.repl_state == REPL_STATE_CONNECTED) {
flags |= VALKEYMODULE_CTX_FLAGS_REPLICA_IS_ONLINE;
}
if (server.repl_state != REPL_STATE_CONNECTED) flags |= VALKEYMODULE_CTX_FLAGS_REPLICA_IS_STALE;
}
/* OOM flag. */
float level;
int retval = getMaxmemoryState(NULL, NULL, NULL, &level);
if (retval == C_ERR) flags |= VALKEYMODULE_CTX_FLAGS_OOM;
if (level > 0.75) flags |= VALKEYMODULE_CTX_FLAGS_OOM_WARNING;
/* Presence of children processes. */
if (hasActiveChildProcess()) flags |= VALKEYMODULE_CTX_FLAGS_ACTIVE_CHILD;
if (server.in_fork_child) flags |= VALKEYMODULE_CTX_FLAGS_IS_CHILD;
/* Non-empty server.loadmodule_queue means that the server is starting. */
if (listLength(server.loadmodule_queue) > 0) flags |= VALKEYMODULE_CTX_FLAGS_SERVER_STARTUP;
return flags;
}
/* Returns true if a client sent the CLIENT PAUSE command to the server or
* if the Cluster does a manual failover, pausing the clients.
* This is needed when we have a primary with replicas, and want to write,
* without adding further data to the replication channel, that the replicas
* replication offset, match the one of the primary. When this happens, it is
* safe to failover the primary without data loss.
*
* However modules may generate traffic by calling ValkeyModule_Call() with
* the "!" flag, or by calling ValkeyModule_Replicate(), in a context outside
* commands execution, for instance in timeout callbacks, threads safe
* contexts, and so forth. When modules will generate too much traffic, it
* will be hard for the primary and replicas offset to match, because there
* is more data to send in the replication channel.
*
* So modules may want to try to avoid very heavy background work that has
* the effect of creating data to the replication channel, when this function
* returns true. This is mostly useful for modules that have background
* garbage collection tasks, or that do writes and replicate such writes
* periodically in timer callbacks or other periodic callbacks.
*/
int VM_AvoidReplicaTraffic(void) {
return !!(isPausedActionsWithUpdate(PAUSE_ACTION_REPLICA));
}
/* Change the currently selected DB. Returns an error if the id
* is out of range.
*
* Note that the client will retain the currently selected DB even after
* the command implemented by the module calling this function
* returns.
*
* If the module command wishes to change something in a different DB and
* returns back to the original one, it should call ValkeyModule_GetSelectedDb()
* before in order to restore the old DB number before returning. */
int VM_SelectDb(ValkeyModuleCtx *ctx, int newid) {
int retval = selectDb(ctx->client, newid);
return (retval == C_OK) ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* Check if a key exists, without affecting its last access time.
*
* This is equivalent to calling VM_OpenKey with the mode VALKEYMODULE_READ |
* VALKEYMODULE_OPEN_KEY_NOTOUCH, then checking if NULL was returned and, if not,
* calling VM_CloseKey on the opened key.
*/
int VM_KeyExists(ValkeyModuleCtx *ctx, robj *keyname) {
robj *value = lookupKeyReadWithFlags(ctx->client->db, keyname, LOOKUP_NOTOUCH);
return (value != NULL);
}
/* Initialize a ValkeyModuleKey struct */
static void moduleInitKey(ValkeyModuleKey *kp, ValkeyModuleCtx *ctx, robj *keyname, robj *value, int mode) {
kp->ctx = ctx;
kp->db = ctx->client->db;
kp->key = keyname;
incrRefCount(keyname);
kp->value = value;
kp->iter = NULL;
kp->mode = mode;
if (kp->value) moduleInitKeyTypeSpecific(kp);
}
/* Initialize the type-specific part of the key. Only when key has a value. */
static void moduleInitKeyTypeSpecific(ValkeyModuleKey *key) {
switch (key->value->type) {
case OBJ_ZSET: zsetKeyReset(key); break;
case OBJ_STREAM: key->u.stream.signalready = 0; break;
}
}
/* Return a handle representing a key, so that it is possible
* to call other APIs with the key handle as argument to perform
* operations on the key.
*
* The return value is the handle representing the key, that must be
* closed with VM_CloseKey().
*
* If the key does not exist and VALKEYMODULE_WRITE mode is requested, the handle
* is still returned, since it is possible to perform operations on
* a yet not existing key (that will be created, for example, after
* a list push operation). If the mode is just VALKEYMODULE_READ instead, and the
* key does not exist, NULL is returned. However it is still safe to
* call ValkeyModule_CloseKey() and ValkeyModule_KeyType() on a NULL
* value.
*
* Extra flags that can be pass to the API under the mode argument:
* * VALKEYMODULE_OPEN_KEY_NOTOUCH - Avoid touching the LRU/LFU of the key when opened.
* * VALKEYMODULE_OPEN_KEY_NONOTIFY - Don't trigger keyspace event on key misses.
* * VALKEYMODULE_OPEN_KEY_NOSTATS - Don't update keyspace hits/misses counters.
* * VALKEYMODULE_OPEN_KEY_NOEXPIRE - Avoid deleting lazy expired keys.
* * VALKEYMODULE_OPEN_KEY_NOEFFECTS - Avoid any effects from fetching the key. */
ValkeyModuleKey *VM_OpenKey(ValkeyModuleCtx *ctx, robj *keyname, int mode) {
ValkeyModuleKey *kp;
robj *value;
int flags = 0;
flags |= (mode & VALKEYMODULE_OPEN_KEY_NOTOUCH ? LOOKUP_NOTOUCH : 0);
flags |= (mode & VALKEYMODULE_OPEN_KEY_NONOTIFY ? LOOKUP_NONOTIFY : 0);
flags |= (mode & VALKEYMODULE_OPEN_KEY_NOSTATS ? LOOKUP_NOSTATS : 0);
flags |= (mode & VALKEYMODULE_OPEN_KEY_NOEXPIRE ? LOOKUP_NOEXPIRE : 0);
flags |= (mode & VALKEYMODULE_OPEN_KEY_NOEFFECTS ? LOOKUP_NOEFFECTS : 0);
if (mode & VALKEYMODULE_WRITE) {
value = lookupKeyWriteWithFlags(ctx->client->db, keyname, flags);
} else {
value = lookupKeyReadWithFlags(ctx->client->db, keyname, flags);
if (value == NULL) {
return NULL;
}
}
/* Setup the key handle. */
kp = zmalloc(sizeof(*kp));
moduleInitKey(kp, ctx, keyname, value, mode);
autoMemoryAdd(ctx, VALKEYMODULE_AM_KEY, kp);
return kp;
}
/**
* Returns the full OpenKey modes mask, using the return value
* the module can check if a certain set of OpenKey modes are supported
* by the server version in use.
* Example:
*
* int supportedMode = VM_GetOpenKeyModesAll();
* if (supportedMode & VALKEYMODULE_OPEN_KEY_NOTOUCH) {
* // VALKEYMODULE_OPEN_KEY_NOTOUCH is supported
* } else{
* // VALKEYMODULE_OPEN_KEY_NOTOUCH is not supported
* }
*/
int VM_GetOpenKeyModesAll(void) {
return _VALKEYMODULE_OPEN_KEY_ALL;
}
/* Destroy a ValkeyModuleKey struct (freeing is the responsibility of the caller). */
static void moduleCloseKey(ValkeyModuleKey *key) {
int signal = SHOULD_SIGNAL_MODIFIED_KEYS(key->ctx);
if ((key->mode & VALKEYMODULE_WRITE) && signal) signalModifiedKey(key->ctx->client, key->db, key->key);
if (key->value) {
if (key->iter) moduleFreeKeyIterator(key);
switch (key->value->type) {
case OBJ_ZSET: VM_ZsetRangeStop(key); break;
case OBJ_STREAM:
if (key->u.stream.signalready) /* One or more VM_StreamAdd() have been done. */
signalKeyAsReady(key->db, key->key, OBJ_STREAM);
break;
}
}
serverAssert(key->iter == NULL);
decrRefCount(key->key);
}
/* Close a key handle. */
void VM_CloseKey(ValkeyModuleKey *key) {
if (key == NULL) return;
moduleCloseKey(key);
autoMemoryFreed(key->ctx, VALKEYMODULE_AM_KEY, key);
zfree(key);
}
/* Return the type of the key. If the key pointer is NULL then
* VALKEYMODULE_KEYTYPE_EMPTY is returned. */
int VM_KeyType(ValkeyModuleKey *key) {
if (key == NULL || key->value == NULL) return VALKEYMODULE_KEYTYPE_EMPTY;
/* We map between defines so that we are free to change the internal
* defines as desired. */
switch (key->value->type) {
case OBJ_STRING: return VALKEYMODULE_KEYTYPE_STRING;
case OBJ_LIST: return VALKEYMODULE_KEYTYPE_LIST;
case OBJ_SET: return VALKEYMODULE_KEYTYPE_SET;
case OBJ_ZSET: return VALKEYMODULE_KEYTYPE_ZSET;
case OBJ_HASH: return VALKEYMODULE_KEYTYPE_HASH;
case OBJ_MODULE: return VALKEYMODULE_KEYTYPE_MODULE;
case OBJ_STREAM: return VALKEYMODULE_KEYTYPE_STREAM;
default: return VALKEYMODULE_KEYTYPE_EMPTY;
}
}
/* Return the length of the value associated with the key.
* For strings this is the length of the string. For all the other types
* is the number of elements (just counting keys for hashes).
*
* If the key pointer is NULL or the key is empty, zero is returned. */
size_t VM_ValueLength(ValkeyModuleKey *key) {
if (key == NULL || key->value == NULL) return 0;
switch (key->value->type) {
case OBJ_STRING: return stringObjectLen(key->value);
case OBJ_LIST: return listTypeLength(key->value);
case OBJ_SET: return setTypeSize(key->value);
case OBJ_ZSET: return zsetLength(key->value);
case OBJ_HASH: return hashTypeLength(key->value);
case OBJ_STREAM: return streamLength(key->value);
default: return 0;
}
}
/* If the key is open for writing, remove it, and setup the key to
* accept new writes as an empty key (that will be created on demand).
* On success VALKEYMODULE_OK is returned. If the key is not open for
* writing VALKEYMODULE_ERR is returned. */
int VM_DeleteKey(ValkeyModuleKey *key) {
if (!(key->mode & VALKEYMODULE_WRITE)) return VALKEYMODULE_ERR;
if (key->value) {
dbDelete(key->db, key->key);
key->value = NULL;
}
return VALKEYMODULE_OK;
}
/* If the key is open for writing, unlink it (that is delete it in a
* non-blocking way, not reclaiming memory immediately) and setup the key to
* accept new writes as an empty key (that will be created on demand).
* On success VALKEYMODULE_OK is returned. If the key is not open for
* writing VALKEYMODULE_ERR is returned. */
int VM_UnlinkKey(ValkeyModuleKey *key) {
if (!(key->mode & VALKEYMODULE_WRITE)) return VALKEYMODULE_ERR;
if (key->value) {
dbAsyncDelete(key->db, key->key);
key->value = NULL;
}
return VALKEYMODULE_OK;
}
/* Return the key expire value, as milliseconds of remaining TTL.
* If no TTL is associated with the key or if the key is empty,
* VALKEYMODULE_NO_EXPIRE is returned. */
mstime_t VM_GetExpire(ValkeyModuleKey *key) {
mstime_t expire = getExpire(key->db, key->key);
if (expire == -1 || key->value == NULL) return VALKEYMODULE_NO_EXPIRE;
expire -= commandTimeSnapshot();
return expire >= 0 ? expire : 0;
}
/* Set a new expire for the key. If the special expire
* VALKEYMODULE_NO_EXPIRE is set, the expire is cancelled if there was
* one (the same as the PERSIST command).
*
* Note that the expire must be provided as a positive integer representing
* the number of milliseconds of TTL the key should have.
*
* The function returns VALKEYMODULE_OK on success or VALKEYMODULE_ERR if
* the key was not open for writing or is an empty key. */
int VM_SetExpire(ValkeyModuleKey *key, mstime_t expire) {
if (!(key->mode & VALKEYMODULE_WRITE) || key->value == NULL || (expire < 0 && expire != VALKEYMODULE_NO_EXPIRE))
return VALKEYMODULE_ERR;
if (expire != VALKEYMODULE_NO_EXPIRE) {
expire += commandTimeSnapshot();
key->value = setExpire(key->ctx->client, key->db, key->key, expire);
} else {
removeExpire(key->db, key->key);
}
return VALKEYMODULE_OK;
}
/* Return the key expire value, as absolute Unix timestamp.
* If no TTL is associated with the key or if the key is empty,
* VALKEYMODULE_NO_EXPIRE is returned. */
mstime_t VM_GetAbsExpire(ValkeyModuleKey *key) {
mstime_t expire = getExpire(key->db, key->key);
if (expire == -1 || key->value == NULL) return VALKEYMODULE_NO_EXPIRE;
return expire;
}
/* Set a new expire for the key. If the special expire
* VALKEYMODULE_NO_EXPIRE is set, the expire is cancelled if there was
* one (the same as the PERSIST command).
*
* Note that the expire must be provided as a positive integer representing
* the absolute Unix timestamp the key should have.
*
* The function returns VALKEYMODULE_OK on success or VALKEYMODULE_ERR if
* the key was not open for writing or is an empty key. */
int VM_SetAbsExpire(ValkeyModuleKey *key, mstime_t expire) {
if (!(key->mode & VALKEYMODULE_WRITE) || key->value == NULL || (expire < 0 && expire != VALKEYMODULE_NO_EXPIRE))
return VALKEYMODULE_ERR;
if (expire != VALKEYMODULE_NO_EXPIRE) {
key->value = setExpire(key->ctx->client, key->db, key->key, expire);
} else {
removeExpire(key->db, key->key);
}
return VALKEYMODULE_OK;
}
/* Performs similar operation to FLUSHALL, and optionally start a new AOF file (if enabled)
* If restart_aof is true, you must make sure the command that triggered this call is not
* propagated to the AOF file.
* When async is set to true, db contents will be freed by a background thread. */
void VM_ResetDataset(int restart_aof, int async) {
if (restart_aof && server.aof_state != AOF_OFF) stopAppendOnly();
flushAllDataAndResetRDB((async ? EMPTYDB_ASYNC : EMPTYDB_NO_FLAGS) | EMPTYDB_NOFUNCTIONS);
if (server.aof_enabled && restart_aof) restartAOFAfterSYNC();
}
/* Returns the number of keys in the current db. */
unsigned long long VM_DbSize(ValkeyModuleCtx *ctx) {
return dbSize(ctx->client->db);
}
/* Returns a name of a random key, or NULL if current db is empty. */
ValkeyModuleString *VM_RandomKey(ValkeyModuleCtx *ctx) {
robj *key = dbRandomKey(ctx->client->db);
autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, key);
return key;
}
/* Returns the name of the key currently being processed. */
const ValkeyModuleString *VM_GetKeyNameFromOptCtx(ValkeyModuleKeyOptCtx *ctx) {
return ctx->from_key;
}
/* Returns the name of the target key currently being processed. */
const ValkeyModuleString *VM_GetToKeyNameFromOptCtx(ValkeyModuleKeyOptCtx *ctx) {
return ctx->to_key;
}
/* Returns the dbid currently being processed. */
int VM_GetDbIdFromOptCtx(ValkeyModuleKeyOptCtx *ctx) {
return ctx->from_dbid;
}
/* Returns the target dbid currently being processed. */
int VM_GetToDbIdFromOptCtx(ValkeyModuleKeyOptCtx *ctx) {
return ctx->to_dbid;
}
/* --------------------------------------------------------------------------
* ## Key API for String type
*
* See also VM_ValueLength(), which returns the length of a string.
* -------------------------------------------------------------------------- */
/* If the key is open for writing, set the specified string 'str' as the
* value of the key, deleting the old value if any.
* On success VALKEYMODULE_OK is returned. If the key is not open for
* writing or there is an active iterator, VALKEYMODULE_ERR is returned. */
int VM_StringSet(ValkeyModuleKey *key, ValkeyModuleString *str) {
if (!(key->mode & VALKEYMODULE_WRITE) || key->iter) return VALKEYMODULE_ERR;
VM_DeleteKey(key);
/* Retain str so setKey copies it to db rather than reallocating it. */
incrRefCount(str);
setKey(key->ctx->client, key->db, key->key, &str, SETKEY_NO_SIGNAL);
key->value = str;
return VALKEYMODULE_OK;
}
/* Prepare the key associated string value for DMA access, and returns
* a pointer and size (by reference), that the user can use to read or
* modify the string in-place accessing it directly via pointer.
*
* The 'mode' is composed by bitwise OR-ing the following flags:
*
* VALKEYMODULE_READ -- Read access
* VALKEYMODULE_WRITE -- Write access
*
* If the DMA is not requested for writing, the pointer returned should
* only be accessed in a read-only fashion.
*
* On error (wrong type) NULL is returned.
*
* DMA access rules:
*
* 1. No other key writing function should be called since the moment
* the pointer is obtained, for all the time we want to use DMA access
* to read or modify the string.
*
* 2. Each time VM_StringTruncate() is called, to continue with the DMA
* access, VM_StringDMA() should be called again to re-obtain
* a new pointer and length.
*
* 3. If the returned pointer is not NULL, but the length is zero, no
* byte can be touched (the string is empty, or the key itself is empty)
* so a VM_StringTruncate() call should be used if there is to enlarge
* the string, and later call StringDMA() again to get the pointer.
*/
char *VM_StringDMA(ValkeyModuleKey *key, size_t *len, int mode) {
/* We need to return *some* pointer for empty keys, we just return
* a string literal pointer, that is the advantage to be mapped into
* a read only memory page, so the module will segfault if a write
* attempt is performed. */
char *emptystring = "<dma-empty-string>";
if (key->value == NULL) {
*len = 0;
return emptystring;
}
if (key->value->type != OBJ_STRING) return NULL;
/* For write access, and even for read access if the object is encoded,
* we unshare the string (that has the side effect of decoding it). */
if ((mode & VALKEYMODULE_WRITE) || key->value->encoding != OBJ_ENCODING_RAW)
key->value = dbUnshareStringValue(key->db, key->key, key->value);
*len = sdslen(key->value->ptr);
return key->value->ptr;
}
/* If the key is open for writing and is of string type, resize it, padding
* with zero bytes if the new length is greater than the old one.
*
* After this call, VM_StringDMA() must be called again to continue
* DMA access with the new pointer.
*
* The function returns VALKEYMODULE_OK on success, and VALKEYMODULE_ERR on
* error, that is, the key is not open for writing, is not a string
* or resizing for more than 512 MB is requested.
*
* If the key is empty, a string key is created with the new string value
* unless the new length value requested is zero. */
int VM_StringTruncate(ValkeyModuleKey *key, size_t newlen) {
if (!(key->mode & VALKEYMODULE_WRITE)) return VALKEYMODULE_ERR;
if (key->value && key->value->type != OBJ_STRING) return VALKEYMODULE_ERR;
if (newlen > 512 * 1024 * 1024) return VALKEYMODULE_ERR;
/* Empty key and new len set to 0. Just return VALKEYMODULE_OK without
* doing anything. */
if (key->value == NULL && newlen == 0) return VALKEYMODULE_OK;
if (key->value == NULL) {
/* Empty key: create it with the new size. */
robj *o = createObject(OBJ_STRING, sdsnewlen(NULL, newlen));
setKey(key->ctx->client, key->db, key->key, &o, SETKEY_NO_SIGNAL);
key->value = o;
} else {
/* Unshare and resize. */
key->value = dbUnshareStringValue(key->db, key->key, key->value);
size_t curlen = sdslen(key->value->ptr);
if (newlen > curlen) {
key->value->ptr = sdsgrowzero(key->value->ptr, newlen);
} else if (newlen < curlen) {
sdssubstr(key->value->ptr, 0, newlen);
/* If the string is too wasteful, reallocate it. */
if (sdslen(key->value->ptr) < sdsavail(key->value->ptr))
key->value->ptr = sdsRemoveFreeSpace(key->value->ptr, 0);
}
}
return VALKEYMODULE_OK;
}
/* --------------------------------------------------------------------------
* ## Key API for List type
*
* Many of the list functions access elements by index. Since a list is in
* essence a doubly-linked list, accessing elements by index is generally an
* O(N) operation. However, if elements are accessed sequentially or with
* indices close together, the functions are optimized to seek the index from
* the previous index, rather than seeking from the ends of the list.
*
* This enables iteration to be done efficiently using a simple for loop:
*
* long n = VM_ValueLength(key);
* for (long i = 0; i < n; i++) {
* ValkeyModuleString *elem = ValkeyModule_ListGet(key, i);
* // Do stuff...
* }
*
* Note that after modifying a list using VM_ListPop, VM_ListSet or
* VM_ListInsert, the internal iterator is invalidated so the next operation
* will require a linear seek.
*
* Modifying a list in any another way, for example using VM_Call(), while a key
* is open will confuse the internal iterator and may cause trouble if the key
* is used after such modifications. The key must be reopened in this case.
*
* See also VM_ValueLength(), which returns the length of a list.
* -------------------------------------------------------------------------- */
/* Seeks the key's internal list iterator to the given index. On success, 1 is
* returned and key->iter, key->u.list.entry and key->u.list.index are set. On
* failure, 0 is returned and errno is set as required by the list API
* functions. */
int moduleListIteratorSeek(ValkeyModuleKey *key, long index, int mode) {
if (!key) {
errno = EINVAL;
return 0;
} else if (!key->value || key->value->type != OBJ_LIST) {
errno = ENOTSUP;
return 0;
}
if (!(key->mode & mode)) {
errno = EBADF;
return 0;
}
long length = listTypeLength(key->value);
if (index < -length || index >= length) {
errno = EDOM; /* Invalid index */
return 0;
}
if (key->iter == NULL) {
/* No existing iterator. Create one. */
key->iter = listTypeInitIterator(key->value, index, LIST_TAIL);
serverAssert(key->iter != NULL);
serverAssert(listTypeNext(key->iter, &key->u.list.entry));
key->u.list.index = index;
return 1;
}
/* There's an existing iterator. Make sure the requested index has the same
* sign as the iterator's index. */
if (index < 0 && key->u.list.index >= 0)
index += length;
else if (index >= 0 && key->u.list.index < 0)
index -= length;
if (index == key->u.list.index) return 1; /* We're done. */
/* Seek the iterator to the requested index. */
unsigned char dir = key->u.list.index < index ? LIST_TAIL : LIST_HEAD;
listTypeSetIteratorDirection(key->iter, &key->u.list.entry, dir);
while (key->u.list.index != index) {
serverAssert(listTypeNext(key->iter, &key->u.list.entry));
key->u.list.index += dir == LIST_HEAD ? -1 : 1;
}
return 1;
}
/* Push an element into a list, on head or tail depending on 'where' argument
* (VALKEYMODULE_LIST_HEAD or VALKEYMODULE_LIST_TAIL). If the key refers to an
* empty key opened for writing, the key is created. On success, VALKEYMODULE_OK
* is returned. On failure, VALKEYMODULE_ERR is returned and `errno` is set as
* follows:
*
* - EINVAL if key or ele is NULL.
* - ENOTSUP if the key is of another type than list.
* - EBADF if the key is not opened for writing.
*
* Note: Before Redis OSS 7.0, `errno` was not set by this function. */
int VM_ListPush(ValkeyModuleKey *key, int where, ValkeyModuleString *ele) {
if (!key || !ele) {
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (key->value != NULL && key->value->type != OBJ_LIST) {
errno = ENOTSUP;
return VALKEYMODULE_ERR;
}
if (!(key->mode & VALKEYMODULE_WRITE)) {
errno = EBADF;
return VALKEYMODULE_ERR;
}
if (!(key->mode & VALKEYMODULE_WRITE)) return VALKEYMODULE_ERR;
if (key->value && key->value->type != OBJ_LIST) return VALKEYMODULE_ERR;
if (key->iter) moduleFreeKeyIterator(key);
if (key->value == NULL) moduleCreateEmptyKey(key, VALKEYMODULE_KEYTYPE_LIST);
listTypeTryConversionAppend(key->value, &ele, 0, 0, moduleFreeListIterator, key);
listTypePush(key->value, ele, (where == VALKEYMODULE_LIST_HEAD) ? LIST_HEAD : LIST_TAIL);
return VALKEYMODULE_OK;
}
/* Pop an element from the list, and returns it as a module string object
* that the user should be free with VM_FreeString() or by enabling
* automatic memory. The `where` argument specifies if the element should be
* popped from the beginning or the end of the list (VALKEYMODULE_LIST_HEAD or
* VALKEYMODULE_LIST_TAIL). On failure, the command returns NULL and sets
* `errno` as follows:
*
* - EINVAL if key is NULL.
* - ENOTSUP if the key is empty or of another type than list.
* - EBADF if the key is not opened for writing.
*
* Note: Before Redis OSS 7.0, `errno` was not set by this function. */
ValkeyModuleString *VM_ListPop(ValkeyModuleKey *key, int where) {
if (!key) {
errno = EINVAL;
return NULL;
} else if (key->value == NULL || key->value->type != OBJ_LIST) {
errno = ENOTSUP;
return NULL;
} else if (!(key->mode & VALKEYMODULE_WRITE)) {
errno = EBADF;
return NULL;
}
if (key->iter) moduleFreeKeyIterator(key);
robj *ele = listTypePop(key->value, (where == VALKEYMODULE_LIST_HEAD) ? LIST_HEAD : LIST_TAIL);
robj *decoded = getDecodedObject(ele);
decrRefCount(ele);
if (!moduleDelKeyIfEmpty(key)) listTypeTryConversion(key->value, LIST_CONV_SHRINKING, moduleFreeListIterator, key);
autoMemoryAdd(key->ctx, VALKEYMODULE_AM_STRING, decoded);
return decoded;
}
/* Returns the element at index `index` in the list stored at `key`, like the
* LINDEX command. The element should be free'd using VM_FreeString() or using
* automatic memory management.
*
* The index is zero-based, so 0 means the first element, 1 the second element
* and so on. Negative indices can be used to designate elements starting at the
* tail of the list. Here, -1 means the last element, -2 means the penultimate
* and so forth.
*
* When no value is found at the given key and index, NULL is returned and
* `errno` is set as follows:
*
* - EINVAL if key is NULL.
* - ENOTSUP if the key is not a list.
* - EBADF if the key is not opened for reading.
* - EDOM if the index is not a valid index in the list.
*/
ValkeyModuleString *VM_ListGet(ValkeyModuleKey *key, long index) {
if (moduleListIteratorSeek(key, index, VALKEYMODULE_READ)) {
robj *elem = listTypeGet(&key->u.list.entry);
robj *decoded = getDecodedObject(elem);
decrRefCount(elem);
autoMemoryAdd(key->ctx, VALKEYMODULE_AM_STRING, decoded);
return decoded;
} else {
return NULL;
}
}
/* Replaces the element at index `index` in the list stored at `key`.
*
* The index is zero-based, so 0 means the first element, 1 the second element
* and so on. Negative indices can be used to designate elements starting at the
* tail of the list. Here, -1 means the last element, -2 means the penultimate
* and so forth.
*
* On success, VALKEYMODULE_OK is returned. On failure, VALKEYMODULE_ERR is
* returned and `errno` is set as follows:
*
* - EINVAL if key or value is NULL.
* - ENOTSUP if the key is not a list.
* - EBADF if the key is not opened for writing.
* - EDOM if the index is not a valid index in the list.
*/
int VM_ListSet(ValkeyModuleKey *key, long index, ValkeyModuleString *value) {
if (!value) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
if (!key->value || key->value->type != OBJ_LIST) {
errno = ENOTSUP;
return VALKEYMODULE_ERR;
}
listTypeTryConversionAppend(key->value, &value, 0, 0, moduleFreeListIterator, key);
if (moduleListIteratorSeek(key, index, VALKEYMODULE_WRITE)) {
listTypeReplace(&key->u.list.entry, value);
/* A note in quicklist.c forbids use of iterator after insert, so
* probably also after replace. */
moduleFreeKeyIterator(key);
return VALKEYMODULE_OK;
} else {
return VALKEYMODULE_ERR;
}
}
/* Inserts an element at the given index.
*
* The index is zero-based, so 0 means the first element, 1 the second element
* and so on. Negative indices can be used to designate elements starting at the
* tail of the list. Here, -1 means the last element, -2 means the penultimate
* and so forth. The index is the element's index after inserting it.
*
* On success, VALKEYMODULE_OK is returned. On failure, VALKEYMODULE_ERR is
* returned and `errno` is set as follows:
*
* - EINVAL if key or value is NULL.
* - ENOTSUP if the key of another type than list.
* - EBADF if the key is not opened for writing.
* - EDOM if the index is not a valid index in the list.
*/
int VM_ListInsert(ValkeyModuleKey *key, long index, ValkeyModuleString *value) {
if (!value) {
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (key != NULL && key->value == NULL && (index == 0 || index == -1)) {
/* Insert in empty key => push. */
return VM_ListPush(key, VALKEYMODULE_LIST_TAIL, value);
} else if (key != NULL && key->value != NULL && key->value->type == OBJ_LIST &&
(index == (long)listTypeLength(key->value) || index == -1)) {
/* Insert after the last element => push tail. */
return VM_ListPush(key, VALKEYMODULE_LIST_TAIL, value);
} else if (key != NULL && key->value != NULL && key->value->type == OBJ_LIST &&
(index == 0 || index == -(long)listTypeLength(key->value) - 1)) {
/* Insert before the first element => push head. */
return VM_ListPush(key, VALKEYMODULE_LIST_HEAD, value);
}
listTypeTryConversionAppend(key->value, &value, 0, 0, moduleFreeListIterator, key);
if (moduleListIteratorSeek(key, index, VALKEYMODULE_WRITE)) {
int where = index < 0 ? LIST_TAIL : LIST_HEAD;
listTypeInsert(&key->u.list.entry, value, where);
/* A note in quicklist.c forbids use of iterator after insert. */
moduleFreeKeyIterator(key);
return VALKEYMODULE_OK;
} else {
return VALKEYMODULE_ERR;
}
}
/* Removes an element at the given index. The index is 0-based. A negative index
* can also be used, counting from the end of the list.
*
* On success, VALKEYMODULE_OK is returned. On failure, VALKEYMODULE_ERR is
* returned and `errno` is set as follows:
*
* - EINVAL if key or value is NULL.
* - ENOTSUP if the key is not a list.
* - EBADF if the key is not opened for writing.
* - EDOM if the index is not a valid index in the list.
*/
int VM_ListDelete(ValkeyModuleKey *key, long index) {
if (moduleListIteratorSeek(key, index, VALKEYMODULE_WRITE)) {
listTypeDelete(key->iter, &key->u.list.entry);
if (moduleDelKeyIfEmpty(key)) return VALKEYMODULE_OK;
listTypeTryConversion(key->value, LIST_CONV_SHRINKING, moduleFreeListIterator, key);
if (!key->iter) return VALKEYMODULE_OK; /* Return ASAP if iterator has been freed */
if (listTypeNext(key->iter, &key->u.list.entry)) {
/* After delete entry at position 'index', we need to update
* 'key->u.list.index' according to the following cases:
* 1) [1, 2, 3] => dir: forward, index: 0 => [2, 3] => index: still 0
* 2) [1, 2, 3] => dir: forward, index: -3 => [2, 3] => index: -2
* 3) [1, 2, 3] => dir: reverse, index: 2 => [1, 2] => index: 1
* 4) [1, 2, 3] => dir: reverse, index: -1 => [1, 2] => index: still -1 */
listTypeIterator *li = key->iter;
int reverse = li->direction == LIST_HEAD;
if (key->u.list.index < 0)
key->u.list.index += reverse ? 0 : 1;
else
key->u.list.index += reverse ? -1 : 0;
} else {
/* Reset list iterator if the next entry doesn't exist. */
moduleFreeKeyIterator(key);
}
return VALKEYMODULE_OK;
} else {
return VALKEYMODULE_ERR;
}
}
/* --------------------------------------------------------------------------
* ## Key API for Sorted Set type
*
* See also VM_ValueLength(), which returns the length of a sorted set.
* -------------------------------------------------------------------------- */
/* Conversion from/to public flags of the Modules API and our private flags,
* so that we have everything decoupled. */
int moduleZsetAddFlagsToCoreFlags(int flags) {
int retflags = 0;
if (flags & VALKEYMODULE_ZADD_XX) retflags |= ZADD_IN_XX;
if (flags & VALKEYMODULE_ZADD_NX) retflags |= ZADD_IN_NX;
if (flags & VALKEYMODULE_ZADD_GT) retflags |= ZADD_IN_GT;
if (flags & VALKEYMODULE_ZADD_LT) retflags |= ZADD_IN_LT;
return retflags;
}
/* See previous function comment. */
int moduleZsetAddFlagsFromCoreFlags(int flags) {
int retflags = 0;
if (flags & ZADD_OUT_ADDED) retflags |= VALKEYMODULE_ZADD_ADDED;
if (flags & ZADD_OUT_UPDATED) retflags |= VALKEYMODULE_ZADD_UPDATED;
if (flags & ZADD_OUT_NOP) retflags |= VALKEYMODULE_ZADD_NOP;
return retflags;
}
/* Add a new element into a sorted set, with the specified 'score'.
* If the element already exists, the score is updated.
*
* A new sorted set is created at value if the key is an empty open key
* setup for writing.
*
* Additional flags can be passed to the function via a pointer, the flags
* are both used to receive input and to communicate state when the function
* returns. 'flagsptr' can be NULL if no special flags are used.
*
* The input flags are:
*
* VALKEYMODULE_ZADD_XX: Element must already exist. Do nothing otherwise.
* VALKEYMODULE_ZADD_NX: Element must not exist. Do nothing otherwise.
* VALKEYMODULE_ZADD_GT: If element exists, new score must be greater than the current score.
* Do nothing otherwise. Can optionally be combined with XX.
* VALKEYMODULE_ZADD_LT: If element exists, new score must be less than the current score.
* Do nothing otherwise. Can optionally be combined with XX.
*
* The output flags are:
*
* VALKEYMODULE_ZADD_ADDED: The new element was added to the sorted set.
* VALKEYMODULE_ZADD_UPDATED: The score of the element was updated.
* VALKEYMODULE_ZADD_NOP: No operation was performed because XX or NX flags.
*
* On success the function returns VALKEYMODULE_OK. On the following errors
* VALKEYMODULE_ERR is returned:
*
* * The key was not opened for writing.
* * The key is of the wrong type.
* * 'score' double value is not a number (NaN).
*/
int VM_ZsetAdd(ValkeyModuleKey *key, double score, ValkeyModuleString *ele, int *flagsptr) {
int in_flags = 0, out_flags = 0;
if (!(key->mode & VALKEYMODULE_WRITE)) return VALKEYMODULE_ERR;
if (key->value && key->value->type != OBJ_ZSET) return VALKEYMODULE_ERR;
if (key->value == NULL) moduleCreateEmptyKey(key, VALKEYMODULE_KEYTYPE_ZSET);
if (flagsptr) in_flags = moduleZsetAddFlagsToCoreFlags(*flagsptr);
if (zsetAdd(key->value, score, ele->ptr, in_flags, &out_flags, NULL) == 0) {
if (flagsptr) *flagsptr = 0;
moduleDelKeyIfEmpty(key);
return VALKEYMODULE_ERR;
}
if (flagsptr) *flagsptr = moduleZsetAddFlagsFromCoreFlags(out_flags);
return VALKEYMODULE_OK;
}
/* This function works exactly like VM_ZsetAdd(), but instead of setting
* a new score, the score of the existing element is incremented, or if the
* element does not already exist, it is added assuming the old score was
* zero.
*
* The input and output flags, and the return value, have the same exact
* meaning, with the only difference that this function will return
* VALKEYMODULE_ERR even when 'score' is a valid double number, but adding it
* to the existing score results into a NaN (not a number) condition.
*
* This function has an additional field 'newscore', if not NULL is filled
* with the new score of the element after the increment, if no error
* is returned. */
int VM_ZsetIncrby(ValkeyModuleKey *key, double score, ValkeyModuleString *ele, int *flagsptr, double *newscore) {
int in_flags = 0, out_flags = 0;
if (!(key->mode & VALKEYMODULE_WRITE)) return VALKEYMODULE_ERR;
if (key->value && key->value->type != OBJ_ZSET) return VALKEYMODULE_ERR;
if (key->value == NULL) moduleCreateEmptyKey(key, VALKEYMODULE_KEYTYPE_ZSET);
if (flagsptr) in_flags = moduleZsetAddFlagsToCoreFlags(*flagsptr);
in_flags |= ZADD_IN_INCR;
if (zsetAdd(key->value, score, ele->ptr, in_flags, &out_flags, newscore) == 0) {
if (flagsptr) *flagsptr = 0;
moduleDelKeyIfEmpty(key);
return VALKEYMODULE_ERR;
}
if (flagsptr) *flagsptr = moduleZsetAddFlagsFromCoreFlags(out_flags);
return VALKEYMODULE_OK;
}
/* Remove the specified element from the sorted set.
* The function returns VALKEYMODULE_OK on success, and VALKEYMODULE_ERR
* on one of the following conditions:
*
* * The key was not opened for writing.
* * The key is of the wrong type.
*
* The return value does NOT indicate the fact the element was really
* removed (since it existed) or not, just if the function was executed
* with success.
*
* In order to know if the element was removed, the additional argument
* 'deleted' must be passed, that populates the integer by reference
* setting it to 1 or 0 depending on the outcome of the operation.
* The 'deleted' argument can be NULL if the caller is not interested
* to know if the element was really removed.
*
* Empty keys will be handled correctly by doing nothing. */
int VM_ZsetRem(ValkeyModuleKey *key, ValkeyModuleString *ele, int *deleted) {
if (!(key->mode & VALKEYMODULE_WRITE)) return VALKEYMODULE_ERR;
if (key->value && key->value->type != OBJ_ZSET) return VALKEYMODULE_ERR;
if (key->value != NULL && zsetDel(key->value, ele->ptr)) {
if (deleted) *deleted = 1;
moduleDelKeyIfEmpty(key);
} else {
if (deleted) *deleted = 0;
}
return VALKEYMODULE_OK;
}
/* On success retrieve the double score associated at the sorted set element
* 'ele' and returns VALKEYMODULE_OK. Otherwise VALKEYMODULE_ERR is returned
* to signal one of the following conditions:
*
* * There is no such element 'ele' in the sorted set.
* * The key is not a sorted set.
* * The key is an open empty key.
*/
int VM_ZsetScore(ValkeyModuleKey *key, ValkeyModuleString *ele, double *score) {
if (key->value == NULL) return VALKEYMODULE_ERR;
if (key->value->type != OBJ_ZSET) return VALKEYMODULE_ERR;
if (zsetScore(key->value, ele->ptr, score) == C_ERR) return VALKEYMODULE_ERR;
return VALKEYMODULE_OK;
}
/* --------------------------------------------------------------------------
* ## Key API for Sorted Set iterator
* -------------------------------------------------------------------------- */
void zsetKeyReset(ValkeyModuleKey *key) {
key->u.zset.type = VALKEYMODULE_ZSET_RANGE_NONE;
key->u.zset.current = NULL;
key->u.zset.er = 1;
}
/* Stop a sorted set iteration. */
void VM_ZsetRangeStop(ValkeyModuleKey *key) {
if (!key->value || key->value->type != OBJ_ZSET) return;
/* Free resources if needed. */
if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_LEX) zslFreeLexRange(&key->u.zset.lrs);
/* Setup sensible values so that misused iteration API calls when an
* iterator is not active will result into something more sensible
* than crashing. */
zsetKeyReset(key);
}
/* Return the "End of range" flag value to signal the end of the iteration. */
int VM_ZsetRangeEndReached(ValkeyModuleKey *key) {
if (!key->value || key->value->type != OBJ_ZSET) return 1;
return key->u.zset.er;
}
/* Helper function for VM_ZsetFirstInScoreRange() and VM_ZsetLastInScoreRange().
* Setup the sorted set iteration according to the specified score range
* (see the functions calling it for more info). If 'first' is true the
* first element in the range is used as a starting point for the iterator
* otherwise the last. Return VALKEYMODULE_OK on success otherwise
* VALKEYMODULE_ERR. */
int zsetInitScoreRange(ValkeyModuleKey *key, double min, double max, int minex, int maxex, int first) {
if (!key->value || key->value->type != OBJ_ZSET) return VALKEYMODULE_ERR;
VM_ZsetRangeStop(key);
key->u.zset.type = VALKEYMODULE_ZSET_RANGE_SCORE;
key->u.zset.er = 0;
/* Setup the range structure used by the sorted set core implementation
* in order to seek at the specified element. */
zrangespec *zrs = &key->u.zset.rs;
zrs->min = min;
zrs->max = max;
zrs->minex = minex;
zrs->maxex = maxex;
if (key->value->encoding == OBJ_ENCODING_LISTPACK) {
key->u.zset.current = first ? zzlFirstInRange(key->value->ptr, zrs) : zzlLastInRange(key->value->ptr, zrs);
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = key->value->ptr;
zskiplist *zsl = zs->zsl;
key->u.zset.current = first ? zslNthInRange(zsl, zrs, 0) : zslNthInRange(zsl, zrs, -1);
} else {
serverPanic("Unsupported zset encoding");
}
if (key->u.zset.current == NULL) key->u.zset.er = 1;
return VALKEYMODULE_OK;
}
/* Setup a sorted set iterator seeking the first element in the specified
* range. Returns VALKEYMODULE_OK if the iterator was correctly initialized
* otherwise VALKEYMODULE_ERR is returned in the following conditions:
*
* 1. The value stored at key is not a sorted set or the key is empty.
*
* The range is specified according to the two double values 'min' and 'max'.
* Both can be infinite using the following two macros:
*
* * VALKEYMODULE_POSITIVE_INFINITE for positive infinite value
* * VALKEYMODULE_NEGATIVE_INFINITE for negative infinite value
*
* 'minex' and 'maxex' parameters, if true, respectively setup a range
* where the min and max value are exclusive (not included) instead of
* inclusive. */
int VM_ZsetFirstInScoreRange(ValkeyModuleKey *key, double min, double max, int minex, int maxex) {
return zsetInitScoreRange(key, min, max, minex, maxex, 1);
}
/* Exactly like ValkeyModule_ZsetFirstInScoreRange() but the last element of
* the range is selected for the start of the iteration instead. */
int VM_ZsetLastInScoreRange(ValkeyModuleKey *key, double min, double max, int minex, int maxex) {
return zsetInitScoreRange(key, min, max, minex, maxex, 0);
}
/* Helper function for VM_ZsetFirstInLexRange() and VM_ZsetLastInLexRange().
* Setup the sorted set iteration according to the specified lexicographical
* range (see the functions calling it for more info). If 'first' is true the
* first element in the range is used as a starting point for the iterator
* otherwise the last. Return VALKEYMODULE_OK on success otherwise
* VALKEYMODULE_ERR.
*
* Note that this function takes 'min' and 'max' in the same form of the
* ZRANGEBYLEX command. */
int zsetInitLexRange(ValkeyModuleKey *key, ValkeyModuleString *min, ValkeyModuleString *max, int first) {
if (!key->value || key->value->type != OBJ_ZSET) return VALKEYMODULE_ERR;
VM_ZsetRangeStop(key);
key->u.zset.er = 0;
/* Setup the range structure used by the sorted set core implementation
* in order to seek at the specified element. */
zlexrangespec *zlrs = &key->u.zset.lrs;
if (zslParseLexRange(min, max, zlrs) == C_ERR) return VALKEYMODULE_ERR;
/* Set the range type to lex only after successfully parsing the range,
* otherwise we don't want the zlexrangespec to be freed. */
key->u.zset.type = VALKEYMODULE_ZSET_RANGE_LEX;
if (key->value->encoding == OBJ_ENCODING_LISTPACK) {
key->u.zset.current =
first ? zzlFirstInLexRange(key->value->ptr, zlrs) : zzlLastInLexRange(key->value->ptr, zlrs);
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = key->value->ptr;
zskiplist *zsl = zs->zsl;
key->u.zset.current = first ? zslNthInLexRange(zsl, zlrs, 0) : zslNthInLexRange(zsl, zlrs, -1);
} else {
serverPanic("Unsupported zset encoding");
}
if (key->u.zset.current == NULL) key->u.zset.er = 1;
return VALKEYMODULE_OK;
}
/* Setup a sorted set iterator seeking the first element in the specified
* lexicographical range. Returns VALKEYMODULE_OK if the iterator was correctly
* initialized otherwise VALKEYMODULE_ERR is returned in the
* following conditions:
*
* 1. The value stored at key is not a sorted set or the key is empty.
* 2. The lexicographical range 'min' and 'max' format is invalid.
*
* 'min' and 'max' should be provided as two ValkeyModuleString objects
* in the same format as the parameters passed to the ZRANGEBYLEX command.
* The function does not take ownership of the objects, so they can be released
* ASAP after the iterator is setup. */
int VM_ZsetFirstInLexRange(ValkeyModuleKey *key, ValkeyModuleString *min, ValkeyModuleString *max) {
return zsetInitLexRange(key, min, max, 1);
}
/* Exactly like ValkeyModule_ZsetFirstInLexRange() but the last element of
* the range is selected for the start of the iteration instead. */
int VM_ZsetLastInLexRange(ValkeyModuleKey *key, ValkeyModuleString *min, ValkeyModuleString *max) {
return zsetInitLexRange(key, min, max, 0);
}
/* Return the current sorted set element of an active sorted set iterator
* or NULL if the range specified in the iterator does not include any
* element. */
ValkeyModuleString *VM_ZsetRangeCurrentElement(ValkeyModuleKey *key, double *score) {
ValkeyModuleString *str;
if (!key->value || key->value->type != OBJ_ZSET) return NULL;
if (key->u.zset.current == NULL) return NULL;
if (key->value->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *eptr, *sptr;
eptr = key->u.zset.current;
sds ele = lpGetObject(eptr);
if (score) {
sptr = lpNext(key->value->ptr, eptr);
*score = zzlGetScore(sptr);
}
str = createObject(OBJ_STRING, ele);
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
zskiplistNode *ln = key->u.zset.current;
if (score) *score = ln->score;
str = createStringObject(ln->ele, sdslen(ln->ele));
} else {
serverPanic("Unsupported zset encoding");
}
autoMemoryAdd(key->ctx, VALKEYMODULE_AM_STRING, str);
return str;
}
/* Go to the next element of the sorted set iterator. Returns 1 if there was
* a next element, 0 if we are already at the latest element or the range
* does not include any item at all. */
int VM_ZsetRangeNext(ValkeyModuleKey *key) {
if (!key->value || key->value->type != OBJ_ZSET) return 0;
if (!key->u.zset.type || !key->u.zset.current) return 0; /* No active iterator. */
if (key->value->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *zl = key->value->ptr;
unsigned char *eptr = key->u.zset.current;
unsigned char *next;
next = lpNext(zl, eptr); /* Skip element. */
if (next) next = lpNext(zl, next); /* Skip score. */
if (next == NULL) {
key->u.zset.er = 1;
return 0;
} else {
/* Are we still within the range? */
if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_SCORE) {
/* Fetch the next element score for the
* range check. */
unsigned char *saved_next = next;
next = lpNext(zl, next); /* Skip next element. */
double score = zzlGetScore(next); /* Obtain the next score. */
if (!zslValueLteMax(score, &key->u.zset.rs)) {
key->u.zset.er = 1;
return 0;
}
next = saved_next;
} else if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_LEX) {
if (!zzlLexValueLteMax(next, &key->u.zset.lrs)) {
key->u.zset.er = 1;
return 0;
}
}
key->u.zset.current = next;
return 1;
}
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
zskiplistNode *ln = key->u.zset.current, *next = ln->level[0].forward;
if (next == NULL) {
key->u.zset.er = 1;
return 0;
} else {
/* Are we still within the range? */
if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_SCORE && !zslValueLteMax(next->score, &key->u.zset.rs)) {
key->u.zset.er = 1;
return 0;
} else if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_LEX) {
if (!zslLexValueLteMax(next->ele, &key->u.zset.lrs)) {
key->u.zset.er = 1;
return 0;
}
}
key->u.zset.current = next;
return 1;
}
} else {
serverPanic("Unsupported zset encoding");
}
}
/* Go to the previous element of the sorted set iterator. Returns 1 if there was
* a previous element, 0 if we are already at the first element or the range
* does not include any item at all. */
int VM_ZsetRangePrev(ValkeyModuleKey *key) {
if (!key->value || key->value->type != OBJ_ZSET) return 0;
if (!key->u.zset.type || !key->u.zset.current) return 0; /* No active iterator. */
if (key->value->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *zl = key->value->ptr;
unsigned char *eptr = key->u.zset.current;
unsigned char *prev;
prev = lpPrev(zl, eptr); /* Go back to previous score. */
if (prev) prev = lpPrev(zl, prev); /* Back to previous ele. */
if (prev == NULL) {
key->u.zset.er = 1;
return 0;
} else {
/* Are we still within the range? */
if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_SCORE) {
/* Fetch the previous element score for the
* range check. */
unsigned char *saved_prev = prev;
prev = lpNext(zl, prev); /* Skip element to get the score.*/
double score = zzlGetScore(prev); /* Obtain the prev score. */
if (!zslValueGteMin(score, &key->u.zset.rs)) {
key->u.zset.er = 1;
return 0;
}
prev = saved_prev;
} else if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_LEX) {
if (!zzlLexValueGteMin(prev, &key->u.zset.lrs)) {
key->u.zset.er = 1;
return 0;
}
}
key->u.zset.current = prev;
return 1;
}
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
zskiplistNode *ln = key->u.zset.current, *prev = ln->backward;
if (prev == NULL) {
key->u.zset.er = 1;
return 0;
} else {
/* Are we still within the range? */
if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_SCORE && !zslValueGteMin(prev->score, &key->u.zset.rs)) {
key->u.zset.er = 1;
return 0;
} else if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_LEX) {
if (!zslLexValueGteMin(prev->ele, &key->u.zset.lrs)) {
key->u.zset.er = 1;
return 0;
}
}
key->u.zset.current = prev;
return 1;
}
} else {
serverPanic("Unsupported zset encoding");
}
}
/* --------------------------------------------------------------------------
* ## Key API for Hash type
*
* See also VM_ValueLength(), which returns the number of fields in a hash.
* -------------------------------------------------------------------------- */
/* Set the field of the specified hash field to the specified value.
* If the key is an empty key open for writing, it is created with an empty
* hash value, in order to set the specified field.
*
* The function is variadic and the user must specify pairs of field
* names and values, both as ValkeyModuleString pointers (unless the
* CFIELD option is set, see later). At the end of the field/value-ptr pairs,
* NULL must be specified as last argument to signal the end of the arguments
* in the variadic function.
*
* Example to set the hash argv[1] to the value argv[2]:
*
* ValkeyModule_HashSet(key,VALKEYMODULE_HASH_NONE,argv[1],argv[2],NULL);
*
* The function can also be used in order to delete fields (if they exist)
* by setting them to the specified value of VALKEYMODULE_HASH_DELETE:
*
* ValkeyModule_HashSet(key,VALKEYMODULE_HASH_NONE,argv[1],
* VALKEYMODULE_HASH_DELETE,NULL);
*
* The behavior of the command changes with the specified flags, that can be
* set to VALKEYMODULE_HASH_NONE if no special behavior is needed.
*
* VALKEYMODULE_HASH_NX: The operation is performed only if the field was not
* already existing in the hash.
* VALKEYMODULE_HASH_XX: The operation is performed only if the field was
* already existing, so that a new value could be
* associated to an existing filed, but no new fields
* are created.
* VALKEYMODULE_HASH_CFIELDS: The field names passed are null terminated C
* strings instead of ValkeyModuleString objects.
* VALKEYMODULE_HASH_COUNT_ALL: Include the number of inserted fields in the
* returned number, in addition to the number of
* updated and deleted fields. (Added in Redis OSS
* 6.2.)
*
* Unless NX is specified, the command overwrites the old field value with
* the new one.
*
* When using VALKEYMODULE_HASH_CFIELDS, field names are reported using
* normal C strings, so for example to delete the field "foo" the following
* code can be used:
*
* ValkeyModule_HashSet(key,VALKEYMODULE_HASH_CFIELDS,"foo",
* VALKEYMODULE_HASH_DELETE,NULL);
*
* Return value:
*
* The number of fields existing in the hash prior to the call, which have been
* updated (its old value has been replaced by a new value) or deleted. If the
* flag VALKEYMODULE_HASH_COUNT_ALL is set, inserted fields not previously
* existing in the hash are also counted.
*
* If the return value is zero, `errno` is set (since Redis OSS 6.2) as follows:
*
* - EINVAL if any unknown flags are set or if key is NULL.
* - ENOTSUP if the key is associated with a non Hash value.
* - EBADF if the key was not opened for writing.
* - ENOENT if no fields were counted as described under Return value above.
* This is not actually an error. The return value can be zero if all fields
* were just created and the COUNT_ALL flag was unset, or if changes were held
* back due to the NX and XX flags.
*
* NOTICE: The return value semantics of this function are very different
* between Redis OSS 6.2 and older versions. Modules that use it should determine
* the server version and handle it accordingly.
*/
int VM_HashSet(ValkeyModuleKey *key, int flags, ...) {
va_list ap;
if (!key || (flags & ~(VALKEYMODULE_HASH_NX | VALKEYMODULE_HASH_XX | VALKEYMODULE_HASH_CFIELDS |
VALKEYMODULE_HASH_COUNT_ALL))) {
errno = EINVAL;
return 0;
} else if (key->value && key->value->type != OBJ_HASH) {
errno = ENOTSUP;
return 0;
} else if (!(key->mode & VALKEYMODULE_WRITE)) {
errno = EBADF;
return 0;
}
if (key->value == NULL) moduleCreateEmptyKey(key, VALKEYMODULE_KEYTYPE_HASH);
int count = 0;
va_start(ap, flags);
while (1) {
ValkeyModuleString *field, *value;
/* Get the field and value objects. */
if (flags & VALKEYMODULE_HASH_CFIELDS) {
char *cfield = va_arg(ap, char *);
if (cfield == NULL) break;
field = createRawStringObject(cfield, strlen(cfield));
} else {
field = va_arg(ap, ValkeyModuleString *);
if (field == NULL) break;
}
value = va_arg(ap, ValkeyModuleString *);
/* Handle XX and NX */
if (flags & (VALKEYMODULE_HASH_XX | VALKEYMODULE_HASH_NX)) {
int exists = hashTypeExists(key->value, field->ptr);
if (((flags & VALKEYMODULE_HASH_XX) && !exists) || ((flags & VALKEYMODULE_HASH_NX) && exists)) {
if (flags & VALKEYMODULE_HASH_CFIELDS) decrRefCount(field);
continue;
}
}
/* Handle deletion if value is VALKEYMODULE_HASH_DELETE. */
if (value == VALKEYMODULE_HASH_DELETE) {
count += hashTypeDelete(key->value, field->ptr);
if (flags & VALKEYMODULE_HASH_CFIELDS) decrRefCount(field);
continue;
}
int low_flags = HASH_SET_COPY;
/* If CFIELDS is active, we can pass the ownership of the
* SDS object to the low level function that sets the field
* to avoid a useless copy. */
if (flags & VALKEYMODULE_HASH_CFIELDS) low_flags |= HASH_SET_TAKE_FIELD;
robj *argv[2] = {field, value};
hashTypeTryConversion(key->value, argv, 0, 1);
int updated = hashTypeSet(key->value, field->ptr, value->ptr, low_flags);
count += (flags & VALKEYMODULE_HASH_COUNT_ALL) ? 1 : updated;
/* If CFIELDS is active, SDS string ownership is now of hashTypeSet(),
* however we still have to release the 'field' object shell. */
if (flags & VALKEYMODULE_HASH_CFIELDS) {
field->ptr = NULL; /* Prevent the SDS string from being freed. */
decrRefCount(field);
}
}
va_end(ap);
moduleDelKeyIfEmpty(key);
if (count == 0) errno = ENOENT;
return count;
}
/* Get fields from a hash value. This function is called using a variable
* number of arguments, alternating a field name (as a ValkeyModuleString
* pointer) with a pointer to a ValkeyModuleString pointer, that is set to the
* value of the field if the field exists, or NULL if the field does not exist.
* At the end of the field/value-ptr pairs, NULL must be specified as last
* argument to signal the end of the arguments in the variadic function.
*
* This is an example usage:
*
* ValkeyModuleString *first, *second;
* ValkeyModule_HashGet(mykey,VALKEYMODULE_HASH_NONE,argv[1],&first,
* argv[2],&second,NULL);
*
* As with ValkeyModule_HashSet() the behavior of the command can be specified
* passing flags different than VALKEYMODULE_HASH_NONE:
*
* VALKEYMODULE_HASH_CFIELDS: field names as null terminated C strings.
*
* VALKEYMODULE_HASH_EXISTS: instead of setting the value of the field
* expecting a ValkeyModuleString pointer to pointer, the function just
* reports if the field exists or not and expects an integer pointer
* as the second element of each pair.
*
* Example of VALKEYMODULE_HASH_CFIELDS:
*
* ValkeyModuleString *username, *hashedpass;
* ValkeyModule_HashGet(mykey,VALKEYMODULE_HASH_CFIELDS,"username",&username,"hp",&hashedpass, NULL);
*
* Example of VALKEYMODULE_HASH_EXISTS:
*
* int exists;
* ValkeyModule_HashGet(mykey,VALKEYMODULE_HASH_EXISTS,argv[1],&exists,NULL);
*
* The function returns VALKEYMODULE_OK on success and VALKEYMODULE_ERR if
* the key is not a hash value.
*
* Memory management:
*
* The returned ValkeyModuleString objects should be released with
* ValkeyModule_FreeString(), or by enabling automatic memory management.
*/
int VM_HashGet(ValkeyModuleKey *key, int flags, ...) {
va_list ap;
if (key->value && key->value->type != OBJ_HASH) return VALKEYMODULE_ERR;
va_start(ap, flags);
while (1) {
ValkeyModuleString *field, **valueptr;
int *existsptr;
/* Get the field object and the value pointer to pointer. */
if (flags & VALKEYMODULE_HASH_CFIELDS) {
char *cfield = va_arg(ap, char *);
if (cfield == NULL) break;
field = createRawStringObject(cfield, strlen(cfield));
} else {
field = va_arg(ap, ValkeyModuleString *);
if (field == NULL) break;
}
/* Query the hash for existence or value object. */
if (flags & VALKEYMODULE_HASH_EXISTS) {
existsptr = va_arg(ap, int *);
if (key->value)
*existsptr = hashTypeExists(key->value, field->ptr);
else
*existsptr = 0;
} else {
valueptr = va_arg(ap, ValkeyModuleString **);
if (key->value) {
*valueptr = hashTypeGetValueObject(key->value, field->ptr);
if (*valueptr) {
robj *decoded = getDecodedObject(*valueptr);
decrRefCount(*valueptr);
*valueptr = decoded;
}
if (*valueptr) autoMemoryAdd(key->ctx, VALKEYMODULE_AM_STRING, *valueptr);
} else {
*valueptr = NULL;
}
}
/* Cleanup */
if (flags & VALKEYMODULE_HASH_CFIELDS) decrRefCount(field);
}
va_end(ap);
return VALKEYMODULE_OK;
}
/* --------------------------------------------------------------------------
* ## Key API for Stream type
*
* For an introduction to streams, see https://valkey.io/topics/streams-intro.
*
* The type ValkeyModuleStreamID, which is used in stream functions, is a struct
* with two 64-bit fields and is defined as
*
* typedef struct ValkeyModuleStreamID {
* uint64_t ms;
* uint64_t seq;
* } ValkeyModuleStreamID;
*
* See also VM_ValueLength(), which returns the length of a stream, and the
* conversion functions VM_StringToStreamID() and VM_CreateStringFromStreamID().
* -------------------------------------------------------------------------- */
/* Adds an entry to a stream. Like XADD without trimming.
*
* - `key`: The key where the stream is (or will be) stored
* - `flags`: A bit field of
* - `VALKEYMODULE_STREAM_ADD_AUTOID`: Assign a stream ID automatically, like
* `*` in the XADD command.
* - `id`: If the `AUTOID` flag is set, this is where the assigned ID is
* returned. Can be NULL if `AUTOID` is set, if you don't care to receive the
* ID. If `AUTOID` is not set, this is the requested ID.
* - `argv`: A pointer to an array of size `numfields * 2` containing the
* fields and values.
* - `numfields`: The number of field-value pairs in `argv`.
*
* Returns VALKEYMODULE_OK if an entry has been added. On failure,
* VALKEYMODULE_ERR is returned and `errno` is set as follows:
*
* - EINVAL if called with invalid arguments
* - ENOTSUP if the key refers to a value of a type other than stream
* - EBADF if the key was not opened for writing
* - EDOM if the given ID was 0-0 or not greater than all other IDs in the
* stream (only if the AUTOID flag is unset)
* - EFBIG if the stream has reached the last possible ID
* - ERANGE if the elements are too large to be stored.
*/
int VM_StreamAdd(ValkeyModuleKey *key, int flags, ValkeyModuleStreamID *id, ValkeyModuleString **argv, long numfields) {
/* Validate args */
if (!key || (numfields != 0 && !argv) || /* invalid key or argv */
(flags & ~(VALKEYMODULE_STREAM_ADD_AUTOID)) || /* invalid flags */
(!(flags & VALKEYMODULE_STREAM_ADD_AUTOID) && !id)) { /* id required */
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (key->value && key->value->type != OBJ_STREAM) {
errno = ENOTSUP; /* wrong type */
return VALKEYMODULE_ERR;
} else if (!(key->mode & VALKEYMODULE_WRITE)) {
errno = EBADF; /* key not open for writing */
return VALKEYMODULE_ERR;
} else if (!(flags & VALKEYMODULE_STREAM_ADD_AUTOID) && id->ms == 0 && id->seq == 0) {
errno = EDOM; /* ID out of range */
return VALKEYMODULE_ERR;
}
/* Create key if necessary */
int created = 0;
if (key->value == NULL) {
moduleCreateEmptyKey(key, VALKEYMODULE_KEYTYPE_STREAM);
created = 1;
}
stream *s = key->value->ptr;
if (s->last_id.ms == UINT64_MAX && s->last_id.seq == UINT64_MAX) {
/* The stream has reached the last possible ID */
errno = EFBIG;
return VALKEYMODULE_ERR;
}
streamID added_id;
streamID use_id;
streamID *use_id_ptr = NULL;
if (!(flags & VALKEYMODULE_STREAM_ADD_AUTOID)) {
use_id.ms = id->ms;
use_id.seq = id->seq;
use_id_ptr = &use_id;
}
if (streamAppendItem(s, argv, numfields, &added_id, use_id_ptr, 1) == C_ERR) {
/* Either the ID not greater than all existing IDs in the stream, or
* the elements are too large to be stored. either way, errno is already
* set by streamAppendItem. */
if (created) moduleDelKeyIfEmpty(key);
return VALKEYMODULE_ERR;
}
/* Postponed signalKeyAsReady(). Done implicitly by moduleCreateEmptyKey()
* so not needed if the stream has just been created. */
if (!created) key->u.stream.signalready = 1;
if (id != NULL) {
id->ms = added_id.ms;
id->seq = added_id.seq;
}
return VALKEYMODULE_OK;
}
/* Deletes an entry from a stream.
*
* - `key`: A key opened for writing, with no stream iterator started.
* - `id`: The stream ID of the entry to delete.
*
* Returns VALKEYMODULE_OK on success. On failure, VALKEYMODULE_ERR is returned
* and `errno` is set as follows:
*
* - EINVAL if called with invalid arguments
* - ENOTSUP if the key refers to a value of a type other than stream or if the
* key is empty
* - EBADF if the key was not opened for writing or if a stream iterator is
* associated with the key
* - ENOENT if no entry with the given stream ID exists
*
* See also VM_StreamIteratorDelete() for deleting the current entry while
* iterating using a stream iterator.
*/
int VM_StreamDelete(ValkeyModuleKey *key, ValkeyModuleStreamID *id) {
if (!key || !id) {
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP; /* wrong type */
return VALKEYMODULE_ERR;
} else if (!(key->mode & VALKEYMODULE_WRITE) || key->iter != NULL) {
errno = EBADF; /* key not opened for writing or iterator started */
return VALKEYMODULE_ERR;
}
stream *s = key->value->ptr;
streamID streamid = {id->ms, id->seq};
if (streamDeleteItem(s, &streamid)) {
return VALKEYMODULE_OK;
} else {
errno = ENOENT; /* no entry with this id */
return VALKEYMODULE_ERR;
}
}
/* Sets up a stream iterator.
*
* - `key`: The stream key opened for reading using ValkeyModule_OpenKey().
* - `flags`:
* - `VALKEYMODULE_STREAM_ITERATOR_EXCLUSIVE`: Don't include `start` and `end`
* in the iterated range.
* - `VALKEYMODULE_STREAM_ITERATOR_REVERSE`: Iterate in reverse order, starting
* from the `end` of the range.
* - `start`: The lower bound of the range. Use NULL for the beginning of the
* stream.
* - `end`: The upper bound of the range. Use NULL for the end of the stream.
*
* Returns VALKEYMODULE_OK on success. On failure, VALKEYMODULE_ERR is returned
* and `errno` is set as follows:
*
* - EINVAL if called with invalid arguments
* - ENOTSUP if the key refers to a value of a type other than stream or if the
* key is empty
* - EBADF if the key was not opened for writing or if a stream iterator is
* already associated with the key
* - EDOM if `start` or `end` is outside the valid range
*
* Returns VALKEYMODULE_OK on success and VALKEYMODULE_ERR if the key doesn't
* refer to a stream or if invalid arguments were given.
*
* The stream IDs are retrieved using ValkeyModule_StreamIteratorNextID() and
* for each stream ID, the fields and values are retrieved using
* ValkeyModule_StreamIteratorNextField(). The iterator is freed by calling
* ValkeyModule_StreamIteratorStop().
*
* Example (error handling omitted):
*
* ValkeyModule_StreamIteratorStart(key, 0, startid_ptr, endid_ptr);
* ValkeyModuleStreamID id;
* long numfields;
* while (ValkeyModule_StreamIteratorNextID(key, &id, &numfields) ==
* VALKEYMODULE_OK) {
* ValkeyModuleString *field, *value;
* while (ValkeyModule_StreamIteratorNextField(key, &field, &value) ==
* VALKEYMODULE_OK) {
* //
* // ... Do stuff ...
* //
* ValkeyModule_FreeString(ctx, field);
* ValkeyModule_FreeString(ctx, value);
* }
* }
* ValkeyModule_StreamIteratorStop(key);
*/
int VM_StreamIteratorStart(ValkeyModuleKey *key, int flags, ValkeyModuleStreamID *start, ValkeyModuleStreamID *end) {
/* check args */
if (!key || (flags & ~(VALKEYMODULE_STREAM_ITERATOR_EXCLUSIVE | VALKEYMODULE_STREAM_ITERATOR_REVERSE))) {
errno = EINVAL; /* key missing or invalid flags */
return VALKEYMODULE_ERR;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP;
return VALKEYMODULE_ERR; /* not a stream */
} else if (key->iter) {
errno = EBADF; /* iterator already started */
return VALKEYMODULE_ERR;
}
/* define range for streamIteratorStart() */
streamID lower, upper;
if (start) lower = (streamID){start->ms, start->seq};
if (end) upper = (streamID){end->ms, end->seq};
if (flags & VALKEYMODULE_STREAM_ITERATOR_EXCLUSIVE) {
if ((start && streamIncrID(&lower) != C_OK) || (end && streamDecrID(&upper) != C_OK)) {
errno = EDOM; /* end is 0-0 or start is MAX-MAX? */
return VALKEYMODULE_ERR;
}
}
/* create iterator */
stream *s = key->value->ptr;
int rev = flags & VALKEYMODULE_STREAM_ITERATOR_REVERSE;
streamIterator *si = zmalloc(sizeof(*si));
streamIteratorStart(si, s, start ? &lower : NULL, end ? &upper : NULL, rev);
key->iter = si;
key->u.stream.currentid.ms = 0; /* for VM_StreamIteratorDelete() */
key->u.stream.currentid.seq = 0;
key->u.stream.numfieldsleft = 0; /* for VM_StreamIteratorNextField() */
return VALKEYMODULE_OK;
}
/* Stops a stream iterator created using ValkeyModule_StreamIteratorStart() and
* reclaims its memory.
*
* Returns VALKEYMODULE_OK on success. On failure, VALKEYMODULE_ERR is returned
* and `errno` is set as follows:
*
* - EINVAL if called with a NULL key
* - ENOTSUP if the key refers to a value of a type other than stream or if the
* key is empty
* - EBADF if the key was not opened for writing or if no stream iterator is
* associated with the key
*/
int VM_StreamIteratorStop(ValkeyModuleKey *key) {
if (!key) {
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP;
return VALKEYMODULE_ERR;
} else if (!key->iter) {
errno = EBADF;
return VALKEYMODULE_ERR;
}
streamIteratorStop(key->iter);
zfree(key->iter);
key->iter = NULL;
return VALKEYMODULE_OK;
}
/* Finds the next stream entry and returns its stream ID and the number of
* fields.
*
* - `key`: Key for which a stream iterator has been started using
* ValkeyModule_StreamIteratorStart().
* - `id`: The stream ID returned. NULL if you don't care.
* - `numfields`: The number of fields in the found stream entry. NULL if you
* don't care.
*
* Returns VALKEYMODULE_OK and sets `*id` and `*numfields` if an entry was found.
* On failure, VALKEYMODULE_ERR is returned and `errno` is set as follows:
*
* - EINVAL if called with a NULL key
* - ENOTSUP if the key refers to a value of a type other than stream or if the
* key is empty
* - EBADF if no stream iterator is associated with the key
* - ENOENT if there are no more entries in the range of the iterator
*
* In practice, if VM_StreamIteratorNextID() is called after a successful call
* to VM_StreamIteratorStart() and with the same key, it is safe to assume that
* an VALKEYMODULE_ERR return value means that there are no more entries.
*
* Use ValkeyModule_StreamIteratorNextField() to retrieve the fields and values.
* See the example at ValkeyModule_StreamIteratorStart().
*/
int VM_StreamIteratorNextID(ValkeyModuleKey *key, ValkeyModuleStreamID *id, long *numfields) {
if (!key) {
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP;
return VALKEYMODULE_ERR;
} else if (!key->iter) {
errno = EBADF;
return VALKEYMODULE_ERR;
}
streamIterator *si = key->iter;
int64_t *num_ptr = &key->u.stream.numfieldsleft;
streamID *streamid_ptr = &key->u.stream.currentid;
if (streamIteratorGetID(si, streamid_ptr, num_ptr)) {
if (id) {
id->ms = streamid_ptr->ms;
id->seq = streamid_ptr->seq;
}
if (numfields) *numfields = *num_ptr;
return VALKEYMODULE_OK;
} else {
/* No entry found. */
key->u.stream.currentid.ms = 0; /* for VM_StreamIteratorDelete() */
key->u.stream.currentid.seq = 0;
key->u.stream.numfieldsleft = 0; /* for VM_StreamIteratorNextField() */
errno = ENOENT;
return VALKEYMODULE_ERR;
}
}
/* Retrieves the next field of the current stream ID and its corresponding value
* in a stream iteration. This function should be called repeatedly after calling
* ValkeyModule_StreamIteratorNextID() to fetch each field-value pair.
*
* - `key`: Key where a stream iterator has been started.
* - `field_ptr`: This is where the field is returned.
* - `value_ptr`: This is where the value is returned.
*
* Returns VALKEYMODULE_OK and points `*field_ptr` and `*value_ptr` to freshly
* allocated ValkeyModuleString objects. The string objects are freed
* automatically when the callback finishes if automatic memory is enabled. On
* failure, VALKEYMODULE_ERR is returned and `errno` is set as follows:
*
* - EINVAL if called with a NULL key
* - ENOTSUP if the key refers to a value of a type other than stream or if the
* key is empty
* - EBADF if no stream iterator is associated with the key
* - ENOENT if there are no more fields in the current stream entry
*
* In practice, if VM_StreamIteratorNextField() is called after a successful
* call to VM_StreamIteratorNextID() and with the same key, it is safe to assume
* that an VALKEYMODULE_ERR return value means that there are no more fields.
*
* See the example at ValkeyModule_StreamIteratorStart().
*/
int VM_StreamIteratorNextField(ValkeyModuleKey *key, ValkeyModuleString **field_ptr, ValkeyModuleString **value_ptr) {
if (!key) {
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP;
return VALKEYMODULE_ERR;
} else if (!key->iter) {
errno = EBADF;
return VALKEYMODULE_ERR;
} else if (key->u.stream.numfieldsleft <= 0) {
errno = ENOENT;
return VALKEYMODULE_ERR;
}
streamIterator *si = key->iter;
unsigned char *field, *value;
int64_t field_len, value_len;
streamIteratorGetField(si, &field, &value, &field_len, &value_len);
if (field_ptr) {
*field_ptr = createRawStringObject((char *)field, field_len);
autoMemoryAdd(key->ctx, VALKEYMODULE_AM_STRING, *field_ptr);
}
if (value_ptr) {
*value_ptr = createRawStringObject((char *)value, value_len);
autoMemoryAdd(key->ctx, VALKEYMODULE_AM_STRING, *value_ptr);
}
key->u.stream.numfieldsleft--;
return VALKEYMODULE_OK;
}
/* Deletes the current stream entry while iterating.
*
* This function can be called after VM_StreamIteratorNextID() or after any
* calls to VM_StreamIteratorNextField().
*
* Returns VALKEYMODULE_OK on success. On failure, VALKEYMODULE_ERR is returned
* and `errno` is set as follows:
*
* - EINVAL if key is NULL
* - ENOTSUP if the key is empty or is of another type than stream
* - EBADF if the key is not opened for writing, if no iterator has been started
* - ENOENT if the iterator has no current stream entry
*/
int VM_StreamIteratorDelete(ValkeyModuleKey *key) {
if (!key) {
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP;
return VALKEYMODULE_ERR;
} else if (!(key->mode & VALKEYMODULE_WRITE) || !key->iter) {
errno = EBADF;
return VALKEYMODULE_ERR;
} else if (key->u.stream.currentid.ms == 0 && key->u.stream.currentid.seq == 0) {
errno = ENOENT;
return VALKEYMODULE_ERR;
}
streamIterator *si = key->iter;
streamIteratorRemoveEntry(si, &key->u.stream.currentid);
key->u.stream.currentid.ms = 0; /* Make sure repeated Delete() fails */
key->u.stream.currentid.seq = 0;
key->u.stream.numfieldsleft = 0; /* Make sure NextField() fails */
return VALKEYMODULE_OK;
}
/* Trim a stream by length, similar to XTRIM with MAXLEN.
*
* - `key`: Key opened for writing.
* - `flags`: A bitfield of
* - `VALKEYMODULE_STREAM_TRIM_APPROX`: Trim less if it improves performance,
* like XTRIM with `~`.
* - `length`: The number of stream entries to keep after trimming.
*
* Returns the number of entries deleted. On failure, a negative value is
* returned and `errno` is set as follows:
*
* - EINVAL if called with invalid arguments
* - ENOTSUP if the key is empty or of a type other than stream
* - EBADF if the key is not opened for writing
*/
long long VM_StreamTrimByLength(ValkeyModuleKey *key, int flags, long long length) {
if (!key || (flags & ~(VALKEYMODULE_STREAM_TRIM_APPROX)) || length < 0) {
errno = EINVAL;
return -1;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP;
return -1;
} else if (!(key->mode & VALKEYMODULE_WRITE)) {
errno = EBADF;
return -1;
}
int approx = flags & VALKEYMODULE_STREAM_TRIM_APPROX ? 1 : 0;
return streamTrimByLength((stream *)key->value->ptr, length, approx);
}
/* Trim a stream by ID, similar to XTRIM with MINID.
*
* - `key`: Key opened for writing.
* - `flags`: A bitfield of
* - `VALKEYMODULE_STREAM_TRIM_APPROX`: Trim less if it improves performance,
* like XTRIM with `~`.
* - `id`: The smallest stream ID to keep after trimming.
*
* Returns the number of entries deleted. On failure, a negative value is
* returned and `errno` is set as follows:
*
* - EINVAL if called with invalid arguments
* - ENOTSUP if the key is empty or of a type other than stream
* - EBADF if the key is not opened for writing
*/
long long VM_StreamTrimByID(ValkeyModuleKey *key, int flags, ValkeyModuleStreamID *id) {
if (!key || (flags & ~(VALKEYMODULE_STREAM_TRIM_APPROX)) || !id) {
errno = EINVAL;
return -1;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP;
return -1;
} else if (!(key->mode & VALKEYMODULE_WRITE)) {
errno = EBADF;
return -1;
}
int approx = flags & VALKEYMODULE_STREAM_TRIM_APPROX ? 1 : 0;
streamID minid = (streamID){id->ms, id->seq};
return streamTrimByID((stream *)key->value->ptr, minid, approx);
}
/* --------------------------------------------------------------------------
* ## Calling commands from modules
*
* VM_Call() sends a command to the server. The remaining functions handle the reply.
* -------------------------------------------------------------------------- */
void moduleParseCallReply_Int(ValkeyModuleCallReply *reply);
void moduleParseCallReply_BulkString(ValkeyModuleCallReply *reply);
void moduleParseCallReply_SimpleString(ValkeyModuleCallReply *reply);
void moduleParseCallReply_Array(ValkeyModuleCallReply *reply);
/* Free a Call reply and all the nested replies it contains if it's an
* array. */
void VM_FreeCallReply(ValkeyModuleCallReply *reply) {
/* This is a wrapper for the recursive free reply function. This is needed
* in order to have the first level function to return on nested replies,
* but only if called by the module API. */
ValkeyModuleCtx *ctx = NULL;
if (callReplyType(reply) == VALKEYMODULE_REPLY_PROMISE) {
ValkeyModuleAsyncRMCallPromise *promise = callReplyGetPrivateData(reply);
ctx = promise->ctx;
freeValkeyModuleAsyncRMCallPromise(promise);
} else {
ctx = callReplyGetPrivateData(reply);
}
freeCallReply(reply);
if (ctx) {
autoMemoryFreed(ctx, VALKEYMODULE_AM_REPLY, reply);
}
}
/* Return the reply type as one of the following:
*
* - VALKEYMODULE_REPLY_UNKNOWN
* - VALKEYMODULE_REPLY_STRING
* - VALKEYMODULE_REPLY_ERROR
* - VALKEYMODULE_REPLY_INTEGER
* - VALKEYMODULE_REPLY_ARRAY
* - VALKEYMODULE_REPLY_NULL
* - VALKEYMODULE_REPLY_MAP
* - VALKEYMODULE_REPLY_SET
* - VALKEYMODULE_REPLY_BOOL
* - VALKEYMODULE_REPLY_DOUBLE
* - VALKEYMODULE_REPLY_BIG_NUMBER
* - VALKEYMODULE_REPLY_VERBATIM_STRING
* - VALKEYMODULE_REPLY_ATTRIBUTE
* - VALKEYMODULE_REPLY_PROMISE */
int VM_CallReplyType(ValkeyModuleCallReply *reply) {
return callReplyType(reply);
}
/* Return the reply type length, where applicable. */
size_t VM_CallReplyLength(ValkeyModuleCallReply *reply) {
return callReplyGetLen(reply);
}
/* Return the 'idx'-th nested call reply element of an array reply, or NULL
* if the reply type is wrong or the index is out of range. */
ValkeyModuleCallReply *VM_CallReplyArrayElement(ValkeyModuleCallReply *reply, size_t idx) {
return callReplyGetArrayElement(reply, idx);
}
/* Return the `long long` of an integer reply. */
long long VM_CallReplyInteger(ValkeyModuleCallReply *reply) {
return callReplyGetLongLong(reply);
}
/* Return the double value of a double reply. */
double VM_CallReplyDouble(ValkeyModuleCallReply *reply) {
return callReplyGetDouble(reply);
}
/* Return the big number value of a big number reply. */
const char *VM_CallReplyBigNumber(ValkeyModuleCallReply *reply, size_t *len) {
return callReplyGetBigNumber(reply, len);
}
/* Return the value of a verbatim string reply,
* An optional output argument can be given to get verbatim reply format. */
const char *VM_CallReplyVerbatim(ValkeyModuleCallReply *reply, size_t *len, const char **format) {
return callReplyGetVerbatim(reply, len, format);
}
/* Return the Boolean value of a Boolean reply. */
int VM_CallReplyBool(ValkeyModuleCallReply *reply) {
return callReplyGetBool(reply);
}
/* Return the 'idx'-th nested call reply element of a set reply, or NULL
* if the reply type is wrong or the index is out of range. */
ValkeyModuleCallReply *VM_CallReplySetElement(ValkeyModuleCallReply *reply, size_t idx) {
return callReplyGetSetElement(reply, idx);
}
/* Retrieve the 'idx'-th key and value of a map reply.
*
* Returns:
* - VALKEYMODULE_OK on success.
* - VALKEYMODULE_ERR if idx out of range or if the reply type is wrong.
*
* The `key` and `value` arguments are used to return by reference, and may be
* NULL if not required. */
int VM_CallReplyMapElement(ValkeyModuleCallReply *reply,
size_t idx,
ValkeyModuleCallReply **key,
ValkeyModuleCallReply **val) {
if (callReplyGetMapElement(reply, idx, key, val) == C_OK) {
return VALKEYMODULE_OK;
}
return VALKEYMODULE_ERR;
}
/* Return the attribute of the given reply, or NULL if no attribute exists. */
ValkeyModuleCallReply *VM_CallReplyAttribute(ValkeyModuleCallReply *reply) {
return callReplyGetAttribute(reply);
}
/* Retrieve the 'idx'-th key and value of an attribute reply.
*
* Returns:
* - VALKEYMODULE_OK on success.
* - VALKEYMODULE_ERR if idx out of range or if the reply type is wrong.
*
* The `key` and `value` arguments are used to return by reference, and may be
* NULL if not required. */
int VM_CallReplyAttributeElement(ValkeyModuleCallReply *reply,
size_t idx,
ValkeyModuleCallReply **key,
ValkeyModuleCallReply **val) {
if (callReplyGetAttributeElement(reply, idx, key, val) == C_OK) {
return VALKEYMODULE_OK;
}
return VALKEYMODULE_ERR;
}
/* Set unblock handler (callback and private data) on the given promise ValkeyModuleCallReply.
* The given reply must be of promise type (VALKEYMODULE_REPLY_PROMISE). */
void VM_CallReplyPromiseSetUnblockHandler(ValkeyModuleCallReply *reply,
ValkeyModuleOnUnblocked on_unblock,
void *private_data) {
ValkeyModuleAsyncRMCallPromise *promise = callReplyGetPrivateData(reply);
promise->on_unblocked = on_unblock;
promise->private_data = private_data;
}
/* Abort the execution of a given promise ValkeyModuleCallReply.
* return REDMODULE_OK in case the abort was done successfully and VALKEYMODULE_ERR
* if its not possible to abort the execution (execution already finished).
* In case the execution was aborted (REDMODULE_OK was returned), the private_data out parameter
* will be set with the value of the private data that was given on 'VM_CallReplyPromiseSetUnblockHandler'
* so the caller will be able to release the private data.
*
* If the execution was aborted successfully, it is promised that the unblock handler will not be called.
* That said, it is possible that the abort operation will successes but the operation will still continue.
* This can happened if, for example, a module implements some blocking command and does not respect the
* disconnect callback. For server-provided commands this can not happened.*/
int VM_CallReplyPromiseAbort(ValkeyModuleCallReply *reply, void **private_data) {
ValkeyModuleAsyncRMCallPromise *promise = callReplyGetPrivateData(reply);
if (!promise->c)
return VALKEYMODULE_ERR; /* Promise can not be aborted, either already aborted or already finished. */
if (!(promise->c->flag.blocked)) return VALKEYMODULE_ERR; /* Client is not blocked anymore, can not abort it. */
/* Client is still blocked, remove it from any blocking state and release it. */
if (private_data) *private_data = promise->private_data;
promise->private_data = NULL;
promise->on_unblocked = NULL;
unblockClient(promise->c, 0);
moduleReleaseTempClient(promise->c);
return VALKEYMODULE_OK;
}
/* Return the pointer and length of a string or error reply. */
const char *VM_CallReplyStringPtr(ValkeyModuleCallReply *reply, size_t *len) {
size_t private_len;
if (!len) len = &private_len;
return callReplyGetString(reply, len);
}
/* Return a new string object from a call reply of type string, error or
* integer. Otherwise (wrong reply type) return NULL. */
ValkeyModuleString *VM_CreateStringFromCallReply(ValkeyModuleCallReply *reply) {
ValkeyModuleCtx *ctx = callReplyGetPrivateData(reply);
size_t len;
const char *str;
switch (callReplyType(reply)) {
case VALKEYMODULE_REPLY_STRING:
case VALKEYMODULE_REPLY_ERROR: str = callReplyGetString(reply, &len); return VM_CreateString(ctx, str, len);
case VALKEYMODULE_REPLY_INTEGER: {
char buf[64];
int len = ll2string(buf, sizeof(buf), callReplyGetLongLong(reply));
return VM_CreateString(ctx, buf, len);
}
default: return NULL;
}
}
/* Modifies the user that VM_Call will use (e.g. for ACL checks) */
void VM_SetContextUser(ValkeyModuleCtx *ctx, const ValkeyModuleUser *user) {
ctx->user = user;
}
/* Returns an array of robj pointers, by parsing the format specifier "fmt" as described for
* the VM_Call(), VM_Replicate() and other module APIs. Populates *argcp with the number of
* items (which equals to the length of the allocated argv).
*
* The integer pointed by 'flags' is populated with flags according
* to special modifiers in "fmt".
*
* "!" -> VALKEYMODULE_ARGV_REPLICATE
* "A" -> VALKEYMODULE_ARGV_NO_AOF
* "R" -> VALKEYMODULE_ARGV_NO_REPLICAS
* "3" -> VALKEYMODULE_ARGV_RESP_3
* "0" -> VALKEYMODULE_ARGV_RESP_AUTO
* "C" -> VALKEYMODULE_ARGV_RUN_AS_USER
* "M" -> VALKEYMODULE_ARGV_RESPECT_DENY_OOM
* "K" -> VALKEYMODULE_ARGV_ALLOW_BLOCK
*
* On error (format specifier error) NULL is returned and nothing is
* allocated. On success the argument vector is returned. */
robj **moduleCreateArgvFromUserFormat(const char *cmdname, const char *fmt, int *argcp, int *flags, va_list ap) {
int argc = 0, argv_size, j;
robj **argv = NULL;
/* As a first guess to avoid useless reallocations, size argv to
* hold one argument for each char specifier in 'fmt'. */
argv_size = strlen(fmt) + 1; /* +1 because of the command name. */
argv = zrealloc(argv, sizeof(robj *) * argv_size);
/* Build the arguments vector based on the format specifier. */
argv[0] = createStringObject(cmdname, strlen(cmdname));
argc++;
/* Create the client and dispatch the command. */
const char *p = fmt;
while (*p) {
if (*p == 'c') {
char *cstr = va_arg(ap, char *);
argv[argc++] = createStringObject(cstr, strlen(cstr));
} else if (*p == 's') {
robj *obj = va_arg(ap, void *);
if (obj->refcount == OBJ_STATIC_REFCOUNT)
obj = createStringObject(obj->ptr, sdslen(obj->ptr));
else
incrRefCount(obj);
argv[argc++] = obj;
} else if (*p == 'b') {
char *buf = va_arg(ap, char *);
size_t len = va_arg(ap, size_t);
argv[argc++] = createStringObject(buf, len);
} else if (*p == 'l') {
long long ll = va_arg(ap, long long);
argv[argc++] = createStringObjectFromLongLongWithSds(ll);
} else if (*p == 'v') {
/* A vector of strings */
robj **v = va_arg(ap, void *);
size_t vlen = va_arg(ap, size_t);
/* We need to grow argv to hold the vector's elements.
* We resize by vector_len-1 elements, because we held
* one element in argv for the vector already */
argv_size += vlen - 1;
argv = zrealloc(argv, sizeof(robj *) * argv_size);
size_t i = 0;
for (i = 0; i < vlen; i++) {
incrRefCount(v[i]);
argv[argc++] = v[i];
}
} else if (*p == '!') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_REPLICATE;
} else if (*p == 'A') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_NO_AOF;
} else if (*p == 'R') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_NO_REPLICAS;
} else if (*p == '3') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_RESP_3;
} else if (*p == '0') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_RESP_AUTO;
} else if (*p == 'C') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_RUN_AS_USER;
} else if (*p == 'S') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_SCRIPT_MODE;
} else if (*p == 'W') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_NO_WRITES;
} else if (*p == 'M') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_RESPECT_DENY_OOM;
} else if (*p == 'E') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_CALL_REPLIES_AS_ERRORS;
} else if (*p == 'D') {
if (flags) (*flags) |= (VALKEYMODULE_ARGV_DRY_RUN | VALKEYMODULE_ARGV_CALL_REPLIES_AS_ERRORS);
} else if (*p == 'K') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_ALLOW_BLOCK;
} else {
goto fmterr;
}
p++;
}
if (argcp) *argcp = argc;
return argv;
fmterr:
for (j = 0; j < argc; j++) decrRefCount(argv[j]);
zfree(argv);
return NULL;
}
/* Exported API to call any command from modules.
*
* * **cmdname**: The command to call.
* * **fmt**: A format specifier string for the command's arguments. Each
* of the arguments should be specified by a valid type specification. The
* format specifier can also contain the modifiers `!`, `A`, `3` and `R` which
* don't have a corresponding argument.
*
* * `b` -- The argument is a buffer and is immediately followed by another
* argument that is the buffer's length.
* * `c` -- The argument is a pointer to a plain C string (null-terminated).
* * `l` -- The argument is a `long long` integer.
* * `s` -- The argument is a ValkeyModuleString.
* * `v` -- The argument(s) is a vector of ValkeyModuleString.
* * `!` -- Sends the command and its arguments to replicas and AOF.
* * `A` -- Suppress AOF propagation, send only to replicas (requires `!`).
* * `R` -- Suppress replicas propagation, send only to AOF (requires `!`).
* * `3` -- Return a RESP3 reply. This will change the command reply.
* e.g., HGETALL returns a map instead of a flat array.
* * `0` -- Return the reply in auto mode, i.e. the reply format will be the
* same as the client attached to the given ValkeyModuleCtx. This will
* probably used when you want to pass the reply directly to the client.
* * `C` -- Run a command as the user attached to the context.
* User is either attached automatically via the client that directly
* issued the command and created the context or via VM_SetContextUser.
* If the context is not directly created by an issued command (such as a
* background context and no user was set on it via VM_SetContextUser,
* VM_Call will fail.
* Checks if the command can be executed according to ACL rules and causes
* the command to run as the determined user, so that any future user
* dependent activity, such as ACL checks within scripts will proceed as
* expected.
* Otherwise, the command will run as the unrestricted user.
* * `S` -- Run the command in a script mode, this means that it will raise
* an error if a command which are not allowed inside a script
* (flagged with the `deny-script` flag) is invoked (like SHUTDOWN).
* In addition, on script mode, write commands are not allowed if there are
* not enough good replicas (as configured with `min-replicas-to-write`)
* or when the server is unable to persist to the disk.
* * `W` -- Do not allow to run any write command (flagged with the `write` flag).
* * `M` -- Do not allow `deny-oom` flagged commands when over the memory limit.
* * `E` -- Return error as ValkeyModuleCallReply. If there is an error before
* invoking the command, the error is returned using errno mechanism.
* This flag allows to get the error also as an error CallReply with
* relevant error message.
* * 'D' -- A "Dry Run" mode. Return before executing the underlying call().
* If everything succeeded, it will return with a NULL, otherwise it will
* return with a CallReply object denoting the error, as if it was called with
* the 'E' code.
* * 'K' -- Allow running blocking commands. If enabled and the command gets blocked, a
* special VALKEYMODULE_REPLY_PROMISE will be returned. This reply type
* indicates that the command was blocked and the reply will be given asynchronously.
* The module can use this reply object to set a handler which will be called when
* the command gets unblocked using ValkeyModule_CallReplyPromiseSetUnblockHandler.
* The handler must be set immediately after the command invocation (without releasing
* the lock in between). If the handler is not set, the blocking command will
* still continue its execution but the reply will be ignored (fire and forget),
* notice that this is dangerous in case of role change, as explained below.
* The module can use ValkeyModule_CallReplyPromiseAbort to abort the command invocation
* if it was not yet finished (see ValkeyModule_CallReplyPromiseAbort documentation for more
* details). It is also the module's responsibility to abort the execution on role change, either by using
* server event (to get notified when the instance becomes a replica) or relying on the disconnect
* callback of the original client. Failing to do so can result in a write operation on a replica.
* Unlike other call replies, promise call reply **must** be freed while the GIL is locked.
* Notice that on unblocking, the only promise is that the unblock handler will be called,
* If the blocking VM_Call caused the module to also block some real client (using VM_BlockClient),
* it is the module responsibility to unblock this client on the unblock handler.
* On the unblock handler it is only allowed to perform the following:
* * Calling additional commands using VM_Call
* * Open keys using VM_OpenKey
* * Replicate data to the replica or AOF
*
* Specifically, it is not allowed to call any module API which are client related such as:
* * VM_Reply* API's
* * VM_BlockClient
* * VM_GetCurrentUserName
*
* * **...**: The actual arguments to the command.
*
* On success a ValkeyModuleCallReply object is returned, otherwise
* NULL is returned and errno is set to the following values:
*
* * EBADF: wrong format specifier.
* * EINVAL: wrong command arity.
* * ENOENT: command does not exist.
* * EPERM: operation in Cluster instance with key in non local slot.
* * EROFS: operation in Cluster instance when a write command is sent
* in a readonly state.
* * ENETDOWN: operation in Cluster instance when cluster is down.
* * ENOTSUP: No ACL user for the specified module context
* * EACCES: Command cannot be executed, according to ACL rules
* * ENOSPC: Write or deny-oom command is not allowed
* * ESPIPE: Command not allowed on script mode
*
* Example code fragment:
*
* reply = ValkeyModule_Call(ctx,"INCRBY","sc",argv[1],"10");
* if (ValkeyModule_CallReplyType(reply) == VALKEYMODULE_REPLY_INTEGER) {
* long long myval = ValkeyModule_CallReplyInteger(reply);
* // Do something with myval.
* }
*
* This API is documented here: https://valkey.io/topics/modules-intro
*/
ValkeyModuleCallReply *VM_Call(ValkeyModuleCtx *ctx, const char *cmdname, const char *fmt, ...) {
client *c = NULL;
robj **argv = NULL;
int argc = 0, flags = 0;
va_list ap;
ValkeyModuleCallReply *reply = NULL;
int replicate = 0; /* Replicate this command? */
int error_as_call_replies = 0; /* return errors as ValkeyModuleCallReply object */
uint64_t cmd_flags;
/* Handle arguments. */
va_start(ap, fmt);
argv = moduleCreateArgvFromUserFormat(cmdname, fmt, &argc, &flags, ap);
replicate = flags & VALKEYMODULE_ARGV_REPLICATE;
error_as_call_replies = flags & VALKEYMODULE_ARGV_CALL_REPLIES_AS_ERRORS;
va_end(ap);
c = moduleAllocTempClient();
if (!(flags & VALKEYMODULE_ARGV_ALLOW_BLOCK)) {
/* We do not want to allow block, the module do not expect it */
c->flag.deny_blocking = 1;
}
c->db = ctx->client->db;
c->argv = argv;
/* We have to assign argv_len, which is equal to argc in that case (VM_Call)
* because we may be calling a command that uses rewriteClientCommandArgument */
c->argc = c->argv_len = argc;
c->resp = 2;
if (flags & VALKEYMODULE_ARGV_RESP_3) {
c->resp = 3;
} else if (flags & VALKEYMODULE_ARGV_RESP_AUTO) {
/* Auto mode means to take the same protocol as the ctx client. */
c->resp = ctx->client->resp;
}
if (ctx->module) ctx->module->in_call++;
user *user = NULL;
if (flags & VALKEYMODULE_ARGV_RUN_AS_USER) {
user = ctx->user ? ctx->user->user : ctx->client->user;
if (!user) {
errno = ENOTSUP;
if (error_as_call_replies) {
sds msg = sdsnew("cannot run as user, no user directly attached to context or context's client");
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
c->user = user;
}
/* We handle the above format error only when the client is setup so that
* we can free it normally. */
if (argv == NULL) {
/* We do not return a call reply here this is an error that should only
* be catch by the module indicating wrong fmt was given, the module should
* handle this error and decide how to continue. It is not an error that
* should be propagated to the user. */
errno = EBADF;
goto cleanup;
}
/* Call command filters */
moduleCallCommandFilters(c);
/* Lookup command now, after filters had a chance to make modifications
* if necessary.
*/
c->cmd = c->lastcmd = c->realcmd = lookupCommand(c->argv, c->argc);
sds err;
if (!commandCheckExistence(c, error_as_call_replies ? &err : NULL)) {
errno = ENOENT;
if (error_as_call_replies) reply = callReplyCreateError(err, ctx);
goto cleanup;
}
if (!commandCheckArity(c->cmd, c->argc, error_as_call_replies ? &err : NULL)) {
errno = EINVAL;
if (error_as_call_replies) reply = callReplyCreateError(err, ctx);
goto cleanup;
}
cmd_flags = getCommandFlags(c);
if (flags & VALKEYMODULE_ARGV_SCRIPT_MODE) {
/* Basically on script mode we want to only allow commands that can
* be executed on scripts (CMD_NOSCRIPT is not set on the command flags) */
if (cmd_flags & CMD_NOSCRIPT) {
errno = ESPIPE;
if (error_as_call_replies) {
sds msg = sdscatfmt(sdsempty(), "command '%S' is not allowed on script mode", c->cmd->fullname);
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
}
if (flags & VALKEYMODULE_ARGV_RESPECT_DENY_OOM && server.maxmemory) {
if (cmd_flags & CMD_DENYOOM) {
int oom_state;
if (ctx->flags & VALKEYMODULE_CTX_THREAD_SAFE) {
/* On background thread we can not count on server.pre_command_oom_state.
* Because it is only set on the main thread, in such case we will check
* the actual memory usage. */
oom_state = (getMaxmemoryState(NULL, NULL, NULL, NULL) == C_ERR);
} else {
oom_state = server.pre_command_oom_state;
}
if (oom_state) {
errno = ENOSPC;
if (error_as_call_replies) {
sds msg = sdsdup(shared.oomerr->ptr);
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
}
} else {
/* if we aren't OOM checking in VM_Call, we want further executions from this client to also not fail on OOM */
c->flag.allow_oom = 1;
}
if (flags & VALKEYMODULE_ARGV_NO_WRITES) {
if (cmd_flags & CMD_WRITE) {
errno = ENOSPC;
if (error_as_call_replies) {
sds msg = sdscatfmt(sdsempty(),
"Write command '%S' was "
"called while write is not allowed.",
c->cmd->fullname);
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
}
/* Script mode tests */
if (flags & VALKEYMODULE_ARGV_SCRIPT_MODE) {
if (cmd_flags & CMD_WRITE) {
/* on script mode, if a command is a write command,
* We will not run it if we encounter disk error
* or we do not have enough replicas */
if (!checkGoodReplicasStatus()) {
errno = ESPIPE;
if (error_as_call_replies) {
sds msg = sdsdup(shared.noreplicaserr->ptr);
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
int deny_write_type = writeCommandsDeniedByDiskError();
int obey_client = (server.current_client && mustObeyClient(server.current_client));
if (deny_write_type != DISK_ERROR_TYPE_NONE && !obey_client) {
errno = ESPIPE;
if (error_as_call_replies) {
sds msg = writeCommandsGetDiskErrorMessage(deny_write_type);
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
if (server.primary_host && server.repl_replica_ro && !obey_client) {
errno = ESPIPE;
if (error_as_call_replies) {
sds msg = sdsdup(shared.roreplicaerr->ptr);
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
}
if (server.primary_host && server.repl_state != REPL_STATE_CONNECTED && server.repl_serve_stale_data == 0 &&
!(cmd_flags & CMD_STALE)) {
errno = ESPIPE;
if (error_as_call_replies) {
sds msg = sdsdup(shared.primarydownerr->ptr);
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
}
/* Check if the user can run this command according to the current
* ACLs.
*
* If VM_SetContextUser has set a user, that user is used, otherwise
* use the attached client's user. If there is no attached client user and no manually
* set user, an error will be returned */
if (flags & VALKEYMODULE_ARGV_RUN_AS_USER) {
int acl_errpos;
int acl_retval;
acl_retval = ACLCheckAllUserCommandPerm(user, c->cmd, c->argv, c->argc, &acl_errpos);
if (acl_retval != ACL_OK) {
sds object = (acl_retval == ACL_DENIED_CMD) ? sdsdup(c->cmd->fullname) : sdsdup(c->argv[acl_errpos]->ptr);
addACLLogEntry(ctx->client, acl_retval, ACL_LOG_CTX_MODULE, -1, c->user->name, object);
if (error_as_call_replies) {
/* verbosity should be same as processCommand() in server.c */
sds acl_msg = getAclErrorMessage(acl_retval, c->user, c->cmd, c->argv[acl_errpos]->ptr, 0);
sds msg = sdscatfmt(sdsempty(), "-NOPERM %S\r\n", acl_msg);
sdsfree(acl_msg);
reply = callReplyCreateError(msg, ctx);
}
errno = EACCES;
goto cleanup;
}
}
/* If this is a Cluster node, we need to make sure the module is not
* trying to access non-local keys, with the exception of commands
* received from our primary. */
if (server.cluster_enabled && !mustObeyClient(ctx->client)) {
int error_code;
/* Duplicate relevant flags in the module client. */
c->flag.readonly = ctx->client->flag.readonly;
c->flag.asking = ctx->client->flag.asking;
if (getNodeByQuery(c, c->cmd, c->argv, c->argc, NULL, &error_code) != getMyClusterNode()) {
sds msg = NULL;
if (error_code == CLUSTER_REDIR_DOWN_RO_STATE) {
if (error_as_call_replies) {
msg = sdscatfmt(sdsempty(),
"Can not execute a write command '%S' while the cluster is down and readonly",
c->cmd->fullname);
}
errno = EROFS;
} else if (error_code == CLUSTER_REDIR_DOWN_STATE) {
if (error_as_call_replies) {
msg = sdscatfmt(sdsempty(), "Can not execute a command '%S' while the cluster is down",
c->cmd->fullname);
}
errno = ENETDOWN;
} else {
if (error_as_call_replies) {
msg = sdsnew("Attempted to access a non local key in a cluster node");
}
errno = EPERM;
}
if (msg) {
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
}
if (flags & VALKEYMODULE_ARGV_DRY_RUN) {
goto cleanup;
}
/* We need to use a global replication_allowed flag in order to prevent
* replication of nested VM_Calls. Example:
* 1. module1.foo does VM_Call of module2.bar without replication (i.e. no '!')
* 2. module2.bar internally calls VM_Call of INCR with '!'
* 3. at the end of module1.foo we call VM_ReplicateVerbatim
* We want the replica/AOF to see only module1.foo and not the INCR from module2.bar */
int prev_replication_allowed = server.replication_allowed;
server.replication_allowed = replicate && server.replication_allowed;
/* Run the command */
int call_flags = CMD_CALL_FROM_MODULE;
if (replicate) {
if (!(flags & VALKEYMODULE_ARGV_NO_AOF)) call_flags |= CMD_CALL_PROPAGATE_AOF;
if (!(flags & VALKEYMODULE_ARGV_NO_REPLICAS)) call_flags |= CMD_CALL_PROPAGATE_REPL;
}
call(c, call_flags);
server.replication_allowed = prev_replication_allowed;
if (c->flag.blocked) {
serverAssert(flags & VALKEYMODULE_ARGV_ALLOW_BLOCK);
serverAssert(ctx->module);
ValkeyModuleAsyncRMCallPromise *promise = zmalloc(sizeof(ValkeyModuleAsyncRMCallPromise));
*promise = (ValkeyModuleAsyncRMCallPromise){
/* We start with ref_count value of 2 because this object is held
* by the promise CallReply and the fake client that was used to execute the command. */
.ref_count = 2,
.module = ctx->module,
.on_unblocked = NULL,
.private_data = NULL,
.c = c,
.ctx = (ctx->flags & VALKEYMODULE_CTX_AUTO_MEMORY) ? ctx : NULL,
};
reply = callReplyCreatePromise(promise);
c->bstate->async_rm_call_handle = promise;
if (!(call_flags & CMD_CALL_PROPAGATE_AOF)) {
/* No need for AOF propagation, set the relevant flags of the client */
c->flag.module_prevent_aof_prop = 1;
}
if (!(call_flags & CMD_CALL_PROPAGATE_REPL)) {
/* No need for replication propagation, set the relevant flags of the client */
c->flag.module_prevent_repl_prop = 1;
}
c = NULL; /* Make sure not to free the client */
} else {
reply = moduleParseReply(c, (ctx->flags & VALKEYMODULE_CTX_AUTO_MEMORY) ? ctx : NULL);
}
cleanup:
if (reply) autoMemoryAdd(ctx, VALKEYMODULE_AM_REPLY, reply);
if (ctx->module) ctx->module->in_call--;
if (c) moduleReleaseTempClient(c);
return reply;
}
/* Return a pointer, and a length, to the protocol returned by the command
* that returned the reply object. */
const char *VM_CallReplyProto(ValkeyModuleCallReply *reply, size_t *len) {
return callReplyGetProto(reply, len);
}
/* --------------------------------------------------------------------------
* ## Modules data types
*
* When String DMA or using existing data structures is not enough, it is
* possible to create new data types from scratch.
* The module must provide a set of callbacks for handling the
* new values exported (for example in order to provide RDB saving/loading,
* AOF rewrite, and so forth). In this section we define this API.
* -------------------------------------------------------------------------- */
/* Turn a 9 chars name in the specified charset and a 10 bit encver into
* a single 64 bit unsigned integer that represents this exact module name
* and version. This final number is called a "type ID" and is used when
* writing module exported values to RDB files, in order to re-associate the
* value to the right module to load them during RDB loading.
*
* If the string is not of the right length or the charset is wrong, or
* if encver is outside the unsigned 10 bit integer range, 0 is returned,
* otherwise the function returns the right type ID.
*
* The resulting 64 bit integer is composed as follows:
*
* (high order bits) 6|6|6|6|6|6|6|6|6|10 (low order bits)
*
* The first 6 bits value is the first character, name[0], while the last
* 6 bits value, immediately before the 10 bits integer, is name[8].
* The last 10 bits are the encoding version.
*
* Note that a name and encver combo of "AAAAAAAAA" and 0, will produce
* zero as return value, that is the same we use to signal errors, thus
* this combination is invalid, and also useless since type names should
* try to be vary to avoid collisions. */
const char *ModuleTypeNameCharSet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789-_";
uint64_t moduleTypeEncodeId(const char *name, int encver) {
/* We use 64 symbols so that we can map each character into 6 bits
* of the final output. */
const char *cset = ModuleTypeNameCharSet;
if (strlen(name) != 9) return 0;
if (encver < 0 || encver > 1023) return 0;
uint64_t id = 0;
for (int j = 0; j < 9; j++) {
char *p = strchr(cset, name[j]);
if (!p) return 0;
unsigned long pos = p - cset;
id = (id << 6) | pos;
}
id = (id << 10) | encver;
return id;
}
/* Search, in the list of exported data types of all the modules registered,
* a type with the same name as the one given. Returns the moduleType
* structure pointer if such a module is found, or NULL otherwise. */
moduleType *moduleTypeLookupModuleByNameInternal(const char *name, int ignore_case) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct ValkeyModule *module = dictGetVal(de);
listIter li;
listNode *ln;
listRewind(module->types, &li);
while ((ln = listNext(&li))) {
moduleType *mt = ln->value;
if ((!ignore_case && memcmp(name, mt->name, sizeof(mt->name)) == 0) ||
(ignore_case && !strcasecmp(name, mt->name))) {
dictReleaseIterator(di);
return mt;
}
}
}
dictReleaseIterator(di);
return NULL;
}
/* Search all registered modules by name, and name is case sensitive */
moduleType *moduleTypeLookupModuleByName(const char *name) {
return moduleTypeLookupModuleByNameInternal(name, 0);
}
/* Search all registered modules by name, but case insensitive */
moduleType *moduleTypeLookupModuleByNameIgnoreCase(const char *name) {
return moduleTypeLookupModuleByNameInternal(name, 1);
}
/* Lookup a module by ID, with caching. This function is used during RDB
* loading. Modules exporting data types should never be able to unload, so
* our cache does not need to expire. */
#define MODULE_LOOKUP_CACHE_SIZE 3
moduleType *moduleTypeLookupModuleByID(uint64_t id) {
static struct {
uint64_t id;
moduleType *mt;
} cache[MODULE_LOOKUP_CACHE_SIZE];
/* Search in cache to start. */
int j;
for (j = 0; j < MODULE_LOOKUP_CACHE_SIZE && cache[j].mt != NULL; j++)
if (cache[j].id == id) return cache[j].mt;
/* Slow module by module lookup. */
moduleType *mt = NULL;
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL && mt == NULL) {
struct ValkeyModule *module = dictGetVal(de);
listIter li;
listNode *ln;
listRewind(module->types, &li);
while ((ln = listNext(&li))) {
moduleType *this_mt = ln->value;
/* Compare only the 54 bit module identifier and not the
* encoding version. */
if (this_mt->id >> 10 == id >> 10) {
mt = this_mt;
break;
}
}
}
dictReleaseIterator(di);
/* Add to cache if possible. */
if (mt && j < MODULE_LOOKUP_CACHE_SIZE) {
cache[j].id = id;
cache[j].mt = mt;
}
return mt;
}
/* Turn an (unresolved) module ID into a type name, to show the user an
* error when RDB files contain module data we can't load.
* The buffer pointed by 'name' must be 10 bytes at least. The function will
* fill it with a null terminated module name. */
void moduleTypeNameByID(char *name, uint64_t moduleid) {
const char *cset = ModuleTypeNameCharSet;
name[9] = '\0';
char *p = name + 8;
moduleid >>= 10;
for (int j = 0; j < 9; j++) {
*p-- = cset[moduleid & 63];
moduleid >>= 6;
}
}
/* Return the name of the module that owns the specified moduleType. */
const char *moduleTypeModuleName(moduleType *mt) {
if (!mt || !mt->module) return NULL;
return mt->module->name;
}
/* Return the module name from a module command */
const char *moduleNameFromCommand(struct serverCommand *cmd) {
serverAssert(cmd->proc == ValkeyModuleCommandDispatcher);
ValkeyModuleCommand *cp = cmd->module_cmd;
return cp->module->name;
}
/* Create a copy of a module type value using the copy callback. If failed
* or not supported, produce an error reply and return NULL.
*/
robj *moduleTypeDupOrReply(client *c, robj *fromkey, robj *tokey, int todb, robj *value) {
moduleValue *mv = value->ptr;
moduleType *mt = mv->type;
if (!mt->copy && !mt->copy2) {
addReplyError(c, "not supported for this module key");
return NULL;
}
void *newval = NULL;
if (mt->copy2 != NULL) {
ValkeyModuleKeyOptCtx ctx = {fromkey, tokey, c->db->id, todb};
newval = mt->copy2(&ctx, mv->value);
} else {
newval = mt->copy(fromkey, tokey, mv->value);
}
if (!newval) {
addReplyError(c, "module key failed to copy");
return NULL;
}
return createModuleObject(mt, newval);
}
/* Register a new data type exported by the module. The parameters are the
* following. Please for in depth documentation check the modules API
* documentation, especially https://valkey.io/topics/modules-native-types.
*
* * **name**: A 9 characters data type name that MUST be unique in the
* Modules ecosystem. Be creative... and there will be no collisions. Use
* the charset A-Z a-z 9-0, plus the two "-_" characters. A good
* idea is to use, for example `<typename>-<vendor>`. For example
* "tree-AntZ" may mean "Tree data structure by @antirez". To use both
* lower case and upper case letters helps in order to prevent collisions.
* * **encver**: Encoding version, which is, the version of the serialization
* that a module used in order to persist data. As long as the "name"
* matches, the RDB loading will be dispatched to the type callbacks
* whatever 'encver' is used, however the module can understand if
* the encoding it must load are of an older version of the module.
* For example the module "tree-AntZ" initially used encver=0. Later
* after an upgrade, it started to serialize data in a different format
* and to register the type with encver=1. However this module may
* still load old data produced by an older version if the rdb_load
* callback is able to check the encver value and act accordingly.
* The encver must be a positive value between 0 and 1023.
*
* * **typemethods_ptr** is a pointer to a ValkeyModuleTypeMethods structure
* that should be populated with the methods callbacks and structure
* version, like in the following example:
*
* ValkeyModuleTypeMethods tm = {
* .version = VALKEYMODULE_TYPE_METHOD_VERSION,
* .rdb_load = myType_RDBLoadCallBack,
* .rdb_save = myType_RDBSaveCallBack,
* .aof_rewrite = myType_AOFRewriteCallBack,
* .free = myType_FreeCallBack,
*
* // Optional fields
* .digest = myType_DigestCallBack,
* .mem_usage = myType_MemUsageCallBack,
* .aux_load = myType_AuxRDBLoadCallBack,
* .aux_save = myType_AuxRDBSaveCallBack,
* .free_effort = myType_FreeEffortCallBack,
* .unlink = myType_UnlinkCallBack,
* .copy = myType_CopyCallback,
* .defrag = myType_DefragCallback
*
* // Enhanced optional fields
* .mem_usage2 = myType_MemUsageCallBack2,
* .free_effort2 = myType_FreeEffortCallBack2,
* .unlink2 = myType_UnlinkCallBack2,
* .copy2 = myType_CopyCallback2,
* }
*
* * **rdb_load**: A callback function pointer that loads data from RDB files.
* * **rdb_save**: A callback function pointer that saves data to RDB files.
* * **aof_rewrite**: A callback function pointer that rewrites data as commands.
* * **digest**: A callback function pointer that is used for `DEBUG DIGEST`.
* * **free**: A callback function pointer that can free a type value.
* * **aux_save**: A callback function pointer that saves out of keyspace data to RDB files.
* 'when' argument is either VALKEYMODULE_AUX_BEFORE_RDB or VALKEYMODULE_AUX_AFTER_RDB.
* * **aux_load**: A callback function pointer that loads out of keyspace data from RDB files.
* Similar to aux_save, returns VALKEYMODULE_OK on success, and ERR otherwise.
* * **free_effort**: A callback function pointer that used to determine whether the module's
* memory needs to be lazy reclaimed. The module should return the complexity involved by
* freeing the value. for example: how many pointers are gonna be freed. Note that if it
* returns 0, we'll always do an async free.
* * **unlink**: A callback function pointer that used to notifies the module that the key has
* been removed from the DB by the server, and may soon be freed by a background thread. Note that
* it won't be called on FLUSHALL/FLUSHDB (both sync and async), and the module can use the
* ValkeyModuleEvent_FlushDB to hook into that.
* * **copy**: A callback function pointer that is used to make a copy of the specified key.
* The module is expected to perform a deep copy of the specified value and return it.
* In addition, hints about the names of the source and destination keys is provided.
* A NULL return value is considered an error and the copy operation fails.
* Note: if the target key exists and is being overwritten, the copy callback will be
* called first, followed by a free callback to the value that is being replaced.
*
* * **defrag**: A callback function pointer that is used to request the module to defrag
* a key. The module should then iterate pointers and call the relevant VM_Defrag*()
* functions to defragment pointers or complex types. The module should continue
* iterating as long as VM_DefragShouldStop() returns a zero value, and return a
* zero value if finished or non-zero value if more work is left to be done. If more work
* needs to be done, VM_DefragCursorSet() and VM_DefragCursorGet() can be used to track
* this work across different calls.
* Normally, the defrag mechanism invokes the callback without a time limit, so
* VM_DefragShouldStop() always returns zero. The "late defrag" mechanism which has
* a time limit and provides cursor support is used only for keys that are determined
* to have significant internal complexity. To determine this, the defrag mechanism
* uses the free_effort callback and the 'active-defrag-max-scan-fields' config directive.
* NOTE: The value is passed as a `void**` and the function is expected to update the
* pointer if the top-level value pointer is defragmented and consequently changes.
*
* * **mem_usage2**: Similar to `mem_usage`, but provides the `ValkeyModuleKeyOptCtx` parameter
* so that meta information such as key name and db id can be obtained, and
* the `sample_size` for size estimation (see MEMORY USAGE command).
* * **free_effort2**: Similar to `free_effort`, but provides the `ValkeyModuleKeyOptCtx` parameter
* so that meta information such as key name and db id can be obtained.
* * **unlink2**: Similar to `unlink`, but provides the `ValkeyModuleKeyOptCtx` parameter
* so that meta information such as key name and db id can be obtained.
* * **copy2**: Similar to `copy`, but provides the `ValkeyModuleKeyOptCtx` parameter
* so that meta information such as key names and db ids can be obtained.
* * **aux_save2**: Similar to `aux_save`, but with small semantic change, if the module
* saves nothing on this callback then no data about this aux field will be written to the
* RDB and it will be possible to load the RDB even if the module is not loaded.
*
* Note: the module name "AAAAAAAAA" is reserved and produces an error, it
* happens to be pretty lame as well.
*
* If ValkeyModule_CreateDataType() is called outside of ValkeyModule_OnLoad() function,
* there is already a module registering a type with the same name,
* or if the module name or encver is invalid, NULL is returned.
* Otherwise the new type is registered into the server, and a reference of
* type ValkeyModuleType is returned: the caller of the function should store
* this reference into a global variable to make future use of it in the
* modules type API, since a single module may register multiple types.
* Example code fragment:
*
* static ValkeyModuleType *BalancedTreeType;
*
* int ValkeyModule_OnLoad(ValkeyModuleCtx *ctx) {
* // some code here ...
* BalancedTreeType = VM_CreateDataType(...);
* }
*/
moduleType *VM_CreateDataType(ValkeyModuleCtx *ctx, const char *name, int encver, void *typemethods_ptr) {
if (!ctx->module->onload) return NULL;
uint64_t id = moduleTypeEncodeId(name, encver);
if (id == 0) return NULL;
if (moduleTypeLookupModuleByName(name) != NULL) return NULL;
long typemethods_version = ((long *)typemethods_ptr)[0];
if (typemethods_version == 0) return NULL;
struct typemethods {
uint64_t version;
moduleTypeLoadFunc rdb_load;
moduleTypeSaveFunc rdb_save;
moduleTypeRewriteFunc aof_rewrite;
moduleTypeMemUsageFunc mem_usage;
moduleTypeDigestFunc digest;
moduleTypeFreeFunc free;
struct {
moduleTypeAuxLoadFunc aux_load;
moduleTypeAuxSaveFunc aux_save;
int aux_save_triggers;
} v2;
struct {
moduleTypeFreeEffortFunc free_effort;
moduleTypeUnlinkFunc unlink;
moduleTypeCopyFunc copy;
moduleTypeDefragFunc defrag;
} v3;
struct {
moduleTypeMemUsageFunc2 mem_usage2;
moduleTypeFreeEffortFunc2 free_effort2;
moduleTypeUnlinkFunc2 unlink2;
moduleTypeCopyFunc2 copy2;
} v4;
struct {
moduleTypeAuxSaveFunc aux_save2;
} v5;
} *tms = (struct typemethods *)typemethods_ptr;
moduleType *mt = zcalloc(sizeof(*mt));
mt->id = id;
mt->module = ctx->module;
mt->rdb_load = tms->rdb_load;
mt->rdb_save = tms->rdb_save;
mt->aof_rewrite = tms->aof_rewrite;
mt->mem_usage = tms->mem_usage;
mt->digest = tms->digest;
mt->free = tms->free;
if (tms->version >= 2) {
mt->aux_load = tms->v2.aux_load;
mt->aux_save = tms->v2.aux_save;
mt->aux_save_triggers = tms->v2.aux_save_triggers;
}
if (tms->version >= 3) {
mt->free_effort = tms->v3.free_effort;
mt->unlink = tms->v3.unlink;
mt->copy = tms->v3.copy;
mt->defrag = tms->v3.defrag;
}
if (tms->version >= 4) {
mt->mem_usage2 = tms->v4.mem_usage2;
mt->unlink2 = tms->v4.unlink2;
mt->free_effort2 = tms->v4.free_effort2;
mt->copy2 = tms->v4.copy2;
}
if (tms->version >= 5) {
mt->aux_save2 = tms->v5.aux_save2;
}
memcpy(mt->name, name, sizeof(mt->name));
listAddNodeTail(ctx->module->types, mt);
return mt;
}
/* If the key is open for writing, set the specified module type object
* as the value of the key, deleting the old value if any.
* On success VALKEYMODULE_OK is returned. If the key is not open for
* writing or there is an active iterator, VALKEYMODULE_ERR is returned. */
int VM_ModuleTypeSetValue(ValkeyModuleKey *key, moduleType *mt, void *value) {
if (!(key->mode & VALKEYMODULE_WRITE) || key->iter) return VALKEYMODULE_ERR;
VM_DeleteKey(key);
robj *o = createModuleObject(mt, value);
setKey(key->ctx->client, key->db, key->key, &o, SETKEY_NO_SIGNAL);
key->value = o;
return VALKEYMODULE_OK;
}
/* Assuming ValkeyModule_KeyType() returned VALKEYMODULE_KEYTYPE_MODULE on
* the key, returns the module type pointer of the value stored at key.
*
* If the key is NULL, is not associated with a module type, or is empty,
* then NULL is returned instead. */
moduleType *VM_ModuleTypeGetType(ValkeyModuleKey *key) {
if (key == NULL || key->value == NULL || VM_KeyType(key) != VALKEYMODULE_KEYTYPE_MODULE) return NULL;
moduleValue *mv = key->value->ptr;
return mv->type;
}
/* Assuming ValkeyModule_KeyType() returned VALKEYMODULE_KEYTYPE_MODULE on
* the key, returns the module type low-level value stored at key, as
* it was set by the user via ValkeyModule_ModuleTypeSetValue().
*
* If the key is NULL, is not associated with a module type, or is empty,
* then NULL is returned instead. */
void *VM_ModuleTypeGetValue(ValkeyModuleKey *key) {
if (key == NULL || key->value == NULL || VM_KeyType(key) != VALKEYMODULE_KEYTYPE_MODULE) return NULL;
moduleValue *mv = key->value->ptr;
return mv->value;
}
/* --------------------------------------------------------------------------
* ## RDB loading and saving functions
* -------------------------------------------------------------------------- */
/* Called when there is a load error in the context of a module. On some
* modules this cannot be recovered, but if the module declared capability
* to handle errors, we'll raise a flag rather than exiting. */
void moduleRDBLoadError(ValkeyModuleIO *io) {
if (io->type->module->options & VALKEYMODULE_OPTIONS_HANDLE_IO_ERRORS) {
io->error = 1;
return;
}
serverPanic("Error loading data from RDB (short read or EOF). "
"Read performed by module '%s' about type '%s' "
"after reading '%llu' bytes of a value "
"for key named: '%s'.",
io->type->module->name, io->type->name, (unsigned long long)io->bytes,
io->key ? (char *)io->key->ptr : "(null)");
}
/* Returns 0 if there's at least one registered data type that did not declare
* VALKEYMODULE_OPTIONS_HANDLE_IO_ERRORS, in which case diskless loading should
* be avoided since it could cause data loss. */
int moduleAllDatatypesHandleErrors(void) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct ValkeyModule *module = dictGetVal(de);
if (listLength(module->types) && !(module->options & VALKEYMODULE_OPTIONS_HANDLE_IO_ERRORS)) {
dictReleaseIterator(di);
return 0;
}
}
dictReleaseIterator(di);
return 1;
}
/* Returns 0 if module did not declare VALKEYMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD, in which case
* diskless async loading should be avoided because module doesn't know there can be traffic during
* database full resynchronization. */
int moduleAllModulesHandleReplAsyncLoad(void) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct ValkeyModule *module = dictGetVal(de);
if (!(module->options & VALKEYMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD)) {
dictReleaseIterator(di);
return 0;
}
}
dictReleaseIterator(di);
return 1;
}
/* Returns true if any previous IO API failed.
* for `Load*` APIs the VALKEYMODULE_OPTIONS_HANDLE_IO_ERRORS flag must be set with
* ValkeyModule_SetModuleOptions first. */
int VM_IsIOError(ValkeyModuleIO *io) {
return io->error;
}
static int flushValkeyModuleIOBuffer(ValkeyModuleIO *io) {
if (!io->pre_flush_buffer) return 0;
/* We have data that must be flushed before saving the current data.
* Lets flush it. */
sds pre_flush_buffer = io->pre_flush_buffer;
io->pre_flush_buffer = NULL;
ssize_t retval = rdbWriteRaw(io->rio, pre_flush_buffer, sdslen(pre_flush_buffer));
sdsfree(pre_flush_buffer);
if (retval >= 0) io->bytes += retval;
return retval;
}
/* Save an unsigned 64 bit value into the RDB file. This function should only
* be called in the context of the rdb_save method of modules implementing new
* data types. */
void VM_SaveUnsigned(ValkeyModuleIO *io, uint64_t value) {
if (io->error) return;
if (flushValkeyModuleIOBuffer(io) == -1) goto saveerr;
/* Save opcode. */
int retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_UINT);
if (retval == -1) goto saveerr;
io->bytes += retval;
/* Save value. */
retval = rdbSaveLen(io->rio, value);
if (retval == -1) goto saveerr;
io->bytes += retval;
return;
saveerr:
io->error = 1;
}
/* Load an unsigned 64 bit value from the RDB file. This function should only
* be called in the context of the `rdb_load` method of modules implementing
* new data types. */
uint64_t VM_LoadUnsigned(ValkeyModuleIO *io) {
if (io->error) return 0;
uint64_t opcode = rdbLoadLen(io->rio, NULL);
if (opcode != RDB_MODULE_OPCODE_UINT) goto loaderr;
uint64_t value;
int retval = rdbLoadLenByRef(io->rio, NULL, &value);
if (retval == -1) goto loaderr;
return value;
loaderr:
moduleRDBLoadError(io);
return 0;
}
/* Like ValkeyModule_SaveUnsigned() but for signed 64 bit values. */
void VM_SaveSigned(ValkeyModuleIO *io, int64_t value) {
union {
uint64_t u;
int64_t i;
} conv;
conv.i = value;
VM_SaveUnsigned(io, conv.u);
}
/* Like ValkeyModule_LoadUnsigned() but for signed 64 bit values. */
int64_t VM_LoadSigned(ValkeyModuleIO *io) {
union {
uint64_t u;
int64_t i;
} conv;
conv.u = VM_LoadUnsigned(io);
return conv.i;
}
/* In the context of the rdb_save method of a module type, saves a
* string into the RDB file taking as input a ValkeyModuleString.
*
* The string can be later loaded with ValkeyModule_LoadString() or
* other Load family functions expecting a serialized string inside
* the RDB file. */
void VM_SaveString(ValkeyModuleIO *io, ValkeyModuleString *s) {
if (io->error) return;
if (flushValkeyModuleIOBuffer(io) == -1) goto saveerr;
/* Save opcode. */
ssize_t retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_STRING);
if (retval == -1) goto saveerr;
io->bytes += retval;
/* Save value. */
retval = rdbSaveStringObject(io->rio, s);
if (retval == -1) goto saveerr;
io->bytes += retval;
return;
saveerr:
io->error = 1;
}
/* Like ValkeyModule_SaveString() but takes a raw C pointer and length
* as input. */
void VM_SaveStringBuffer(ValkeyModuleIO *io, const char *str, size_t len) {
if (io->error) return;
if (flushValkeyModuleIOBuffer(io) == -1) goto saveerr;
/* Save opcode. */
ssize_t retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_STRING);
if (retval == -1) goto saveerr;
io->bytes += retval;
/* Save value. */
retval = rdbSaveRawString(io->rio, (unsigned char *)str, len);
if (retval == -1) goto saveerr;
io->bytes += retval;
return;
saveerr:
io->error = 1;
}
/* Implements VM_LoadString() and VM_LoadStringBuffer() */
void *moduleLoadString(ValkeyModuleIO *io, int plain, size_t *lenptr) {
if (io->error) return NULL;
uint64_t opcode = rdbLoadLen(io->rio, NULL);
if (opcode != RDB_MODULE_OPCODE_STRING) goto loaderr;
void *s = rdbGenericLoadStringObject(io->rio, plain ? RDB_LOAD_PLAIN : RDB_LOAD_NONE, lenptr);
if (s == NULL) goto loaderr;
return s;
loaderr:
moduleRDBLoadError(io);
return NULL;
}
/* In the context of the rdb_load method of a module data type, loads a string
* from the RDB file, that was previously saved with ValkeyModule_SaveString()
* functions family.
*
* The returned string is a newly allocated ValkeyModuleString object, and
* the user should at some point free it with a call to ValkeyModule_FreeString().
*
* If the data structure does not store strings as ValkeyModuleString objects,
* the similar function ValkeyModule_LoadStringBuffer() could be used instead. */
ValkeyModuleString *VM_LoadString(ValkeyModuleIO *io) {
return moduleLoadString(io, 0, NULL);
}
/* Like ValkeyModule_LoadString() but returns a heap allocated string that
* was allocated with ValkeyModule_Alloc(), and can be resized or freed with
* ValkeyModule_Realloc() or ValkeyModule_Free().
*
* The size of the string is stored at '*lenptr' if not NULL.
* The returned string is not automatically NULL terminated, it is loaded
* exactly as it was stored inside the RDB file. */
char *VM_LoadStringBuffer(ValkeyModuleIO *io, size_t *lenptr) {
return moduleLoadString(io, 1, lenptr);
}
/* In the context of the rdb_save method of a module data type, saves a double
* value to the RDB file. The double can be a valid number, a NaN or infinity.
* It is possible to load back the value with ValkeyModule_LoadDouble(). */
void VM_SaveDouble(ValkeyModuleIO *io, double value) {
if (io->error) return;
if (flushValkeyModuleIOBuffer(io) == -1) goto saveerr;
/* Save opcode. */
int retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_DOUBLE);
if (retval == -1) goto saveerr;
io->bytes += retval;
/* Save value. */
retval = rdbSaveBinaryDoubleValue(io->rio, value);
if (retval == -1) goto saveerr;
io->bytes += retval;
return;
saveerr:
io->error = 1;
}
/* In the context of the rdb_save method of a module data type, loads back the
* double value saved by ValkeyModule_SaveDouble(). */
double VM_LoadDouble(ValkeyModuleIO *io) {
if (io->error) return 0;
uint64_t opcode = rdbLoadLen(io->rio, NULL);
if (opcode != RDB_MODULE_OPCODE_DOUBLE) goto loaderr;
double value;
int retval = rdbLoadBinaryDoubleValue(io->rio, &value);
if (retval == -1) goto loaderr;
return value;
loaderr:
moduleRDBLoadError(io);
return 0;
}
/* In the context of the rdb_save method of a module data type, saves a float
* value to the RDB file. The float can be a valid number, a NaN or infinity.
* It is possible to load back the value with ValkeyModule_LoadFloat(). */
void VM_SaveFloat(ValkeyModuleIO *io, float value) {
if (io->error) return;
if (flushValkeyModuleIOBuffer(io) == -1) goto saveerr;
/* Save opcode. */
int retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_FLOAT);
if (retval == -1) goto saveerr;
io->bytes += retval;
/* Save value. */
retval = rdbSaveBinaryFloatValue(io->rio, value);
if (retval == -1) goto saveerr;
io->bytes += retval;
return;
saveerr:
io->error = 1;
}
/* In the context of the rdb_save method of a module data type, loads back the
* float value saved by ValkeyModule_SaveFloat(). */
float VM_LoadFloat(ValkeyModuleIO *io) {
if (io->error) return 0;
uint64_t opcode = rdbLoadLen(io->rio, NULL);
if (opcode != RDB_MODULE_OPCODE_FLOAT) goto loaderr;
float value;
int retval = rdbLoadBinaryFloatValue(io->rio, &value);
if (retval == -1) goto loaderr;
return value;
loaderr:
moduleRDBLoadError(io);
return 0;
}
/* In the context of the rdb_save method of a module data type, saves a long double
* value to the RDB file. The double can be a valid number, a NaN or infinity.
* It is possible to load back the value with ValkeyModule_LoadLongDouble(). */
void VM_SaveLongDouble(ValkeyModuleIO *io, long double value) {
if (io->error) return;
char buf[MAX_LONG_DOUBLE_CHARS];
/* Long double has different number of bits in different platforms, so we
* save it as a string type. */
size_t len = ld2string(buf, sizeof(buf), value, LD_STR_HEX);
VM_SaveStringBuffer(io, buf, len);
}
/* In the context of the rdb_save method of a module data type, loads back the
* long double value saved by ValkeyModule_SaveLongDouble(). */
long double VM_LoadLongDouble(ValkeyModuleIO *io) {
if (io->error) return 0;
long double value;
size_t len;
char *str = VM_LoadStringBuffer(io, &len);
if (!str) return 0;
string2ld(str, len, &value);
VM_Free(str);
return value;
}
/* Iterate over modules, and trigger rdb aux saving for the ones modules types
* who asked for it. */
ssize_t rdbSaveModulesAux(rio *rdb, int when) {
size_t total_written = 0;
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct ValkeyModule *module = dictGetVal(de);
listIter li;
listNode *ln;
listRewind(module->types, &li);
while ((ln = listNext(&li))) {
moduleType *mt = ln->value;
if ((!mt->aux_save && !mt->aux_save2) || !(mt->aux_save_triggers & when)) continue;
ssize_t ret = rdbSaveSingleModuleAux(rdb, when, mt);
if (ret == -1) {
dictReleaseIterator(di);
return -1;
}
total_written += ret;
}
}
dictReleaseIterator(di);
return total_written;
}
/* --------------------------------------------------------------------------
* ## Key digest API (DEBUG DIGEST interface for modules types)
* -------------------------------------------------------------------------- */
/* Add a new element to the digest. This function can be called multiple times
* one element after the other, for all the elements that constitute a given
* data structure. The function call must be followed by the call to
* `ValkeyModule_DigestEndSequence` eventually, when all the elements that are
* always in a given order are added. See the Modules data types
* documentation for more info. However this is a quick example that uses the
* Set, Hash and List data types as an example.
*
* To add a sequence of unordered elements (for example in the case of a
* Set), the pattern to use is:
*
* foreach element {
* AddElement(element);
* EndSequence();
* }
*
* Because Sets are not ordered, so every element added has a position that
* does not depend from the other. However if instead our elements are
* ordered in pairs, like field-value pairs of a Hash, then one should
* use:
*
* foreach key,value {
* AddElement(key);
* AddElement(value);
* EndSequence();
* }
*
* Because the key and value will be always in the above order, while instead
* the single key-value pairs, can appear in any position into a hash.
*
* A list of ordered elements would be implemented with:
*
* foreach element {
* AddElement(element);
* }
* EndSequence();
*
*/
void VM_DigestAddStringBuffer(ValkeyModuleDigest *md, const char *ele, size_t len) {
mixDigest(md->o, ele, len);
}
/* Like `ValkeyModule_DigestAddStringBuffer()` but takes a `long long` as input
* that gets converted into a string before adding it to the digest. */
void VM_DigestAddLongLong(ValkeyModuleDigest *md, long long ll) {
char buf[LONG_STR_SIZE];
size_t len = ll2string(buf, sizeof(buf), ll);
mixDigest(md->o, buf, len);
}
/* See the documentation for `ValkeyModule_DigestAddElement()`. */
void VM_DigestEndSequence(ValkeyModuleDigest *md) {
xorDigest(md->x, md->o, sizeof(md->o));
memset(md->o, 0, sizeof(md->o));
}
/* Decode a serialized representation of a module data type 'mt', in a specific encoding version 'encver'
* from string 'str' and return a newly allocated value, or NULL if decoding failed.
*
* This call basically reuses the 'rdb_load' callback which module data types
* implement in order to allow a module to arbitrarily serialize/de-serialize
* keys, similar to how the 'DUMP' and 'RESTORE' commands are implemented.
*
* Modules should generally use the VALKEYMODULE_OPTIONS_HANDLE_IO_ERRORS flag and
* make sure the de-serialization code properly checks and handles IO errors
* (freeing allocated buffers and returning a NULL).
*
* If this is NOT done, the server will handle corrupted (or just truncated) serialized
* data by producing an error message and terminating the process.
*/
void *VM_LoadDataTypeFromStringEncver(const ValkeyModuleString *str, const moduleType *mt, int encver) {
rio payload;
ValkeyModuleIO io;
void *ret;
rioInitWithBuffer(&payload, str->ptr);
moduleInitIOContext(&io, (moduleType *)mt, &payload, NULL, -1);
/* All VM_Save*() calls always write a version 2 compatible format, so we
* need to make sure we read the same.
*/
ret = mt->rdb_load(&io, encver);
if (io.ctx) {
moduleFreeContext(io.ctx);
zfree(io.ctx);
}
return ret;
}
/* Similar to VM_LoadDataTypeFromStringEncver, original version of the API, kept
* for backward compatibility.
*/
void *VM_LoadDataTypeFromString(const ValkeyModuleString *str, const moduleType *mt) {
return VM_LoadDataTypeFromStringEncver(str, mt, 0);
}
/* Encode a module data type 'mt' value 'data' into serialized form, and return it
* as a newly allocated ValkeyModuleString.
*
* This call basically reuses the 'rdb_save' callback which module data types
* implement in order to allow a module to arbitrarily serialize/de-serialize
* keys, similar to how the 'DUMP' and 'RESTORE' commands are implemented.
*/
ValkeyModuleString *VM_SaveDataTypeToString(ValkeyModuleCtx *ctx, void *data, const moduleType *mt) {
rio payload;
ValkeyModuleIO io;
rioInitWithBuffer(&payload, sdsempty());
moduleInitIOContext(&io, (moduleType *)mt, &payload, NULL, -1);
mt->rdb_save(&io, data);
if (io.ctx) {
moduleFreeContext(io.ctx);
zfree(io.ctx);
}
if (io.error) {
return NULL;
} else {
robj *str = createObject(OBJ_STRING, payload.io.buffer.ptr);
if (ctx != NULL) autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, str);
return str;
}
}
/* Returns the name of the key currently being processed. */
const ValkeyModuleString *VM_GetKeyNameFromDigest(ValkeyModuleDigest *dig) {
return dig->key;
}
/* Returns the database id of the key currently being processed. */
int VM_GetDbIdFromDigest(ValkeyModuleDigest *dig) {
return dig->dbid;
}
/* --------------------------------------------------------------------------
* ## AOF API for modules data types
* -------------------------------------------------------------------------- */
/* Emits a command into the AOF during the AOF rewriting process. This function
* is only called in the context of the aof_rewrite method of data types exported
* by a module. The command works exactly like ValkeyModule_Call() in the way
* the parameters are passed, but it does not return anything as the error
* handling is performed by the server itself. */
void VM_EmitAOF(ValkeyModuleIO *io, const char *cmdname, const char *fmt, ...) {
if (io->error) return;
struct serverCommand *cmd;
robj **argv = NULL;
int argc = 0, flags = 0, j;
va_list ap;
cmd = lookupCommandByCString((char *)cmdname);
if (!cmd) {
serverLog(LL_WARNING,
"Fatal: AOF method for module data type '%s' tried to "
"emit unknown command '%s'",
io->type->name, cmdname);
io->error = 1;
errno = EINVAL;
return;
}
/* Emit the arguments into the AOF in RESP format. */
va_start(ap, fmt);
argv = moduleCreateArgvFromUserFormat(cmdname, fmt, &argc, &flags, ap);
va_end(ap);
if (argv == NULL) {
serverLog(LL_WARNING,
"Fatal: AOF method for module data type '%s' tried to "
"call ValkeyModule_EmitAOF() with wrong format specifiers '%s'",
io->type->name, fmt);
io->error = 1;
errno = EINVAL;
return;
}
/* Bulk count. */
if (!io->error && rioWriteBulkCount(io->rio, '*', argc) == 0) io->error = 1;
/* Arguments. */
for (j = 0; j < argc; j++) {
if (!io->error && rioWriteBulkObject(io->rio, argv[j]) == 0) io->error = 1;
decrRefCount(argv[j]);
}
zfree(argv);
return;
}
/* --------------------------------------------------------------------------
* ## IO context handling
* -------------------------------------------------------------------------- */
ValkeyModuleCtx *VM_GetContextFromIO(ValkeyModuleIO *io) {
if (io->ctx) return io->ctx; /* Can't have more than one... */
io->ctx = zmalloc(sizeof(ValkeyModuleCtx));
moduleCreateContext(io->ctx, io->type->module, VALKEYMODULE_CTX_NONE);
return io->ctx;
}
/* Returns the name of the key currently being processed.
* There is no guarantee that the key name is always available, so this may return NULL.
*/
const ValkeyModuleString *VM_GetKeyNameFromIO(ValkeyModuleIO *io) {
return io->key;
}
/* Returns a ValkeyModuleString with the name of the key from ValkeyModuleKey. */
const ValkeyModuleString *VM_GetKeyNameFromModuleKey(ValkeyModuleKey *key) {
return key ? key->key : NULL;
}
/* Returns a database id of the key from ValkeyModuleKey. */
int VM_GetDbIdFromModuleKey(ValkeyModuleKey *key) {
return key ? key->db->id : -1;
}
/* Returns the database id of the key currently being processed.
* There is no guarantee that this info is always available, so this may return -1.
*/
int VM_GetDbIdFromIO(ValkeyModuleIO *io) {
return io->dbid;
}
/* --------------------------------------------------------------------------
* ## Logging
* -------------------------------------------------------------------------- */
/* This is the low level function implementing both:
*
* VM_Log()
* VM_LogIOError()
*
*/
void moduleLogRaw(ValkeyModule *module, const char *levelstr, const char *fmt, va_list ap) {
char msg[LOG_MAX_LEN];
size_t name_len;
int level;
if (!strcasecmp(levelstr, "debug"))
level = LL_DEBUG;
else if (!strcasecmp(levelstr, "verbose"))
level = LL_VERBOSE;
else if (!strcasecmp(levelstr, "notice"))
level = LL_NOTICE;
else if (!strcasecmp(levelstr, "warning"))
level = LL_WARNING;
else
level = LL_VERBOSE; /* Default. */
if (level < server.verbosity) return;
name_len = snprintf(msg, sizeof(msg), "<%s> ", module ? module->name : "module");
vsnprintf(msg + name_len, sizeof(msg) - name_len, fmt, ap);
serverLogRaw(level, msg);
}
/* Produces a log message to the standard server log, the format accepts
* printf-alike specifiers, while level is a string describing the log
* level to use when emitting the log, and must be one of the following:
*
* * "debug" (`VALKEYMODULE_LOGLEVEL_DEBUG`)
* * "verbose" (`VALKEYMODULE_LOGLEVEL_VERBOSE`)
* * "notice" (`VALKEYMODULE_LOGLEVEL_NOTICE`)
* * "warning" (`VALKEYMODULE_LOGLEVEL_WARNING`)
*
* If the specified log level is invalid, verbose is used by default.
* There is a fixed limit to the length of the log line this function is able
* to emit, this limit is not specified but is guaranteed to be more than
* a few lines of text.
*
* The ctx argument may be NULL if cannot be provided in the context of the
* caller for instance threads or callbacks, in which case a generic "module"
* will be used instead of the module name.
*/
void VM_Log(ValkeyModuleCtx *ctx, const char *levelstr, const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
moduleLogRaw(ctx ? ctx->module : NULL, levelstr, fmt, ap);
va_end(ap);
}
/* Log errors from RDB / AOF serialization callbacks.
*
* This function should be used when a callback is returning a critical
* error to the caller since cannot load or save the data for some
* critical reason. */
void VM_LogIOError(ValkeyModuleIO *io, const char *levelstr, const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
moduleLogRaw(io->type->module, levelstr, fmt, ap);
va_end(ap);
}
/* Valkey assert function.
*
* The macro `ValkeyModule_Assert(expression)` is recommended, rather than
* calling this function directly.
*
* A failed assertion will shut down the server and produce logging information
* that looks identical to information generated by the server itself.
*/
void VM__Assert(const char *estr, const char *file, int line) {
_serverAssert(estr, file, line);
}
/* Allows adding event to the latency monitor to be observed by the LATENCY
* command. The call is skipped if the latency is smaller than the configured
* latency-monitor-threshold. */
void VM_LatencyAddSample(const char *event, mstime_t latency) {
latencyAddSampleIfNeeded(event, latency);
}
/* --------------------------------------------------------------------------
* ## Blocking clients from modules
*
* For a guide about blocking commands in modules, see
* https://valkey.io/topics/modules-blocking-ops.
* -------------------------------------------------------------------------- */
/* Returns 1 if the client already in the moduleUnblocked list, 0 otherwise. */
int isModuleClientUnblocked(client *c) {
ValkeyModuleBlockedClient *bc = c->bstate->module_blocked_handle;
return bc->unblocked == 1;
}
/* This is called from blocked.c in order to unblock a client: may be called
* for multiple reasons while the client is in the middle of being blocked
* because the client is terminated, but is also called for cleanup when a
* client is unblocked in a clean way after replaying.
*
* What we do here is just to set the client to NULL in the module
* blocked client handle. This way if the client is terminated while there
* is a pending threaded operation involving the blocked client, we'll know
* that the client no longer exists and no reply callback should be called.
*
* The structure ValkeyModuleBlockedClient will be always deallocated when
* running the list of clients blocked by a module that need to be unblocked. */
void unblockClientFromModule(client *c) {
ValkeyModuleBlockedClient *bc = c->bstate->module_blocked_handle;
/* Call the disconnection callback if any. Note that
* bc->disconnect_callback is set to NULL if the client gets disconnected
* by the module itself or because of a timeout, so the callback will NOT
* get called if this is not an actual disconnection event. */
if (bc->disconnect_callback) {
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, bc->module, VALKEYMODULE_CTX_NONE);
ctx.blocked_privdata = bc->privdata;
ctx.client = bc->client;
bc->disconnect_callback(&ctx, bc);
moduleFreeContext(&ctx);
}
/* If we made it here and client is still blocked it means that the command
* timed-out, client was killed or disconnected and disconnect_callback was
* not implemented (or it was, but VM_UnblockClient was not called from
* within it, as it should).
* We must call moduleUnblockClient in order to free privdata and
* ValkeyModuleBlockedClient.
*
* Note that we only do that for clients that are blocked on keys, for which
* the contract is that the module should not call VM_UnblockClient under
* normal circumstances.
* Clients implementing threads and working with private data should be
* aware that calling VM_UnblockClient for every blocked client is their
* responsibility, and if they fail to do so memory may leak. Ideally they
* should implement the disconnect and timeout callbacks and call
* VM_UnblockClient, but any other way is also acceptable. */
if (bc->blocked_on_keys && !bc->unblocked) moduleUnblockClient(c);
bc->client = NULL;
}
/* Block a client in the context of a module: this function implements both
* VM_BlockClient() and VM_BlockClientOnKeys() depending on the fact the
* keys are passed or not.
*
* When not blocking for keys, the keys, numkeys, and privdata parameters are
* not needed. The privdata in that case must be NULL, since later is
* VM_UnblockClient() that will provide some private data that the reply
* callback will receive.
*
* Instead when blocking for keys, normally VM_UnblockClient() will not be
* called (because the client will unblock when the key is modified), so
* 'privdata' should be provided in that case, so that once the client is
* unlocked and the reply callback is called, it will receive its associated
* private data.
*
* Even when blocking on keys, VM_UnblockClient() can be called however, but
* in that case the privdata argument is disregarded, because we pass the
* reply callback the privdata that is set here while blocking.
*
*/
ValkeyModuleBlockedClient *moduleBlockClient(ValkeyModuleCtx *ctx,
ValkeyModuleCmdFunc reply_callback,
ValkeyModuleAuthCallback auth_reply_callback,
ValkeyModuleCmdFunc timeout_callback,
void (*free_privdata)(ValkeyModuleCtx *, void *),
long long timeout_ms,
ValkeyModuleString **keys,
int numkeys,
void *privdata,
int flags) {
client *c = ctx->client;
int islua = scriptIsRunning();
int ismulti = server.in_exec;
initClientBlockingState(c);
c->bstate->module_blocked_handle = zmalloc(sizeof(ValkeyModuleBlockedClient));
ValkeyModuleBlockedClient *bc = c->bstate->module_blocked_handle;
ctx->module->blocked_clients++;
/* We need to handle the invalid operation of calling modules blocking
* commands from Lua or MULTI. We actually create an already aborted
* (client set to NULL) blocked client handle, and actually reply with
* an error. */
bc->client = (islua || ismulti) ? NULL : c;
bc->module = ctx->module;
bc->reply_callback = reply_callback;
bc->auth_reply_cb = auth_reply_callback;
bc->timeout_callback = timeout_callback;
bc->disconnect_callback = NULL; /* Set by VM_SetDisconnectCallback() */
bc->free_privdata = free_privdata;
bc->privdata = privdata;
bc->reply_client = moduleAllocTempClient();
bc->thread_safe_ctx_client = moduleAllocTempClient();
if (bc->client) bc->reply_client->resp = bc->client->resp;
bc->dbid = c->db->id;
bc->blocked_on_keys = keys != NULL;
bc->unblocked = 0;
bc->background_timer = 0;
bc->background_duration = 0;
mstime_t timeout = 0;
if (timeout_ms) {
mstime_t now = mstime();
if (timeout_ms > LLONG_MAX - now) {
c->bstate->module_blocked_handle = NULL;
addReplyError(c, "timeout is out of range"); /* 'timeout_ms+now' would overflow */
return bc;
}
timeout = timeout_ms + now;
}
if (islua || ismulti) {
c->bstate->module_blocked_handle = NULL;
addReplyError(c, islua ? "Blocking module command called from Lua script"
: "Blocking module command called from transaction");
} else if (ctx->flags & VALKEYMODULE_CTX_BLOCKED_REPLY) {
c->bstate->module_blocked_handle = NULL;
addReplyError(c, "Blocking module command called from a Reply callback context");
} else if (!auth_reply_callback && clientHasModuleAuthInProgress(c)) {
c->bstate->module_blocked_handle = NULL;
addReplyError(c, "Clients undergoing module based authentication can only be blocked on auth");
} else {
if (keys) {
blockForKeys(c, BLOCKED_MODULE, keys, numkeys, timeout, flags & VALKEYMODULE_BLOCK_UNBLOCK_DELETED);
} else {
c->bstate->timeout = timeout;
blockClient(c, BLOCKED_MODULE);
}
}
return bc;
}
/* This API registers a callback to execute in addition to normal password based authentication.
* Multiple callbacks can be registered across different modules. When a Module is unloaded, all the
* auth callbacks registered by it are unregistered.
* The callbacks are attempted (in the order of most recently registered first) when the AUTH/HELLO
* (with AUTH field provided) commands are called.
* The callbacks will be called with a module context along with a username and a password, and are
* expected to take one of the following actions:
* (1) Authenticate - Use the VM_AuthenticateClient* API and return VALKEYMODULE_AUTH_HANDLED.
* This will immediately end the auth chain as successful and add the OK reply.
* (2) Deny Authentication - Return VALKEYMODULE_AUTH_HANDLED without authenticating or blocking the
* client. Optionally, `err` can be set to a custom error message and `err` will be automatically
* freed by the server.
* This will immediately end the auth chain as unsuccessful and add the ERR reply.
* (3) Block a client on authentication - Use the VM_BlockClientOnAuth API and return
* VALKEYMODULE_AUTH_HANDLED. Here, the client will be blocked until the VM_UnblockClient API is used
* which will trigger the auth reply callback (provided through the VM_BlockClientOnAuth).
* In this reply callback, the Module should authenticate, deny or skip handling authentication.
* (4) Skip handling Authentication - Return VALKEYMODULE_AUTH_NOT_HANDLED without blocking the
* client. This will allow the engine to attempt the next module auth callback.
* If none of the callbacks authenticate or deny auth, then password based auth is attempted and
* will authenticate or add failure logs and reply to the clients accordingly.
*
* Note: If a client is disconnected while it was in the middle of blocking module auth, that
* occurrence of the AUTH or HELLO command will not be tracked in the INFO command stats.
*
* The following is an example of how non-blocking module based authentication can be used:
*
* int auth_cb(ValkeyModuleCtx *ctx, ValkeyModuleString *username, ValkeyModuleString *password, ValkeyModuleString
* **err) { const char *user = ValkeyModule_StringPtrLen(username, NULL); const char *pwd =
* ValkeyModule_StringPtrLen(password, NULL); if (!strcmp(user,"foo") && !strcmp(pwd,"valid_password")) {
* ValkeyModule_AuthenticateClientWithACLUser(ctx, "foo", 3, NULL, NULL, NULL);
* return VALKEYMODULE_AUTH_HANDLED;
* }
*
* else if (!strcmp(user,"foo") && !strcmp(pwd,"wrong_password")) {
* ValkeyModuleString *log = ValkeyModule_CreateString(ctx, "Module Auth", 11);
* ValkeyModule_ACLAddLogEntryByUserName(ctx, username, log, VALKEYMODULE_ACL_LOG_AUTH);
* ValkeyModule_FreeString(ctx, log);
* const char *err_msg = "Auth denied by Misc Module.";
* *err = ValkeyModule_CreateString(ctx, err_msg, strlen(err_msg));
* return VALKEYMODULE_AUTH_HANDLED;
* }
* return VALKEYMODULE_AUTH_NOT_HANDLED;
* }
*
* int ValkeyModule_OnLoad(ValkeyModuleCtx *ctx, ValkeyModuleString **argv, int argc) {
* if (ValkeyModule_Init(ctx,"authmodule",1,VALKEYMODULE_APIVER_1)== VALKEYMODULE_ERR)
* return VALKEYMODULE_ERR;
* ValkeyModule_RegisterAuthCallback(ctx, auth_cb);
* return VALKEYMODULE_OK;
* }
*/
void VM_RegisterAuthCallback(ValkeyModuleCtx *ctx, ValkeyModuleAuthCallback cb) {
ValkeyModuleAuthCtx *auth_ctx = zmalloc(sizeof(ValkeyModuleAuthCtx));
auth_ctx->module = ctx->module;
auth_ctx->auth_cb = cb;
listAddNodeHead(moduleAuthCallbacks, auth_ctx);
}
/* Helper function to invoke the free private data callback of a Module blocked client. */
void moduleInvokeFreePrivDataCallback(client *c, ValkeyModuleBlockedClient *bc) {
if (bc->privdata && bc->free_privdata) {
ValkeyModuleCtx ctx;
int ctx_flags = c == NULL ? VALKEYMODULE_CTX_BLOCKED_DISCONNECTED : VALKEYMODULE_CTX_NONE;
moduleCreateContext(&ctx, bc->module, ctx_flags);
ctx.blocked_privdata = bc->privdata;
ctx.client = bc->client;
bc->free_privdata(&ctx, bc->privdata);
moduleFreeContext(&ctx);
}
}
/* Unregisters all the module auth callbacks that have been registered by this Module. */
void moduleUnregisterAuthCBs(ValkeyModule *module) {
listIter li;
listNode *ln;
listRewind(moduleAuthCallbacks, &li);
while ((ln = listNext(&li))) {
ValkeyModuleAuthCtx *ctx = listNodeValue(ln);
if (ctx->module == module) {
listDelNode(moduleAuthCallbacks, ln);
zfree(ctx);
}
}
}
/* Search for & attempt next module auth callback after skipping the ones already attempted.
* Returns the result of the module auth callback. */
int attemptNextAuthCb(client *c, robj *username, robj *password, robj **err) {
int handle_next_callback = (!c->module_data || c->module_data->module_auth_ctx == NULL);
ValkeyModuleAuthCtx *cur_auth_ctx = NULL;
listNode *ln;
listIter li;
listRewind(moduleAuthCallbacks, &li);
int result = VALKEYMODULE_AUTH_NOT_HANDLED;
while ((ln = listNext(&li))) {
cur_auth_ctx = listNodeValue(ln);
/* Skip over the previously attempted auth contexts. */
if (!handle_next_callback) {
handle_next_callback = cur_auth_ctx == c->module_data->module_auth_ctx;
continue;
}
/* Remove the module auth complete flag before we attempt the next cb. */
c->flag.module_auth_has_result = 0;
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, cur_auth_ctx->module, VALKEYMODULE_CTX_NONE);
ctx.client = c;
*err = NULL;
initClientModuleData(c);
c->module_data->module_auth_ctx = cur_auth_ctx;
result = cur_auth_ctx->auth_cb(&ctx, username, password, err);
moduleFreeContext(&ctx);
if (result == VALKEYMODULE_AUTH_HANDLED) break;
/* If Auth was not handled (allowed/denied/blocked) by the Module, try the next auth cb. */
}
return result;
}
/* Helper function to handle a reprocessed unblocked auth client.
* Returns VALKEYMODULE_AUTH_NOT_HANDLED if the client was not reprocessed after a blocking module
* auth operation.
* Otherwise, we attempt the auth reply callback & the free priv data callback, update fields and
* return the result of the reply callback. */
int attemptBlockedAuthReplyCallback(client *c, robj *username, robj *password, robj **err) {
int result = VALKEYMODULE_AUTH_NOT_HANDLED;
if (!c->module_data || !c->module_data->module_blocked_client) return result;
ValkeyModuleBlockedClient *bc = (ValkeyModuleBlockedClient *)c->module_data->module_blocked_client;
bc->client = c;
if (bc->auth_reply_cb) {
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, bc->module, VALKEYMODULE_CTX_BLOCKED_REPLY);
ctx.blocked_privdata = bc->privdata;
ctx.blocked_ready_key = NULL;
ctx.client = bc->client;
ctx.blocked_client = bc;
result = bc->auth_reply_cb(&ctx, username, password, err);
moduleFreeContext(&ctx);
}
moduleInvokeFreePrivDataCallback(c, bc);
c->module_data->module_blocked_client = NULL;
c->lastcmd->microseconds += bc->background_duration;
bc->module->blocked_clients--;
zfree(bc);
return result;
}
/* Helper function to attempt Module based authentication through module auth callbacks.
* Here, the Module is expected to authenticate the client using the ValkeyModule APIs and to add ACL
* logs in case of errors.
* Returns one of the following codes:
* AUTH_OK - Indicates that a module handled and authenticated the client.
* AUTH_ERR - Indicates that a module handled and denied authentication for this client.
* AUTH_NOT_HANDLED - Indicates that authentication was not handled by any Module and that
* normal password based authentication can be attempted next.
* AUTH_BLOCKED - Indicates module authentication is in progress through a blocking implementation.
* In this case, authentication is handled here again after the client is unblocked / reprocessed. */
int checkModuleAuthentication(client *c, robj *username, robj *password, robj **err) {
if (!listLength(moduleAuthCallbacks)) return AUTH_NOT_HANDLED;
int result = attemptBlockedAuthReplyCallback(c, username, password, err);
if (result == VALKEYMODULE_AUTH_NOT_HANDLED) {
result = attemptNextAuthCb(c, username, password, err);
}
if (c->flag.blocked) {
/* Modules are expected to return VALKEYMODULE_AUTH_HANDLED when blocking clients. */
serverAssert(result == VALKEYMODULE_AUTH_HANDLED);
return AUTH_BLOCKED;
}
if (c->module_data) c->module_data->module_auth_ctx = NULL;
if (result == VALKEYMODULE_AUTH_NOT_HANDLED) {
c->flag.module_auth_has_result = 0;
return AUTH_NOT_HANDLED;
}
if (c->flag.module_auth_has_result) {
c->flag.module_auth_has_result = 0;
if (c->flag.authenticated) return AUTH_OK;
}
return AUTH_ERR;
}
/* This function is called from module.c in order to check if a module
* blocked for BLOCKED_MODULE and subtype 'on keys' (bc->blocked_on_keys true)
* can really be unblocked, since the module was able to serve the client.
* If the callback returns VALKEYMODULE_OK, then the client can be unblocked,
* otherwise the client remains blocked and we'll retry again when one of
* the keys it blocked for becomes "ready" again.
* This function returns 1 if client was served (and should be unblocked) */
int moduleTryServeClientBlockedOnKey(client *c, robj *key) {
int served = 0;
ValkeyModuleBlockedClient *bc = c->bstate->module_blocked_handle;
/* Protect against re-processing: don't serve clients that are already
* in the unblocking list for any reason (including VM_UnblockClient()
* explicit call). See #6798. */
if (bc->unblocked) return 0;
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, bc->module, VALKEYMODULE_CTX_BLOCKED_REPLY);
ctx.blocked_ready_key = key;
ctx.blocked_privdata = bc->privdata;
ctx.client = bc->client;
ctx.blocked_client = bc;
if (bc->reply_callback(&ctx, (void **)c->argv, c->argc) == VALKEYMODULE_OK) served = 1;
moduleFreeContext(&ctx);
return served;
}
/* Block a client in the context of a blocking command, returning a handle
* which will be used, later, in order to unblock the client with a call to
* ValkeyModule_UnblockClient(). The arguments specify callback functions
* and a timeout after which the client is unblocked.
*
* The callbacks are called in the following contexts:
*
* reply_callback: called after a successful ValkeyModule_UnblockClient()
* call in order to reply to the client and unblock it.
*
* timeout_callback: called when the timeout is reached or if `CLIENT UNBLOCK`
* is invoked, in order to send an error to the client.
*
* free_privdata: called in order to free the private data that is passed
* by ValkeyModule_UnblockClient() call.
*
* Note: ValkeyModule_UnblockClient should be called for every blocked client,
* even if client was killed, timed-out or disconnected. Failing to do so
* will result in memory leaks.
*
* There are some cases where ValkeyModule_BlockClient() cannot be used:
*
* 1. If the client is a Lua script.
* 2. If the client is executing a MULTI block.
*
* In these cases, a call to ValkeyModule_BlockClient() will **not** block the
* client, but instead produce a specific error reply.
*
* A module that registers a timeout_callback function can also be unblocked
* using the `CLIENT UNBLOCK` command, which will trigger the timeout callback.
* If a callback function is not registered, then the blocked client will be
* treated as if it is not in a blocked state and `CLIENT UNBLOCK` will return
* a zero value.
*
* Measuring background time: By default the time spent in the blocked command
* is not account for the total command duration. To include such time you should
* use VM_BlockedClientMeasureTimeStart() and VM_BlockedClientMeasureTimeEnd() one,
* or multiple times within the blocking command background work.
*/
ValkeyModuleBlockedClient *VM_BlockClient(ValkeyModuleCtx *ctx,
ValkeyModuleCmdFunc reply_callback,
ValkeyModuleCmdFunc timeout_callback,
void (*free_privdata)(ValkeyModuleCtx *, void *),
long long timeout_ms) {
return moduleBlockClient(ctx, reply_callback, NULL, timeout_callback, free_privdata, timeout_ms, NULL, 0, NULL, 0);
}
/* Block the current client for module authentication in the background. If module auth is not in
* progress on the client, the API returns NULL. Otherwise, the client is blocked and the VM_BlockedClient
* is returned similar to the VM_BlockClient API.
* Note: Only use this API from the context of a module auth callback. */
ValkeyModuleBlockedClient *VM_BlockClientOnAuth(ValkeyModuleCtx *ctx,
ValkeyModuleAuthCallback reply_callback,
void (*free_privdata)(ValkeyModuleCtx *, void *)) {
if (!clientHasModuleAuthInProgress(ctx->client)) {
addReplyError(ctx->client,
"Module blocking client on auth when not currently undergoing module authentication");
return NULL;
}
ValkeyModuleBlockedClient *bc =
moduleBlockClient(ctx, NULL, reply_callback, NULL, free_privdata, 0, NULL, 0, NULL, 0);
if (ctx->client->flag.blocked) {
ctx->client->flag.pending_command = 1;
}
return bc;
}
/* Get the private data that was previusely set on a blocked client */
void *VM_BlockClientGetPrivateData(ValkeyModuleBlockedClient *blocked_client) {
return blocked_client->privdata;
}
/* Set private data on a blocked client */
void VM_BlockClientSetPrivateData(ValkeyModuleBlockedClient *blocked_client, void *private_data) {
blocked_client->privdata = private_data;
}
/* This call is similar to ValkeyModule_BlockClient(), however in this case we
* don't just block the client, but also ask the server to unblock it automatically
* once certain keys become "ready", that is, contain more data.
*
* Basically this is similar to what a typical command usually does,
* like BLPOP or BZPOPMAX: the client blocks if it cannot be served ASAP,
* and later when the key receives new data (a list push for instance), the
* client is unblocked and served.
*
* However in the case of this module API, when the client is unblocked?
*
* 1. If you block on a key of a type that has blocking operations associated,
* like a list, a sorted set, a stream, and so forth, the client may be
* unblocked once the relevant key is targeted by an operation that normally
* unblocks the native blocking operations for that type. So if we block
* on a list key, an RPUSH command may unblock our client and so forth.
* 2. If you are implementing your native data type, or if you want to add new
* unblocking conditions in addition to "1", you can call the modules API
* ValkeyModule_SignalKeyAsReady().
*
* Anyway we can't be sure if the client should be unblocked just because the
* key is signaled as ready: for instance a successive operation may change the
* key, or a client in queue before this one can be served, modifying the key
* as well and making it empty again. So when a client is blocked with
* ValkeyModule_BlockClientOnKeys() the reply callback is not called after
* VM_UnblockClient() is called, but every time a key is signaled as ready:
* if the reply callback can serve the client, it returns VALKEYMODULE_OK
* and the client is unblocked, otherwise it will return VALKEYMODULE_ERR
* and we'll try again later.
*
* The reply callback can access the key that was signaled as ready by
* calling the API ValkeyModule_GetBlockedClientReadyKey(), that returns
* just the string name of the key as a ValkeyModuleString object.
*
* Thanks to this system we can setup complex blocking scenarios, like
* unblocking a client only if a list contains at least 5 items or other
* more fancy logics.
*
* Note that another difference with ValkeyModule_BlockClient(), is that here
* we pass the private data directly when blocking the client: it will
* be accessible later in the reply callback. Normally when blocking with
* ValkeyModule_BlockClient() the private data to reply to the client is
* passed when calling ValkeyModule_UnblockClient() but here the unblocking
* is performed by the server itself, so we need to have some private data before
* hand. The private data is used to store any information about the specific
* unblocking operation that you are implementing. Such information will be
* freed using the free_privdata callback provided by the user.
*
* However the reply callback will be able to access the argument vector of
* the command, so the private data is often not needed.
*
* Note: Under normal circumstances ValkeyModule_UnblockClient should not be
* called for clients that are blocked on keys (Either the key will
* become ready or a timeout will occur). If for some reason you do want
* to call ValkeyModule_UnblockClient it is possible: Client will be
* handled as if it were timed-out (You must implement the timeout
* callback in that case).
*/
ValkeyModuleBlockedClient *VM_BlockClientOnKeys(ValkeyModuleCtx *ctx,
ValkeyModuleCmdFunc reply_callback,
ValkeyModuleCmdFunc timeout_callback,
void (*free_privdata)(ValkeyModuleCtx *, void *),
long long timeout_ms,
ValkeyModuleString **keys,
int numkeys,
void *privdata) {
return moduleBlockClient(ctx, reply_callback, NULL, timeout_callback, free_privdata, timeout_ms, keys, numkeys,
privdata, 0);
}
/* Same as ValkeyModule_BlockClientOnKeys, but can take VALKEYMODULE_BLOCK_* flags
* Can be either VALKEYMODULE_BLOCK_UNBLOCK_DEFAULT, which means default behavior (same
* as calling ValkeyModule_BlockClientOnKeys)
*
* The flags is a bit mask of these:
*
* - `VALKEYMODULE_BLOCK_UNBLOCK_DELETED`: The clients should to be awakened in case any of `keys` are deleted.
* Mostly useful for commands that require the key to exist (like XREADGROUP)
*/
ValkeyModuleBlockedClient *VM_BlockClientOnKeysWithFlags(ValkeyModuleCtx *ctx,
ValkeyModuleCmdFunc reply_callback,
ValkeyModuleCmdFunc timeout_callback,
void (*free_privdata)(ValkeyModuleCtx *, void *),
long long timeout_ms,
ValkeyModuleString **keys,
int numkeys,
void *privdata,
int flags) {
return moduleBlockClient(ctx, reply_callback, NULL, timeout_callback, free_privdata, timeout_ms, keys, numkeys,
privdata, flags);
}
/* This function is used in order to potentially unblock a client blocked
* on keys with ValkeyModule_BlockClientOnKeys(). When this function is called,
* all the clients blocked for this key will get their reply_callback called. */
void VM_SignalKeyAsReady(ValkeyModuleCtx *ctx, ValkeyModuleString *key) {
signalKeyAsReady(ctx->client->db, key, OBJ_MODULE);
}
/* Implements VM_UnblockClient() and moduleUnblockClient(). */
int moduleUnblockClientByHandle(ValkeyModuleBlockedClient *bc, void *privdata) {
pthread_mutex_lock(&moduleUnblockedClientsMutex);
if (!bc->blocked_on_keys) bc->privdata = privdata;
bc->unblocked = 1;
if (listLength(moduleUnblockedClients) == 0) {
if (write(server.module_pipe[1], "A", 1) != 1) {
/* Ignore the error, this is best-effort. */
}
}
listAddNodeTail(moduleUnblockedClients, bc);
pthread_mutex_unlock(&moduleUnblockedClientsMutex);
return VALKEYMODULE_OK;
}
/* This API is used by the server core to unblock a client that was blocked
* by a module. */
void moduleUnblockClient(client *c) {
ValkeyModuleBlockedClient *bc = c->bstate->module_blocked_handle;
moduleUnblockClientByHandle(bc, NULL);
}
/* Return true if the client 'c' was blocked by a module using
* VM_BlockClientOnKeys(). */
int moduleClientIsBlockedOnKeys(client *c) {
ValkeyModuleBlockedClient *bc = c->bstate->module_blocked_handle;
return bc->blocked_on_keys;
}
/* Unblock a client blocked by `ValkeyModule_BlockedClient`. This will trigger
* the reply callbacks to be called in order to reply to the client.
* The 'privdata' argument will be accessible by the reply callback, so
* the caller of this function can pass any value that is needed in order to
* actually reply to the client.
*
* A common usage for 'privdata' is a thread that computes something that
* needs to be passed to the client, included but not limited some slow
* to compute reply or some reply obtained via networking.
*
* Note 1: this function can be called from threads spawned by the module.
*
* Note 2: when we unblock a client that is blocked for keys using the API
* ValkeyModule_BlockClientOnKeys(), the privdata argument here is not used.
* Unblocking a client that was blocked for keys using this API will still
* require the client to get some reply, so the function will use the
* "timeout" handler in order to do so (The privdata provided in
* ValkeyModule_BlockClientOnKeys() is accessible from the timeout
* callback via VM_GetBlockedClientPrivateData). */
int VM_UnblockClient(ValkeyModuleBlockedClient *bc, void *privdata) {
if (bc->blocked_on_keys) {
/* In theory the user should always pass the timeout handler as an
* argument, but better to be safe than sorry. */
if (bc->timeout_callback == NULL) return VALKEYMODULE_ERR;
if (bc->unblocked) return VALKEYMODULE_OK;
if (bc->client) moduleBlockedClientTimedOut(bc->client, 1);
}
moduleUnblockClientByHandle(bc, privdata);
return VALKEYMODULE_OK;
}
/* Abort a blocked client blocking operation: the client will be unblocked
* without firing any callback. */
int VM_AbortBlock(ValkeyModuleBlockedClient *bc) {
bc->reply_callback = NULL;
bc->disconnect_callback = NULL;
bc->auth_reply_cb = NULL;
return VM_UnblockClient(bc, NULL);
}
/* Set a callback that will be called if a blocked client disconnects
* before the module has a chance to call ValkeyModule_UnblockClient()
*
* Usually what you want to do there, is to cleanup your module state
* so that you can call ValkeyModule_UnblockClient() safely, otherwise
* the client will remain blocked forever if the timeout is large.
*
* Notes:
*
* 1. It is not safe to call Reply* family functions here, it is also
* useless since the client is gone.
*
* 2. This callback is not called if the client disconnects because of
* a timeout. In such a case, the client is unblocked automatically
* and the timeout callback is called.
*/
void VM_SetDisconnectCallback(ValkeyModuleBlockedClient *bc, ValkeyModuleDisconnectFunc callback) {
bc->disconnect_callback = callback;
}
/* This function will check the moduleUnblockedClients queue in order to
* call the reply callback and really unblock the client.
*
* Clients end into this list because of calls to VM_UnblockClient(),
* however it is possible that while the module was doing work for the
* blocked client, it was terminated by the server (for timeout or other reasons).
* When this happens the ValkeyModuleBlockedClient structure in the queue
* will have the 'client' field set to NULL. */
void moduleHandleBlockedClients(void) {
listNode *ln;
ValkeyModuleBlockedClient *bc;
pthread_mutex_lock(&moduleUnblockedClientsMutex);
while (listLength(moduleUnblockedClients)) {
ln = listFirst(moduleUnblockedClients);
bc = ln->value;
client *c = bc->client;
listDelNode(moduleUnblockedClients, ln);
pthread_mutex_unlock(&moduleUnblockedClientsMutex);
/* Release the lock during the loop, as long as we don't
* touch the shared list. */
/* Call the reply callback if the client is valid and we have
* any callback. However the callback is not called if the client
* was blocked on keys (VM_BlockClientOnKeys()), because we already
* called such callback in moduleTryServeClientBlockedOnKey() when
* the key was signaled as ready. */
long long prev_error_replies = server.stat_total_error_replies;
uint64_t reply_us = 0;
if (c && !bc->blocked_on_keys && bc->reply_callback) {
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, bc->module, VALKEYMODULE_CTX_BLOCKED_REPLY);
ctx.blocked_privdata = bc->privdata;
ctx.blocked_ready_key = NULL;
ctx.client = bc->client;
ctx.blocked_client = bc;
monotime replyTimer;
elapsedStart(&replyTimer);
bc->reply_callback(&ctx, (void **)c->argv, c->argc);
reply_us = elapsedUs(replyTimer);
moduleFreeContext(&ctx);
}
/* Hold onto the blocked client if module auth is in progress. The reply callback is invoked
* when the client is reprocessed. */
if (c && clientHasModuleAuthInProgress(c)) {
c->module_data->module_blocked_client = bc;
} else {
/* Free privdata if any. */
moduleInvokeFreePrivDataCallback(c, bc);
}
/* It is possible that this blocked client object accumulated
* replies to send to the client in a thread safe context.
* We need to glue such replies to the client output buffer and
* free the temporary client we just used for the replies. */
if (c) AddReplyFromClient(c, bc->reply_client);
moduleReleaseTempClient(bc->reply_client);
moduleReleaseTempClient(bc->thread_safe_ctx_client);
/* Update stats now that we've finished the blocking operation.
* This needs to be out of the reply callback above given that a
* module might not define any callback and still do blocking ops.
*/
if (c && !clientHasModuleAuthInProgress(c)) {
int had_errors = c->deferred_reply_errors ? !!listLength(c->deferred_reply_errors)
: (server.stat_total_error_replies != prev_error_replies);
updateStatsOnUnblock(c, bc->background_duration, reply_us, (had_errors ? ERROR_COMMAND_FAILED : 0));
}
if (c != NULL) {
/* Before unblocking the client, set the disconnect callback
* to NULL, because if we reached this point, the client was
* properly unblocked by the module. */
bc->disconnect_callback = NULL;
unblockClient(c, 1);
/* Update the wait offset, we don't know if this blocked client propagated anything,
* currently we rather not add any API for that, so we just assume it did. */
c->woff = server.primary_repl_offset;
/* Put the client in the list of clients that need to write
* if there are pending replies here. This is needed since
* during a non blocking command the client may receive output. */
if (!clientHasModuleAuthInProgress(c) && clientHasPendingReplies(c) && !c->flag.pending_write && c->conn) {
c->flag.pending_write = 1;
listLinkNodeHead(server.clients_pending_write, &c->clients_pending_write_node);
}
}
/* Free 'bc' only after unblocking the client, since it is
* referenced in the client blocking context, and must be valid
* when calling unblockClient(). */
if (!(c && clientHasModuleAuthInProgress(c))) {
bc->module->blocked_clients--;
zfree(bc);
}
/* Lock again before to iterate the loop. */
pthread_mutex_lock(&moduleUnblockedClientsMutex);
}
pthread_mutex_unlock(&moduleUnblockedClientsMutex);
}
/* Check if the specified client can be safely timed out using
* moduleBlockedClientTimedOut().
*/
int moduleBlockedClientMayTimeout(client *c) {
if (c->bstate->btype != BLOCKED_MODULE) return 1;
ValkeyModuleBlockedClient *bc = c->bstate->module_blocked_handle;
return (bc && bc->timeout_callback != NULL);
}
/* Called when our client timed out. After this function unblockClient()
* is called, and it will invalidate the blocked client. So this function
* does not need to do any cleanup. Eventually the module will call the
* API to unblock the client and the memory will be released.
*
* If this function is called from a module, we handle the timeout callback
* and the update of the unblock status in a thread-safe manner to avoid race
* conditions with the main thread.
* If this function is called from the main thread, we must handle the unblocking
* of the client synchronously. This ensures that we can reply to the client before
* resetClient() is called. */
void moduleBlockedClientTimedOut(client *c, int from_module) {
ValkeyModuleBlockedClient *bc = c->bstate->module_blocked_handle;
/* Protect against re-processing: don't serve clients that are already
* in the unblocking list for any reason (including VM_UnblockClient()
* explicit call). See #6798. */
if (bc->unblocked) return;
ValkeyModuleCtx ctx;
int flags = VALKEYMODULE_CTX_BLOCKED_TIMEOUT;
if (from_module) flags |= VALKEYMODULE_CTX_THREAD_SAFE;
moduleCreateContext(&ctx, bc->module, flags);
ctx.client = bc->client;
ctx.blocked_client = bc;
ctx.blocked_privdata = bc->privdata;
long long prev_error_replies;
if (!from_module) prev_error_replies = server.stat_total_error_replies;
if (bc->timeout_callback) {
/* In theory, the user should always pass the timeout handler as an
* argument, but better to be safe than sorry. */
bc->timeout_callback(&ctx, (void **)c->argv, c->argc);
}
moduleFreeContext(&ctx);
if (!from_module)
updateStatsOnUnblock(c, bc->background_duration, 0,
((server.stat_total_error_replies != prev_error_replies) ? ERROR_COMMAND_FAILED : 0));
/* For timeout events, we do not want to call the disconnect callback,
* because the blocked client will be automatically disconnected in
* this case, and the user can still hook using the timeout callback. */
bc->disconnect_callback = NULL;
}
/* Return non-zero if a module command was called in order to fill the
* reply for a blocked client. */
int VM_IsBlockedReplyRequest(ValkeyModuleCtx *ctx) {
return (ctx->flags & VALKEYMODULE_CTX_BLOCKED_REPLY) != 0;
}
/* Return non-zero if a module command was called in order to fill the
* reply for a blocked client that timed out. */
int VM_IsBlockedTimeoutRequest(ValkeyModuleCtx *ctx) {
return (ctx->flags & VALKEYMODULE_CTX_BLOCKED_TIMEOUT) != 0;
}
/* Get the private data set by ValkeyModule_UnblockClient() */
void *VM_GetBlockedClientPrivateData(ValkeyModuleCtx *ctx) {
return ctx->blocked_privdata;
}
/* Get the key that is ready when the reply callback is called in the context
* of a client blocked by ValkeyModule_BlockClientOnKeys(). */
ValkeyModuleString *VM_GetBlockedClientReadyKey(ValkeyModuleCtx *ctx) {
return ctx->blocked_ready_key;
}
/* Get the blocked client associated with a given context.
* This is useful in the reply and timeout callbacks of blocked clients,
* before sometimes the module has the blocked client handle references
* around, and wants to cleanup it. */
ValkeyModuleBlockedClient *VM_GetBlockedClientHandle(ValkeyModuleCtx *ctx) {
return ctx->blocked_client;
}
/* Return true if when the free callback of a blocked client is called,
* the reason for the client to be unblocked is that it disconnected
* while it was blocked. */
int VM_BlockedClientDisconnected(ValkeyModuleCtx *ctx) {
return (ctx->flags & VALKEYMODULE_CTX_BLOCKED_DISCONNECTED) != 0;
}
/* --------------------------------------------------------------------------
* ## Thread Safe Contexts
* -------------------------------------------------------------------------- */
/* Return a context which can be used inside threads to make calls requiring a
* context with certain modules APIs. If 'bc' is not NULL then the module will
* be bound to a blocked client, and it will be possible to use the
* `ValkeyModule_Reply*` family of functions to accumulate a reply for when the
* client will be unblocked. Otherwise the thread safe context will be
* detached by a specific client.
*
* To call non-reply APIs, the thread safe context must be prepared with:
*
* ValkeyModule_ThreadSafeContextLock(ctx);
* ... make your call here ...
* ValkeyModule_ThreadSafeContextUnlock(ctx);
*
* This is not needed when using `ValkeyModule_Reply*` functions, assuming
* that a blocked client was used when the context was created, otherwise
* no ValkeyModule_Reply* call should be made at all.
*
* NOTE: If you're creating a detached thread safe context (bc is NULL),
* consider using `VM_GetDetachedThreadSafeContext` which will also retain
* the module ID and thus be more useful for logging. */
ValkeyModuleCtx *VM_GetThreadSafeContext(ValkeyModuleBlockedClient *bc) {
ValkeyModuleCtx *ctx = zmalloc(sizeof(*ctx));
ValkeyModule *module = bc ? bc->module : NULL;
int flags = VALKEYMODULE_CTX_THREAD_SAFE;
/* Creating a new client object is costly. To avoid that, we have an
* internal pool of client objects. In blockClient(), a client object is
* assigned to bc->thread_safe_ctx_client to be used for the thread safe
* context.
* For detached thread safe contexts, we create a new client object.
* Otherwise, as this function can be called from different threads, we
* would need to synchronize access to internal pool of client objects.
* Assuming creating detached context is rare and not that performance
* critical, we avoid synchronizing access to the client pool by creating
* a new client */
if (!bc) flags |= VALKEYMODULE_CTX_NEW_CLIENT;
moduleCreateContext(ctx, module, flags);
/* Even when the context is associated with a blocked client, we can't
* access it safely from another thread, so we use a fake client here
* in order to keep things like the currently selected database and similar
* things. */
if (bc) {
ctx->blocked_client = bc;
ctx->client = bc->thread_safe_ctx_client;
selectDb(ctx->client, bc->dbid);
if (bc->client) {
ctx->client->id = bc->client->id;
ctx->client->resp = bc->client->resp;
}
}
return ctx;
}
/* Return a detached thread safe context that is not associated with any
* specific blocked client, but is associated with the module's context.
*
* This is useful for modules that wish to hold a global context over
* a long term, for purposes such as logging. */
ValkeyModuleCtx *VM_GetDetachedThreadSafeContext(ValkeyModuleCtx *ctx) {
ValkeyModuleCtx *new_ctx = zmalloc(sizeof(*new_ctx));
/* We create a new client object for the detached context.
* See VM_GetThreadSafeContext() for more information */
moduleCreateContext(new_ctx, ctx->module, VALKEYMODULE_CTX_THREAD_SAFE | VALKEYMODULE_CTX_NEW_CLIENT);
return new_ctx;
}
/* Release a thread safe context. */
void VM_FreeThreadSafeContext(ValkeyModuleCtx *ctx) {
moduleFreeContext(ctx);
zfree(ctx);
}
void moduleGILAfterLock(void) {
/* We should never get here if we already inside a module
* code block which already opened a context. */
serverAssert(server.execution_nesting == 0);
/* Bump up the nesting level to prevent immediate propagation
* of possible VM_Call from th thread */
enterExecutionUnit(1, 0);
}
/* Acquire the server lock before executing a thread safe API call.
* This is not needed for `ValkeyModule_Reply*` calls when there is
* a blocked client connected to the thread safe context. */
void VM_ThreadSafeContextLock(ValkeyModuleCtx *ctx) {
UNUSED(ctx);
moduleAcquireGIL();
moduleGILAfterLock();
}
/* Similar to VM_ThreadSafeContextLock but this function
* would not block if the server lock is already acquired.
*
* If successful (lock acquired) VALKEYMODULE_OK is returned,
* otherwise VALKEYMODULE_ERR is returned and errno is set
* accordingly. */
int VM_ThreadSafeContextTryLock(ValkeyModuleCtx *ctx) {
UNUSED(ctx);
int res = moduleTryAcquireGIL();
if (res != 0) {
errno = res;
return VALKEYMODULE_ERR;
}
moduleGILAfterLock();
return VALKEYMODULE_OK;
}
void moduleGILBeforeUnlock(void) {
/* We should never get here if we already inside a module
* code block which already opened a context, except
* the bump-up from moduleGILAcquired. */
serverAssert(server.execution_nesting == 1);
/* Restore nesting level and propagate pending commands
* (because it's unclear when thread safe contexts are
* released we have to propagate here). */
exitExecutionUnit();
postExecutionUnitOperations();
}
/* Release the server lock after a thread safe API call was executed. */
void VM_ThreadSafeContextUnlock(ValkeyModuleCtx *ctx) {
UNUSED(ctx);
moduleGILBeforeUnlock();
moduleReleaseGIL();
}
void moduleAcquireGIL(void) {
pthread_mutex_lock(&moduleGIL);
}
int moduleTryAcquireGIL(void) {
return pthread_mutex_trylock(&moduleGIL);
}
void moduleReleaseGIL(void) {
pthread_mutex_unlock(&moduleGIL);
}
/* --------------------------------------------------------------------------
* ## Module Keyspace Notifications API
* -------------------------------------------------------------------------- */
/* Subscribe to keyspace notifications. This is a low-level version of the
* keyspace-notifications API. A module can register callbacks to be notified
* when keyspace events occur.
*
* Notification events are filtered by their type (string events, set events,
* etc), and the subscriber callback receives only events that match a specific
* mask of event types.
*
* When subscribing to notifications with ValkeyModule_SubscribeToKeyspaceEvents
* the module must provide an event type-mask, denoting the events the subscriber
* is interested in. This can be an ORed mask of any of the following flags:
*
* - VALKEYMODULE_NOTIFY_GENERIC: Generic commands like DEL, EXPIRE, RENAME
* - VALKEYMODULE_NOTIFY_STRING: String events
* - VALKEYMODULE_NOTIFY_LIST: List events
* - VALKEYMODULE_NOTIFY_SET: Set events
* - VALKEYMODULE_NOTIFY_HASH: Hash events
* - VALKEYMODULE_NOTIFY_ZSET: Sorted Set events
* - VALKEYMODULE_NOTIFY_EXPIRED: Expiration events
* - VALKEYMODULE_NOTIFY_EVICTED: Eviction events
* - VALKEYMODULE_NOTIFY_STREAM: Stream events
* - VALKEYMODULE_NOTIFY_MODULE: Module types events
* - VALKEYMODULE_NOTIFY_KEYMISS: Key-miss events
* Notice, key-miss event is the only type
* of event that is fired from within a read command.
* Performing VM_Call with a write command from within
* this notification is wrong and discourage. It will
* cause the read command that trigger the event to be
* replicated to the AOF/Replica.
* - VALKEYMODULE_NOTIFY_ALL: All events (Excluding VALKEYMODULE_NOTIFY_KEYMISS)
* - VALKEYMODULE_NOTIFY_LOADED: A special notification available only for modules,
* indicates that the key was loaded from persistence.
* Notice, when this event fires, the given key
* can not be retained, use VM_CreateStringFromString
* instead.
*
* We do not distinguish between key events and keyspace events, and it is up
* to the module to filter the actions taken based on the key.
*
* The subscriber signature is:
*
* int (*ValkeyModuleNotificationFunc) (ValkeyModuleCtx *ctx, int type,
* const char *event,
* ValkeyModuleString *key);
*
* `type` is the event type bit, that must match the mask given at registration
* time. The event string is the actual command being executed, and key is the
* relevant key.
*
* Notification callback gets executed with a context that can not be
* used to send anything to the client, and has the db number where the event
* occurred as its selected db number.
*
* Notice that it is not necessary to enable notifications in valkey.conf for
* module notifications to work.
*
* Warning: the notification callbacks are performed in a synchronous manner,
* so notification callbacks must to be fast, or they would slow the server down.
* If you need to take long actions, use threads to offload them.
*
* Moreover, the fact that the notification is executed synchronously means
* that the notification code will be executed in the middle of server logic
* (commands logic, eviction, expire). Changing the key space while the logic
* runs is dangerous and discouraged. In order to react to key space events with
* write actions, please refer to `VM_AddPostNotificationJob`.
*
* See https://valkey.io/topics/notifications for more information.
*/
int VM_SubscribeToKeyspaceEvents(ValkeyModuleCtx *ctx, int types, ValkeyModuleNotificationFunc callback) {
ValkeyModuleKeyspaceSubscriber *sub = zmalloc(sizeof(*sub));
sub->module = ctx->module;
sub->event_mask = types;
sub->notify_callback = callback;
sub->active = 0;
listAddNodeTail(moduleKeyspaceSubscribers, sub);
return VALKEYMODULE_OK;
}
void firePostExecutionUnitJobs(void) {
/* Avoid propagation of commands.
* In that way, postExecutionUnitOperations will prevent
* recursive calls to firePostExecutionUnitJobs.
* This is a special case where we need to increase 'execution_nesting'
* but we do not want to update the cached time */
enterExecutionUnit(0, 0);
while (listLength(modulePostExecUnitJobs) > 0) {
listNode *ln = listFirst(modulePostExecUnitJobs);
ValkeyModulePostExecUnitJob *job = listNodeValue(ln);
listDelNode(modulePostExecUnitJobs, ln);
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, job->module, VALKEYMODULE_CTX_TEMP_CLIENT);
selectDb(ctx.client, job->dbid);
job->callback(&ctx, job->pd);
if (job->free_pd) job->free_pd(job->pd);
moduleFreeContext(&ctx);
zfree(job);
}
exitExecutionUnit();
}
/* When running inside a key space notification callback, it is dangerous and highly discouraged to perform any write
* operation (See `VM_SubscribeToKeyspaceEvents`). In order to still perform write actions in this scenario,
* the server provides `VM_AddPostNotificationJob` API. The API allows to register a job callback which the server will
* call when the following condition are promised to be fulfilled:
* 1. It is safe to perform any write operation.
* 2. The job will be called atomically along side the key space notification.
*
* Notice, one job might trigger key space notifications that will trigger more jobs.
* This raises a concerns of entering an infinite loops, we consider infinite loops
* as a logical bug that need to be fixed in the module, an attempt to protect against
* infinite loops by halting the execution could result in violation of the feature correctness
* and so the server will make no attempt to protect the module from infinite loops.
*
* 'free_pd' can be NULL and in such case will not be used.
*
* Return VALKEYMODULE_OK on success and VALKEYMODULE_ERR if was called while loading data from disk (AOF or RDB) or
* if the instance is a readonly replica. */
int VM_AddPostNotificationJob(ValkeyModuleCtx *ctx,
ValkeyModulePostNotificationJobFunc callback,
void *privdata,
void (*free_privdata)(void *)) {
if (server.loading || (server.primary_host && server.repl_replica_ro)) {
return VALKEYMODULE_ERR;
}
ValkeyModulePostExecUnitJob *job = zmalloc(sizeof(*job));
job->module = ctx->module;
job->callback = callback;
job->pd = privdata;
job->free_pd = free_privdata;
job->dbid = ctx->client->db->id;
listAddNodeTail(modulePostExecUnitJobs, job);
return VALKEYMODULE_OK;
}
/* Get the configured bitmap of notify-keyspace-events (Could be used
* for additional filtering in ValkeyModuleNotificationFunc) */
int VM_GetNotifyKeyspaceEvents(void) {
return server.notify_keyspace_events;
}
/* Expose notifyKeyspaceEvent to modules */
int VM_NotifyKeyspaceEvent(ValkeyModuleCtx *ctx, int type, const char *event, ValkeyModuleString *key) {
if (!ctx || !ctx->client) return VALKEYMODULE_ERR;
notifyKeyspaceEvent(type, (char *)event, key, ctx->client->db->id);
return VALKEYMODULE_OK;
}
/* Dispatcher for keyspace notifications to module subscriber functions.
* This gets called only if at least one module requested to be notified on
* keyspace notifications */
void moduleNotifyKeyspaceEvent(int type, const char *event, robj *key, int dbid) {
/* Don't do anything if there aren't any subscribers */
if (listLength(moduleKeyspaceSubscribers) == 0) return;
/* Ugly hack to handle modules which use write commands from within
* notify_callback, which they should NOT do!
* Modules should use ValkeyModules_AddPostNotificationJob instead.
*
* Anyway, we want any propagated commands from within notify_callback
* to be propagated inside a MULTI/EXEC together with the original
* command that caused the KSN.
* Note that it's only relevant for KSNs which are not generated from within
* call(), for example active-expiry and eviction (because anyway
* execution_nesting is incremented from within call())
*
* In order to do that we increment the execution_nesting counter, thus
* preventing postExecutionUnitOperations (from within moduleFreeContext)
* from propagating commands from CB.
*
* This is a special case where we need to increase 'execution_nesting'
* but we do not want to update the cached time */
enterExecutionUnit(0, 0);
listIter li;
listNode *ln;
listRewind(moduleKeyspaceSubscribers, &li);
/* Remove irrelevant flags from the type mask */
type &= ~(NOTIFY_KEYEVENT | NOTIFY_KEYSPACE);
while ((ln = listNext(&li))) {
ValkeyModuleKeyspaceSubscriber *sub = ln->value;
/* Only notify subscribers on events matching the registration,
* and avoid subscribers triggering themselves */
if ((sub->event_mask & type) &&
(sub->active == 0 || (sub->module->options & VALKEYMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS))) {
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, sub->module, VALKEYMODULE_CTX_TEMP_CLIENT);
selectDb(ctx.client, dbid);
/* mark the handler as active to avoid reentrant loops.
* If the subscriber performs an action triggering itself,
* it will not be notified about it. */
int prev_active = sub->active;
sub->active = 1;
server.lazy_expire_disabled++;
sub->notify_callback(&ctx, type, event, key);
server.lazy_expire_disabled--;
sub->active = prev_active;
moduleFreeContext(&ctx);
}
}
exitExecutionUnit();
}
/* Unsubscribe any notification subscribers this module has upon unloading */
void moduleUnsubscribeNotifications(ValkeyModule *module) {
listIter li;
listNode *ln;
listRewind(moduleKeyspaceSubscribers, &li);
while ((ln = listNext(&li))) {
ValkeyModuleKeyspaceSubscriber *sub = ln->value;
if (sub->module == module) {
listDelNode(moduleKeyspaceSubscribers, ln);
zfree(sub);
}
}
}
/* --------------------------------------------------------------------------
* ## Modules Cluster API
* -------------------------------------------------------------------------- */
/* The Cluster message callback function pointer type. */
typedef void (*ValkeyModuleClusterMessageReceiver)(ValkeyModuleCtx *ctx,
const char *sender_id,
uint8_t type,
const unsigned char *payload,
uint32_t len);
/* This structure identifies a registered caller: it must match a given module
* ID, for a given message type. The callback function is just the function
* that was registered as receiver. */
typedef struct moduleClusterReceiver {
uint64_t module_id;
ValkeyModuleClusterMessageReceiver callback;
struct ValkeyModule *module;
struct moduleClusterReceiver *next;
} moduleClusterReceiver;
typedef struct moduleClusterNodeInfo {
int flags;
char ip[NET_IP_STR_LEN];
int port;
char primary_id[40]; /* Only if flags & VALKEYMODULE_NODE_PRIMARY is true. */
} mdouleClusterNodeInfo;
/* We have an array of message types: each bucket is a linked list of
* configured receivers. */
static moduleClusterReceiver *clusterReceivers[UINT8_MAX];
/* Dispatch the message to the right module receiver. */
void moduleCallClusterReceivers(const char *sender_id,
uint64_t module_id,
uint8_t type,
const unsigned char *payload,
uint32_t len) {
moduleClusterReceiver *r = clusterReceivers[type];
while (r) {
if (r->module_id == module_id) {
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, r->module, VALKEYMODULE_CTX_TEMP_CLIENT);
r->callback(&ctx, sender_id, type, payload, len);
moduleFreeContext(&ctx);
return;
}
r = r->next;
}
}
/* Register a callback receiver for cluster messages of type 'type'. If there
* was already a registered callback, this will replace the callback function
* with the one provided, otherwise if the callback is set to NULL and there
* is already a callback for this function, the callback is unregistered
* (so this API call is also used in order to delete the receiver). */
void VM_RegisterClusterMessageReceiver(ValkeyModuleCtx *ctx,
uint8_t type,
ValkeyModuleClusterMessageReceiver callback) {
if (!server.cluster_enabled) return;
uint64_t module_id = moduleTypeEncodeId(ctx->module->name, 0);
moduleClusterReceiver *r = clusterReceivers[type], *prev = NULL;
while (r) {
if (r->module_id == module_id) {
/* Found! Set or delete. */
if (callback) {
r->callback = callback;
} else {
/* Delete the receiver entry if the user is setting
* it to NULL. Just unlink the receiver node from the
* linked list. */
if (prev)
prev->next = r->next;
else
clusterReceivers[type]->next = r->next;
zfree(r);
}
return;
}
prev = r;
r = r->next;
}
/* Not found, let's add it. */
if (callback) {
r = zmalloc(sizeof(*r));
r->module_id = module_id;
r->module = ctx->module;
r->callback = callback;
r->next = clusterReceivers[type];
clusterReceivers[type] = r;
}
}
/* Send a message to all the nodes in the cluster if `target` is NULL, otherwise
* at the specified target, which is a VALKEYMODULE_NODE_ID_LEN bytes node ID, as
* returned by the receiver callback or by the nodes iteration functions.
*
* The function returns VALKEYMODULE_OK if the message was successfully sent,
* otherwise if the node is not connected or such node ID does not map to any
* known cluster node, VALKEYMODULE_ERR is returned. */
int VM_SendClusterMessage(ValkeyModuleCtx *ctx, const char *target_id, uint8_t type, const char *msg, uint32_t len) {
if (!server.cluster_enabled) return VALKEYMODULE_ERR;
uint64_t module_id = moduleTypeEncodeId(ctx->module->name, 0);
if (clusterSendModuleMessageToTarget(target_id, module_id, type, msg, len) == C_OK)
return VALKEYMODULE_OK;
else
return VALKEYMODULE_ERR;
}
/* Return an array of string pointers, each string pointer points to a cluster
* node ID of exactly VALKEYMODULE_NODE_ID_LEN bytes (without any null term).
* The number of returned node IDs is stored into `*numnodes`.
* However if this function is called by a module not running an an
* instance with Cluster enabled, NULL is returned instead.
*
* The IDs returned can be used with ValkeyModule_GetClusterNodeInfo() in order
* to get more information about single node.
*
* The array returned by this function must be freed using the function
* ValkeyModule_FreeClusterNodesList().
*
* Example:
*
* size_t count, j;
* char **ids = ValkeyModule_GetClusterNodesList(ctx,&count);
* for (j = 0; j < count; j++) {
* ValkeyModule_Log(ctx,"notice","Node %.*s",
* VALKEYMODULE_NODE_ID_LEN,ids[j]);
* }
* ValkeyModule_FreeClusterNodesList(ids);
*/
char **VM_GetClusterNodesList(ValkeyModuleCtx *ctx, size_t *numnodes) {
UNUSED(ctx);
if (!server.cluster_enabled) return NULL;
return getClusterNodesList(numnodes);
}
/* Free the node list obtained with ValkeyModule_GetClusterNodesList. */
void VM_FreeClusterNodesList(char **ids) {
if (ids == NULL) return;
for (int j = 0; ids[j]; j++) zfree(ids[j]);
zfree(ids);
}
/* Return this node ID (VALKEYMODULE_CLUSTER_ID_LEN bytes) or NULL if the cluster
* is disabled. */
const char *VM_GetMyClusterID(void) {
if (!server.cluster_enabled) return NULL;
return clusterNodeGetName(getMyClusterNode());
}
/* Return the number of nodes in the cluster, regardless of their state
* (handshake, noaddress, ...) so that the number of active nodes may actually
* be smaller, but not greater than this number. If the instance is not in
* cluster mode, zero is returned. */
size_t VM_GetClusterSize(void) {
if (!server.cluster_enabled) return 0;
return getClusterSize();
}
int moduleGetClusterNodeInfoForClient(ValkeyModuleCtx *ctx,
client *c,
const char *node_id,
char *ip,
char *primary_id,
int *port,
int *flags);
/* Populate the specified info for the node having as ID the specified 'id',
* then returns VALKEYMODULE_OK. Otherwise if the format of node ID is invalid
* or the node ID does not exist from the POV of this local node, VALKEYMODULE_ERR
* is returned.
*
* The arguments `ip`, `primary_id`, `port` and `flags` can be NULL in case we don't
* need to populate back certain info. If an `ip` and `primary_id` (only populated
* if the instance is a replica) are specified, they point to buffers holding
* at least VALKEYMODULE_NODE_ID_LEN bytes. The strings written back as `ip`
* and `primary_id` are not null terminated.
*
* The list of flags reported is the following:
*
* * VALKEYMODULE_NODE_MYSELF: This node
* * VALKEYMODULE_NODE_PRIMARY: The node is a primary
* * VALKEYMODULE_NODE_REPLICA: The node is a replica
* * VALKEYMODULE_NODE_PFAIL: We see the node as failing
* * VALKEYMODULE_NODE_FAIL: The cluster agrees the node is failing
* * VALKEYMODULE_NODE_NOFAILOVER: The replica is configured to never failover
*/
int VM_GetClusterNodeInfo(ValkeyModuleCtx *ctx, const char *id, char *ip, char *primary_id, int *port, int *flags) {
return moduleGetClusterNodeInfoForClient(ctx, NULL, id, ip, primary_id, port, flags);
}
/* Like VM_GetClusterNodeInfo(), but returns IP address specifically for the given
* client, depending on whether the client is connected over IPv4 or IPv6.
*
* See also VM_GetClientId(). */
int VM_GetClusterNodeInfoForClient(ValkeyModuleCtx *ctx,
uint64_t client_id,
const char *node_id,
char *ip,
char *primary_id,
int *port,
int *flags) {
client *c = lookupClientByID(client_id);
if (c == NULL) return VALKEYMODULE_ERR;
return moduleGetClusterNodeInfoForClient(ctx, c, node_id, ip, primary_id, port, flags);
}
int moduleGetClusterNodeInfoForClient(ValkeyModuleCtx *ctx,
client *c,
const char *node_id,
char *ip,
char *primary_id,
int *port,
int *flags) {
UNUSED(ctx);
clusterNode *node = clusterLookupNode(node_id, strlen(node_id));
if (node == NULL || clusterNodePending(node)) {
return VALKEYMODULE_ERR;
}
if (ip) valkey_strlcpy(ip, clusterNodeIp(node, c), NET_IP_STR_LEN);
if (primary_id) {
/* If the information is not available, the function will set the
* field to zero bytes, so that when the field can't be populated the
* function kinda remains predictable. */
if (clusterNodeIsReplica(node) && clusterNodeGetPrimary(node))
memcpy(primary_id, clusterNodeGetName(clusterNodeGetPrimary(node)), VALKEYMODULE_NODE_ID_LEN);
else
memset(primary_id, 0, VALKEYMODULE_NODE_ID_LEN);
}
if (port) *port = getNodeDefaultClientPort(node);
/* As usually we have to remap flags for modules, in order to ensure
* we can provide binary compatibility. */
if (flags) {
*flags = 0;
if (clusterNodeIsMyself(node)) *flags |= VALKEYMODULE_NODE_MYSELF;
if (clusterNodeIsPrimary(node)) *flags |= VALKEYMODULE_NODE_PRIMARY;
if (clusterNodeIsReplica(node)) *flags |= VALKEYMODULE_NODE_REPLICA;
if (clusterNodeTimedOut(node)) *flags |= VALKEYMODULE_NODE_PFAIL;
if (clusterNodeIsFailing(node)) *flags |= VALKEYMODULE_NODE_FAIL;
if (clusterNodeIsNoFailover(node)) *flags |= VALKEYMODULE_NODE_NOFAILOVER;
}
return VALKEYMODULE_OK;
}
/* Set Cluster flags in order to change the normal behavior of
* Cluster, especially with the goal of disabling certain functions.
* This is useful for modules that use the Cluster API in order to create
* a different distributed system, but still want to use the Cluster
* message bus. Flags that can be set:
*
* * CLUSTER_MODULE_FLAG_NO_FAILOVER
* * CLUSTER_MODULE_FLAG_NO_REDIRECTION
*
* With the following effects:
*
* * NO_FAILOVER: prevent Cluster replicas from failing over a dead primary.
* Also disables the replica migration feature.
*
* * NO_REDIRECTION: Every node will accept any key, without trying to perform
* partitioning according to the Cluster algorithm.
* Slots information will still be propagated across the
* cluster, but without effect. */
void VM_SetClusterFlags(ValkeyModuleCtx *ctx, uint64_t flags) {
UNUSED(ctx);
if (flags & VALKEYMODULE_CLUSTER_FLAG_NO_FAILOVER) server.cluster_module_flags |= CLUSTER_MODULE_FLAG_NO_FAILOVER;
if (flags & VALKEYMODULE_CLUSTER_FLAG_NO_REDIRECTION)
server.cluster_module_flags |= CLUSTER_MODULE_FLAG_NO_REDIRECTION;
}
/* Returns the cluster slot of a key, similar to the `CLUSTER KEYSLOT` command.
* This function works even if cluster mode is not enabled. */
unsigned int VM_ClusterKeySlot(ValkeyModuleString *key) {
return keyHashSlot(key->ptr, sdslen(key->ptr));
}
/* Returns a short string that can be used as a key or as a hash tag in a key,
* such that the key maps to the given cluster slot. Returns NULL if slot is not
* a valid slot. */
const char *VM_ClusterCanonicalKeyNameInSlot(unsigned int slot) {
return (slot < CLUSTER_SLOTS) ? crc16_slot_table[slot] : NULL;
}
/* --------------------------------------------------------------------------
* ## Modules Timers API
*
* Module timers are a high precision "green timers" abstraction where
* every module can register even millions of timers without problems, even if
* the actual event loop will just have a single timer that is used to awake the
* module timers subsystem in order to process the next event.
*
* All the timers are stored into a radix tree, ordered by expire time, when
* the main server event loop timer callback is called, we try to process all
* the timers already expired one after the other. Then we re-enter the event
* loop registering a timer that will expire when the next to process module
* timer will expire.
*
* Every time the list of active timers drops to zero, we unregister the
* main event loop timer, so that there is no overhead when such feature is
* not used.
* -------------------------------------------------------------------------- */
static rax *Timers; /* The radix tree of all the timers sorted by expire. */
long long aeTimer = -1; /* Main event loop (ae.c) timer identifier. */
typedef void (*ValkeyModuleTimerProc)(ValkeyModuleCtx *ctx, void *data);
/* The timer descriptor, stored as value in the radix tree. */
typedef struct ValkeyModuleTimer {
ValkeyModule *module; /* Module reference. */
ValkeyModuleTimerProc callback; /* The callback to invoke on expire. */
void *data; /* Private data for the callback. */
int dbid; /* Database number selected by the original client. */
} ValkeyModuleTimer;
/* This is the timer handler that is called by the main event loop. We schedule
* this timer to be called when the nearest of our module timers will expire. */
long long moduleTimerHandler(struct aeEventLoop *eventLoop, long long id, void *clientData) {
UNUSED(eventLoop);
UNUSED(id);
UNUSED(clientData);
/* To start let's try to fire all the timers already expired. */
raxIterator ri;
raxStart(&ri, Timers);
uint64_t now = ustime();
long long next_period = 0;
while (1) {
raxSeek(&ri, "^", NULL, 0);
if (!raxNext(&ri)) break;
uint64_t expiretime;
memcpy(&expiretime, ri.key, sizeof(expiretime));
expiretime = ntohu64(expiretime);
if (now >= expiretime) {
ValkeyModuleTimer *timer = ri.data;
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, timer->module, VALKEYMODULE_CTX_TEMP_CLIENT);
selectDb(ctx.client, timer->dbid);
timer->callback(&ctx, timer->data);
moduleFreeContext(&ctx);
raxRemove(Timers, (unsigned char *)ri.key, ri.key_len, NULL);
zfree(timer);
} else {
/* We call ustime() again instead of using the cached 'now' so that
* 'next_period' isn't affected by the time it took to execute
* previous calls to 'callback.
* We need to cast 'expiretime' so that the compiler will not treat
* the difference as unsigned (Causing next_period to be huge) in
* case expiretime < ustime() */
next_period = ((long long)expiretime - ustime()) / 1000; /* Scale to milliseconds. */
break;
}
}
raxStop(&ri);
/* Reschedule the next timer or cancel it. */
if (next_period <= 0) next_period = 1;
if (raxSize(Timers) > 0) {
return next_period;
} else {
aeTimer = -1;
return AE_NOMORE;
}
}
/* Create a new timer that will fire after `period` milliseconds, and will call
* the specified function using `data` as argument. The returned timer ID can be
* used to get information from the timer or to stop it before it fires.
* Note that for the common use case of a repeating timer (Re-registration
* of the timer inside the ValkeyModuleTimerProc callback) it matters when
* this API is called:
* If it is called at the beginning of 'callback' it means
* the event will triggered every 'period'.
* If it is called at the end of 'callback' it means
* there will 'period' milliseconds gaps between events.
* (If the time it takes to execute 'callback' is negligible the two
* statements above mean the same) */
ValkeyModuleTimerID VM_CreateTimer(ValkeyModuleCtx *ctx, mstime_t period, ValkeyModuleTimerProc callback, void *data) {
ValkeyModuleTimer *timer = zmalloc(sizeof(*timer));
timer->module = ctx->module;
timer->callback = callback;
timer->data = data;
timer->dbid = ctx->client ? ctx->client->db->id : 0;
uint64_t expiretime = ustime() + period * 1000;
uint64_t key;
while (1) {
key = htonu64(expiretime);
if (!raxFind(Timers, (unsigned char *)&key, sizeof(key), NULL)) {
raxInsert(Timers, (unsigned char *)&key, sizeof(key), timer, NULL);
break;
} else {
expiretime++;
}
}
/* We need to install the main event loop timer if it's not already
* installed, or we may need to refresh its period if we just installed
* a timer that will expire sooner than any other else (i.e. the timer
* we just installed is the first timer in the Timers rax). */
if (aeTimer != -1) {
raxIterator ri;
raxStart(&ri, Timers);
raxSeek(&ri, "^", NULL, 0);
raxNext(&ri);
if (memcmp(ri.key, &key, sizeof(key)) == 0) {
/* This is the first key, we need to re-install the timer according
* to the just added event. */
aeDeleteTimeEvent(server.el, aeTimer);
aeTimer = -1;
}
raxStop(&ri);
}
/* If we have no main timer (the old one was invalidated, or this is the
* first module timer we have), install one. */
if (aeTimer == -1) aeTimer = aeCreateTimeEvent(server.el, period, moduleTimerHandler, NULL, NULL);
return key;
}
/* Stop a timer, returns VALKEYMODULE_OK if the timer was found, belonged to the
* calling module, and was stopped, otherwise VALKEYMODULE_ERR is returned.
* If not NULL, the data pointer is set to the value of the data argument when
* the timer was created. */
int VM_StopTimer(ValkeyModuleCtx *ctx, ValkeyModuleTimerID id, void **data) {
void *result;
if (!raxFind(Timers, (unsigned char *)&id, sizeof(id), &result)) return VALKEYMODULE_ERR;
ValkeyModuleTimer *timer = result;
if (timer->module != ctx->module) return VALKEYMODULE_ERR;
if (data) *data = timer->data;
raxRemove(Timers, (unsigned char *)&id, sizeof(id), NULL);
zfree(timer);
return VALKEYMODULE_OK;
}
/* Obtain information about a timer: its remaining time before firing
* (in milliseconds), and the private data pointer associated with the timer.
* If the timer specified does not exist or belongs to a different module
* no information is returned and the function returns VALKEYMODULE_ERR, otherwise
* VALKEYMODULE_OK is returned. The arguments remaining or data can be NULL if
* the caller does not need certain information. */
int VM_GetTimerInfo(ValkeyModuleCtx *ctx, ValkeyModuleTimerID id, uint64_t *remaining, void **data) {
void *result;
if (!raxFind(Timers, (unsigned char *)&id, sizeof(id), &result)) return VALKEYMODULE_ERR;
ValkeyModuleTimer *timer = result;
if (timer->module != ctx->module) return VALKEYMODULE_ERR;
if (remaining) {
int64_t rem = ntohu64(id) - ustime();
if (rem < 0) rem = 0;
*remaining = rem / 1000; /* Scale to milliseconds. */
}
if (data) *data = timer->data;
return VALKEYMODULE_OK;
}
/* Query timers to see if any timer belongs to the module.
* Return 1 if any timer was found, otherwise 0 would be returned. */
int moduleHoldsTimer(struct ValkeyModule *module) {
raxIterator iter;
int found = 0;
raxStart(&iter, Timers);
raxSeek(&iter, "^", NULL, 0);
while (raxNext(&iter)) {
ValkeyModuleTimer *timer = iter.data;
if (timer->module == module) {
found = 1;
break;
}
}
raxStop(&iter);
return found;
}
/* --------------------------------------------------------------------------
* ## Modules EventLoop API
* --------------------------------------------------------------------------*/
typedef struct EventLoopData {
ValkeyModuleEventLoopFunc rFunc;
ValkeyModuleEventLoopFunc wFunc;
void *user_data;
} EventLoopData;
typedef struct EventLoopOneShot {
ValkeyModuleEventLoopOneShotFunc func;
void *user_data;
} EventLoopOneShot;
list *moduleEventLoopOneShots;
static pthread_mutex_t moduleEventLoopMutex = PTHREAD_MUTEX_INITIALIZER;
static int eventLoopToAeMask(int mask) {
int aeMask = 0;
if (mask & VALKEYMODULE_EVENTLOOP_READABLE) aeMask |= AE_READABLE;
if (mask & VALKEYMODULE_EVENTLOOP_WRITABLE) aeMask |= AE_WRITABLE;
return aeMask;
}
static int eventLoopFromAeMask(int ae_mask) {
int mask = 0;
if (ae_mask & AE_READABLE) mask |= VALKEYMODULE_EVENTLOOP_READABLE;
if (ae_mask & AE_WRITABLE) mask |= VALKEYMODULE_EVENTLOOP_WRITABLE;
return mask;
}
static void eventLoopCbReadable(struct aeEventLoop *ae, int fd, void *user_data, int ae_mask) {
UNUSED(ae);
EventLoopData *data = user_data;
data->rFunc(fd, data->user_data, eventLoopFromAeMask(ae_mask));
}
static void eventLoopCbWritable(struct aeEventLoop *ae, int fd, void *user_data, int ae_mask) {
UNUSED(ae);
EventLoopData *data = user_data;
data->wFunc(fd, data->user_data, eventLoopFromAeMask(ae_mask));
}
/* Add a pipe / socket event to the event loop.
*
* * `mask` must be one of the following values:
*
* * `VALKEYMODULE_EVENTLOOP_READABLE`
* * `VALKEYMODULE_EVENTLOOP_WRITABLE`
* * `VALKEYMODULE_EVENTLOOP_READABLE | VALKEYMODULE_EVENTLOOP_WRITABLE`
*
* On success VALKEYMODULE_OK is returned, otherwise
* VALKEYMODULE_ERR is returned and errno is set to the following values:
*
* * ERANGE: `fd` is negative or higher than `maxclients` server config.
* * EINVAL: `callback` is NULL or `mask` value is invalid.
*
* `errno` might take other values in case of an internal error.
*
* Example:
*
* void onReadable(int fd, void *user_data, int mask) {
* char buf[32];
* int bytes = read(fd,buf,sizeof(buf));
* printf("Read %d bytes \n", bytes);
* }
* VM_EventLoopAdd(fd, VALKEYMODULE_EVENTLOOP_READABLE, onReadable, NULL);
*/
int VM_EventLoopAdd(int fd, int mask, ValkeyModuleEventLoopFunc func, void *user_data) {
if (fd < 0 || fd >= aeGetSetSize(server.el)) {
errno = ERANGE;
return VALKEYMODULE_ERR;
}
if (!func || mask & ~(VALKEYMODULE_EVENTLOOP_READABLE | VALKEYMODULE_EVENTLOOP_WRITABLE)) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
/* We are going to register stub callbacks to 'ae' for two reasons:
*
* - "ae" callback signature is different from ValkeyModuleEventLoopCallback,
* that will be handled it in our stub callbacks.
* - We need to remap 'mask' value to provide binary compatibility.
*
* For the stub callbacks, saving user 'callback' and 'user_data' in an
* EventLoopData object and passing it to ae, later, we'll extract
* 'callback' and 'user_data' from that.
*/
EventLoopData *data = aeGetFileClientData(server.el, fd);
if (!data) data = zcalloc(sizeof(*data));
aeFileProc *aeProc;
if (mask & VALKEYMODULE_EVENTLOOP_READABLE)
aeProc = eventLoopCbReadable;
else
aeProc = eventLoopCbWritable;
int aeMask = eventLoopToAeMask(mask);
if (aeCreateFileEvent(server.el, fd, aeMask, aeProc, data) != AE_OK) {
if (aeGetFileEvents(server.el, fd) == AE_NONE) zfree(data);
return VALKEYMODULE_ERR;
}
data->user_data = user_data;
if (mask & VALKEYMODULE_EVENTLOOP_READABLE) data->rFunc = func;
if (mask & VALKEYMODULE_EVENTLOOP_WRITABLE) data->wFunc = func;
errno = 0;
return VALKEYMODULE_OK;
}
/* Delete a pipe / socket event from the event loop.
*
* * `mask` must be one of the following values:
*
* * `VALKEYMODULE_EVENTLOOP_READABLE`
* * `VALKEYMODULE_EVENTLOOP_WRITABLE`
* * `VALKEYMODULE_EVENTLOOP_READABLE | VALKEYMODULE_EVENTLOOP_WRITABLE`
*
* On success VALKEYMODULE_OK is returned, otherwise
* VALKEYMODULE_ERR is returned and errno is set to the following values:
*
* * ERANGE: `fd` is negative or higher than `maxclients` server config.
* * EINVAL: `mask` value is invalid.
*/
int VM_EventLoopDel(int fd, int mask) {
if (fd < 0 || fd >= aeGetSetSize(server.el)) {
errno = ERANGE;
return VALKEYMODULE_ERR;
}
if (mask & ~(VALKEYMODULE_EVENTLOOP_READABLE | VALKEYMODULE_EVENTLOOP_WRITABLE)) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
/* After deleting the event, if fd does not have any registered event
* anymore, we can free the EventLoopData object. */
EventLoopData *data = aeGetFileClientData(server.el, fd);
aeDeleteFileEvent(server.el, fd, eventLoopToAeMask(mask));
if (aeGetFileEvents(server.el, fd) == AE_NONE) zfree(data);
errno = 0;
return VALKEYMODULE_OK;
}
/* This function can be called from other threads to trigger callback on the server
* main thread. On success VALKEYMODULE_OK is returned. If `func` is NULL
* VALKEYMODULE_ERR is returned and errno is set to EINVAL.
*/
int VM_EventLoopAddOneShot(ValkeyModuleEventLoopOneShotFunc func, void *user_data) {
if (!func) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
EventLoopOneShot *oneshot = zmalloc(sizeof(*oneshot));
oneshot->func = func;
oneshot->user_data = user_data;
pthread_mutex_lock(&moduleEventLoopMutex);
if (!moduleEventLoopOneShots) moduleEventLoopOneShots = listCreate();
listAddNodeTail(moduleEventLoopOneShots, oneshot);
pthread_mutex_unlock(&moduleEventLoopMutex);
if (write(server.module_pipe[1], "A", 1) != 1) {
/* Pipe is non-blocking, write() may fail if it's full. */
}
errno = 0;
return VALKEYMODULE_OK;
}
/* This function will check the moduleEventLoopOneShots queue in order to
* call the callback for the registered oneshot events. */
static void eventLoopHandleOneShotEvents(void) {
pthread_mutex_lock(&moduleEventLoopMutex);
if (moduleEventLoopOneShots) {
while (listLength(moduleEventLoopOneShots)) {
listNode *ln = listFirst(moduleEventLoopOneShots);
EventLoopOneShot *oneshot = ln->value;
listDelNode(moduleEventLoopOneShots, ln);
/* Unlock mutex before the callback. Another oneshot event can be
* added in the callback, it will need to lock the mutex. */
pthread_mutex_unlock(&moduleEventLoopMutex);
oneshot->func(oneshot->user_data);
zfree(oneshot);
/* Lock again for the next iteration */
pthread_mutex_lock(&moduleEventLoopMutex);
}
}
pthread_mutex_unlock(&moduleEventLoopMutex);
}
/* --------------------------------------------------------------------------
* ## Modules ACL API
*
* Implements a hook into the authentication and authorization within the server.
* --------------------------------------------------------------------------*/
/* This function is called when a client's user has changed and invokes the
* client's user changed callback if it was set. This callback should
* cleanup any state the module was tracking about this client.
*
* A client's user can be changed through the AUTH command, module
* authentication, and when a client is freed. */
void moduleNotifyUserChanged(client *c) {
if (!c->module_data || !c->module_data->auth_callback) return;
c->module_data->auth_callback(c->id, c->module_data->auth_callback_privdata);
/* The callback will fire exactly once, even if the user remains
* the same. It is expected to completely clean up the state
* so all references are cleared here. */
c->module_data->auth_callback = NULL;
c->module_data->auth_callback_privdata = NULL;
c->module_data->auth_module = NULL;
}
void revokeClientAuthentication(client *c) {
/* Freeing the client would result in moduleNotifyUserChanged() to be
* called later, however since we use revokeClientAuthentication() also
* in moduleFreeAuthenticatedClients() to implement module unloading, we
* do this action ASAP: this way if the module is unloaded, when the client
* is eventually freed we don't rely on the module to still exist. */
moduleNotifyUserChanged(c);
c->user = DefaultUser;
c->flag.authenticated = 0;
/* We will write replies to this client later, so we can't close it
* directly even if async. */
if (c == server.current_client) {
c->flag.close_after_command = 1;
} else {
freeClientAsync(c);
}
}
/* Cleanup all clients that have been authenticated with this module. This
* is called from onUnload() to give the module a chance to cleanup any
* resources associated with clients it has authenticated. */
static void moduleFreeAuthenticatedClients(ValkeyModule *module) {
listIter li;
listNode *ln;
listRewind(server.clients, &li);
while ((ln = listNext(&li)) != NULL) {
client *c = listNodeValue(ln);
if (!c->module_data || !c->module_data->auth_module) continue;
ValkeyModule *auth_module = (ValkeyModule *)c->module_data->auth_module;
if (auth_module == module) {
revokeClientAuthentication(c);
}
}
}
/* Creates an ACL user that the module can use to authenticate a client.
* After obtaining the user, the module should set what such user can do
* using the VM_SetUserACL() function. Once configured, the user
* can be used in order to authenticate a connection, with the specified
* ACL rules, using the ValkeyModule_AuthClientWithUser() function.
*
* Note that:
*
* * Users created here are not listed by the ACL command.
* * Users created here are not checked for duplicated name, so it's up to
* the module calling this function to take care of not creating users
* with the same name.
* * The created user can be used to authenticate multiple connections.
*
* The caller can later free the user using the function
* VM_FreeModuleUser(). When this function is called, if there are
* still clients authenticated with this user, they are disconnected.
* The function to free the user should only be used when the caller really
* wants to invalidate the user to define a new one with different
* capabilities. */
ValkeyModuleUser *VM_CreateModuleUser(const char *name) {
ValkeyModuleUser *new_user = zmalloc(sizeof(ValkeyModuleUser));
new_user->user = ACLCreateUnlinkedUser();
new_user->free_user = 1;
/* Free the previous temporarily assigned name to assign the new one */
sdsfree(new_user->user->name);
new_user->user->name = sdsnew(name);
return new_user;
}
/* Frees a given user and disconnects all of the clients that have been
* authenticated with it. See VM_CreateModuleUser for detailed usage.*/
int VM_FreeModuleUser(ValkeyModuleUser *user) {
if (user->free_user) ACLFreeUserAndKillClients(user->user);
zfree(user);
return VALKEYMODULE_OK;
}
/* Sets the permissions of a user created through the module
* interface. The syntax is the same as ACL SETUSER, so refer to the
* documentation in acl.c for more information. See VM_CreateModuleUser
* for detailed usage.
*
* Returns VALKEYMODULE_OK on success and VALKEYMODULE_ERR on failure
* and will set an errno describing why the operation failed. */
int VM_SetModuleUserACL(ValkeyModuleUser *user, const char *acl) {
return ACLSetUser(user->user, acl, -1);
}
/* Sets the permission of a user with a complete ACL string, such as one
* would use on the ACL SETUSER command line API. This differs from
* VM_SetModuleUserACL, which only takes single ACL operations at a time.
*
* Returns VALKEYMODULE_OK on success and VALKEYMODULE_ERR on failure
* if a ValkeyModuleString is provided in error, a string describing the error
* will be returned */
int VM_SetModuleUserACLString(ValkeyModuleCtx *ctx,
ValkeyModuleUser *user,
const char *acl,
ValkeyModuleString **error) {
serverAssert(user != NULL);
int argc;
sds *argv = sdssplitargs(acl, &argc);
sds err = ACLStringSetUser(user->user, NULL, argv, argc);
sdsfreesplitres(argv, argc);
if (err) {
if (error) {
*error = createObject(OBJ_STRING, err);
if (ctx != NULL) autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, *error);
} else {
sdsfree(err);
}
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
}
/* Get the ACL string for a given user
* Returns a ValkeyModuleString
*/
ValkeyModuleString *VM_GetModuleUserACLString(ValkeyModuleUser *user) {
serverAssert(user != NULL);
return ACLDescribeUser(user->user);
}
/* Retrieve the user name of the client connection behind the current context.
* The user name can be used later, in order to get a ValkeyModuleUser.
* See more information in VM_GetModuleUserFromUserName.
*
* The returned string must be released with ValkeyModule_FreeString() or by
* enabling automatic memory management. */
ValkeyModuleString *VM_GetCurrentUserName(ValkeyModuleCtx *ctx) {
return VM_CreateString(ctx, ctx->client->user->name, sdslen(ctx->client->user->name));
}
/* A ValkeyModuleUser can be used to check if command, key or channel can be executed or
* accessed according to the ACLs rules associated with that user.
* When a Module wants to do ACL checks on a general ACL user (not created by VM_CreateModuleUser),
* it can get the ValkeyModuleUser from this API, based on the user name retrieved by VM_GetCurrentUserName.
*
* Since a general ACL user can be deleted at any time, this ValkeyModuleUser should be used only in the context
* where this function was called. In order to do ACL checks out of that context, the Module can store the user name,
* and call this API at any other context.
*
* Returns NULL if the user is disabled or the user does not exist.
* The caller should later free the user using the function VM_FreeModuleUser().*/
ValkeyModuleUser *VM_GetModuleUserFromUserName(ValkeyModuleString *name) {
/* First, verify that the user exist */
user *acl_user = ACLGetUserByName(name->ptr, sdslen(name->ptr));
if (acl_user == NULL) {
return NULL;
}
ValkeyModuleUser *new_user = zmalloc(sizeof(ValkeyModuleUser));
new_user->user = acl_user;
new_user->free_user = 0;
return new_user;
}
/* Checks if the command can be executed by the user, according to the ACLs associated with it.
*
* On success a VALKEYMODULE_OK is returned, otherwise
* VALKEYMODULE_ERR is returned and errno is set to the following values:
*
* * ENOENT: Specified command does not exist.
* * EACCES: Command cannot be executed, according to ACL rules
*/
int VM_ACLCheckCommandPermissions(ValkeyModuleUser *user, ValkeyModuleString **argv, int argc) {
int keyidxptr;
struct serverCommand *cmd;
/* Find command */
if ((cmd = lookupCommand(argv, argc)) == NULL) {
errno = ENOENT;
return VALKEYMODULE_ERR;
}
if (ACLCheckAllUserCommandPerm(user->user, cmd, argv, argc, &keyidxptr) != ACL_OK) {
errno = EACCES;
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
}
/* Check if the key can be accessed by the user according to the ACLs attached to the user
* and the flags representing the key access. The flags are the same that are used in the
* keyspec for logical operations. These flags are documented in ValkeyModule_SetCommandInfo as
* the VALKEYMODULE_CMD_KEY_ACCESS, VALKEYMODULE_CMD_KEY_UPDATE, VALKEYMODULE_CMD_KEY_INSERT,
* and VALKEYMODULE_CMD_KEY_DELETE flags.
*
* If no flags are supplied, the user is still required to have some access to the key for
* this command to return successfully.
*
* If the user is able to access the key then VALKEYMODULE_OK is returned, otherwise
* VALKEYMODULE_ERR is returned and errno is set to one of the following values:
*
* * EINVAL: The provided flags are invalid.
* * EACCESS: The user does not have permission to access the key.
*/
int VM_ACLCheckKeyPermissions(ValkeyModuleUser *user, ValkeyModuleString *key, int flags) {
const int allow_mask = (VALKEYMODULE_CMD_KEY_ACCESS | VALKEYMODULE_CMD_KEY_INSERT | VALKEYMODULE_CMD_KEY_DELETE |
VALKEYMODULE_CMD_KEY_UPDATE);
if ((flags & allow_mask) != flags) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
int keyspec_flags = moduleConvertKeySpecsFlags(flags, 0);
if (ACLUserCheckKeyPerm(user->user, key->ptr, sdslen(key->ptr), keyspec_flags) != ACL_OK) {
errno = EACCES;
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
}
/* Check if the pubsub channel can be accessed by the user based off of the given
* access flags. See VM_ChannelAtPosWithFlags for more information about the
* possible flags that can be passed in.
*
* If the user is able to access the pubsub channel then VALKEYMODULE_OK is returned, otherwise
* VALKEYMODULE_ERR is returned and errno is set to one of the following values:
*
* * EINVAL: The provided flags are invalid.
* * EACCESS: The user does not have permission to access the pubsub channel.
*/
int VM_ACLCheckChannelPermissions(ValkeyModuleUser *user, ValkeyModuleString *ch, int flags) {
const int allow_mask = (VALKEYMODULE_CMD_CHANNEL_PUBLISH | VALKEYMODULE_CMD_CHANNEL_SUBSCRIBE |
VALKEYMODULE_CMD_CHANNEL_UNSUBSCRIBE | VALKEYMODULE_CMD_CHANNEL_PATTERN);
if ((flags & allow_mask) != flags) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
/* Unsubscribe permissions are currently always allowed. */
if (flags & VALKEYMODULE_CMD_CHANNEL_UNSUBSCRIBE) {
return VALKEYMODULE_OK;
}
int is_pattern = flags & VALKEYMODULE_CMD_CHANNEL_PATTERN;
if (ACLUserCheckChannelPerm(user->user, ch->ptr, is_pattern) != ACL_OK) return VALKEYMODULE_ERR;
return VALKEYMODULE_OK;
}
/* Helper function to map a ValkeyModuleACLLogEntryReason to ACL Log entry reason. */
int moduleGetACLLogEntryReason(ValkeyModuleACLLogEntryReason reason) {
int acl_reason = 0;
switch (reason) {
case VALKEYMODULE_ACL_LOG_AUTH: acl_reason = ACL_DENIED_AUTH; break;
case VALKEYMODULE_ACL_LOG_KEY: acl_reason = ACL_DENIED_KEY; break;
case VALKEYMODULE_ACL_LOG_CHANNEL: acl_reason = ACL_DENIED_CHANNEL; break;
case VALKEYMODULE_ACL_LOG_CMD: acl_reason = ACL_DENIED_CMD; break;
default: break;
}
return acl_reason;
}
/* Adds a new entry in the ACL log.
* Returns VALKEYMODULE_OK on success and VALKEYMODULE_ERR on error.
*
* For more information about ACL log, please refer to https://valkey.io/commands/acl-log */
int VM_ACLAddLogEntry(ValkeyModuleCtx *ctx,
ValkeyModuleUser *user,
ValkeyModuleString *object,
ValkeyModuleACLLogEntryReason reason) {
int acl_reason = moduleGetACLLogEntryReason(reason);
if (!acl_reason) return VALKEYMODULE_ERR;
addACLLogEntry(ctx->client, acl_reason, ACL_LOG_CTX_MODULE, -1, user->user->name, sdsdup(object->ptr));
return VALKEYMODULE_OK;
}
/* Adds a new entry in the ACL log with the `username` ValkeyModuleString provided.
* Returns VALKEYMODULE_OK on success and VALKEYMODULE_ERR on error.
*
* For more information about ACL log, please refer to https://valkey.io/commands/acl-log */
int VM_ACLAddLogEntryByUserName(ValkeyModuleCtx *ctx,
ValkeyModuleString *username,
ValkeyModuleString *object,
ValkeyModuleACLLogEntryReason reason) {
int acl_reason = moduleGetACLLogEntryReason(reason);
if (!acl_reason) return VALKEYMODULE_ERR;
addACLLogEntry(ctx->client, acl_reason, ACL_LOG_CTX_MODULE, -1, username->ptr, sdsdup(object->ptr));
return VALKEYMODULE_OK;
}
/* Authenticate the client associated with the context with
* the provided user. Returns VALKEYMODULE_OK on success and
* VALKEYMODULE_ERR on error.
*
* This authentication can be tracked with the optional callback and private
* data fields. The callback will be called whenever the user of the client
* changes. This callback should be used to cleanup any state that is being
* kept in the module related to the client authentication. It will only be
* called once, even when the user hasn't changed, in order to allow for a
* new callback to be specified. If this authentication does not need to be
* tracked, pass in NULL for the callback and privdata.
*
* If client_id is not NULL, it will be filled with the id of the client
* that was authenticated. This can be used with the
* VM_DeauthenticateAndCloseClient() API in order to deauthenticate a
* previously authenticated client if the authentication is no longer valid.
*
* For expensive authentication operations, it is recommended to block the
* client and do the authentication in the background and then attach the user
* to the client in a threadsafe context. */
static int authenticateClientWithUser(ValkeyModuleCtx *ctx,
user *user,
ValkeyModuleUserChangedFunc callback,
void *privdata,
uint64_t *client_id) {
if (user->flags & USER_FLAG_DISABLED) {
return VALKEYMODULE_ERR;
}
/* Avoid settings which are meaningless and will be lost */
if (!ctx->client || (ctx->client->flag.module)) {
return VALKEYMODULE_ERR;
}
moduleNotifyUserChanged(ctx->client);
ctx->client->user = user;
ctx->client->flag.authenticated = 1;
if (clientHasModuleAuthInProgress(ctx->client)) {
ctx->client->flag.module_auth_has_result = 1;
}
if (callback) {
initClientModuleData(ctx->client);
ctx->client->module_data->auth_callback = callback;
ctx->client->module_data->auth_callback_privdata = privdata;
ctx->client->module_data->auth_module = ctx->module;
}
if (client_id) {
*client_id = ctx->client->id;
}
return VALKEYMODULE_OK;
}
/* Authenticate the current context's user with the provided acl user.
* Returns VALKEYMODULE_ERR if the user is disabled.
*
* See authenticateClientWithUser for information about callback, client_id,
* and general usage for authentication. */
int VM_AuthenticateClientWithUser(ValkeyModuleCtx *ctx,
ValkeyModuleUser *module_user,
ValkeyModuleUserChangedFunc callback,
void *privdata,
uint64_t *client_id) {
return authenticateClientWithUser(ctx, module_user->user, callback, privdata, client_id);
}
/* Authenticate the current context's user with the provided acl user.
* Returns VALKEYMODULE_ERR if the user is disabled or the user does not exist.
*
* See authenticateClientWithUser for information about callback, client_id,
* and general usage for authentication. */
int VM_AuthenticateClientWithACLUser(ValkeyModuleCtx *ctx,
const char *name,
size_t len,
ValkeyModuleUserChangedFunc callback,
void *privdata,
uint64_t *client_id) {
user *acl_user = ACLGetUserByName(name, len);
if (!acl_user) {
return VALKEYMODULE_ERR;
}
return authenticateClientWithUser(ctx, acl_user, callback, privdata, client_id);
}
/* Deauthenticate and close the client. The client resources will not be
* immediately freed, but will be cleaned up in a background job. This is
* the recommended way to deauthenticate a client since most clients can't
* handle users becoming deauthenticated. Returns VALKEYMODULE_ERR when the
* client doesn't exist and VALKEYMODULE_OK when the operation was successful.
*
* The client ID is returned from the VM_AuthenticateClientWithUser and
* VM_AuthenticateClientWithACLUser APIs, but can be obtained through
* the CLIENT api or through server events.
*
* This function is not thread safe, and must be executed within the context
* of a command or thread safe context. */
int VM_DeauthenticateAndCloseClient(ValkeyModuleCtx *ctx, uint64_t client_id) {
UNUSED(ctx);
client *c = lookupClientByID(client_id);
if (c == NULL) return VALKEYMODULE_ERR;
/* Revoke also marks client to be closed ASAP */
revokeClientAuthentication(c);
return VALKEYMODULE_OK;
}
/* Redact the client command argument specified at the given position. Redacted arguments
* are obfuscated in user facing commands such as SLOWLOG or MONITOR, as well as
* never being written to server logs. This command may be called multiple times on the
* same position.
*
* Note that the command name, position 0, can not be redacted.
*
* Returns VALKEYMODULE_OK if the argument was redacted and VALKEYMODULE_ERR if there
* was an invalid parameter passed in or the position is outside the client
* argument range. */
int VM_RedactClientCommandArgument(ValkeyModuleCtx *ctx, int pos) {
if (!ctx || !ctx->client || pos <= 0 || ctx->client->argc <= pos) {
return VALKEYMODULE_ERR;
}
redactClientCommandArgument(ctx->client, pos);
return VALKEYMODULE_OK;
}
/* Return the X.509 client-side certificate used by the client to authenticate
* this connection.
*
* The return value is an allocated ValkeyModuleString that is a X.509 certificate
* encoded in PEM (Base64) format. It should be freed (or auto-freed) by the caller.
*
* A NULL value is returned in the following conditions:
*
* - Connection ID does not exist
* - Connection is not a TLS connection
* - Connection is a TLS connection but no client certificate was used
*/
ValkeyModuleString *VM_GetClientCertificate(ValkeyModuleCtx *ctx, uint64_t client_id) {
client *c = lookupClientByID(client_id);
if (c == NULL) return NULL;
sds cert = connGetPeerCert(c->conn);
if (!cert) return NULL;
ValkeyModuleString *s = createObject(OBJ_STRING, cert);
if (ctx != NULL) autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, s);
return s;
}
/* --------------------------------------------------------------------------
* ## Modules Dictionary API
*
* Implements a sorted dictionary (actually backed by a radix tree) with
* the usual get / set / del / num-items API, together with an iterator
* capable of going back and forth.
* -------------------------------------------------------------------------- */
/* Create a new dictionary. The 'ctx' pointer can be the current module context
* or NULL, depending on what you want. Please follow the following rules:
*
* 1. Use a NULL context if you plan to retain a reference to this dictionary
* that will survive the time of the module callback where you created it.
* 2. Use a NULL context if no context is available at the time you are creating
* the dictionary (of course...).
* 3. However use the current callback context as 'ctx' argument if the
* dictionary time to live is just limited to the callback scope. In this
* case, if enabled, you can enjoy the automatic memory management that will
* reclaim the dictionary memory, as well as the strings returned by the
* Next / Prev dictionary iterator calls.
*/
ValkeyModuleDict *VM_CreateDict(ValkeyModuleCtx *ctx) {
struct ValkeyModuleDict *d = zmalloc(sizeof(*d));
d->rax = raxNew();
if (ctx != NULL) autoMemoryAdd(ctx, VALKEYMODULE_AM_DICT, d);
return d;
}
/* Free a dictionary created with VM_CreateDict(). You need to pass the
* context pointer 'ctx' only if the dictionary was created using the
* context instead of passing NULL. */
void VM_FreeDict(ValkeyModuleCtx *ctx, ValkeyModuleDict *d) {
if (ctx != NULL) autoMemoryFreed(ctx, VALKEYMODULE_AM_DICT, d);
raxFree(d->rax);
zfree(d);
}
/* Return the size of the dictionary (number of keys). */
uint64_t VM_DictSize(ValkeyModuleDict *d) {
return raxSize(d->rax);
}
/* Store the specified key into the dictionary, setting its value to the
* pointer 'ptr'. If the key was added with success, since it did not
* already exist, VALKEYMODULE_OK is returned. Otherwise if the key already
* exists the function returns VALKEYMODULE_ERR. */
int VM_DictSetC(ValkeyModuleDict *d, void *key, size_t keylen, void *ptr) {
int retval = raxTryInsert(d->rax, key, keylen, ptr, NULL);
return (retval == 1) ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* Like ValkeyModule_DictSetC() but will replace the key with the new
* value if the key already exists. */
int VM_DictReplaceC(ValkeyModuleDict *d, void *key, size_t keylen, void *ptr) {
int retval = raxInsert(d->rax, key, keylen, ptr, NULL);
return (retval == 1) ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* Like ValkeyModule_DictSetC() but takes the key as a ValkeyModuleString. */
int VM_DictSet(ValkeyModuleDict *d, ValkeyModuleString *key, void *ptr) {
return VM_DictSetC(d, key->ptr, sdslen(key->ptr), ptr);
}
/* Like ValkeyModule_DictReplaceC() but takes the key as a ValkeyModuleString. */
int VM_DictReplace(ValkeyModuleDict *d, ValkeyModuleString *key, void *ptr) {
return VM_DictReplaceC(d, key->ptr, sdslen(key->ptr), ptr);
}
/* Return the value stored at the specified key. The function returns NULL
* both in the case the key does not exist, or if you actually stored
* NULL at key. So, optionally, if the 'nokey' pointer is not NULL, it will
* be set by reference to 1 if the key does not exist, or to 0 if the key
* exists. */
void *VM_DictGetC(ValkeyModuleDict *d, void *key, size_t keylen, int *nokey) {
void *res = NULL;
int found = raxFind(d->rax, key, keylen, &res);
if (nokey) *nokey = !found;
return res;
}
/* Like ValkeyModule_DictGetC() but takes the key as a ValkeyModuleString. */
void *VM_DictGet(ValkeyModuleDict *d, ValkeyModuleString *key, int *nokey) {
return VM_DictGetC(d, key->ptr, sdslen(key->ptr), nokey);
}
/* Remove the specified key from the dictionary, returning VALKEYMODULE_OK if
* the key was found and deleted, or VALKEYMODULE_ERR if instead there was
* no such key in the dictionary. When the operation is successful, if
* 'oldval' is not NULL, then '*oldval' is set to the value stored at the
* key before it was deleted. Using this feature it is possible to get
* a pointer to the value (for instance in order to release it), without
* having to call ValkeyModule_DictGet() before deleting the key. */
int VM_DictDelC(ValkeyModuleDict *d, void *key, size_t keylen, void *oldval) {
int retval = raxRemove(d->rax, key, keylen, oldval);
return retval ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* Like ValkeyModule_DictDelC() but gets the key as a ValkeyModuleString. */
int VM_DictDel(ValkeyModuleDict *d, ValkeyModuleString *key, void *oldval) {
return VM_DictDelC(d, key->ptr, sdslen(key->ptr), oldval);
}
/* Return an iterator, setup in order to start iterating from the specified
* key by applying the operator 'op', which is just a string specifying the
* comparison operator to use in order to seek the first element. The
* operators available are:
*
* * `^` -- Seek the first (lexicographically smaller) key.
* * `$` -- Seek the last (lexicographically bigger) key.
* * `>` -- Seek the first element greater than the specified key.
* * `>=` -- Seek the first element greater or equal than the specified key.
* * `<` -- Seek the first element smaller than the specified key.
* * `<=` -- Seek the first element smaller or equal than the specified key.
* * `==` -- Seek the first element matching exactly the specified key.
*
* Note that for `^` and `$` the passed key is not used, and the user may
* just pass NULL with a length of 0.
*
* If the element to start the iteration cannot be seeked based on the
* key and operator passed, ValkeyModule_DictNext() / Prev() will just return
* VALKEYMODULE_ERR at the first call, otherwise they'll produce elements.
*/
ValkeyModuleDictIter *VM_DictIteratorStartC(ValkeyModuleDict *d, const char *op, void *key, size_t keylen) {
ValkeyModuleDictIter *di = zmalloc(sizeof(*di));
di->dict = d;
raxStart(&di->ri, d->rax);
raxSeek(&di->ri, op, key, keylen);
return di;
}
/* Exactly like ValkeyModule_DictIteratorStartC, but the key is passed as a
* ValkeyModuleString. */
ValkeyModuleDictIter *VM_DictIteratorStart(ValkeyModuleDict *d, const char *op, ValkeyModuleString *key) {
return VM_DictIteratorStartC(d, op, key->ptr, sdslen(key->ptr));
}
/* Release the iterator created with ValkeyModule_DictIteratorStart(). This call
* is mandatory otherwise a memory leak is introduced in the module. */
void VM_DictIteratorStop(ValkeyModuleDictIter *di) {
raxStop(&di->ri);
zfree(di);
}
/* After its creation with ValkeyModule_DictIteratorStart(), it is possible to
* change the currently selected element of the iterator by using this
* API call. The result based on the operator and key is exactly like
* the function ValkeyModule_DictIteratorStart(), however in this case the
* return value is just VALKEYMODULE_OK in case the seeked element was found,
* or VALKEYMODULE_ERR in case it was not possible to seek the specified
* element. It is possible to reseek an iterator as many times as you want. */
int VM_DictIteratorReseekC(ValkeyModuleDictIter *di, const char *op, void *key, size_t keylen) {
return raxSeek(&di->ri, op, key, keylen);
}
/* Like ValkeyModule_DictIteratorReseekC() but takes the key as a
* ValkeyModuleString. */
int VM_DictIteratorReseek(ValkeyModuleDictIter *di, const char *op, ValkeyModuleString *key) {
return VM_DictIteratorReseekC(di, op, key->ptr, sdslen(key->ptr));
}
/* Return the current item of the dictionary iterator `di` and steps to the
* next element. If the iterator already yield the last element and there
* are no other elements to return, NULL is returned, otherwise a pointer
* to a string representing the key is provided, and the `*keylen` length
* is set by reference (if keylen is not NULL). The `*dataptr`, if not NULL
* is set to the value of the pointer stored at the returned key as auxiliary
* data (as set by the ValkeyModule_DictSet API).
*
* Usage example:
*
* ... create the iterator here ...
* char *key;
* void *data;
* while((key = ValkeyModule_DictNextC(iter,&keylen,&data)) != NULL) {
* printf("%.*s %p\n", (int)keylen, key, data);
* }
*
* The returned pointer is of type void because sometimes it makes sense
* to cast it to a `char*` sometimes to an unsigned `char*` depending on the
* fact it contains or not binary data, so this API ends being more
* comfortable to use.
*
* The validity of the returned pointer is until the next call to the
* next/prev iterator step. Also the pointer is no longer valid once the
* iterator is released. */
void *VM_DictNextC(ValkeyModuleDictIter *di, size_t *keylen, void **dataptr) {
if (!raxNext(&di->ri)) return NULL;
if (keylen) *keylen = di->ri.key_len;
if (dataptr) *dataptr = di->ri.data;
return di->ri.key;
}
/* This function is exactly like ValkeyModule_DictNext() but after returning
* the currently selected element in the iterator, it selects the previous
* element (lexicographically smaller) instead of the next one. */
void *VM_DictPrevC(ValkeyModuleDictIter *di, size_t *keylen, void **dataptr) {
if (!raxPrev(&di->ri)) return NULL;
if (keylen) *keylen = di->ri.key_len;
if (dataptr) *dataptr = di->ri.data;
return di->ri.key;
}
/* Like ValkeyModuleNextC(), but instead of returning an internally allocated
* buffer and key length, it returns directly a module string object allocated
* in the specified context 'ctx' (that may be NULL exactly like for the main
* API ValkeyModule_CreateString).
*
* The returned string object should be deallocated after use, either manually
* or by using a context that has automatic memory management active. */
ValkeyModuleString *VM_DictNext(ValkeyModuleCtx *ctx, ValkeyModuleDictIter *di, void **dataptr) {
size_t keylen;
void *key = VM_DictNextC(di, &keylen, dataptr);
if (key == NULL) return NULL;
return VM_CreateString(ctx, key, keylen);
}
/* Like ValkeyModule_DictNext() but after returning the currently selected
* element in the iterator, it selects the previous element (lexicographically
* smaller) instead of the next one. */
ValkeyModuleString *VM_DictPrev(ValkeyModuleCtx *ctx, ValkeyModuleDictIter *di, void **dataptr) {
size_t keylen;
void *key = VM_DictPrevC(di, &keylen, dataptr);
if (key == NULL) return NULL;
return VM_CreateString(ctx, key, keylen);
}
/* Compare the element currently pointed by the iterator to the specified
* element given by key/keylen, according to the operator 'op' (the set of
* valid operators are the same valid for ValkeyModule_DictIteratorStart).
* If the comparison is successful the command returns VALKEYMODULE_OK
* otherwise VALKEYMODULE_ERR is returned.
*
* This is useful when we want to just emit a lexicographical range, so
* in the loop, as we iterate elements, we can also check if we are still
* on range.
*
* The function return VALKEYMODULE_ERR if the iterator reached the
* end of elements condition as well. */
int VM_DictCompareC(ValkeyModuleDictIter *di, const char *op, void *key, size_t keylen) {
if (raxEOF(&di->ri)) return VALKEYMODULE_ERR;
int res = raxCompare(&di->ri, op, key, keylen);
return res ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* Like ValkeyModule_DictCompareC but gets the key to compare with the current
* iterator key as a ValkeyModuleString. */
int VM_DictCompare(ValkeyModuleDictIter *di, const char *op, ValkeyModuleString *key) {
if (raxEOF(&di->ri)) return VALKEYMODULE_ERR;
int res = raxCompare(&di->ri, op, key->ptr, sdslen(key->ptr));
return res ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* --------------------------------------------------------------------------
* ## Modules Info fields
* -------------------------------------------------------------------------- */
int VM_InfoEndDictField(ValkeyModuleInfoCtx *ctx);
/* Used to start a new section, before adding any fields. the section name will
* be prefixed by `<modulename>_` and must only include A-Z,a-z,0-9.
* NULL or empty string indicates the default section (only `<modulename>`) is used.
* When return value is VALKEYMODULE_ERR, the section should and will be skipped. */
int VM_InfoAddSection(ValkeyModuleInfoCtx *ctx, const char *name) {
sds full_name = sdsdup(ctx->module->name);
if (name != NULL && strlen(name) > 0) full_name = sdscatfmt(full_name, "_%s", name);
/* Implicitly end dicts, instead of returning an error which is likely un checked. */
if (ctx->in_dict_field) VM_InfoEndDictField(ctx);
/* proceed only if:
* 1) no section was requested (emit all)
* 2) the module name was requested (emit all)
* 3) this specific section was requested. */
if (ctx->requested_sections) {
if ((!full_name || !dictFind(ctx->requested_sections, full_name)) &&
(!dictFind(ctx->requested_sections, ctx->module->name))) {
sdsfree(full_name);
ctx->in_section = 0;
return VALKEYMODULE_ERR;
}
}
if (ctx->sections++) ctx->info = sdscat(ctx->info, "\r\n");
ctx->info = sdscatfmt(ctx->info, "# %S\r\n", full_name);
ctx->in_section = 1;
sdsfree(full_name);
return VALKEYMODULE_OK;
}
/* Starts a dict field, similar to the ones in INFO KEYSPACE. Use normal
* ValkeyModule_InfoAddField* functions to add the items to this field, and
* terminate with ValkeyModule_InfoEndDictField. */
int VM_InfoBeginDictField(ValkeyModuleInfoCtx *ctx, const char *name) {
if (!ctx->in_section) return VALKEYMODULE_ERR;
/* Implicitly end dicts, instead of returning an error which is likely un checked. */
if (ctx->in_dict_field) VM_InfoEndDictField(ctx);
char *tmpmodname, *tmpname;
ctx->info =
sdscatfmt(ctx->info, "%s_%s:", getSafeInfoString(ctx->module->name, strlen(ctx->module->name), &tmpmodname),
getSafeInfoString(name, strlen(name), &tmpname));
if (tmpmodname != NULL) zfree(tmpmodname);
if (tmpname != NULL) zfree(tmpname);
ctx->in_dict_field = 1;
return VALKEYMODULE_OK;
}
/* Ends a dict field, see ValkeyModule_InfoBeginDictField */
int VM_InfoEndDictField(ValkeyModuleInfoCtx *ctx) {
if (!ctx->in_dict_field) return VALKEYMODULE_ERR;
/* trim the last ',' if found. */
if (ctx->info[sdslen(ctx->info) - 1] == ',') sdsIncrLen(ctx->info, -1);
ctx->info = sdscat(ctx->info, "\r\n");
ctx->in_dict_field = 0;
return VALKEYMODULE_OK;
}
/* Used by ValkeyModuleInfoFunc to add info fields.
* Each field will be automatically prefixed by `<modulename>_`.
* Field names or values must not include `\r\n` or `:`. */
int VM_InfoAddFieldString(ValkeyModuleInfoCtx *ctx, const char *field, ValkeyModuleString *value) {
if (!ctx->in_section) return VALKEYMODULE_ERR;
if (ctx->in_dict_field) {
ctx->info = sdscatfmt(ctx->info, "%s=%S,", field, (sds)value->ptr);
return VALKEYMODULE_OK;
}
ctx->info = sdscatfmt(ctx->info, "%s_%s:%S\r\n", ctx->module->name, field, (sds)value->ptr);
return VALKEYMODULE_OK;
}
/* See ValkeyModule_InfoAddFieldString(). */
int VM_InfoAddFieldCString(ValkeyModuleInfoCtx *ctx, const char *field, const char *value) {
if (!ctx->in_section) return VALKEYMODULE_ERR;
if (ctx->in_dict_field) {
ctx->info = sdscatfmt(ctx->info, "%s=%s,", field, value);
return VALKEYMODULE_OK;
}
ctx->info = sdscatfmt(ctx->info, "%s_%s:%s\r\n", ctx->module->name, field, value);
return VALKEYMODULE_OK;
}
/* See ValkeyModule_InfoAddFieldString(). */
int VM_InfoAddFieldDouble(ValkeyModuleInfoCtx *ctx, const char *field, double value) {
if (!ctx->in_section) return VALKEYMODULE_ERR;
if (ctx->in_dict_field) {
ctx->info = sdscatprintf(ctx->info, "%s=%.17g,", field, value);
return VALKEYMODULE_OK;
}
ctx->info = sdscatprintf(ctx->info, "%s_%s:%.17g\r\n", ctx->module->name, field, value);
return VALKEYMODULE_OK;
}
/* See ValkeyModule_InfoAddFieldString(). */
int VM_InfoAddFieldLongLong(ValkeyModuleInfoCtx *ctx, const char *field, long long value) {
if (!ctx->in_section) return VALKEYMODULE_ERR;
if (ctx->in_dict_field) {
ctx->info = sdscatfmt(ctx->info, "%s=%I,", field, value);
return VALKEYMODULE_OK;
}
ctx->info = sdscatfmt(ctx->info, "%s_%s:%I\r\n", ctx->module->name, field, value);
return VALKEYMODULE_OK;
}
/* See ValkeyModule_InfoAddFieldString(). */
int VM_InfoAddFieldULongLong(ValkeyModuleInfoCtx *ctx, const char *field, unsigned long long value) {
if (!ctx->in_section) return VALKEYMODULE_ERR;
if (ctx->in_dict_field) {
ctx->info = sdscatfmt(ctx->info, "%s=%U,", field, value);
return VALKEYMODULE_OK;
}
ctx->info = sdscatfmt(ctx->info, "%s_%s:%U\r\n", ctx->module->name, field, value);
return VALKEYMODULE_OK;
}
/* Registers callback for the INFO command. The callback should add INFO fields
* by calling the `ValkeyModule_InfoAddField*()` functions. */
int VM_RegisterInfoFunc(ValkeyModuleCtx *ctx, ValkeyModuleInfoFunc cb) {
ctx->module->info_cb = cb;
return VALKEYMODULE_OK;
}
sds modulesCollectInfo(sds info, dict *sections_dict, int for_crash_report, int sections) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct ValkeyModule *module = dictGetVal(de);
if (!module->info_cb) continue;
ValkeyModuleInfoCtx info_ctx = {module, sections_dict, info, sections, 0, 0};
module->info_cb(&info_ctx, for_crash_report);
/* Implicitly end dicts (no way to handle errors, and we must add the newline). */
if (info_ctx.in_dict_field) VM_InfoEndDictField(&info_ctx);
info = info_ctx.info;
sections = info_ctx.sections;
}
dictReleaseIterator(di);
return info;
}
/* Get information about the server similar to the one that returns from the
* INFO command. This function takes an optional 'section' argument that may
* be NULL. The return value holds the output and can be used with
* ValkeyModule_ServerInfoGetField and alike to get the individual fields.
* When done, it needs to be freed with ValkeyModule_FreeServerInfo or with the
* automatic memory management mechanism if enabled. */
ValkeyModuleServerInfoData *VM_GetServerInfo(ValkeyModuleCtx *ctx, const char *section) {
struct ValkeyModuleServerInfoData *d = zmalloc(sizeof(*d));
d->rax = raxNew();
if (ctx != NULL) autoMemoryAdd(ctx, VALKEYMODULE_AM_INFO, d);
int all = 0, everything = 0;
robj *argv[1];
argv[0] = section ? createStringObject(section, strlen(section)) : NULL;
dict *section_dict = genInfoSectionDict(argv, section ? 1 : 0, NULL, &all, &everything);
sds info = genValkeyInfoString(section_dict, all, everything);
int totlines, i;
sds *lines = sdssplitlen(info, sdslen(info), "\r\n", 2, &totlines);
for (i = 0; i < totlines; i++) {
sds line = lines[i];
if (line[0] == '#') continue;
char *sep = strchr(line, ':');
if (!sep) continue;
unsigned char *key = (unsigned char *)line;
size_t keylen = (intptr_t)sep - (intptr_t)line;
sds val = sdsnewlen(sep + 1, sdslen(line) - ((intptr_t)sep - (intptr_t)line) - 1);
if (!raxTryInsert(d->rax, key, keylen, val, NULL)) sdsfree(val);
}
sdsfree(info);
sdsfreesplitres(lines, totlines);
releaseInfoSectionDict(section_dict);
if (argv[0]) decrRefCount(argv[0]);
return d;
}
/* Free data created with VM_GetServerInfo(). You need to pass the
* context pointer 'ctx' only if the dictionary was created using the
* context instead of passing NULL. */
void VM_FreeServerInfo(ValkeyModuleCtx *ctx, ValkeyModuleServerInfoData *data) {
if (ctx != NULL) autoMemoryFreed(ctx, VALKEYMODULE_AM_INFO, data);
raxFreeWithCallback(data->rax, sdsfreeVoid);
zfree(data);
}
/* Get the value of a field from data collected with VM_GetServerInfo(). You
* need to pass the context pointer 'ctx' only if you want to use auto memory
* mechanism to release the returned string. Return value will be NULL if the
* field was not found. */
ValkeyModuleString *VM_ServerInfoGetField(ValkeyModuleCtx *ctx, ValkeyModuleServerInfoData *data, const char *field) {
void *result;
if (!raxFind(data->rax, (unsigned char *)field, strlen(field), &result)) return NULL;
sds val = result;
ValkeyModuleString *o = createStringObject(val, sdslen(val));
if (ctx != NULL) autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, o);
return o;
}
/* Similar to VM_ServerInfoGetField, but returns a char* which should not be freed but the caller. */
const char *VM_ServerInfoGetFieldC(ValkeyModuleServerInfoData *data, const char *field) {
void *result = NULL;
raxFind(data->rax, (unsigned char *)field, strlen(field), &result);
return result;
}
/* Get the value of a field from data collected with VM_GetServerInfo(). If the
* field is not found, or is not numerical or out of range, return value will be
* 0, and the optional out_err argument will be set to VALKEYMODULE_ERR. */
long long VM_ServerInfoGetFieldSigned(ValkeyModuleServerInfoData *data, const char *field, int *out_err) {
long long ll;
void *result;
if (!raxFind(data->rax, (unsigned char *)field, strlen(field), &result)) {
if (out_err) *out_err = VALKEYMODULE_ERR;
return 0;
}
sds val = result;
if (!string2ll(val, sdslen(val), &ll)) {
if (out_err) *out_err = VALKEYMODULE_ERR;
return 0;
}
if (out_err) *out_err = VALKEYMODULE_OK;
return ll;
}
/* Get the value of a field from data collected with VM_GetServerInfo(). If the
* field is not found, or is not numerical or out of range, return value will be
* 0, and the optional out_err argument will be set to VALKEYMODULE_ERR. */
unsigned long long VM_ServerInfoGetFieldUnsigned(ValkeyModuleServerInfoData *data, const char *field, int *out_err) {
unsigned long long ll;
void *result;
if (!raxFind(data->rax, (unsigned char *)field, strlen(field), &result)) {
if (out_err) *out_err = VALKEYMODULE_ERR;
return 0;
}
sds val = result;
if (!string2ull(val, &ll)) {
if (out_err) *out_err = VALKEYMODULE_ERR;
return 0;
}
if (out_err) *out_err = VALKEYMODULE_OK;
return ll;
}
/* Get the value of a field from data collected with VM_GetServerInfo(). If the
* field is not found, or is not a double, return value will be 0, and the
* optional out_err argument will be set to VALKEYMODULE_ERR. */
double VM_ServerInfoGetFieldDouble(ValkeyModuleServerInfoData *data, const char *field, int *out_err) {
double dbl;
void *result;
if (!raxFind(data->rax, (unsigned char *)field, strlen(field), &result)) {
if (out_err) *out_err = VALKEYMODULE_ERR;
return 0;
}
sds val = result;
if (!string2d(val, sdslen(val), &dbl)) {
if (out_err) *out_err = VALKEYMODULE_ERR;
return 0;
}
if (out_err) *out_err = VALKEYMODULE_OK;
return dbl;
}
/* --------------------------------------------------------------------------
* ## Modules utility APIs
* -------------------------------------------------------------------------- */
/* Return random bytes using SHA1 in counter mode with a /dev/urandom
* initialized seed. This function is fast so can be used to generate
* many bytes without any effect on the operating system entropy pool.
* Currently this function is not thread safe. */
void VM_GetRandomBytes(unsigned char *dst, size_t len) {
getRandomBytes(dst, len);
}
/* Like ValkeyModule_GetRandomBytes() but instead of setting the string to
* random bytes the string is set to random characters in the in the
* hex charset [0-9a-f]. */
void VM_GetRandomHexChars(char *dst, size_t len) {
getRandomHexChars(dst, len);
}
/* --------------------------------------------------------------------------
* ## Modules API exporting / importing
* -------------------------------------------------------------------------- */
/* This function is called by a module in order to export some API with a
* given name. Other modules will be able to use this API by calling the
* symmetrical function VM_GetSharedAPI() and casting the return value to
* the right function pointer.
*
* The function will return VALKEYMODULE_OK if the name is not already taken,
* otherwise VALKEYMODULE_ERR will be returned and no operation will be
* performed.
*
* IMPORTANT: the apiname argument should be a string literal with static
* lifetime. The API relies on the fact that it will always be valid in
* the future. */
int VM_ExportSharedAPI(ValkeyModuleCtx *ctx, const char *apiname, void *func) {
ValkeyModuleSharedAPI *sapi = zmalloc(sizeof(*sapi));
sapi->module = ctx->module;
sapi->func = func;
if (dictAdd(server.sharedapi, (char *)apiname, sapi) != DICT_OK) {
zfree(sapi);
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
}
/* Request an exported API pointer. The return value is just a void pointer
* that the caller of this function will be required to cast to the right
* function pointer, so this is a private contract between modules.
*
* If the requested API is not available then NULL is returned. Because
* modules can be loaded at different times with different order, this
* function calls should be put inside some module generic API registering
* step, that is called every time a module attempts to execute a
* command that requires external APIs: if some API cannot be resolved, the
* command should return an error.
*
* Here is an example:
*
* int ... myCommandImplementation(void) {
* if (getExternalAPIs() == 0) {
* reply with an error here if we cannot have the APIs
* }
* // Use the API:
* myFunctionPointer(foo);
* }
*
* And the function registerAPI() is:
*
* int getExternalAPIs(void) {
* static int api_loaded = 0;
* if (api_loaded != 0) return 1; // APIs already resolved.
*
* myFunctionPointer = ValkeyModule_GetSharedAPI("...");
* if (myFunctionPointer == NULL) return 0;
*
* return 1;
* }
*/
void *VM_GetSharedAPI(ValkeyModuleCtx *ctx, const char *apiname) {
dictEntry *de = dictFind(server.sharedapi, apiname);
if (de == NULL) return NULL;
ValkeyModuleSharedAPI *sapi = dictGetVal(de);
if (listSearchKey(sapi->module->usedby, ctx->module) == NULL) {
listAddNodeTail(sapi->module->usedby, ctx->module);
listAddNodeTail(ctx->module->using, sapi->module);
}
return sapi->func;
}
/* Remove all the APIs registered by the specified module. Usually you
* want this when the module is going to be unloaded. This function
* assumes that's caller responsibility to make sure the APIs are not
* used by other modules.
*
* The number of unregistered APIs is returned. */
int moduleUnregisterSharedAPI(ValkeyModule *module) {
int count = 0;
dictIterator *di = dictGetSafeIterator(server.sharedapi);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
const char *apiname = dictGetKey(de);
ValkeyModuleSharedAPI *sapi = dictGetVal(de);
if (sapi->module == module) {
dictDelete(server.sharedapi, apiname);
zfree(sapi);
count++;
}
}
dictReleaseIterator(di);
return count;
}
/* Remove the specified module as an user of APIs of ever other module.
* This is usually called when a module is unloaded.
*
* Returns the number of modules this module was using APIs from. */
int moduleUnregisterUsedAPI(ValkeyModule *module) {
listIter li;
listNode *ln;
int count = 0;
listRewind(module->using, &li);
while ((ln = listNext(&li))) {
ValkeyModule *used = ln->value;
listNode *ln = listSearchKey(used->usedby, module);
if (ln) {
listDelNode(used->usedby, ln);
count++;
}
}
return count;
}
/* Unregister all filters registered by a module.
* This is called when a module is being unloaded.
*
* Returns the number of filters unregistered. */
int moduleUnregisterFilters(ValkeyModule *module) {
listIter li;
listNode *ln;
int count = 0;
listRewind(module->filters, &li);
while ((ln = listNext(&li))) {
ValkeyModuleCommandFilter *filter = ln->value;
listNode *ln = listSearchKey(moduleCommandFilters, filter);
if (ln) {
listDelNode(moduleCommandFilters, ln);
count++;
}
zfree(filter);
}
return count;
}
/* --------------------------------------------------------------------------
* ## Module Command Filter API
* -------------------------------------------------------------------------- */
/* Register a new command filter function.
*
* Command filtering makes it possible for modules to extend the server by plugging
* into the execution flow of all commands.
*
* A registered filter gets called before the server executes *any* command. This
* includes both core server commands and commands registered by any module. The
* filter applies in all execution paths including:
*
* 1. Invocation by a client.
* 2. Invocation through `ValkeyModule_Call()` by any module.
* 3. Invocation through Lua `redis.call()`.
* 4. Replication of a command from a primary.
*
* The filter executes in a special filter context, which is different and more
* limited than a ValkeyModuleCtx. Because the filter affects any command, it
* must be implemented in a very efficient way to reduce the performance impact
* on the server. All Module API calls that require a valid context (such as
* `ValkeyModule_Call()`, `ValkeyModule_OpenKey()`, etc.) are not supported in a
* filter context.
*
* The `ValkeyModuleCommandFilterCtx` can be used to inspect or modify the
* executed command and its arguments. As the filter executes before the server
* begins processing the command, any change will affect the way the command is
* processed. For example, a module can override server commands this way:
*
* 1. Register a `MODULE.SET` command which implements an extended version of
* the `SET` command.
* 2. Register a command filter which detects invocation of `SET` on a specific
* pattern of keys. Once detected, the filter will replace the first
* argument from `SET` to `MODULE.SET`.
* 3. When filter execution is complete, the server considers the new command name
* and therefore executes the module's own command.
*
* Note that in the above use case, if `MODULE.SET` itself uses
* `ValkeyModule_Call()` the filter will be applied on that call as well. If
* that is not desired, the `VALKEYMODULE_CMDFILTER_NOSELF` flag can be set when
* registering the filter.
*
* The `VALKEYMODULE_CMDFILTER_NOSELF` flag prevents execution flows that
* originate from the module's own `VM_Call()` from reaching the filter. This
* flag is effective for all execution flows, including nested ones, as long as
* the execution begins from the module's command context or a thread-safe
* context that is associated with a blocking command.
*
* Detached thread-safe contexts are *not* associated with the module and cannot
* be protected by this flag.
*
* If multiple filters are registered (by the same or different modules), they
* are executed in the order of registration.
*/
ValkeyModuleCommandFilter *
VM_RegisterCommandFilter(ValkeyModuleCtx *ctx, ValkeyModuleCommandFilterFunc callback, int flags) {
ValkeyModuleCommandFilter *filter = zmalloc(sizeof(*filter));
filter->module = ctx->module;
filter->callback = callback;
filter->flags = flags;
listAddNodeTail(moduleCommandFilters, filter);
listAddNodeTail(ctx->module->filters, filter);
return filter;
}
/* Unregister a command filter.
*/
int VM_UnregisterCommandFilter(ValkeyModuleCtx *ctx, ValkeyModuleCommandFilter *filter) {
listNode *ln;
/* A module can only remove its own filters */
if (filter->module != ctx->module) return VALKEYMODULE_ERR;
ln = listSearchKey(moduleCommandFilters, filter);
if (!ln) return VALKEYMODULE_ERR;
listDelNode(moduleCommandFilters, ln);
ln = listSearchKey(ctx->module->filters, filter);
if (!ln) return VALKEYMODULE_ERR; /* Shouldn't happen */
listDelNode(ctx->module->filters, ln);
zfree(filter);
return VALKEYMODULE_OK;
}
void moduleCallCommandFilters(client *c) {
if (listLength(moduleCommandFilters) == 0) return;
listIter li;
listNode *ln;
listRewind(moduleCommandFilters, &li);
ValkeyModuleCommandFilterCtx filter = {.argv = c->argv, .argv_len = c->argv_len, .argc = c->argc, .c = c};
robj *tmp = c->argv[0];
incrRefCount(tmp);
while ((ln = listNext(&li))) {
ValkeyModuleCommandFilter *f = ln->value;
/* Skip filter if VALKEYMODULE_CMDFILTER_NOSELF is set and module is
* currently processing a command.
*/
if ((f->flags & VALKEYMODULE_CMDFILTER_NOSELF) && f->module->in_call) continue;
/* Call filter */
f->callback(&filter);
}
c->argv = filter.argv;
c->argv_len = filter.argv_len;
c->argc = filter.argc;
if (tmp != c->argv[0]) {
/* With I/O thread command-lookup offload, we set c->io_parsed_cmd to the command corresponding to c->argv[0].
* Since the command filter just changed it, we need to reset c->io_parsed_cmd to null. */
c->io_parsed_cmd = NULL;
}
decrRefCount(tmp);
}
/* Return the number of arguments a filtered command has. The number of
* arguments include the command itself.
*/
int VM_CommandFilterArgsCount(ValkeyModuleCommandFilterCtx *fctx) {
return fctx->argc;
}
/* Return the specified command argument. The first argument (position 0) is
* the command itself, and the rest are user-provided args.
*/
ValkeyModuleString *VM_CommandFilterArgGet(ValkeyModuleCommandFilterCtx *fctx, int pos) {
if (pos < 0 || pos >= fctx->argc) return NULL;
return fctx->argv[pos];
}
/* Modify the filtered command by inserting a new argument at the specified
* position. The specified ValkeyModuleString argument may be used by the server
* after the filter context is destroyed, so it must not be auto-memory
* allocated, freed or used elsewhere.
*/
int VM_CommandFilterArgInsert(ValkeyModuleCommandFilterCtx *fctx, int pos, ValkeyModuleString *arg) {
int i;
if (pos < 0 || pos > fctx->argc) return VALKEYMODULE_ERR;
if (fctx->argv_len < fctx->argc + 1) {
fctx->argv_len = fctx->argc + 1;
fctx->argv = zrealloc(fctx->argv, fctx->argv_len * sizeof(ValkeyModuleString *));
}
for (i = fctx->argc; i > pos; i--) {
fctx->argv[i] = fctx->argv[i - 1];
}
fctx->argv[pos] = arg;
fctx->argc++;
return VALKEYMODULE_OK;
}
/* Modify the filtered command by replacing an existing argument with a new one.
* The specified ValkeyModuleString argument may be used by the server after the
* filter context is destroyed, so it must not be auto-memory allocated, freed
* or used elsewhere.
*/
int VM_CommandFilterArgReplace(ValkeyModuleCommandFilterCtx *fctx, int pos, ValkeyModuleString *arg) {
if (pos < 0 || pos >= fctx->argc) return VALKEYMODULE_ERR;
decrRefCount(fctx->argv[pos]);
fctx->argv[pos] = arg;
return VALKEYMODULE_OK;
}
/* Modify the filtered command by deleting an argument at the specified
* position.
*/
int VM_CommandFilterArgDelete(ValkeyModuleCommandFilterCtx *fctx, int pos) {
int i;
if (pos < 0 || pos >= fctx->argc) return VALKEYMODULE_ERR;
decrRefCount(fctx->argv[pos]);
for (i = pos; i < fctx->argc - 1; i++) {
fctx->argv[i] = fctx->argv[i + 1];
}
fctx->argc--;
return VALKEYMODULE_OK;
}
/* Get Client ID for client that issued the command we are filtering */
unsigned long long VM_CommandFilterGetClientId(ValkeyModuleCommandFilterCtx *fctx) {
return fctx->c->id;
}
/* For a given pointer allocated via ValkeyModule_Alloc() or
* ValkeyModule_Realloc(), return the amount of memory allocated for it.
* Note that this may be different (larger) than the memory we allocated
* with the allocation calls, since sometimes the underlying allocator
* will allocate more memory.
*/
size_t VM_MallocSize(void *ptr) {
return zmalloc_size(ptr);
}
/* Similar to VM_MallocSize, the difference is that VM_MallocUsableSize
* returns the usable size of memory by the module. */
size_t VM_MallocUsableSize(void *ptr) {
/* It is safe to use 'zmalloc_usable_size()' to manipulate additional
* memory space, as we guarantee that the compiler can recognize this
* after 'VM_Alloc', 'VM_TryAlloc', 'VM_Realloc', or 'VM_Calloc'. */
return zmalloc_usable_size(ptr);
}
/* Same as VM_MallocSize, except it works on ValkeyModuleString pointers.
*/
size_t VM_MallocSizeString(ValkeyModuleString *str) {
serverAssert(str->type == OBJ_STRING);
return sizeof(*str) + getStringObjectSdsUsedMemory(str);
}
/* Same as VM_MallocSize, except it works on ValkeyModuleDict pointers.
* Note that the returned value is only the overhead of the underlying structures,
* it does not include the allocation size of the keys and values.
*/
size_t VM_MallocSizeDict(ValkeyModuleDict *dict) {
size_t size = sizeof(ValkeyModuleDict);
size += raxAllocSize(dict->rax);
return size;
}
/* Return the a number between 0 to 1 indicating the amount of memory
* currently used, relative to the server "maxmemory" configuration.
*
* * 0 - No memory limit configured.
* * Between 0 and 1 - The percentage of the memory used normalized in 0-1 range.
* * Exactly 1 - Memory limit reached.
* * Greater 1 - More memory used than the configured limit.
*/
float VM_GetUsedMemoryRatio(void) {
float level;
getMaxmemoryState(NULL, NULL, NULL, &level);
return level;
}
/* --------------------------------------------------------------------------
* ## Scanning keyspace and hashes
* -------------------------------------------------------------------------- */
typedef void (*ValkeyModuleScanCB)(ValkeyModuleCtx *ctx,
ValkeyModuleString *keyname,
ValkeyModuleKey *key,
void *privdata);
typedef struct {
ValkeyModuleCtx *ctx;
void *user_data;
ValkeyModuleScanCB fn;
} ScanCBData;
typedef struct ValkeyModuleScanCursor {
unsigned long long cursor;
int done;
} ValkeyModuleScanCursor;
static void moduleScanCallback(void *privdata, void *element) {
ScanCBData *data = privdata;
robj *val = element;
sds key = objectGetKey(val);
ValkeyModuleString *keyname = createObject(OBJ_STRING, sdsdup(key));
/* Setup the key handle. */
ValkeyModuleKey kp = {0};
moduleInitKey(&kp, data->ctx, keyname, val, VALKEYMODULE_READ);
data->fn(data->ctx, keyname, &kp, data->user_data);
moduleCloseKey(&kp);
decrRefCount(keyname);
}
/* Create a new cursor to be used with ValkeyModule_Scan */
ValkeyModuleScanCursor *VM_ScanCursorCreate(void) {
ValkeyModuleScanCursor *cursor = zmalloc(sizeof(*cursor));
cursor->cursor = 0;
cursor->done = 0;
return cursor;
}
/* Restart an existing cursor. The keys will be rescanned. */
void VM_ScanCursorRestart(ValkeyModuleScanCursor *cursor) {
cursor->cursor = 0;
cursor->done = 0;
}
/* Destroy the cursor struct. */
void VM_ScanCursorDestroy(ValkeyModuleScanCursor *cursor) {
zfree(cursor);
}
/* Scan API that allows a module to scan all the keys and value in
* the selected db.
*
* Callback for scan implementation.
*
* void scan_callback(ValkeyModuleCtx *ctx, ValkeyModuleString *keyname,
* ValkeyModuleKey *key, void *privdata);
*
* - `ctx`: the module context provided to for the scan.
* - `keyname`: owned by the caller and need to be retained if used after this
* function.
* - `key`: holds info on the key and value, it is provided as best effort, in
* some cases it might be NULL, in which case the user should (can) use
* ValkeyModule_OpenKey() (and CloseKey too).
* when it is provided, it is owned by the caller and will be free when the
* callback returns.
* - `privdata`: the user data provided to ValkeyModule_Scan().
*
* The way it should be used:
*
* ValkeyModuleScanCursor *c = ValkeyModule_ScanCursorCreate();
* while(ValkeyModule_Scan(ctx, c, callback, privateData));
* ValkeyModule_ScanCursorDestroy(c);
*
* It is also possible to use this API from another thread while the lock
* is acquired during the actual call to VM_Scan:
*
* ValkeyModuleScanCursor *c = ValkeyModule_ScanCursorCreate();
* ValkeyModule_ThreadSafeContextLock(ctx);
* while(ValkeyModule_Scan(ctx, c, callback, privateData)){
* ValkeyModule_ThreadSafeContextUnlock(ctx);
* // do some background job
* ValkeyModule_ThreadSafeContextLock(ctx);
* }
* ValkeyModule_ScanCursorDestroy(c);
*
* The function will return 1 if there are more elements to scan and
* 0 otherwise, possibly setting errno if the call failed.
*
* It is also possible to restart an existing cursor using VM_ScanCursorRestart.
*
* IMPORTANT: This API is very similar to the SCAN command from the
* point of view of the guarantees it provides. This means that the API
* may report duplicated keys, but guarantees to report at least one time
* every key that was there from the start to the end of the scanning process.
*
* NOTE: If you do database changes within the callback, you should be aware
* that the internal state of the database may change. For instance it is safe
* to delete or modify the current key, but may not be safe to delete any
* other key.
* Moreover playing with the keyspace while iterating may have the
* effect of returning more duplicates. A safe pattern is to store the keys
* names you want to modify elsewhere, and perform the actions on the keys
* later when the iteration is complete. However this can cost a lot of
* memory, so it may make sense to just operate on the current key when
* possible during the iteration, given that this is safe. */
int VM_Scan(ValkeyModuleCtx *ctx, ValkeyModuleScanCursor *cursor, ValkeyModuleScanCB fn, void *privdata) {
if (cursor->done) {
errno = ENOENT;
return 0;
}
int ret = 1;
ScanCBData data = {ctx, privdata, fn};
cursor->cursor = dbScan(ctx->client->db, cursor->cursor, moduleScanCallback, &data);
if (cursor->cursor == 0) {
cursor->done = 1;
ret = 0;
}
errno = 0;
return ret;
}
typedef void (*ValkeyModuleScanKeyCB)(ValkeyModuleKey *key,
ValkeyModuleString *field,
ValkeyModuleString *value,
void *privdata);
typedef struct {
ValkeyModuleKey *key;
void *user_data;
ValkeyModuleScanKeyCB fn;
} ScanKeyCBData;
static void moduleScanKeyHashtableCallback(void *privdata, void *entry) {
ScanKeyCBData *data = privdata;
robj *o = data->key->value;
robj *value = NULL;
sds key = NULL;
if (o->type == OBJ_SET) {
key = entry;
/* no value */
} else if (o->type == OBJ_ZSET) {
zskiplistNode *node = (zskiplistNode *)entry;
key = node->ele;
value = createStringObjectFromLongDouble(node->score, 0);
} else if (o->type == OBJ_HASH) {
key = hashTypeEntryGetField(entry);
sds val = hashTypeEntryGetValue(entry);
value = createStringObject(val, sdslen(val));
} else {
serverPanic("unexpected object type");
}
robj *field = createStringObject(key, sdslen(key));
data->fn(data->key, field, value, data->user_data);
decrRefCount(field);
if (value) decrRefCount(value);
}
/* Scan api that allows a module to scan the elements in a hash, set or sorted set key
*
* Callback for scan implementation.
*
* void scan_callback(ValkeyModuleKey *key, ValkeyModuleString* field, ValkeyModuleString* value, void *privdata);
*
* - key - the key context provided to for the scan.
* - field - field name, owned by the caller and need to be retained if used
* after this function.
* - value - value string or NULL for set type, owned by the caller and need to
* be retained if used after this function.
* - privdata - the user data provided to ValkeyModule_ScanKey.
*
* The way it should be used:
*
* ValkeyModuleScanCursor *c = ValkeyModule_ScanCursorCreate();
* ValkeyModuleKey *key = ValkeyModule_OpenKey(...)
* while(ValkeyModule_ScanKey(key, c, callback, privateData));
* ValkeyModule_CloseKey(key);
* ValkeyModule_ScanCursorDestroy(c);
*
* It is also possible to use this API from another thread while the lock is acquired during
* the actual call to VM_ScanKey, and re-opening the key each time:
*
* ValkeyModuleScanCursor *c = ValkeyModule_ScanCursorCreate();
* ValkeyModule_ThreadSafeContextLock(ctx);
* ValkeyModuleKey *key = ValkeyModule_OpenKey(...)
* while(ValkeyModule_ScanKey(ctx, c, callback, privateData)){
* ValkeyModule_CloseKey(key);
* ValkeyModule_ThreadSafeContextUnlock(ctx);
* // do some background job
* ValkeyModule_ThreadSafeContextLock(ctx);
* ValkeyModuleKey *key = ValkeyModule_OpenKey(...)
* }
* ValkeyModule_CloseKey(key);
* ValkeyModule_ScanCursorDestroy(c);
*
* The function will return 1 if there are more elements to scan and 0 otherwise,
* possibly setting errno if the call failed.
* It is also possible to restart an existing cursor using VM_ScanCursorRestart.
*
* NOTE: Certain operations are unsafe while iterating the object. For instance
* while the API guarantees to return at least one time all the elements that
* are present in the data structure consistently from the start to the end
* of the iteration (see HSCAN and similar commands documentation), the more
* you play with the elements, the more duplicates you may get. In general
* deleting the current element of the data structure is safe, while removing
* the key you are iterating is not safe. */
int VM_ScanKey(ValkeyModuleKey *key, ValkeyModuleScanCursor *cursor, ValkeyModuleScanKeyCB fn, void *privdata) {
if (key == NULL || key->value == NULL) {
errno = EINVAL;
return 0;
}
hashtable *ht = NULL;
robj *o = key->value;
if (o->type == OBJ_SET) {
if (o->encoding == OBJ_ENCODING_HASHTABLE) ht = o->ptr;
} else if (o->type == OBJ_HASH) {
if (o->encoding == OBJ_ENCODING_HASHTABLE) ht = o->ptr;
} else if (o->type == OBJ_ZSET) {
if (o->encoding == OBJ_ENCODING_SKIPLIST) ht = ((zset *)o->ptr)->ht;
} else {
errno = EINVAL;
return 0;
}
if (cursor->done) {
errno = ENOENT;
return 0;
}
int ret = 1;
if (ht) {
ScanKeyCBData data = {key, privdata, fn};
cursor->cursor = hashtableScan(ht, cursor->cursor, moduleScanKeyHashtableCallback, &data);
if (cursor->cursor == 0) {
cursor->done = 1;
ret = 0;
}
} else if (o->type == OBJ_SET) {
setTypeIterator *si = setTypeInitIterator(o);
sds sdsele;
while ((sdsele = setTypeNextObject(si)) != NULL) {
robj *field = createObject(OBJ_STRING, sdsele);
fn(key, field, NULL, privdata);
decrRefCount(field);
}
setTypeReleaseIterator(si);
cursor->cursor = 1;
cursor->done = 1;
ret = 0;
} else if (o->type == OBJ_ZSET || o->type == OBJ_HASH) {
unsigned char *p = lpSeek(o->ptr, 0);
unsigned char *vstr;
unsigned int vlen;
long long vll;
while (p) {
vstr = lpGetValue(p, &vlen, &vll);
robj *field =
(vstr != NULL) ? createStringObject((char *)vstr, vlen) : createStringObjectFromLongLongWithSds(vll);
p = lpNext(o->ptr, p);
vstr = lpGetValue(p, &vlen, &vll);
robj *value =
(vstr != NULL) ? createStringObject((char *)vstr, vlen) : createStringObjectFromLongLongWithSds(vll);
fn(key, field, value, privdata);
p = lpNext(o->ptr, p);
decrRefCount(field);
decrRefCount(value);
}
cursor->cursor = 1;
cursor->done = 1;
ret = 0;
}
errno = 0;
return ret;
}
/* --------------------------------------------------------------------------
* ## Module fork API
* -------------------------------------------------------------------------- */
/* Create a background child process with the current frozen snapshot of the
* main process where you can do some processing in the background without
* affecting / freezing the traffic and no need for threads and GIL locking.
* Note that the server allows for only one concurrent fork.
* When the child wants to exit, it should call ValkeyModule_ExitFromChild.
* If the parent wants to kill the child it should call ValkeyModule_KillForkChild
* The done handler callback will be executed on the parent process when the
* child existed (but not when killed)
* Return: -1 on failure, on success the parent process will get a positive PID
* of the child, and the child process will get 0.
*/
int VM_Fork(ValkeyModuleForkDoneHandler cb, void *user_data) {
pid_t childpid;
if ((childpid = serverFork(CHILD_TYPE_MODULE)) == 0) {
/* Child */
if (strstr(server.exec_argv[0], "redis-server") != NULL) {
serverSetProcTitle("redis-module-fork");
} else {
serverSetProcTitle("valkey-module-fork");
}
} else if (childpid == -1) {
serverLog(LL_WARNING, "Can't fork for module: %s", strerror(errno));
} else {
/* Parent */
moduleForkInfo.done_handler = cb;
moduleForkInfo.done_handler_user_data = user_data;
serverLog(LL_VERBOSE, "Module fork started pid: %ld ", (long)childpid);
}
return childpid;
}
/* The module is advised to call this function from the fork child once in a while,
* so that it can report progress and COW memory to the parent which will be
* reported in INFO.
* The `progress` argument should between 0 and 1, or -1 when not available. */
void VM_SendChildHeartbeat(double progress) {
sendChildInfoGeneric(CHILD_INFO_TYPE_CURRENT_INFO, 0, progress, "Module fork");
}
/* Call from the child process when you want to terminate it.
* retcode will be provided to the done handler executed on the parent process.
*/
int VM_ExitFromChild(int retcode) {
sendChildCowInfo(CHILD_INFO_TYPE_MODULE_COW_SIZE, "Module fork");
exitFromChild(retcode);
return VALKEYMODULE_OK;
}
/* Kill the active module forked child, if there is one active and the
* pid matches, and returns C_OK. Otherwise if there is no active module
* child or the pid does not match, return C_ERR without doing anything. */
int TerminateModuleForkChild(int child_pid, int wait) {
/* Module child should be active and pid should match. */
if (server.child_type != CHILD_TYPE_MODULE || server.child_pid != child_pid) return C_ERR;
int statloc;
serverLog(LL_VERBOSE, "Killing running module fork child: %ld", (long)server.child_pid);
if (kill(server.child_pid, SIGUSR1) != -1 && wait) {
while (waitpid(server.child_pid, &statloc, 0) != server.child_pid);
}
/* Reset the buffer accumulating changes while the child saves. */
resetChildState();
moduleForkInfo.done_handler = NULL;
moduleForkInfo.done_handler_user_data = NULL;
return C_OK;
}
/* Can be used to kill the forked child process from the parent process.
* child_pid would be the return value of ValkeyModule_Fork. */
int VM_KillForkChild(int child_pid) {
/* Kill module child, wait for child exit. */
if (TerminateModuleForkChild(child_pid, 1) == C_OK)
return VALKEYMODULE_OK;
else
return VALKEYMODULE_ERR;
}
void ModuleForkDoneHandler(int exitcode, int bysignal) {
serverLog(LL_NOTICE, "Module fork exited pid: %ld, retcode: %d, bysignal: %d", (long)server.child_pid, exitcode,
bysignal);
if (moduleForkInfo.done_handler) {
moduleForkInfo.done_handler(exitcode, bysignal, moduleForkInfo.done_handler_user_data);
}
moduleForkInfo.done_handler = NULL;
moduleForkInfo.done_handler_user_data = NULL;
}
/* --------------------------------------------------------------------------
* ## Server hooks implementation
* -------------------------------------------------------------------------- */
/* This must be synced with VALKEYMODULE_EVENT_*
* We use -1 (MAX_UINT64) to denote that this event doesn't have
* a data structure associated with it. We use MAX_UINT64 on purpose,
* in order to pass the check in ValkeyModule_SubscribeToServerEvent. */
static uint64_t moduleEventVersions[] = {
VALKEYMODULE_REPLICATIONINFO_VERSION, /* VALKEYMODULE_EVENT_REPLICATION_ROLE_CHANGED */
-1, /* VALKEYMODULE_EVENT_PERSISTENCE */
VALKEYMODULE_FLUSHINFO_VERSION, /* VALKEYMODULE_EVENT_FLUSHDB */
-1, /* VALKEYMODULE_EVENT_LOADING */
VALKEYMODULE_CLIENTINFO_VERSION, /* VALKEYMODULE_EVENT_CLIENT_CHANGE */
-1, /* VALKEYMODULE_EVENT_SHUTDOWN */
-1, /* VALKEYMODULE_EVENT_REPLICA_CHANGE */
-1, /* VALKEYMODULE_EVENT_PRIMARY_LINK_CHANGE */
VALKEYMODULE_CRON_LOOP_VERSION, /* VALKEYMODULE_EVENT_CRON_LOOP */
VALKEYMODULE_MODULE_CHANGE_VERSION, /* VALKEYMODULE_EVENT_MODULE_CHANGE */
VALKEYMODULE_LOADING_PROGRESS_VERSION, /* VALKEYMODULE_EVENT_LOADING_PROGRESS */
VALKEYMODULE_SWAPDBINFO_VERSION, /* VALKEYMODULE_EVENT_SWAPDB */
-1, /* VALKEYMODULE_EVENT_REPL_BACKUP */
-1, /* VALKEYMODULE_EVENT_FORK_CHILD */
-1, /* VALKEYMODULE_EVENT_REPL_ASYNC_LOAD */
-1, /* VALKEYMODULE_EVENT_EVENTLOOP */
-1, /* VALKEYMODULE_EVENT_CONFIG */
VALKEYMODULE_KEYINFO_VERSION, /* VALKEYMODULE_EVENT_KEY */
};
/* Register to be notified, via a callback, when the specified server event
* happens. The callback is called with the event as argument, and an additional
* argument which is a void pointer and should be cased to a specific type
* that is event-specific (but many events will just use NULL since they do not
* have additional information to pass to the callback).
*
* If the callback is NULL and there was a previous subscription, the module
* will be unsubscribed. If there was a previous subscription and the callback
* is not null, the old callback will be replaced with the new one.
*
* The callback must be of this type:
*
* int (*ValkeyModuleEventCallback)(ValkeyModuleCtx *ctx,
* ValkeyModuleEvent eid,
* uint64_t subevent,
* void *data);
*
* The 'ctx' is a normal module context that the callback can use in
* order to call other modules APIs. The 'eid' is the event itself, this
* is only useful in the case the module subscribed to multiple events: using
* the 'id' field of this structure it is possible to check if the event
* is one of the events we registered with this callback. The 'subevent' field
* depends on the event that fired.
*
* Finally the 'data' pointer may be populated, only for certain events, with
* more relevant data.
*
* Here is a list of events you can use as 'eid' and related sub events:
*
* * ValkeyModuleEvent_ReplicationRoleChanged:
*
* This event is called when the instance switches from primary
* to replica or the other way around, however the event is
* also called when the replica remains a replica but starts to
* replicate with a different primary.
*
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_REPLROLECHANGED_NOW_PRIMARY`
* * `VALKEYMODULE_SUBEVENT_REPLROLECHANGED_NOW_REPLICA`
*
* The 'data' field can be casted by the callback to a
* `ValkeyModuleReplicationInfo` structure with the following fields:
*
* int primary; // true if primary, false if replica
* char *primary_host; // primary instance hostname for NOW_REPLICA
* int primary_port; // primary instance port for NOW_REPLICA
* char *replid1; // Main replication ID
* char *replid2; // Secondary replication ID
* uint64_t repl1_offset; // Main replication offset
* uint64_t repl2_offset; // Offset of replid2 validity
*
* * ValkeyModuleEvent_Persistence
*
* This event is called when RDB saving or AOF rewriting starts
* and ends. The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_PERSISTENCE_RDB_START`
* * `VALKEYMODULE_SUBEVENT_PERSISTENCE_AOF_START`
* * `VALKEYMODULE_SUBEVENT_PERSISTENCE_SYNC_RDB_START`
* * `VALKEYMODULE_SUBEVENT_PERSISTENCE_SYNC_AOF_START`
* * `VALKEYMODULE_SUBEVENT_PERSISTENCE_ENDED`
* * `VALKEYMODULE_SUBEVENT_PERSISTENCE_FAILED`
*
* The above events are triggered not just when the user calls the
* relevant commands like BGSAVE, but also when a saving operation
* or AOF rewriting occurs because of internal server triggers.
* The SYNC_RDB_START sub events are happening in the foreground due to
* SAVE command, FLUSHALL, or server shutdown, and the other RDB and
* AOF sub events are executed in a background fork child, so any
* action the module takes can only affect the generated AOF or RDB,
* but will not be reflected in the parent process and affect connected
* clients and commands. Also note that the AOF_START sub event may end
* up saving RDB content in case of an AOF with rdb-preamble.
*
* * ValkeyModuleEvent_FlushDB
*
* The FLUSHALL, FLUSHDB or an internal flush (for instance
* because of replication, after the replica synchronization)
* happened. The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_FLUSHDB_START`
* * `VALKEYMODULE_SUBEVENT_FLUSHDB_END`
*
* The data pointer can be casted to a ValkeyModuleFlushInfo
* structure with the following fields:
*
* int32_t async; // True if the flush is done in a thread.
* // See for instance FLUSHALL ASYNC.
* // In this case the END callback is invoked
* // immediately after the database is put
* // in the free list of the thread.
* int32_t dbnum; // Flushed database number, -1 for all the DBs
* // in the case of the FLUSHALL operation.
*
* The start event is called *before* the operation is initiated, thus
* allowing the callback to call DBSIZE or other operation on the
* yet-to-free keyspace.
*
* * ValkeyModuleEvent_Loading
*
* Called on loading operations: at startup when the server is
* started, but also after a first synchronization when the
* replica is loading the RDB file from the primary.
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_LOADING_RDB_START`
* * `VALKEYMODULE_SUBEVENT_LOADING_AOF_START`
* * `VALKEYMODULE_SUBEVENT_LOADING_REPL_START`
* * `VALKEYMODULE_SUBEVENT_LOADING_ENDED`
* * `VALKEYMODULE_SUBEVENT_LOADING_FAILED`
*
* Note that AOF loading may start with an RDB data in case of
* rdb-preamble, in which case you'll only receive an AOF_START event.
*
* * ValkeyModuleEvent_ClientChange
*
* Called when a client connects or disconnects.
* The data pointer can be casted to a ValkeyModuleClientInfo
* structure, documented in ValkeyModule_GetClientInfoById().
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_CLIENT_CHANGE_CONNECTED`
* * `VALKEYMODULE_SUBEVENT_CLIENT_CHANGE_DISCONNECTED`
*
* * ValkeyModuleEvent_Shutdown
*
* The server is shutting down. No subevents are available.
*
* * ValkeyModuleEvent_ReplicaChange
*
* This event is called when the instance (that can be both a
* primary or a replica) get a new online replica, or lose a
* replica since it gets disconnected.
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_REPLICA_CHANGE_ONLINE`
* * `VALKEYMODULE_SUBEVENT_REPLICA_CHANGE_OFFLINE`
*
* No additional information is available so far: future versions
* of the server will have an API in order to enumerate the replicas
* connected and their state.
*
* * ValkeyModuleEvent_CronLoop
*
* This event is called every time the server calls the serverCron()
* function in order to do certain bookkeeping. Modules that are
* required to do operations from time to time may use this callback.
* Normally the server calls this function 10 times per second, but
* this changes depending on the "hz" configuration.
* No sub events are available.
*
* The data pointer can be casted to a ValkeyModuleCronLoop
* structure with the following fields:
*
* int32_t hz; // Approximate number of events per second.
*
* * ValkeyModuleEvent_PrimaryLinkChange
*
* This is called for replicas in order to notify when the
* replication link becomes functional (up) with our primary,
* or when it goes down. Note that the link is not considered
* up when we just connected to the primary, but only if the
* replication is happening correctly.
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_PRIMARY_LINK_UP`
* * `VALKEYMODULE_SUBEVENT_PRIMARY_LINK_DOWN`
*
* * ValkeyModuleEvent_ModuleChange
*
* This event is called when a new module is loaded or one is unloaded.
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_MODULE_LOADED`
* * `VALKEYMODULE_SUBEVENT_MODULE_UNLOADED`
*
* The data pointer can be casted to a ValkeyModuleModuleChange
* structure with the following fields:
*
* const char* module_name; // Name of module loaded or unloaded.
* int32_t module_version; // Module version.
*
* * ValkeyModuleEvent_LoadingProgress
*
* This event is called repeatedly called while an RDB or AOF file
* is being loaded.
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_LOADING_PROGRESS_RDB`
* * `VALKEYMODULE_SUBEVENT_LOADING_PROGRESS_AOF`
*
* The data pointer can be casted to a ValkeyModuleLoadingProgress
* structure with the following fields:
*
* int32_t hz; // Approximate number of events per second.
* int32_t progress; // Approximate progress between 0 and 1024,
* // or -1 if unknown.
*
* * ValkeyModuleEvent_SwapDB
*
* This event is called when a SWAPDB command has been successfully
* Executed.
* For this event call currently there is no subevents available.
*
* The data pointer can be casted to a ValkeyModuleSwapDbInfo
* structure with the following fields:
*
* int32_t dbnum_first; // Swap Db first dbnum
* int32_t dbnum_second; // Swap Db second dbnum
*
* * ValkeyModuleEvent_ReplBackup
*
* WARNING: Replication Backup events are deprecated since Redis OSS 7.0 and are never fired.
* See ValkeyModuleEvent_ReplAsyncLoad for understanding how Async Replication Loading events
* are now triggered when repl-diskless-load is set to swapdb.
*
* Called when repl-diskless-load config is set to swapdb,
* And the server needs to backup the current database for the
* possibility to be restored later. A module with global data and
* maybe with aux_load and aux_save callbacks may need to use this
* notification to backup / restore / discard its globals.
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_REPL_BACKUP_CREATE`
* * `VALKEYMODULE_SUBEVENT_REPL_BACKUP_RESTORE`
* * `VALKEYMODULE_SUBEVENT_REPL_BACKUP_DISCARD`
*
* * ValkeyModuleEvent_ReplAsyncLoad
*
* Called when repl-diskless-load config is set to swapdb and a replication with a primary of same
* data set history (matching replication ID) occurs.
* In which case the server serves current data set while loading new database in memory from socket.
* Modules must have declared they support this mechanism in order to activate it, through
* VALKEYMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD flag.
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_REPL_ASYNC_LOAD_STARTED`
* * `VALKEYMODULE_SUBEVENT_REPL_ASYNC_LOAD_ABORTED`
* * `VALKEYMODULE_SUBEVENT_REPL_ASYNC_LOAD_COMPLETED`
*
* * ValkeyModuleEvent_ForkChild
*
* Called when a fork child (AOFRW, RDBSAVE, module fork...) is born/dies
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_FORK_CHILD_BORN`
* * `VALKEYMODULE_SUBEVENT_FORK_CHILD_DIED`
*
* * ValkeyModuleEvent_EventLoop
*
* Called on each event loop iteration, once just before the event loop goes
* to sleep or just after it wakes up.
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP`
* * `VALKEYMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP`
*
* * ValkeyModule_Event_Config
*
* Called when a configuration event happens
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_CONFIG_CHANGE`
*
* The data pointer can be casted to a ValkeyModuleConfigChange
* structure with the following fields:
*
* const char **config_names; // An array of C string pointers containing the
* // name of each modified configuration item
* uint32_t num_changes; // The number of elements in the config_names array
*
* * ValkeyModule_Event_Key
*
* Called when a key is removed from the keyspace. We can't modify any key in
* the event.
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_KEY_DELETED`
* * `VALKEYMODULE_SUBEVENT_KEY_EXPIRED`
* * `VALKEYMODULE_SUBEVENT_KEY_EVICTED`
* * `VALKEYMODULE_SUBEVENT_KEY_OVERWRITTEN`
*
* The data pointer can be casted to a ValkeyModuleKeyInfo
* structure with the following fields:
*
* ValkeyModuleKey *key; // Key name
*
* The function returns VALKEYMODULE_OK if the module was successfully subscribed
* for the specified event. If the API is called from a wrong context or unsupported event
* is given then VALKEYMODULE_ERR is returned. */
int VM_SubscribeToServerEvent(ValkeyModuleCtx *ctx, ValkeyModuleEvent event, ValkeyModuleEventCallback callback) {
ValkeyModuleEventListener *el;
/* Protect in case of calls from contexts without a module reference. */
if (ctx->module == NULL) return VALKEYMODULE_ERR;
if (event.id >= _VALKEYMODULE_EVENT_NEXT) return VALKEYMODULE_ERR;
if (event.dataver > moduleEventVersions[event.id])
return VALKEYMODULE_ERR; /* Module compiled with a newer valkeymodule.h than we support */
/* Search an event matching this module and event ID. */
listIter li;
listNode *ln;
listRewind(ValkeyModule_EventListeners, &li);
while ((ln = listNext(&li))) {
el = ln->value;
if (el->module == ctx->module && el->event.id == event.id) break; /* Matching event found. */
}
/* Modify or remove the event listener if we already had one. */
if (ln) {
if (callback == NULL) {
listDelNode(ValkeyModule_EventListeners, ln);
zfree(el);
} else {
el->callback = callback; /* Update the callback with the new one. */
}
return VALKEYMODULE_OK;
}
/* No event found, we need to add a new one. */
el = zmalloc(sizeof(*el));
el->module = ctx->module;
el->event = event;
el->callback = callback;
listAddNodeTail(ValkeyModule_EventListeners, el);
return VALKEYMODULE_OK;
}
/**
* For a given server event and subevent, return zero if the
* subevent is not supported and non-zero otherwise.
*/
int VM_IsSubEventSupported(ValkeyModuleEvent event, int64_t subevent) {
switch (event.id) {
case VALKEYMODULE_EVENT_REPLICATION_ROLE_CHANGED: return subevent < _VALKEYMODULE_EVENT_REPLROLECHANGED_NEXT;
case VALKEYMODULE_EVENT_PERSISTENCE: return subevent < _VALKEYMODULE_SUBEVENT_PERSISTENCE_NEXT;
case VALKEYMODULE_EVENT_FLUSHDB: return subevent < _VALKEYMODULE_SUBEVENT_FLUSHDB_NEXT;
case VALKEYMODULE_EVENT_LOADING: return subevent < _VALKEYMODULE_SUBEVENT_LOADING_NEXT;
case VALKEYMODULE_EVENT_CLIENT_CHANGE: return subevent < _VALKEYMODULE_SUBEVENT_CLIENT_CHANGE_NEXT;
case VALKEYMODULE_EVENT_SHUTDOWN: return subevent < _VALKEYMODULE_SUBEVENT_SHUTDOWN_NEXT;
case VALKEYMODULE_EVENT_REPLICA_CHANGE: return subevent < _VALKEYMODULE_EVENT_REPLROLECHANGED_NEXT;
case VALKEYMODULE_EVENT_PRIMARY_LINK_CHANGE: return subevent < _VALKEYMODULE_SUBEVENT_PRIMARY_NEXT;
case VALKEYMODULE_EVENT_CRON_LOOP: return subevent < _VALKEYMODULE_SUBEVENT_CRON_LOOP_NEXT;
case VALKEYMODULE_EVENT_MODULE_CHANGE: return subevent < _VALKEYMODULE_SUBEVENT_MODULE_NEXT;
case VALKEYMODULE_EVENT_LOADING_PROGRESS: return subevent < _VALKEYMODULE_SUBEVENT_LOADING_PROGRESS_NEXT;
case VALKEYMODULE_EVENT_SWAPDB: return subevent < _VALKEYMODULE_SUBEVENT_SWAPDB_NEXT;
case VALKEYMODULE_EVENT_REPL_ASYNC_LOAD: return subevent < _VALKEYMODULE_SUBEVENT_REPL_ASYNC_LOAD_NEXT;
case VALKEYMODULE_EVENT_FORK_CHILD: return subevent < _VALKEYMODULE_SUBEVENT_FORK_CHILD_NEXT;
case VALKEYMODULE_EVENT_EVENTLOOP: return subevent < _VALKEYMODULE_SUBEVENT_EVENTLOOP_NEXT;
case VALKEYMODULE_EVENT_CONFIG: return subevent < _VALKEYMODULE_SUBEVENT_CONFIG_NEXT;
case VALKEYMODULE_EVENT_KEY: return subevent < _VALKEYMODULE_SUBEVENT_KEY_NEXT;
default: break;
}
return 0;
}
typedef struct KeyInfo {
int32_t dbnum;
ValkeyModuleString *key;
robj *value;
int mode;
} KeyInfo;
/* This is called by the server internals every time we want to fire an
* event that can be intercepted by some module. The pointer 'data' is useful
* in order to populate the event-specific structure when needed, in order
* to return the structure with more information to the callback.
*
* 'eid' and 'subid' are just the main event ID and the sub event associated
* with the event, depending on what exactly happened. */
void moduleFireServerEvent(uint64_t eid, int subid, void *data) {
/* Fast path to return ASAP if there is nothing to do, avoiding to
* setup the iterator and so forth: we want this call to be extremely
* cheap if there are no registered modules. */
if (listLength(ValkeyModule_EventListeners) == 0) return;
listIter li;
listNode *ln;
listRewind(ValkeyModule_EventListeners, &li);
while ((ln = listNext(&li))) {
ValkeyModuleEventListener *el = ln->value;
if (el->event.id == eid) {
ValkeyModuleCtx ctx;
if (eid == VALKEYMODULE_EVENT_CLIENT_CHANGE) {
/* In the case of client changes, we're pushing the real client
* so the event handler can mutate it if needed. For example,
* to change its authentication state in a way that does not
* depend on specific commands executed later.
*/
moduleCreateContext(&ctx, el->module, VALKEYMODULE_CTX_NONE);
ctx.client = (client *)data;
} else {
moduleCreateContext(&ctx, el->module, VALKEYMODULE_CTX_TEMP_CLIENT);
}
void *moduledata = NULL;
ValkeyModuleClientInfoV1 civ1;
ValkeyModuleReplicationInfoV1 riv1;
ValkeyModuleModuleChangeV1 mcv1;
ValkeyModuleKey key;
ValkeyModuleKeyInfoV1 ki = {VALKEYMODULE_KEYINFO_VERSION, &key};
/* Event specific context and data pointer setup. */
if (eid == VALKEYMODULE_EVENT_CLIENT_CHANGE) {
serverAssert(modulePopulateClientInfoStructure(&civ1, data, el->event.dataver) == VALKEYMODULE_OK);
moduledata = &civ1;
} else if (eid == VALKEYMODULE_EVENT_REPLICATION_ROLE_CHANGED) {
serverAssert(modulePopulateReplicationInfoStructure(&riv1, el->event.dataver) == VALKEYMODULE_OK);
moduledata = &riv1;
} else if (eid == VALKEYMODULE_EVENT_FLUSHDB) {
moduledata = data;
ValkeyModuleFlushInfoV1 *fi = data;
if (fi->dbnum != -1) selectDb(ctx.client, fi->dbnum);
} else if (eid == VALKEYMODULE_EVENT_MODULE_CHANGE) {
ValkeyModule *m = data;
if (m == el->module) {
moduleFreeContext(&ctx);
continue;
}
mcv1.version = VALKEYMODULE_MODULE_CHANGE_VERSION;
mcv1.module_name = m->name;
mcv1.module_version = m->ver;
moduledata = &mcv1;
} else if (eid == VALKEYMODULE_EVENT_LOADING_PROGRESS) {
moduledata = data;
} else if (eid == VALKEYMODULE_EVENT_CRON_LOOP) {
moduledata = data;
} else if (eid == VALKEYMODULE_EVENT_SWAPDB) {
moduledata = data;
} else if (eid == VALKEYMODULE_EVENT_CONFIG) {
moduledata = data;
} else if (eid == VALKEYMODULE_EVENT_KEY) {
KeyInfo *info = data;
selectDb(ctx.client, info->dbnum);
moduleInitKey(&key, &ctx, info->key, info->value, info->mode);
moduledata = &ki;
}
el->module->in_hook++;
el->callback(&ctx, el->event, subid, moduledata);
el->module->in_hook--;
if (eid == VALKEYMODULE_EVENT_KEY) {
moduleCloseKey(&key);
}
moduleFreeContext(&ctx);
}
}
}
/* Remove all the listeners for this module: this is used before unloading
* a module. */
void moduleUnsubscribeAllServerEvents(ValkeyModule *module) {
ValkeyModuleEventListener *el;
listIter li;
listNode *ln;
listRewind(ValkeyModule_EventListeners, &li);
while ((ln = listNext(&li))) {
el = ln->value;
if (el->module == module) {
listDelNode(ValkeyModule_EventListeners, ln);
zfree(el);
}
}
}
void processModuleLoadingProgressEvent(int is_aof) {
long long now = server.ustime;
static long long next_event = 0;
if (now >= next_event) {
/* Fire the loading progress modules end event. */
int progress = -1;
if (server.loading_total_bytes) progress = (server.loading_loaded_bytes << 10) / server.loading_total_bytes;
ValkeyModuleLoadingProgressV1 fi = {VALKEYMODULE_LOADING_PROGRESS_VERSION, server.hz, progress};
moduleFireServerEvent(
VALKEYMODULE_EVENT_LOADING_PROGRESS,
is_aof ? VALKEYMODULE_SUBEVENT_LOADING_PROGRESS_AOF : VALKEYMODULE_SUBEVENT_LOADING_PROGRESS_RDB, &fi);
/* decide when the next event should fire. */
next_event = now + 1000000 / server.hz;
}
}
/* When a key is deleted (in dbAsyncDelete/dbSyncDelete/setKey), it
* will be called to tell the module which key is about to be released. */
void moduleNotifyKeyUnlink(robj *key, robj *val, int dbid, int flags) {
server.lazy_expire_disabled++;
int subevent = VALKEYMODULE_SUBEVENT_KEY_DELETED;
if (flags & DB_FLAG_KEY_EXPIRED) {
subevent = VALKEYMODULE_SUBEVENT_KEY_EXPIRED;
} else if (flags & DB_FLAG_KEY_EVICTED) {
subevent = VALKEYMODULE_SUBEVENT_KEY_EVICTED;
} else if (flags & DB_FLAG_KEY_OVERWRITE) {
subevent = VALKEYMODULE_SUBEVENT_KEY_OVERWRITTEN;
}
KeyInfo info = {dbid, key, val, VALKEYMODULE_READ};
moduleFireServerEvent(VALKEYMODULE_EVENT_KEY, subevent, &info);
if (val->type == OBJ_MODULE) {
moduleValue *mv = val->ptr;
moduleType *mt = mv->type;
/* We prefer to use the enhanced version. */
if (mt->unlink2 != NULL) {
ValkeyModuleKeyOptCtx ctx = {key, NULL, dbid, -1};
mt->unlink2(&ctx, mv->value);
} else if (mt->unlink != NULL) {
mt->unlink(key, mv->value);
}
}
server.lazy_expire_disabled--;
}
/* Return the free_effort of the module, it will automatically choose to call
* `free_effort` or `free_effort2`, and the default return value is 1.
* value of 0 means very high effort (always asynchronous freeing). */
size_t moduleGetFreeEffort(robj *key, robj *val, int dbid) {
moduleValue *mv = val->ptr;
moduleType *mt = mv->type;
size_t effort = 1;
/* We prefer to use the enhanced version. */
if (mt->free_effort2 != NULL) {
ValkeyModuleKeyOptCtx ctx = {key, NULL, dbid, -1};
effort = mt->free_effort2(&ctx, mv->value);
} else if (mt->free_effort != NULL) {
effort = mt->free_effort(key, mv->value);
}
return effort;
}
/* Return the memory usage of the module, it will automatically choose to call
* `mem_usage` or `mem_usage2`, and the default return value is 0. */
size_t moduleGetMemUsage(robj *key, robj *val, size_t sample_size, int dbid) {
moduleValue *mv = val->ptr;
moduleType *mt = mv->type;
size_t size = 0;
/* We prefer to use the enhanced version. */
if (mt->mem_usage2 != NULL) {
ValkeyModuleKeyOptCtx ctx = {key, NULL, dbid, -1};
size = mt->mem_usage2(&ctx, mv->value, sample_size);
} else if (mt->mem_usage != NULL) {
size = mt->mem_usage(mv->value);
}
return size;
}
/* --------------------------------------------------------------------------
* Modules API internals
* -------------------------------------------------------------------------- */
/* server.moduleapi dictionary type. Only uses plain C strings since
* this gets queries from modules. */
uint64_t dictCStringKeyHash(const void *key) {
return dictGenHashFunction((unsigned char *)key, strlen((char *)key));
}
int dictCStringKeyCompare(const void *key1, const void *key2) {
return strcmp(key1, key2) == 0;
}
dictType moduleAPIDictType = {
dictCStringKeyHash, /* hash function */
NULL, /* key dup */
dictCStringKeyCompare, /* key compare */
NULL, /* key destructor */
NULL, /* val destructor */
NULL /* allow to expand */
};
int moduleRegisterApi(const char *funcname, void *funcptr) {
return dictAdd(server.moduleapi, (char *)funcname, funcptr);
}
/* Register Module APIs under both RedisModule_ and ValkeyModule_ namespaces
* so that legacy Redis module binaries can continue to function */
#define REGISTER_API(name) \
moduleRegisterApi("ValkeyModule_" #name, (void *)(unsigned long)VM_##name); \
moduleRegisterApi("RedisModule_" #name, (void *)(unsigned long)VM_##name);
/* Global initialization at server startup. */
void moduleRegisterCoreAPI(void);
/* Currently, this function is just a placeholder for the module system
* initialization steps that need to be run after server initialization.
* A previous issue, selectDb() in createClient() requires that server.db has
* been initialized, see #7323. */
void moduleInitModulesSystemLast(void) {
}
dictType sdsKeyValueHashDictType = {
dictSdsCaseHash, /* hash function */
NULL, /* key dup */
dictSdsKeyCaseCompare, /* key compare */
dictSdsDestructor, /* key destructor */
dictSdsDestructor, /* val destructor */
NULL /* allow to expand */
};
void moduleInitModulesSystem(void) {
moduleUnblockedClients = listCreate();
server.loadmodule_queue = listCreate();
server.module_configs_queue = dictCreate(&sdsKeyValueHashDictType);
server.module_gil_acquiring = 0;
modules = dictCreate(&modulesDictType);
moduleAuthCallbacks = listCreate();
/* Set up the keyspace notification subscriber list and static client */
moduleKeyspaceSubscribers = listCreate();
modulePostExecUnitJobs = listCreate();
/* Set up filter list */
moduleCommandFilters = listCreate();
moduleRegisterCoreAPI();
/* Create a pipe for module threads to be able to wake up the server main thread.
* Make the pipe non blocking. This is just a best effort aware mechanism
* and we do not want to block not in the read nor in the write half.
* Enable close-on-exec flag on pipes in case of the fork-exec system calls in
* sentinels or servers. */
if (anetPipe(server.module_pipe, O_CLOEXEC | O_NONBLOCK, O_CLOEXEC | O_NONBLOCK) == -1) {
serverLog(LL_WARNING, "Can't create the pipe for module threads: %s", strerror(errno));
exit(1);
}
/* Create the timers radix tree. */
Timers = raxNew();
/* Setup the event listeners data structures. */
ValkeyModule_EventListeners = listCreate();
/* Making sure moduleEventVersions is synced with the number of events. */
serverAssert(sizeof(moduleEventVersions) / sizeof(moduleEventVersions[0]) == _VALKEYMODULE_EVENT_NEXT);
/* Our thread-safe contexts GIL must start with already locked:
* it is just unlocked when it's safe. */
pthread_mutex_lock(&moduleGIL);
}
void modulesCron(void) {
/* Check number of temporary clients in the pool and free the unused ones
* since the last cron. moduleTempClientMinCount tracks minimum count of
* clients in the pool since the last cron. This is the number of clients
* that we didn't use for the last cron period. */
/* Limit the max client count to be freed at once to avoid latency spikes.*/
int iteration = 50;
/* We are freeing clients if we have more than 8 unused clients. Keeping
* small amount of clients to avoid client allocation costs if temporary
* clients are required after some idle period. */
const unsigned int min_client = 8;
while (iteration > 0 && moduleTempClientCount > 0 && moduleTempClientMinCount > min_client) {
client *c = moduleTempClients[--moduleTempClientCount];
freeClient(c);
iteration--;
moduleTempClientMinCount--;
}
moduleTempClientMinCount = moduleTempClientCount;
/* Shrink moduleTempClients array itself if it is wasting some space */
if (moduleTempClientCap > 32 && moduleTempClientCap > moduleTempClientCount * 4) {
moduleTempClientCap /= 4;
moduleTempClients = zrealloc(moduleTempClients, sizeof(client *) * moduleTempClientCap);
}
}
void moduleLoadQueueEntryFree(struct moduleLoadQueueEntry *loadmod) {
if (!loadmod) return;
sdsfree(loadmod->path);
for (int i = 0; i < loadmod->argc; i++) {
decrRefCount(loadmod->argv[i]);
}
zfree(loadmod->argv);
zfree(loadmod);
}
/* Remove Module Configs from standardConfig array in config.c */
void moduleRemoveConfigs(ValkeyModule *module) {
listIter li;
listNode *ln;
listRewind(module->module_configs, &li);
while ((ln = listNext(&li))) {
ModuleConfig *config = listNodeValue(ln);
sds module_name = sdsnew(module->name);
sds full_name = sdscat(sdscat(module_name, "."), config->name); /* ModuleName.ModuleConfig */
removeConfig(full_name);
sdsfree(full_name);
}
}
/* Remove ACL categories added by the module when it fails to load. */
void moduleRemoveCateogires(ValkeyModule *module) {
if (module->num_acl_categories_added) {
ACLCleanupCategoriesOnFailure(module->num_acl_categories_added);
}
}
/* Load all the modules in the server.loadmodule_queue list, which is
* populated by `loadmodule` directives in the configuration file.
* We can't load modules directly when processing the configuration file
* because the server must be fully initialized before loading modules.
*
* The function aborts the server on errors, since to start with missing
* modules is not considered sane: clients may rely on the existence of
* given commands, loading AOF also may need some modules to exist, and
* if this instance is a replica, it must understand commands from primary. */
void moduleLoadFromQueue(void) {
listIter li;
listNode *ln;
listRewind(server.loadmodule_queue, &li);
while ((ln = listNext(&li))) {
struct moduleLoadQueueEntry *loadmod = ln->value;
if (moduleLoad(loadmod->path, (void **)loadmod->argv, loadmod->argc, 0) == C_ERR) {
serverLog(LL_WARNING, "Can't load module from %s: server aborting", loadmod->path);
exit(1);
}
moduleLoadQueueEntryFree(loadmod);
listDelNode(server.loadmodule_queue, ln);
}
if (dictSize(server.module_configs_queue)) {
dictIterator *di = dictGetSafeIterator(server.module_configs_queue);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
const char *moduleConfigName = dictGetKey(de);
serverLog(LL_WARNING, "Unused Module Configuration: %s", moduleConfigName);
}
dictReleaseIterator(di);
serverLog(LL_WARNING,
"Module Configuration detected without loadmodule directive or no ApplyConfig call: aborting");
exit(1);
}
}
void moduleFreeModuleStructure(struct ValkeyModule *module) {
listRelease(module->types);
listRelease(module->filters);
listRelease(module->usedby);
listRelease(module->using);
listRelease(module->module_configs);
sdsfree(module->name);
moduleLoadQueueEntryFree(module->loadmod);
zfree(module);
}
void moduleFreeArgs(struct serverCommandArg *args, int num_args) {
for (int j = 0; j < num_args; j++) {
zfree((char *)args[j].name);
zfree((char *)args[j].token);
zfree((char *)args[j].summary);
zfree((char *)args[j].since);
zfree((char *)args[j].deprecated_since);
zfree((char *)args[j].display_text);
if (args[j].subargs) {
moduleFreeArgs(args[j].subargs, args[j].num_args);
}
}
zfree(args);
}
/* Free the command registered with the specified module.
* On success C_OK is returned, otherwise C_ERR is returned.
*
* Note that caller needs to handle the deletion of the command table dict,
* and after that needs to free the command->fullname and the command itself.
*/
int moduleFreeCommand(struct ValkeyModule *module, struct serverCommand *cmd) {
if (cmd->proc != ValkeyModuleCommandDispatcher) return C_ERR;
ValkeyModuleCommand *cp = cmd->module_cmd;
if (cp->module != module) return C_ERR;
/* Free everything except cmd->fullname and cmd itself. */
for (int j = 0; j < cmd->key_specs_num; j++) {
if (cmd->key_specs[j].notes) zfree((char *)cmd->key_specs[j].notes);
if (cmd->key_specs[j].begin_search_type == KSPEC_BS_KEYWORD)
zfree((char *)cmd->key_specs[j].bs.keyword.keyword);
}
zfree(cmd->key_specs);
for (int j = 0; cmd->tips && cmd->tips[j]; j++) zfree((char *)cmd->tips[j]);
zfree(cmd->tips);
for (int j = 0; cmd->history && cmd->history[j].since; j++) {
zfree((char *)cmd->history[j].since);
zfree((char *)cmd->history[j].changes);
}
zfree(cmd->history);
zfree((char *)cmd->summary);
zfree((char *)cmd->since);
zfree((char *)cmd->deprecated_since);
zfree((char *)cmd->complexity);
if (cmd->latency_histogram) {
hdr_close(cmd->latency_histogram);
cmd->latency_histogram = NULL;
}
moduleFreeArgs(cmd->args, cmd->num_args);
zfree(cp);
if (cmd->subcommands_ht) {
hashtableIterator iter;
void *next;
hashtableInitIterator(&iter, cmd->subcommands_ht, HASHTABLE_ITER_SAFE);
while (hashtableNext(&iter, &next)) {
struct serverCommand *sub = next;
if (moduleFreeCommand(module, sub) != C_OK) continue;
serverAssert(hashtableDelete(cmd->subcommands_ht, sub->declared_name));
sdsfree((sds)sub->declared_name);
sdsfree(sub->fullname);
zfree(sub);
}
hashtableResetIterator(&iter);
hashtableRelease(cmd->subcommands_ht);
}
return C_OK;
}
void moduleUnregisterCommands(struct ValkeyModule *module) {
/* Drain IO queue before modifying commands dictionary to prevent concurrent access while modifying it. */
drainIOThreadsQueue();
/* Unregister all the commands registered by this module. */
hashtableIterator iter;
void *next;
hashtableInitIterator(&iter, server.commands, HASHTABLE_ITER_SAFE);
while (hashtableNext(&iter, &next)) {
struct serverCommand *cmd = next;
if (moduleFreeCommand(module, cmd) != C_OK) continue;
serverAssert(hashtableDelete(server.commands, cmd->fullname));
serverAssert(hashtableDelete(server.orig_commands, cmd->fullname));
sdsfree((sds)cmd->declared_name);
sdsfree(cmd->fullname);
zfree(cmd);
}
hashtableResetIterator(&iter);
}
/* We parse argv to add sds "NAME VALUE" pairs to the server.module_configs_queue list of configs.
* We also increment the module_argv pointer to just after ARGS if there are args, otherwise
* we set it to NULL */
int parseLoadexArguments(ValkeyModuleString ***module_argv, int *module_argc) {
int args_specified = 0;
ValkeyModuleString **argv = *module_argv;
int argc = *module_argc;
for (int i = 0; i < argc; i++) {
char *arg_val = argv[i]->ptr;
if (!strcasecmp(arg_val, "CONFIG")) {
if (i + 2 >= argc) {
serverLog(LL_NOTICE, "CONFIG specified without name value pair");
return VALKEYMODULE_ERR;
}
sds name = sdsdup(argv[i + 1]->ptr);
sds value = sdsdup(argv[i + 2]->ptr);
if (!dictReplace(server.module_configs_queue, name, value)) sdsfree(name);
i += 2;
} else if (!strcasecmp(arg_val, "ARGS")) {
args_specified = 1;
i++;
if (i >= argc) {
*module_argv = NULL;
*module_argc = 0;
} else {
*module_argv = argv + i;
*module_argc = argc - i;
}
break;
} else {
serverLog(LL_NOTICE, "Syntax Error from arguments to loadex around %s.", arg_val);
return VALKEYMODULE_ERR;
}
}
if (!args_specified) {
*module_argv = NULL;
*module_argc = 0;
}
return VALKEYMODULE_OK;
}
/* Unregister module-related things, called when moduleLoad fails or moduleUnload. */
void moduleUnregisterCleanup(ValkeyModule *module) {
moduleFreeAuthenticatedClients(module);
moduleUnregisterCommands(module);
moduleUnsubscribeNotifications(module);
moduleUnregisterSharedAPI(module);
moduleUnregisterUsedAPI(module);
moduleUnregisterFilters(module);
moduleUnsubscribeAllServerEvents(module);
moduleRemoveConfigs(module);
moduleUnregisterAuthCBs(module);
}
/* Load a module and initialize it. On success C_OK is returned, otherwise
* C_ERR is returned. */
int moduleLoad(const char *path, void **module_argv, int module_argc, int is_loadex) {
int (*onload)(void *, void **, int);
void *handle;
struct stat st;
if (stat(path, &st) == 0) {
/* This check is best effort */
if (!(st.st_mode & (S_IXUSR | S_IXGRP | S_IXOTH))) {
serverLog(LL_WARNING, "Module %s failed to load: It does not have execute permissions.", path);
return C_ERR;
}
}
handle = dlopen(path, RTLD_NOW | RTLD_LOCAL);
if (handle == NULL) {
serverLog(LL_WARNING, "Module %s failed to load: %s", path, dlerror());
return C_ERR;
}
const char *onLoadNames[] = {"ValkeyModule_OnLoad", "RedisModule_OnLoad"};
for (size_t i = 0; i < sizeof(onLoadNames) / sizeof(onLoadNames[0]); i++) {
onload = (int (*)(void *, void **, int))(unsigned long)dlsym(handle, onLoadNames[i]);
if (onload != NULL) {
if (i != 0) {
serverLog(LL_NOTICE, "Legacy Redis Module %s found", path);
}
break;
}
}
if (onload == NULL) {
dlclose(handle);
serverLog(LL_WARNING,
"Module %s does not export ValkeyModule_OnLoad() or RedisModule_OnLoad() "
"symbol. Module not loaded.",
path);
return C_ERR;
}
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, NULL, VALKEYMODULE_CTX_TEMP_CLIENT); /* We pass NULL since we don't have a module yet. */
if (onload((void *)&ctx, module_argv, module_argc) == VALKEYMODULE_ERR) {
if (ctx.module) {
serverLog(LL_WARNING, "Module %s initialization failed. Module not loaded.", path);
moduleUnregisterCleanup(ctx.module);
moduleRemoveCateogires(ctx.module);
moduleFreeModuleStructure(ctx.module);
} else {
/* If there is no ctx.module, this means that our ValkeyModule_Init call failed,
* and currently init will only fail on busy name. */
serverLog(LL_WARNING, "Module %s initialization failed. Module name is busy.", path);
}
moduleFreeContext(&ctx);
dlclose(handle);
return C_ERR;
}
/* Module loaded! Register it. */
dictAdd(modules, ctx.module->name, ctx.module);
ctx.module->blocked_clients = 0;
ctx.module->handle = handle;
ctx.module->loadmod = zmalloc(sizeof(struct moduleLoadQueueEntry));
ctx.module->loadmod->path = sdsnew(path);
ctx.module->loadmod->argv = module_argc ? zmalloc(sizeof(robj *) * module_argc) : NULL;
ctx.module->loadmod->argc = module_argc;
for (int i = 0; i < module_argc; i++) {
ctx.module->loadmod->argv[i] = module_argv[i];
incrRefCount(ctx.module->loadmod->argv[i]);
}
/* If module commands have ACL categories, recompute command bits
* for all existing users once the modules has been registered. */
if (ctx.module->num_commands_with_acl_categories) {
ACLRecomputeCommandBitsFromCommandRulesAllUsers();
}
serverLog(LL_NOTICE, "Module '%s' loaded from %s", ctx.module->name, path);
ctx.module->onload = 0;
int post_load_err = 0;
if (listLength(ctx.module->module_configs) && !ctx.module->configs_initialized) {
serverLogRaw(LL_WARNING,
"Module Configurations were not set, likely a missing LoadConfigs call. Unloading the module.");
post_load_err = 1;
}
if (is_loadex && dictSize(server.module_configs_queue)) {
serverLogRaw(LL_WARNING,
"Loadex configurations were not applied, likely due to invalid arguments. Unloading the module.");
post_load_err = 1;
}
if (post_load_err) {
moduleUnload(ctx.module->name, NULL);
moduleFreeContext(&ctx);
return C_ERR;
}
/* Fire the loaded modules event. */
moduleFireServerEvent(VALKEYMODULE_EVENT_MODULE_CHANGE, VALKEYMODULE_SUBEVENT_MODULE_LOADED, ctx.module);
moduleFreeContext(&ctx);
return C_OK;
}
/* Unload the module registered with the specified name. On success
* C_OK is returned, otherwise C_ERR is returned and errmsg is set
* with an appropriate message. */
int moduleUnload(sds name, const char **errmsg) {
struct ValkeyModule *module = dictFetchValue(modules, name);
if (module == NULL) {
*errmsg = "no such module with that name";
return C_ERR;
} else if (listLength(module->types)) {
*errmsg = "the module exports one or more module-side data "
"types, can't unload";
return C_ERR;
} else if (listLength(module->usedby)) {
*errmsg = "the module exports APIs used by other modules. "
"Please unload them first and try again";
return C_ERR;
} else if (module->blocked_clients) {
*errmsg = "the module has blocked clients. "
"Please wait for them to be unblocked and try again";
return C_ERR;
} else if (moduleHoldsTimer(module)) {
*errmsg = "the module holds timer that is not fired. "
"Please stop the timer or wait until it fires.";
return C_ERR;
}
/* Give module a chance to clean up. */
const char *onUnloadNames[] = {"ValkeyModule_OnUnload", "RedisModule_OnUnload"};
int (*onunload)(void *) = NULL;
for (size_t i = 0; i < sizeof(onUnloadNames) / sizeof(onUnloadNames[0]); i++) {
onunload = (int (*)(void *))(unsigned long)dlsym(module->handle, onUnloadNames[i]);
if (onunload) {
if (i != 0) {
serverLog(LL_NOTICE, "Legacy Redis Module %s found", name);
}
break;
}
}
if (onunload) {
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, module, VALKEYMODULE_CTX_TEMP_CLIENT);
int unload_status = onunload((void *)&ctx);
moduleFreeContext(&ctx);
if (unload_status == VALKEYMODULE_ERR) {
serverLog(LL_WARNING, "Module %s OnUnload failed. Unload canceled.", name);
errno = ECANCELED;
return C_ERR;
}
}
moduleUnregisterCleanup(module);
/* Unload the dynamic library. */
if (dlclose(module->handle) == -1) {
char *error = dlerror();
if (error == NULL) error = "Unknown error";
serverLog(LL_WARNING, "Error when trying to close the %s module: %s", module->name, error);
}
/* Fire the unloaded modules event. */
moduleFireServerEvent(VALKEYMODULE_EVENT_MODULE_CHANGE, VALKEYMODULE_SUBEVENT_MODULE_UNLOADED, module);
/* Remove from list of modules. */
serverLog(LL_NOTICE, "Module %s unloaded", module->name);
dictDelete(modules, module->name);
module->name = NULL; /* The name was already freed by dictDelete(). */
moduleFreeModuleStructure(module);
/* Recompute command bits for all users once the modules has been completely unloaded. */
ACLRecomputeCommandBitsFromCommandRulesAllUsers();
return C_OK;
}
void modulePipeReadable(aeEventLoop *el, int fd, void *privdata, int mask) {
UNUSED(el);
UNUSED(fd);
UNUSED(mask);
UNUSED(privdata);
char buf[128];
while (read(fd, buf, sizeof(buf)) == sizeof(buf));
/* Handle event loop events if pipe was written from event loop API */
eventLoopHandleOneShotEvents();
}
/* Helper function for the MODULE and HELLO command: send the list of the
* loaded modules to the client. */
void addReplyLoadedModules(client *c) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
addReplyArrayLen(c, dictSize(modules));
while ((de = dictNext(di)) != NULL) {
sds name = dictGetKey(de);
struct ValkeyModule *module = dictGetVal(de);
sds path = module->loadmod->path;
addReplyMapLen(c, 4);
addReplyBulkCString(c, "name");
addReplyBulkCBuffer(c, name, sdslen(name));
addReplyBulkCString(c, "ver");
addReplyLongLong(c, module->ver);
addReplyBulkCString(c, "path");
addReplyBulkCBuffer(c, path, sdslen(path));
addReplyBulkCString(c, "args");
addReplyArrayLen(c, module->loadmod->argc);
for (int i = 0; i < module->loadmod->argc; i++) {
addReplyBulk(c, module->loadmod->argv[i]);
}
}
dictReleaseIterator(di);
}
/* Helper for genModulesInfoString(): given a list of modules, return
* an SDS string in the form "[modulename|modulename2|...]" */
sds genModulesInfoStringRenderModulesList(list *l) {
listIter li;
listNode *ln;
listRewind(l, &li);
sds output = sdsnew("[");
while ((ln = listNext(&li))) {
ValkeyModule *module = ln->value;
output = sdscat(output, module->name);
if (ln != listLast(l)) output = sdscat(output, "|");
}
output = sdscat(output, "]");
return output;
}
/* Helper for genModulesInfoString(): render module options as an SDS string. */
sds genModulesInfoStringRenderModuleOptions(struct ValkeyModule *module) {
sds output = sdsnew("[");
if (module->options & VALKEYMODULE_OPTIONS_HANDLE_IO_ERRORS) output = sdscat(output, "handle-io-errors|");
if (module->options & VALKEYMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD)
output = sdscat(output, "handle-repl-async-load|");
if (module->options & VALKEYMODULE_OPTION_NO_IMPLICIT_SIGNAL_MODIFIED)
output = sdscat(output, "no-implicit-signal-modified|");
output = sdstrim(output, "|");
output = sdscat(output, "]");
return output;
}
/* Helper function for the INFO command: adds loaded modules as to info's
* output.
*
* After the call, the passed sds info string is no longer valid and all the
*
* references must be substituted with the new pointer returned by the call. */
sds genModulesInfoString(sds info) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
sds name = dictGetKey(de);
struct ValkeyModule *module = dictGetVal(de);
sds usedby = genModulesInfoStringRenderModulesList(module->usedby);
sds using = genModulesInfoStringRenderModulesList(module->using);
sds options = genModulesInfoStringRenderModuleOptions(module);
info = sdscatfmt(info,
"module:name=%S,ver=%i,api=%i,filters=%i,"
"usedby=%S,using=%S,options=%S\r\n",
name, module->ver, module->apiver, (int)listLength(module->filters), usedby, using, options);
sdsfree(usedby);
sdsfree(using);
sdsfree(options);
}
dictReleaseIterator(di);
return info;
}
/* --------------------------------------------------------------------------
* Module Configurations API internals
* -------------------------------------------------------------------------- */
/* Check if the configuration name is already registered */
int isModuleConfigNameRegistered(ValkeyModule *module, const char *name) {
listNode *match = listSearchKey(module->module_configs, (void *)name);
return match != NULL;
}
/* Assert that the flags passed into the VM_RegisterConfig Suite are valid */
int moduleVerifyConfigFlags(unsigned int flags, configType type) {
if ((flags & ~(VALKEYMODULE_CONFIG_DEFAULT | VALKEYMODULE_CONFIG_IMMUTABLE | VALKEYMODULE_CONFIG_SENSITIVE |
VALKEYMODULE_CONFIG_HIDDEN | VALKEYMODULE_CONFIG_PROTECTED | VALKEYMODULE_CONFIG_DENY_LOADING |
VALKEYMODULE_CONFIG_BITFLAGS | VALKEYMODULE_CONFIG_MEMORY))) {
serverLogRaw(LL_WARNING, "Invalid flag(s) for configuration");
return VALKEYMODULE_ERR;
}
if (type != NUMERIC_CONFIG && flags & VALKEYMODULE_CONFIG_MEMORY) {
serverLogRaw(LL_WARNING, "Numeric flag provided for non-numeric configuration.");
return VALKEYMODULE_ERR;
}
if (type != ENUM_CONFIG && flags & VALKEYMODULE_CONFIG_BITFLAGS) {
serverLogRaw(LL_WARNING, "Enum flag provided for non-enum configuration.");
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
}
/* Verify a module resource or name has only alphanumeric characters, underscores
* or dashes. */
int moduleVerifyResourceName(const char *name) {
if (name[0] == '\0') {
return VALKEYMODULE_ERR;
}
for (size_t i = 0; name[i] != '\0'; i++) {
char curr_char = name[i];
if ((curr_char >= 'a' && curr_char <= 'z') || (curr_char >= 'A' && curr_char <= 'Z') ||
(curr_char >= '0' && curr_char <= '9') || (curr_char == '_') || (curr_char == '-')) {
continue;
}
serverLog(LL_WARNING, "Invalid character %c in Module resource name %s.", curr_char, name);
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
}
/* This is a series of set functions for each type that act as dispatchers for
* config.c to call module set callbacks. */
#define CONFIG_ERR_SIZE 256
static char configerr[CONFIG_ERR_SIZE];
static void propagateErrorString(ValkeyModuleString *err_in, const char **err) {
if (err_in) {
valkey_strlcpy(configerr, err_in->ptr, CONFIG_ERR_SIZE);
decrRefCount(err_in);
*err = configerr;
}
}
int setModuleBoolConfig(ModuleConfig *config, int val, const char **err) {
ValkeyModuleString *error = NULL;
int return_code = config->set_fn.set_bool(config->name, val, config->privdata, &error);
propagateErrorString(error, err);
return return_code == VALKEYMODULE_OK ? 1 : 0;
}
int setModuleStringConfig(ModuleConfig *config, sds strval, const char **err) {
ValkeyModuleString *error = NULL;
ValkeyModuleString *new = createStringObject(strval, sdslen(strval));
int return_code = config->set_fn.set_string(config->name, new, config->privdata, &error);
propagateErrorString(error, err);
decrRefCount(new);
return return_code == VALKEYMODULE_OK ? 1 : 0;
}
int setModuleEnumConfig(ModuleConfig *config, int val, const char **err) {
ValkeyModuleString *error = NULL;
int return_code = config->set_fn.set_enum(config->name, val, config->privdata, &error);
propagateErrorString(error, err);
return return_code == VALKEYMODULE_OK ? 1 : 0;
}
int setModuleNumericConfig(ModuleConfig *config, long long val, const char **err) {
ValkeyModuleString *error = NULL;
int return_code = config->set_fn.set_numeric(config->name, val, config->privdata, &error);
propagateErrorString(error, err);
return return_code == VALKEYMODULE_OK ? 1 : 0;
}
/* This is a series of get functions for each type that act as dispatchers for
* config.c to call module set callbacks. */
int getModuleBoolConfig(ModuleConfig *module_config) {
return module_config->get_fn.get_bool(module_config->name, module_config->privdata);
}
sds getModuleStringConfig(ModuleConfig *module_config) {
ValkeyModuleString *val = module_config->get_fn.get_string(module_config->name, module_config->privdata);
return val ? sdsdup(val->ptr) : NULL;
}
int getModuleEnumConfig(ModuleConfig *module_config) {
return module_config->get_fn.get_enum(module_config->name, module_config->privdata);
}
long long getModuleNumericConfig(ModuleConfig *module_config) {
return module_config->get_fn.get_numeric(module_config->name, module_config->privdata);
}
/* This function takes a module and a list of configs stored as sds NAME VALUE pairs.
* It attempts to call set on each of these configs. */
int loadModuleConfigs(ValkeyModule *module) {
listIter li;
listNode *ln;
const char *err = NULL;
listRewind(module->module_configs, &li);
while ((ln = listNext(&li))) {
ModuleConfig *module_config = listNodeValue(ln);
sds config_name = sdscatfmt(sdsempty(), "%s.%s", module->name, module_config->name);
dictEntry *config_argument = dictFind(server.module_configs_queue, config_name);
if (config_argument) {
if (!performModuleConfigSetFromName(dictGetKey(config_argument), dictGetVal(config_argument), &err)) {
serverLog(LL_WARNING, "Issue during loading of configuration %s : %s", (sds)dictGetKey(config_argument),
err);
sdsfree(config_name);
dictEmpty(server.module_configs_queue, NULL);
return VALKEYMODULE_ERR;
}
} else {
if (!performModuleConfigSetDefaultFromName(config_name, &err)) {
serverLog(LL_WARNING, "Issue attempting to set default value of configuration %s : %s",
module_config->name, err);
sdsfree(config_name);
dictEmpty(server.module_configs_queue, NULL);
return VALKEYMODULE_ERR;
}
}
dictDelete(server.module_configs_queue, config_name);
sdsfree(config_name);
}
module->configs_initialized = 1;
return VALKEYMODULE_OK;
}
/* Add module_config to the list if the apply and privdata do not match one already in it. */
void addModuleConfigApply(list *module_configs, ModuleConfig *module_config) {
if (!module_config->apply_fn) return;
listIter li;
listNode *ln;
ModuleConfig *pending_apply;
listRewind(module_configs, &li);
while ((ln = listNext(&li))) {
pending_apply = listNodeValue(ln);
if (pending_apply->apply_fn == module_config->apply_fn && pending_apply->privdata == module_config->privdata) {
return;
}
}
listAddNodeTail(module_configs, module_config);
}
/* Call apply on all module configs specified in set, if an apply function was specified at registration time. */
int moduleConfigApplyConfig(list *module_configs, const char **err, const char **err_arg_name) {
if (!listLength(module_configs)) return 1;
listIter li;
listNode *ln;
ModuleConfig *module_config;
ValkeyModuleString *error = NULL;
ValkeyModuleCtx ctx;
listRewind(module_configs, &li);
while ((ln = listNext(&li))) {
module_config = listNodeValue(ln);
moduleCreateContext(&ctx, module_config->module, VALKEYMODULE_CTX_NONE);
if (module_config->apply_fn(&ctx, module_config->privdata, &error)) {
if (err_arg_name) *err_arg_name = module_config->name;
propagateErrorString(error, err);
moduleFreeContext(&ctx);
return 0;
}
moduleFreeContext(&ctx);
}
return 1;
}
/* --------------------------------------------------------------------------
* ## Module Configurations API
* -------------------------------------------------------------------------- */
/* Create a module config object. */
ModuleConfig *
createModuleConfig(const char *name, ValkeyModuleConfigApplyFunc apply_fn, void *privdata, ValkeyModule *module) {
ModuleConfig *new_config = zmalloc(sizeof(ModuleConfig));
new_config->name = sdsnew(name);
new_config->apply_fn = apply_fn;
new_config->privdata = privdata;
new_config->module = module;
return new_config;
}
int moduleConfigValidityCheck(ValkeyModule *module, const char *name, unsigned int flags, configType type) {
if (!module->onload) {
errno = EBUSY;
return VALKEYMODULE_ERR;
}
if (moduleVerifyConfigFlags(flags, type) || moduleVerifyResourceName(name)) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
if (isModuleConfigNameRegistered(module, name)) {
serverLog(LL_WARNING, "Configuration by the name: %s already registered", name);
errno = EALREADY;
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
}
unsigned int maskModuleConfigFlags(unsigned int flags) {
unsigned int new_flags = 0;
if (flags & VALKEYMODULE_CONFIG_DEFAULT) new_flags |= MODIFIABLE_CONFIG;
if (flags & VALKEYMODULE_CONFIG_IMMUTABLE) new_flags |= IMMUTABLE_CONFIG;
if (flags & VALKEYMODULE_CONFIG_HIDDEN) new_flags |= HIDDEN_CONFIG;
if (flags & VALKEYMODULE_CONFIG_PROTECTED) new_flags |= PROTECTED_CONFIG;
if (flags & VALKEYMODULE_CONFIG_DENY_LOADING) new_flags |= DENY_LOADING_CONFIG;
return new_flags;
}
unsigned int maskModuleNumericConfigFlags(unsigned int flags) {
unsigned int new_flags = 0;
if (flags & VALKEYMODULE_CONFIG_MEMORY) new_flags |= MEMORY_CONFIG;
return new_flags;
}
unsigned int maskModuleEnumConfigFlags(unsigned int flags) {
unsigned int new_flags = 0;
if (flags & VALKEYMODULE_CONFIG_BITFLAGS) new_flags |= MULTI_ARG_CONFIG;
return new_flags;
}
/* Create a string config that users can interact with via the server config file,
* `CONFIG SET`, `CONFIG GET`, and `CONFIG REWRITE` commands.
*
* The actual config value is owned by the module, and the `getfn`, `setfn` and optional
* `applyfn` callbacks that are provided to the server in order to access or manipulate the
* value. The `getfn` callback retrieves the value from the module, while the `setfn`
* callback provides a value to be stored into the module config.
* The optional `applyfn` callback is called after a `CONFIG SET` command modified one or
* more configs using the `setfn` callback and can be used to atomically apply a config
* after several configs were changed together.
* If there are multiple configs with `applyfn` callbacks set by a single `CONFIG SET`
* command, they will be deduplicated if their `applyfn` function and `privdata` pointers
* are identical, and the callback will only be run once.
* Both the `setfn` and `applyfn` can return an error if the provided value is invalid or
* cannot be used.
* The config also declares a type for the value that is validated by the server and
* provided to the module. The config system provides the following types:
*
* * String: Binary safe string data.
* * Enum: One of a finite number of string tokens, provided during registration.
* * Numeric: 64 bit signed integer, which also supports min and max values.
* * Bool: Yes or no value.
*
* The `setfn` callback is expected to return VALKEYMODULE_OK when the value is successfully
* applied. It can also return VALKEYMODULE_ERR if the value can't be applied, and the
* *err pointer can be set with a ValkeyModuleString error message to provide to the client.
* This ValkeyModuleString will be freed by the server after returning from the set callback.
*
* All configs are registered with a name, a type, a default value, private data that is made
* available in the callbacks, as well as several flags that modify the behavior of the config.
* The name must only contain alphanumeric characters or dashes. The supported flags are:
*
* * VALKEYMODULE_CONFIG_DEFAULT: The default flags for a config. This creates a config that can be modified after
* startup.
* * VALKEYMODULE_CONFIG_IMMUTABLE: This config can only be provided loading time.
* * VALKEYMODULE_CONFIG_SENSITIVE: The value stored in this config is redacted from all logging.
* * VALKEYMODULE_CONFIG_HIDDEN: The name is hidden from `CONFIG GET` with pattern matching.
* * VALKEYMODULE_CONFIG_PROTECTED: This config will be only be modifiable based off the value of
* enable-protected-configs.
* * VALKEYMODULE_CONFIG_DENY_LOADING: This config is not modifiable while the server is loading data.
* * VALKEYMODULE_CONFIG_MEMORY: For numeric configs, this config will convert data unit notations into their byte
* equivalent.
* * VALKEYMODULE_CONFIG_BITFLAGS: For enum configs, this config will allow multiple entries to be combined as bit
* flags.
*
* Default values are used on startup to set the value if it is not provided via the config file
* or command line. Default values are also used to compare to on a config rewrite.
*
* Notes:
*
* 1. On string config sets that the string passed to the set callback will be freed after execution and the module
* must retain it.
* 2. On string config gets the string will not be consumed and will be valid after execution.
*
* Example implementation:
*
* ValkeyModuleString *strval;
* int adjustable = 1;
* ValkeyModuleString *getStringConfigCommand(const char *name, void *privdata) {
* return strval;
* }
*
* int setStringConfigCommand(const char *name, ValkeyModuleString *new, void *privdata, ValkeyModuleString **err) {
* if (adjustable) {
* ValkeyModule_Free(strval);
* ValkeyModule_RetainString(NULL, new);
* strval = new;
* return VALKEYMODULE_OK;
* }
* *err = ValkeyModule_CreateString(NULL, "Not adjustable.", 15);
* return VALKEYMODULE_ERR;
* }
* ...
* ValkeyModule_RegisterStringConfig(ctx, "string", NULL, VALKEYMODULE_CONFIG_DEFAULT, getStringConfigCommand,
* setStringConfigCommand, NULL, NULL);
*
* If the registration fails, VALKEYMODULE_ERR is returned and one of the following
* errno is set:
* * EBUSY: Registering the Config outside of ValkeyModule_OnLoad.
* * EINVAL: The provided flags are invalid for the registration or the name of the config contains invalid characters.
* * EALREADY: The provided configuration name is already used. */
int VM_RegisterStringConfig(ValkeyModuleCtx *ctx,
const char *name,
const char *default_val,
unsigned int flags,
ValkeyModuleConfigGetStringFunc getfn,
ValkeyModuleConfigSetStringFunc setfn,
ValkeyModuleConfigApplyFunc applyfn,
void *privdata) {
ValkeyModule *module = ctx->module;
if (moduleConfigValidityCheck(module, name, flags, NUMERIC_CONFIG)) {
return VALKEYMODULE_ERR;
}
ModuleConfig *new_config = createModuleConfig(name, applyfn, privdata, module);
new_config->get_fn.get_string = getfn;
new_config->set_fn.set_string = setfn;
listAddNodeTail(module->module_configs, new_config);
flags = maskModuleConfigFlags(flags);
addModuleStringConfig(module->name, name, flags, new_config, default_val ? sdsnew(default_val) : NULL);
return VALKEYMODULE_OK;
}
/* Create a bool config that server clients can interact with via the
* `CONFIG SET`, `CONFIG GET`, and `CONFIG REWRITE` commands. See
* ValkeyModule_RegisterStringConfig for detailed information about configs. */
int VM_RegisterBoolConfig(ValkeyModuleCtx *ctx,
const char *name,
int default_val,
unsigned int flags,
ValkeyModuleConfigGetBoolFunc getfn,
ValkeyModuleConfigSetBoolFunc setfn,
ValkeyModuleConfigApplyFunc applyfn,
void *privdata) {
ValkeyModule *module = ctx->module;
if (moduleConfigValidityCheck(module, name, flags, BOOL_CONFIG)) {
return VALKEYMODULE_ERR;
}
ModuleConfig *new_config = createModuleConfig(name, applyfn, privdata, module);
new_config->get_fn.get_bool = getfn;
new_config->set_fn.set_bool = setfn;
listAddNodeTail(module->module_configs, new_config);
flags = maskModuleConfigFlags(flags);
addModuleBoolConfig(module->name, name, flags, new_config, default_val);
return VALKEYMODULE_OK;
}
/*
* Create an enum config that server clients can interact with via the
* `CONFIG SET`, `CONFIG GET`, and `CONFIG REWRITE` commands.
* Enum configs are a set of string tokens to corresponding integer values, where
* the string value is exposed to clients but the inter value is passed to the server
* and the module. These values are defined in enum_values, an array
* of null-terminated c strings, and int_vals, an array of enum values who has an
* index partner in enum_values.
* Example Implementation:
* const char *enum_vals[3] = {"first", "second", "third"};
* const int int_vals[3] = {0, 2, 4};
* int enum_val = 0;
*
* int getEnumConfigCommand(const char *name, void *privdata) {
* return enum_val;
* }
*
* int setEnumConfigCommand(const char *name, int val, void *privdata, const char **err) {
* enum_val = val;
* return VALKEYMODULE_OK;
* }
* ...
* ValkeyModule_RegisterEnumConfig(ctx, "enum", 0, VALKEYMODULE_CONFIG_DEFAULT, enum_vals, int_vals, 3,
* getEnumConfigCommand, setEnumConfigCommand, NULL, NULL);
*
* Note that you can use VALKEYMODULE_CONFIG_BITFLAGS so that multiple enum string
* can be combined into one integer as bit flags, in which case you may want to
* sort your enums so that the preferred combinations are present first.
*
* See ValkeyModule_RegisterStringConfig for detailed general information about configs. */
int VM_RegisterEnumConfig(ValkeyModuleCtx *ctx,
const char *name,
int default_val,
unsigned int flags,
const char **enum_values,
const int *int_values,
int num_enum_vals,
ValkeyModuleConfigGetEnumFunc getfn,
ValkeyModuleConfigSetEnumFunc setfn,
ValkeyModuleConfigApplyFunc applyfn,
void *privdata) {
ValkeyModule *module = ctx->module;
if (moduleConfigValidityCheck(module, name, flags, ENUM_CONFIG)) {
return VALKEYMODULE_ERR;
}
ModuleConfig *new_config = createModuleConfig(name, applyfn, privdata, module);
new_config->get_fn.get_enum = getfn;
new_config->set_fn.set_enum = setfn;
configEnum *enum_vals = zmalloc((num_enum_vals + 1) * sizeof(configEnum));
for (int i = 0; i < num_enum_vals; i++) {
enum_vals[i].name = zstrdup(enum_values[i]);
enum_vals[i].val = int_values[i];
}
enum_vals[num_enum_vals].name = NULL;
enum_vals[num_enum_vals].val = 0;
listAddNodeTail(module->module_configs, new_config);
flags = maskModuleConfigFlags(flags) | maskModuleEnumConfigFlags(flags);
addModuleEnumConfig(module->name, name, flags, new_config, default_val, enum_vals);
return VALKEYMODULE_OK;
}
/*
* Create an integer config that server clients can interact with via the
* `CONFIG SET`, `CONFIG GET`, and `CONFIG REWRITE` commands. See
* ValkeyModule_RegisterStringConfig for detailed information about configs. */
int VM_RegisterNumericConfig(ValkeyModuleCtx *ctx,
const char *name,
long long default_val,
unsigned int flags,
long long min,
long long max,
ValkeyModuleConfigGetNumericFunc getfn,
ValkeyModuleConfigSetNumericFunc setfn,
ValkeyModuleConfigApplyFunc applyfn,
void *privdata) {
ValkeyModule *module = ctx->module;
if (moduleConfigValidityCheck(module, name, flags, NUMERIC_CONFIG)) {
return VALKEYMODULE_ERR;
}
ModuleConfig *new_config = createModuleConfig(name, applyfn, privdata, module);
new_config->get_fn.get_numeric = getfn;
new_config->set_fn.set_numeric = setfn;
listAddNodeTail(module->module_configs, new_config);
unsigned int numeric_flags = maskModuleNumericConfigFlags(flags);
flags = maskModuleConfigFlags(flags);
addModuleNumericConfig(module->name, name, flags, new_config, default_val, numeric_flags, min, max);
return VALKEYMODULE_OK;
}
/* Applies all pending configurations on the module load. This should be called
* after all of the configurations have been registered for the module inside of ValkeyModule_OnLoad.
* This will return VALKEYMODULE_ERR if it is called outside ValkeyModule_OnLoad.
* This API needs to be called when configurations are provided in either `MODULE LOADEX`
* or provided as startup arguments. */
int VM_LoadConfigs(ValkeyModuleCtx *ctx) {
if (!ctx || !ctx->module || !ctx->module->onload) {
return VALKEYMODULE_ERR;
}
ValkeyModule *module = ctx->module;
/* Load configs from conf file or arguments from loadex */
if (loadModuleConfigs(module)) return VALKEYMODULE_ERR;
return VALKEYMODULE_OK;
}
/* --------------------------------------------------------------------------
* ## RDB load/save API
* -------------------------------------------------------------------------- */
#define VALKEYMODULE_RDB_STREAM_FILE 1
typedef struct ValkeyModuleRdbStream {
int type;
union {
char *filename;
} data;
} ValkeyModuleRdbStream;
/* Create a stream object to save/load RDB to/from a file.
*
* This function returns a pointer to ValkeyModuleRdbStream which is owned
* by the caller. It requires a call to VM_RdbStreamFree() to free
* the object. */
ValkeyModuleRdbStream *VM_RdbStreamCreateFromFile(const char *filename) {
ValkeyModuleRdbStream *stream = zmalloc(sizeof(*stream));
stream->type = VALKEYMODULE_RDB_STREAM_FILE;
stream->data.filename = zstrdup(filename);
return stream;
}
/* Release an RDB stream object. */
void VM_RdbStreamFree(ValkeyModuleRdbStream *stream) {
switch (stream->type) {
case VALKEYMODULE_RDB_STREAM_FILE: zfree(stream->data.filename); break;
default: serverAssert(0); break;
}
zfree(stream);
}
/* Load RDB file from the `stream`. Dataset will be cleared first and then RDB
* file will be loaded.
*
* `flags` must be zero. This parameter is for future use.
*
* On success VALKEYMODULE_OK is returned, otherwise VALKEYMODULE_ERR is returned
* and errno is set accordingly.
*
* Example:
*
* ValkeyModuleRdbStream *s = ValkeyModule_RdbStreamCreateFromFile("exp.rdb");
* ValkeyModule_RdbLoad(ctx, s, 0);
* ValkeyModule_RdbStreamFree(s);
*/
int VM_RdbLoad(ValkeyModuleCtx *ctx, ValkeyModuleRdbStream *stream, int flags) {
UNUSED(ctx);
if (!stream || flags != 0) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
/* Not allowed on replicas. */
if (server.primary_host != NULL) {
errno = ENOTSUP;
return VALKEYMODULE_ERR;
}
/* Drop replicas if exist. */
disconnectReplicas();
freeReplicationBacklog();
/* Stop and kill existing AOF rewriting fork as it is saving outdated data,
* we will re-enable it after the rdbLoad. Also killing it will prevent COW
* memory issue. */
if (server.aof_state != AOF_OFF) stopAppendOnly();
/* Kill existing RDB fork as it is saving outdated data. Also killing it
* will prevent COW memory issue. */
if (server.child_type == CHILD_TYPE_RDB) killRDBChild();
emptyData(-1, EMPTYDB_NO_FLAGS, NULL);
/* rdbLoad() can go back to the networking and process network events. If
* VM_RdbLoad() is called inside a command callback, we don't want to
* process the current client. Otherwise, we may free the client or try to
* process next message while we are already in the command callback. */
if (server.current_client) protectClient(server.current_client);
serverAssert(stream->type == VALKEYMODULE_RDB_STREAM_FILE);
int ret = rdbLoad(stream->data.filename, NULL, RDBFLAGS_NONE);
if (server.current_client) unprotectClient(server.current_client);
/* Here we need to decide whether to enable the AOF based on the aof_enabled,
* since the previous stopAppendOnly sets aof_state to AOF_OFF. */
if (server.aof_enabled) startAppendOnly();
if (ret != RDB_OK) {
errno = (ret == RDB_NOT_EXIST) ? ENOENT : EIO;
return VALKEYMODULE_ERR;
}
errno = 0;
return VALKEYMODULE_OK;
}
/* Save dataset to the RDB stream.
*
* `flags` must be zero. This parameter is for future use.
*
* On success VALKEYMODULE_OK is returned, otherwise VALKEYMODULE_ERR is returned
* and errno is set accordingly.
*
* Example:
*
* ValkeyModuleRdbStream *s = ValkeyModule_RdbStreamCreateFromFile("exp.rdb");
* ValkeyModule_RdbSave(ctx, s, 0);
* ValkeyModule_RdbStreamFree(s);
*/
int VM_RdbSave(ValkeyModuleCtx *ctx, ValkeyModuleRdbStream *stream, int flags) {
UNUSED(ctx);
if (!stream || flags != 0) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
serverAssert(stream->type == VALKEYMODULE_RDB_STREAM_FILE);
if (rdbSaveToFile(stream->data.filename) != C_OK) {
return VALKEYMODULE_ERR;
}
errno = 0;
return VALKEYMODULE_OK;
}
/* Registers a new scripting engine in the server.
*
* - `module_ctx`: the module context object.
*
* - `engine_name`: the name of the scripting engine. This name will match
* against the engine name specified in the script header using a shebang.
*
* - `engine_ctx`: engine specific context pointer.
*
* - `engine_methods`: the struct with the scripting engine callback functions
* pointers.
*
* Returns VALKEYMODULE_OK if the engine is successfully registered, and
* VALKEYMODULE_ERR in case some failure occurs. In case of a failure, an error
* message is logged.
*/
int VM_RegisterScriptingEngine(ValkeyModuleCtx *module_ctx,
const char *engine_name,
ValkeyModuleScriptingEngineCtx *engine_ctx,
ValkeyModuleScriptingEngineMethods *engine_methods) {
serverLog(LL_DEBUG, "Registering a new scripting engine: %s", engine_name);
if (engine_methods->version > VALKEYMODULE_SCRIPTING_ENGINE_ABI_VERSION) {
serverLog(LL_WARNING, "The engine implementation version is greater "
"than what this server supports. Server ABI "
"Version: %lu, Engine ABI version: %lu",
VALKEYMODULE_SCRIPTING_ENGINE_ABI_VERSION,
(unsigned long)engine_methods->version);
return VALKEYMODULE_ERR;
}
if (scriptingEngineManagerRegister(engine_name,
module_ctx->module,
engine_ctx,
engine_methods) != C_OK) {
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
}
/* Removes the scripting engine from the server.
*
* `engine_name` is the name of the scripting engine.
*
* Returns VALKEYMODULE_OK.
*
*/
int VM_UnregisterScriptingEngine(ValkeyModuleCtx *ctx, const char *engine_name) {
UNUSED(ctx);
if (scriptingEngineManagerUnregister(engine_name) != C_OK) {
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
}
/* MODULE command.
*
* MODULE LIST
* MODULE LOAD <path> [args...]
* MODULE LOADEX <path> [[CONFIG NAME VALUE] [CONFIG NAME VALUE]] [ARGS ...]
* MODULE UNLOAD <name>
*/
void moduleCommand(client *c) {
char *subcmd = c->argv[1]->ptr;
if (c->argc == 2 && !strcasecmp(subcmd, "help")) {
const char *help[] = {
"LIST",
" Return a list of loaded modules.",
"LOAD <path> [<arg> ...]",
" Load a module library from <path>, passing to it any optional arguments.",
"LOADEX <path> [[CONFIG NAME VALUE] [CONFIG NAME VALUE]] [ARGS ...]",
" Load a module library from <path>, while passing it module configurations and optional arguments.",
"UNLOAD <name>",
" Unload a module.",
NULL};
addReplyHelp(c, help);
} else if (!strcasecmp(subcmd, "load") && c->argc >= 3) {
robj **argv = NULL;
int argc = 0;
if (c->argc > 3) {
argc = c->argc - 3;
argv = &c->argv[3];
}
if (moduleLoad(c->argv[2]->ptr, (void **)argv, argc, 0) == C_OK)
addReply(c, shared.ok);
else
addReplyError(c, "Error loading the extension. Please check the server logs.");
} else if (!strcasecmp(subcmd, "loadex") && c->argc >= 3) {
robj **argv = NULL;
int argc = 0;
if (c->argc > 3) {
argc = c->argc - 3;
argv = &c->argv[3];
}
/* If this is a loadex command we want to populate server.module_configs_queue with
* sds NAME VALUE pairs. We also want to increment argv to just after ARGS, if supplied. */
if (parseLoadexArguments((ValkeyModuleString ***)&argv, &argc) == VALKEYMODULE_OK &&
moduleLoad(c->argv[2]->ptr, (void **)argv, argc, 1) == C_OK)
addReply(c, shared.ok);
else {
dictEmpty(server.module_configs_queue, NULL);
addReplyError(c, "Error loading the extension. Please check the server logs.");
}
} else if (!strcasecmp(subcmd, "unload") && c->argc == 3) {
const char *errmsg = NULL;
if (moduleUnload(c->argv[2]->ptr, &errmsg) == C_OK)
addReply(c, shared.ok);
else {
if (errmsg == NULL) errmsg = "operation not possible.";
addReplyErrorFormat(c, "Error unloading module: %s", errmsg);
serverLog(LL_WARNING, "Error unloading module %s: %s", (sds)c->argv[2]->ptr, errmsg);
}
} else if (!strcasecmp(subcmd, "list") && c->argc == 2) {
addReplyLoadedModules(c);
} else {
addReplySubcommandSyntaxError(c);
return;
}
}
/* Return the number of registered modules. */
size_t moduleCount(void) {
return dictSize(modules);
}
/* --------------------------------------------------------------------------
* ## Key eviction API
* -------------------------------------------------------------------------- */
/* Set the key last access time for LRU based eviction. not relevant if the
* servers's maxmemory policy is LFU based. Value is idle time in milliseconds.
* returns VALKEYMODULE_OK if the LRU was updated, VALKEYMODULE_ERR otherwise. */
int VM_SetLRU(ValkeyModuleKey *key, mstime_t lru_idle) {
if (!key->value) return VALKEYMODULE_ERR;
if (objectSetLRUOrLFU(key->value, -1, lru_idle, lru_idle >= 0 ? LRU_CLOCK() : 0, 1)) return VALKEYMODULE_OK;
return VALKEYMODULE_ERR;
}
/* Gets the key last access time.
* Value is idletime in milliseconds or -1 if the server's eviction policy is
* LFU based.
* returns VALKEYMODULE_OK if when key is valid. */
int VM_GetLRU(ValkeyModuleKey *key, mstime_t *lru_idle) {
*lru_idle = -1;
if (!key->value) return VALKEYMODULE_ERR;
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) return VALKEYMODULE_OK;
*lru_idle = estimateObjectIdleTime(key->value);
return VALKEYMODULE_OK;
}
/* Set the key access frequency. only relevant if the server's maxmemory policy
* is LFU based.
* The frequency is a logarithmic counter that provides an indication of
* the access frequencyonly (must be <= 255).
* returns VALKEYMODULE_OK if the LFU was updated, VALKEYMODULE_ERR otherwise. */
int VM_SetLFU(ValkeyModuleKey *key, long long lfu_freq) {
if (!key->value) return VALKEYMODULE_ERR;
if (objectSetLRUOrLFU(key->value, lfu_freq, -1, 0, 1)) return VALKEYMODULE_OK;
return VALKEYMODULE_ERR;
}
/* Gets the key access frequency or -1 if the server's eviction policy is not
* LFU based.
* returns VALKEYMODULE_OK if when key is valid. */
int VM_GetLFU(ValkeyModuleKey *key, long long *lfu_freq) {
*lfu_freq = -1;
if (!key->value) return VALKEYMODULE_ERR;
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) *lfu_freq = LFUDecrAndReturn(key->value);
return VALKEYMODULE_OK;
}
/* --------------------------------------------------------------------------
* ## Miscellaneous APIs
* -------------------------------------------------------------------------- */
/**
* Returns the full module options flags mask, using the return value
* the module can check if a certain set of module options are supported
* by the server version in use.
* Example:
*
* int supportedFlags = VM_GetModuleOptionsAll();
* if (supportedFlags & VALKEYMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS) {
* // VALKEYMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS is supported
* } else{
* // VALKEYMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS is not supported
* }
*/
int VM_GetModuleOptionsAll(void) {
return _VALKEYMODULE_OPTIONS_FLAGS_NEXT - 1;
}
/**
* Returns the full ContextFlags mask, using the return value
* the module can check if a certain set of flags are supported
* by the server version in use.
* Example:
*
* int supportedFlags = VM_GetContextFlagsAll();
* if (supportedFlags & VALKEYMODULE_CTX_FLAGS_MULTI) {
* // VALKEYMODULE_CTX_FLAGS_MULTI is supported
* } else{
* // VALKEYMODULE_CTX_FLAGS_MULTI is not supported
* }
*/
int VM_GetContextFlagsAll(void) {
return _VALKEYMODULE_CTX_FLAGS_NEXT - 1;
}
/**
* Returns the full KeyspaceNotification mask, using the return value
* the module can check if a certain set of flags are supported
* by the server version in use.
* Example:
*
* int supportedFlags = VM_GetKeyspaceNotificationFlagsAll();
* if (supportedFlags & VALKEYMODULE_NOTIFY_LOADED) {
* // VALKEYMODULE_NOTIFY_LOADED is supported
* } else{
* // VALKEYMODULE_NOTIFY_LOADED is not supported
* }
*/
int VM_GetKeyspaceNotificationFlagsAll(void) {
return _VALKEYMODULE_NOTIFY_NEXT - 1;
}
/**
* Return the server version in format of 0x00MMmmpp.
* Example for 6.0.7 the return value will be 0x00060007.
*/
int VM_GetServerVersion(void) {
return VALKEY_VERSION_NUM;
}
/**
* Return the current server runtime value of VALKEYMODULE_TYPE_METHOD_VERSION.
* You can use that when calling VM_CreateDataType to know which fields of
* ValkeyModuleTypeMethods are gonna be supported and which will be ignored.
*/
int VM_GetTypeMethodVersion(void) {
return VALKEYMODULE_TYPE_METHOD_VERSION;
}
/* Replace the value assigned to a module type.
*
* The key must be open for writing, have an existing value, and have a moduleType
* that matches the one specified by the caller.
*
* Unlike VM_ModuleTypeSetValue() which will free the old value, this function
* simply swaps the old value with the new value.
*
* The function returns VALKEYMODULE_OK on success, VALKEYMODULE_ERR on errors
* such as:
*
* 1. Key is not opened for writing.
* 2. Key is not a module data type key.
* 3. Key is a module datatype other than 'mt'.
*
* If old_value is non-NULL, the old value is returned by reference.
*/
int VM_ModuleTypeReplaceValue(ValkeyModuleKey *key, moduleType *mt, void *new_value, void **old_value) {
if (!(key->mode & VALKEYMODULE_WRITE) || key->iter) return VALKEYMODULE_ERR;
if (!key->value || key->value->type != OBJ_MODULE) return VALKEYMODULE_ERR;
moduleValue *mv = key->value->ptr;
if (mv->type != mt) return VALKEYMODULE_ERR;
if (old_value) *old_value = mv->value;
mv->value = new_value;
return VALKEYMODULE_OK;
}
/* For a specified command, parse its arguments and return an array that
* contains the indexes of all key name arguments. This function is
* essentially a more efficient way to do `COMMAND GETKEYS`.
*
* The out_flags argument is optional, and can be set to NULL.
* When provided it is filled with VALKEYMODULE_CMD_KEY_ flags in matching
* indexes with the key indexes of the returned array.
*
* A NULL return value indicates the specified command has no keys, or
* an error condition. Error conditions are indicated by setting errno
* as follows:
*
* * ENOENT: Specified command does not exist.
* * EINVAL: Invalid command arity specified.
*
* NOTE: The returned array is not a Module object so it does not
* get automatically freed even when auto-memory is used. The caller
* must explicitly call VM_Free() to free it, same as the out_flags pointer if
* used.
*/
int *VM_GetCommandKeysWithFlags(ValkeyModuleCtx *ctx,
ValkeyModuleString **argv,
int argc,
int *num_keys,
int **out_flags) {
UNUSED(ctx);
struct serverCommand *cmd;
int *res = NULL;
/* Find command */
if ((cmd = lookupCommand(argv, argc)) == NULL) {
errno = ENOENT;
return NULL;
}
/* Bail out if command has no keys */
if (!doesCommandHaveKeys(cmd)) {
errno = 0;
return NULL;
}
if ((cmd->arity > 0 && cmd->arity != argc) || (argc < -cmd->arity)) {
errno = EINVAL;
return NULL;
}
getKeysResult result;
initGetKeysResult(&result);
getKeysFromCommand(cmd, argv, argc, &result);
*num_keys = result.numkeys;
if (!result.numkeys) {
errno = 0;
getKeysFreeResult(&result);
return NULL;
}
/* The return value here expects an array of key positions */
unsigned long int size = sizeof(int) * result.numkeys;
res = zmalloc(size);
if (out_flags) *out_flags = zmalloc(size);
for (int i = 0; i < result.numkeys; i++) {
res[i] = result.keys[i].pos;
if (out_flags) (*out_flags)[i] = moduleConvertKeySpecsFlags(result.keys[i].flags, 0);
}
return res;
}
/* Identical to VM_GetCommandKeysWithFlags when flags are not needed. */
int *VM_GetCommandKeys(ValkeyModuleCtx *ctx, ValkeyModuleString **argv, int argc, int *num_keys) {
return VM_GetCommandKeysWithFlags(ctx, argv, argc, num_keys, NULL);
}
/* Return the name of the command currently running */
const char *VM_GetCurrentCommandName(ValkeyModuleCtx *ctx) {
if (!ctx || !ctx->client || !ctx->client->cmd) return NULL;
return (const char *)ctx->client->cmd->fullname;
}
/* --------------------------------------------------------------------------
* ## Defrag API
* -------------------------------------------------------------------------- */
/* The defrag context, used to manage state during calls to the data type
* defrag callback.
*/
struct ValkeyModuleDefragCtx {
monotime endtime;
unsigned long *cursor;
struct serverObject *key; /* Optional name of key processed, NULL when unknown. */
int dbid; /* The dbid of the key being processed, -1 when unknown. */
};
/* Register a defrag callback for global data, i.e. anything that the module
* may allocate that is not tied to a specific data type.
*/
int VM_RegisterDefragFunc(ValkeyModuleCtx *ctx, ValkeyModuleDefragFunc cb) {
ctx->module->defrag_cb = cb;
return VALKEYMODULE_OK;
}
/* When the data type defrag callback iterates complex structures, this
* function should be called periodically. A zero (false) return
* indicates the callback may continue its work. A non-zero value (true)
* indicates it should stop.
*
* When stopped, the callback may use VM_DefragCursorSet() to store its
* position so it can later use VM_DefragCursorGet() to resume defragging.
*
* When stopped and more work is left to be done, the callback should
* return 1. Otherwise, it should return 0.
*
* NOTE: Modules should consider the frequency in which this function is called,
* so it generally makes sense to do small batches of work in between calls.
*/
int VM_DefragShouldStop(ValkeyModuleDefragCtx *ctx) {
return (ctx->endtime != 0 && ctx->endtime <= getMonotonicUs());
}
/* Store an arbitrary cursor value for future re-use.
*
* This should only be called if VM_DefragShouldStop() has returned a non-zero
* value and the defrag callback is about to exit without fully iterating its
* data type.
*
* This behavior is reserved to cases where late defrag is performed. Late
* defrag is selected for keys that implement the `free_effort` callback and
* return a `free_effort` value that is larger than the defrag
* 'active-defrag-max-scan-fields' configuration directive.
*
* Smaller keys, keys that do not implement `free_effort` or the global
* defrag callback are not called in late-defrag mode. In those cases, a
* call to this function will return VALKEYMODULE_ERR.
*
* The cursor may be used by the module to represent some progress into the
* module's data type. Modules may also store additional cursor-related
* information locally and use the cursor as a flag that indicates when
* traversal of a new key begins. This is possible because the API makes
* a guarantee that concurrent defragmentation of multiple keys will
* not be performed.
*/
int VM_DefragCursorSet(ValkeyModuleDefragCtx *ctx, unsigned long cursor) {
if (!ctx->cursor) return VALKEYMODULE_ERR;
*ctx->cursor = cursor;
return VALKEYMODULE_OK;
}
/* Fetch a cursor value that has been previously stored using VM_DefragCursorSet().
*
* If not called for a late defrag operation, VALKEYMODULE_ERR will be returned and
* the cursor should be ignored. See VM_DefragCursorSet() for more details on
* defrag cursors.
*/
int VM_DefragCursorGet(ValkeyModuleDefragCtx *ctx, unsigned long *cursor) {
if (!ctx->cursor) return VALKEYMODULE_ERR;
*cursor = *ctx->cursor;
return VALKEYMODULE_OK;
}
/* Defrag a memory allocation previously allocated by VM_Alloc, VM_Calloc, etc.
* The defragmentation process involves allocating a new memory block and copying
* the contents to it, like realloc().
*
* If defragmentation was not necessary, NULL is returned and the operation has
* no other effect.
*
* If a non-NULL value is returned, the caller should use the new pointer instead
* of the old one and update any reference to the old pointer, which must not
* be used again.
*/
void *VM_DefragAlloc(ValkeyModuleDefragCtx *ctx, void *ptr) {
UNUSED(ctx);
return activeDefragAlloc(ptr);
}
/* Defrag a ValkeyModuleString previously allocated by VM_Alloc, VM_Calloc, etc.
* See VM_DefragAlloc() for more information on how the defragmentation process
* works.
*
* NOTE: It is only possible to defrag strings that have a single reference.
* Typically this means strings retained with VM_RetainString or VM_HoldString
* may not be defragmentable. One exception is command argvs which, if retained
* by the module, will end up with a single reference (because the reference
* on the server side is dropped as soon as the command callback returns).
*/
ValkeyModuleString *VM_DefragValkeyModuleString(ValkeyModuleDefragCtx *ctx, ValkeyModuleString *str) {
UNUSED(ctx);
return activeDefragStringOb(str);
}
/* Perform a late defrag of a module datatype key.
*
* Returns a zero value (and initializes the cursor) if no more needs to be done,
* or a non-zero value otherwise.
*/
int moduleLateDefrag(robj *key, robj *value, unsigned long *cursor, monotime endtime, int dbid) {
moduleValue *mv = value->ptr;
moduleType *mt = mv->type;
ValkeyModuleDefragCtx defrag_ctx = {endtime, cursor, key, dbid};
/* Invoke callback. Note that the callback may be missing if the key has been
* replaced with a different type since our last visit.
*/
int ret = 0;
if (mt->defrag) ret = mt->defrag(&defrag_ctx, key, &mv->value);
if (!ret) {
*cursor = 0; /* No more work to do */
return 0;
}
return 1;
}
/* Attempt to defrag a module data type value. Depending on complexity,
* the operation may happen immediately or be scheduled for later.
*
* Returns 1 if the operation has been completed or 0 if it needs to
* be scheduled for late defrag.
*/
int moduleDefragValue(robj *key, robj *value, int dbid) {
moduleValue *mv = value->ptr;
moduleType *mt = mv->type;
/* Try to defrag moduleValue itself regardless of whether or not
* defrag callbacks are provided.
*/
moduleValue *newmv = activeDefragAlloc(mv);
if (newmv) {
value->ptr = mv = newmv;
}
if (!mt->defrag) return 1;
/* Use free_effort to determine complexity of module value, and if
* necessary schedule it for defragLater instead of quick immediate
* defrag.
*/
size_t effort = moduleGetFreeEffort(key, value, dbid);
if (!effort) effort = SIZE_MAX;
if (effort > server.active_defrag_max_scan_fields) {
return 0; /* Defrag later */
}
ValkeyModuleDefragCtx defrag_ctx = {0, NULL, key, dbid};
mt->defrag(&defrag_ctx, key, &mv->value);
return 1;
}
/* Call registered module API defrag functions */
void moduleDefragGlobals(void) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct ValkeyModule *module = dictGetVal(de);
if (!module->defrag_cb) continue;
ValkeyModuleDefragCtx defrag_ctx = {0, NULL, NULL, -1};
module->defrag_cb(&defrag_ctx);
}
dictReleaseIterator(di);
}
/* Returns the name of the key currently being processed.
* There is no guarantee that the key name is always available, so this may return NULL.
*/
const ValkeyModuleString *VM_GetKeyNameFromDefragCtx(ValkeyModuleDefragCtx *ctx) {
return ctx->key;
}
/* Returns the database id of the key currently being processed.
* There is no guarantee that this info is always available, so this may return -1.
*/
int VM_GetDbIdFromDefragCtx(ValkeyModuleDefragCtx *ctx) {
return ctx->dbid;
}
/* Register all the APIs we export. Keep this function at the end of the
* file so that's easy to seek it to add new entries. */
void moduleRegisterCoreAPI(void) {
server.moduleapi = dictCreate(&moduleAPIDictType);
server.sharedapi = dictCreate(&moduleAPIDictType);
REGISTER_API(Alloc);
REGISTER_API(TryAlloc);
REGISTER_API(Calloc);
REGISTER_API(TryCalloc);
REGISTER_API(Realloc);
REGISTER_API(TryRealloc);
REGISTER_API(Free);
REGISTER_API(Strdup);
REGISTER_API(CreateCommand);
REGISTER_API(GetCommand);
REGISTER_API(CreateSubcommand);
REGISTER_API(SetCommandInfo);
REGISTER_API(SetCommandACLCategories);
REGISTER_API(AddACLCategory);
REGISTER_API(SetModuleAttribs);
REGISTER_API(IsModuleNameBusy);
REGISTER_API(WrongArity);
REGISTER_API(UpdateRuntimeArgs);
REGISTER_API(ReplyWithLongLong);
REGISTER_API(ReplyWithError);
REGISTER_API(ReplyWithErrorFormat);
REGISTER_API(ReplyWithSimpleString);
REGISTER_API(ReplyWithArray);
REGISTER_API(ReplyWithMap);
REGISTER_API(ReplyWithSet);
REGISTER_API(ReplyWithAttribute);
REGISTER_API(ReplyWithNullArray);
REGISTER_API(ReplyWithEmptyArray);
REGISTER_API(ReplySetArrayLength);
REGISTER_API(ReplySetMapLength);
REGISTER_API(ReplySetSetLength);
REGISTER_API(ReplySetAttributeLength);
REGISTER_API(ReplyWithString);
REGISTER_API(ReplyWithEmptyString);
REGISTER_API(ReplyWithVerbatimString);
REGISTER_API(ReplyWithVerbatimStringType);
REGISTER_API(ReplyWithStringBuffer);
REGISTER_API(ReplyWithCString);
REGISTER_API(ReplyWithNull);
REGISTER_API(ReplyWithBool);
REGISTER_API(ReplyWithCallReply);
REGISTER_API(ReplyWithDouble);
REGISTER_API(ReplyWithBigNumber);
REGISTER_API(ReplyWithLongDouble);
REGISTER_API(GetSelectedDb);
REGISTER_API(SelectDb);
REGISTER_API(KeyExists);
REGISTER_API(OpenKey);
REGISTER_API(GetOpenKeyModesAll);
REGISTER_API(CloseKey);
REGISTER_API(KeyType);
REGISTER_API(ValueLength);
REGISTER_API(ListPush);
REGISTER_API(ListPop);
REGISTER_API(ListGet);
REGISTER_API(ListSet);
REGISTER_API(ListInsert);
REGISTER_API(ListDelete);
REGISTER_API(StringToLongLong);
REGISTER_API(StringToULongLong);
REGISTER_API(StringToDouble);
REGISTER_API(StringToLongDouble);
REGISTER_API(StringToStreamID);
REGISTER_API(Call);
REGISTER_API(CallReplyProto);
REGISTER_API(FreeCallReply);
REGISTER_API(CallReplyInteger);
REGISTER_API(CallReplyDouble);
REGISTER_API(CallReplyBigNumber);
REGISTER_API(CallReplyVerbatim);
REGISTER_API(CallReplyBool);
REGISTER_API(CallReplySetElement);
REGISTER_API(CallReplyMapElement);
REGISTER_API(CallReplyAttributeElement);
REGISTER_API(CallReplyPromiseSetUnblockHandler);
REGISTER_API(CallReplyPromiseAbort);
REGISTER_API(CallReplyAttribute);
REGISTER_API(CallReplyType);
REGISTER_API(CallReplyLength);
REGISTER_API(CallReplyArrayElement);
REGISTER_API(CallReplyStringPtr);
REGISTER_API(CreateStringFromCallReply);
REGISTER_API(CreateString);
REGISTER_API(CreateStringFromLongLong);
REGISTER_API(CreateStringFromULongLong);
REGISTER_API(CreateStringFromDouble);
REGISTER_API(CreateStringFromLongDouble);
REGISTER_API(CreateStringFromString);
REGISTER_API(CreateStringFromStreamID);
REGISTER_API(CreateStringPrintf);
REGISTER_API(FreeString);
REGISTER_API(StringPtrLen);
REGISTER_API(AutoMemory);
REGISTER_API(Replicate);
REGISTER_API(ReplicateVerbatim);
REGISTER_API(DeleteKey);
REGISTER_API(UnlinkKey);
REGISTER_API(StringSet);
REGISTER_API(StringDMA);
REGISTER_API(StringTruncate);
REGISTER_API(SetExpire);
REGISTER_API(GetExpire);
REGISTER_API(SetAbsExpire);
REGISTER_API(GetAbsExpire);
REGISTER_API(ResetDataset);
REGISTER_API(DbSize);
REGISTER_API(RandomKey);
REGISTER_API(ZsetAdd);
REGISTER_API(ZsetIncrby);
REGISTER_API(ZsetScore);
REGISTER_API(ZsetRem);
REGISTER_API(ZsetRangeStop);
REGISTER_API(ZsetFirstInScoreRange);
REGISTER_API(ZsetLastInScoreRange);
REGISTER_API(ZsetFirstInLexRange);
REGISTER_API(ZsetLastInLexRange);
REGISTER_API(ZsetRangeCurrentElement);
REGISTER_API(ZsetRangeNext);
REGISTER_API(ZsetRangePrev);
REGISTER_API(ZsetRangeEndReached);
REGISTER_API(HashSet);
REGISTER_API(HashGet);
REGISTER_API(StreamAdd);
REGISTER_API(StreamDelete);
REGISTER_API(StreamIteratorStart);
REGISTER_API(StreamIteratorStop);
REGISTER_API(StreamIteratorNextID);
REGISTER_API(StreamIteratorNextField);
REGISTER_API(StreamIteratorDelete);
REGISTER_API(StreamTrimByLength);
REGISTER_API(StreamTrimByID);
REGISTER_API(IsKeysPositionRequest);
REGISTER_API(KeyAtPos);
REGISTER_API(KeyAtPosWithFlags);
REGISTER_API(IsChannelsPositionRequest);
REGISTER_API(ChannelAtPosWithFlags);
REGISTER_API(GetClientId);
REGISTER_API(GetClientUserNameById);
REGISTER_API(GetContextFlags);
REGISTER_API(AvoidReplicaTraffic);
REGISTER_API(PoolAlloc);
REGISTER_API(CreateDataType);
REGISTER_API(ModuleTypeSetValue);
REGISTER_API(ModuleTypeReplaceValue);
REGISTER_API(ModuleTypeGetType);
REGISTER_API(ModuleTypeGetValue);
REGISTER_API(IsIOError);
REGISTER_API(SetModuleOptions);
REGISTER_API(SignalModifiedKey);
REGISTER_API(SaveUnsigned);
REGISTER_API(LoadUnsigned);
REGISTER_API(SaveSigned);
REGISTER_API(LoadSigned);
REGISTER_API(SaveString);
REGISTER_API(SaveStringBuffer);
REGISTER_API(LoadString);
REGISTER_API(LoadStringBuffer);
REGISTER_API(SaveDouble);
REGISTER_API(LoadDouble);
REGISTER_API(SaveFloat);
REGISTER_API(LoadFloat);
REGISTER_API(SaveLongDouble);
REGISTER_API(LoadLongDouble);
REGISTER_API(SaveDataTypeToString);
REGISTER_API(LoadDataTypeFromString);
REGISTER_API(LoadDataTypeFromStringEncver);
REGISTER_API(EmitAOF);
REGISTER_API(Log);
REGISTER_API(LogIOError);
REGISTER_API(_Assert);
REGISTER_API(LatencyAddSample);
REGISTER_API(StringAppendBuffer);
REGISTER_API(TrimStringAllocation);
REGISTER_API(RetainString);
REGISTER_API(HoldString);
REGISTER_API(StringCompare);
REGISTER_API(GetContextFromIO);
REGISTER_API(GetKeyNameFromIO);
REGISTER_API(GetKeyNameFromModuleKey);
REGISTER_API(GetDbIdFromModuleKey);
REGISTER_API(GetDbIdFromIO);
REGISTER_API(GetKeyNameFromOptCtx);
REGISTER_API(GetToKeyNameFromOptCtx);
REGISTER_API(GetDbIdFromOptCtx);
REGISTER_API(GetToDbIdFromOptCtx);
REGISTER_API(GetKeyNameFromDefragCtx);
REGISTER_API(GetDbIdFromDefragCtx);
REGISTER_API(GetKeyNameFromDigest);
REGISTER_API(GetDbIdFromDigest);
REGISTER_API(BlockClient);
REGISTER_API(BlockClientGetPrivateData);
REGISTER_API(BlockClientSetPrivateData);
REGISTER_API(BlockClientOnAuth);
REGISTER_API(UnblockClient);
REGISTER_API(IsBlockedReplyRequest);
REGISTER_API(IsBlockedTimeoutRequest);
REGISTER_API(GetBlockedClientPrivateData);
REGISTER_API(AbortBlock);
REGISTER_API(Milliseconds);
REGISTER_API(MonotonicMicroseconds);
REGISTER_API(Microseconds);
REGISTER_API(CachedMicroseconds);
REGISTER_API(BlockedClientMeasureTimeStart);
REGISTER_API(BlockedClientMeasureTimeEnd);
REGISTER_API(GetThreadSafeContext);
REGISTER_API(GetDetachedThreadSafeContext);
REGISTER_API(FreeThreadSafeContext);
REGISTER_API(ThreadSafeContextLock);
REGISTER_API(ThreadSafeContextTryLock);
REGISTER_API(ThreadSafeContextUnlock);
REGISTER_API(DigestAddStringBuffer);
REGISTER_API(DigestAddLongLong);
REGISTER_API(DigestEndSequence);
REGISTER_API(NotifyKeyspaceEvent);
REGISTER_API(GetNotifyKeyspaceEvents);
REGISTER_API(SubscribeToKeyspaceEvents);
REGISTER_API(AddPostNotificationJob);
REGISTER_API(RegisterClusterMessageReceiver);
REGISTER_API(SendClusterMessage);
REGISTER_API(GetClusterNodeInfo);
REGISTER_API(GetClusterNodeInfoForClient);
REGISTER_API(GetClusterNodesList);
REGISTER_API(FreeClusterNodesList);
REGISTER_API(CreateTimer);
REGISTER_API(StopTimer);
REGISTER_API(GetTimerInfo);
REGISTER_API(GetMyClusterID);
REGISTER_API(GetClusterSize);
REGISTER_API(GetRandomBytes);
REGISTER_API(GetRandomHexChars);
REGISTER_API(BlockedClientDisconnected);
REGISTER_API(SetDisconnectCallback);
REGISTER_API(GetBlockedClientHandle);
REGISTER_API(SetClusterFlags);
REGISTER_API(ClusterKeySlot);
REGISTER_API(ClusterCanonicalKeyNameInSlot);
REGISTER_API(CreateDict);
REGISTER_API(FreeDict);
REGISTER_API(DictSize);
REGISTER_API(DictSetC);
REGISTER_API(DictReplaceC);
REGISTER_API(DictSet);
REGISTER_API(DictReplace);
REGISTER_API(DictGetC);
REGISTER_API(DictGet);
REGISTER_API(DictDelC);
REGISTER_API(DictDel);
REGISTER_API(DictIteratorStartC);
REGISTER_API(DictIteratorStart);
REGISTER_API(DictIteratorStop);
REGISTER_API(DictIteratorReseekC);
REGISTER_API(DictIteratorReseek);
REGISTER_API(DictNextC);
REGISTER_API(DictPrevC);
REGISTER_API(DictNext);
REGISTER_API(DictPrev);
REGISTER_API(DictCompareC);
REGISTER_API(DictCompare);
REGISTER_API(ExportSharedAPI);
REGISTER_API(GetSharedAPI);
REGISTER_API(RegisterCommandFilter);
REGISTER_API(UnregisterCommandFilter);
REGISTER_API(CommandFilterArgsCount);
REGISTER_API(CommandFilterArgGet);
REGISTER_API(CommandFilterArgInsert);
REGISTER_API(CommandFilterArgReplace);
REGISTER_API(CommandFilterArgDelete);
REGISTER_API(CommandFilterGetClientId);
REGISTER_API(Fork);
REGISTER_API(SendChildHeartbeat);
REGISTER_API(ExitFromChild);
REGISTER_API(KillForkChild);
REGISTER_API(RegisterInfoFunc);
REGISTER_API(InfoAddSection);
REGISTER_API(InfoBeginDictField);
REGISTER_API(InfoEndDictField);
REGISTER_API(InfoAddFieldString);
REGISTER_API(InfoAddFieldCString);
REGISTER_API(InfoAddFieldDouble);
REGISTER_API(InfoAddFieldLongLong);
REGISTER_API(InfoAddFieldULongLong);
REGISTER_API(GetServerInfo);
REGISTER_API(FreeServerInfo);
REGISTER_API(ServerInfoGetField);
REGISTER_API(ServerInfoGetFieldC);
REGISTER_API(ServerInfoGetFieldSigned);
REGISTER_API(ServerInfoGetFieldUnsigned);
REGISTER_API(ServerInfoGetFieldDouble);
REGISTER_API(GetClientInfoById);
REGISTER_API(GetClientNameById);
REGISTER_API(SetClientNameById);
REGISTER_API(PublishMessage);
REGISTER_API(PublishMessageShard);
REGISTER_API(SubscribeToServerEvent);
REGISTER_API(SetLRU);
REGISTER_API(GetLRU);
REGISTER_API(SetLFU);
REGISTER_API(GetLFU);
REGISTER_API(BlockClientOnKeys);
REGISTER_API(BlockClientOnKeysWithFlags);
REGISTER_API(SignalKeyAsReady);
REGISTER_API(GetBlockedClientReadyKey);
REGISTER_API(GetUsedMemoryRatio);
REGISTER_API(MallocSize);
REGISTER_API(MallocUsableSize);
REGISTER_API(MallocSizeString);
REGISTER_API(MallocSizeDict);
REGISTER_API(ScanCursorCreate);
REGISTER_API(ScanCursorDestroy);
REGISTER_API(ScanCursorRestart);
REGISTER_API(Scan);
REGISTER_API(ScanKey);
REGISTER_API(CreateModuleUser);
REGISTER_API(SetContextUser);
REGISTER_API(SetModuleUserACL);
REGISTER_API(SetModuleUserACLString);
REGISTER_API(GetModuleUserACLString);
REGISTER_API(GetCurrentUserName);
REGISTER_API(GetModuleUserFromUserName);
REGISTER_API(ACLCheckCommandPermissions);
REGISTER_API(ACLCheckKeyPermissions);
REGISTER_API(ACLCheckChannelPermissions);
REGISTER_API(ACLAddLogEntry);
REGISTER_API(ACLAddLogEntryByUserName);
REGISTER_API(FreeModuleUser);
REGISTER_API(DeauthenticateAndCloseClient);
REGISTER_API(AuthenticateClientWithACLUser);
REGISTER_API(AuthenticateClientWithUser);
REGISTER_API(GetContextFlagsAll);
REGISTER_API(GetModuleOptionsAll);
REGISTER_API(GetKeyspaceNotificationFlagsAll);
REGISTER_API(IsSubEventSupported);
REGISTER_API(GetServerVersion);
REGISTER_API(GetClientCertificate);
REGISTER_API(RedactClientCommandArgument);
REGISTER_API(GetCommandKeys);
REGISTER_API(GetCommandKeysWithFlags);
REGISTER_API(GetCurrentCommandName);
REGISTER_API(GetTypeMethodVersion);
REGISTER_API(RegisterDefragFunc);
REGISTER_API(DefragAlloc);
REGISTER_API(DefragValkeyModuleString);
REGISTER_API(DefragShouldStop);
REGISTER_API(DefragCursorSet);
REGISTER_API(DefragCursorGet);
REGISTER_API(EventLoopAdd);
REGISTER_API(EventLoopDel);
REGISTER_API(EventLoopAddOneShot);
REGISTER_API(Yield);
REGISTER_API(RegisterBoolConfig);
REGISTER_API(RegisterNumericConfig);
REGISTER_API(RegisterStringConfig);
REGISTER_API(RegisterEnumConfig);
REGISTER_API(LoadConfigs);
REGISTER_API(RegisterAuthCallback);
REGISTER_API(RdbStreamCreateFromFile);
REGISTER_API(RdbStreamFree);
REGISTER_API(RdbLoad);
REGISTER_API(RdbSave);
REGISTER_API(RegisterScriptingEngine);
REGISTER_API(UnregisterScriptingEngine);
}