768 lines
29 KiB
Rust
768 lines
29 KiB
Rust
// src/server/sharding.rs
|
||
//! Модуль шардинга с консистентным хэшированием и Raft протоколом
|
||
//!
|
||
//! Объединяет функционал шардинга и репликации с lock-free архитектурой
|
||
//! и реализацией Raft консенсуса для работы в production.
|
||
|
||
use std::collections::{HashMap, BTreeMap};
|
||
use std::hash::{Hash, Hasher};
|
||
use std::sync::Arc;
|
||
use std::sync::atomic::{AtomicBool, AtomicU64, AtomicUsize, Ordering};
|
||
use tokio::sync::mpsc;
|
||
use tokio::time::{interval, Duration};
|
||
use tokio::io::AsyncWriteExt;
|
||
use serde::{Serialize, Deserialize};
|
||
use siphasher::sip::SipHasher13;
|
||
use dashmap::DashMap;
|
||
use crossbeam::queue::SegQueue;
|
||
|
||
use crate::common::Result;
|
||
use crate::common::protocol;
|
||
|
||
/// Состояния узла в Raft протоколе
|
||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
|
||
pub enum RaftState {
|
||
Follower,
|
||
Candidate,
|
||
Leader,
|
||
}
|
||
|
||
/// Информация о Raft узле
|
||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||
pub struct RaftNode {
|
||
pub node_id: String,
|
||
pub address: String,
|
||
pub state: RaftState,
|
||
pub term: u64,
|
||
pub voted_for: Option<String>,
|
||
pub last_heartbeat: i64,
|
||
}
|
||
|
||
/// Информация о шард-узле с Raft
|
||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||
pub struct ShardNode {
|
||
pub node_id: String,
|
||
pub address: String,
|
||
pub capacity: u64,
|
||
pub used: u64,
|
||
pub collections: Vec<String>,
|
||
pub raft_info: RaftNode,
|
||
}
|
||
|
||
/// Состояние шардинга для коллекции
|
||
#[derive(Debug, Clone)]
|
||
pub struct CollectionSharding {
|
||
pub shard_key: String,
|
||
pub virtual_nodes: usize,
|
||
pub ring: BTreeMap<u64, String>, // consistent hash ring
|
||
}
|
||
|
||
/// События репликации
|
||
#[derive(Debug, Serialize, Deserialize)]
|
||
pub enum ReplicationEvent {
|
||
Command(protocol::Command),
|
||
SyncRequest,
|
||
Heartbeat,
|
||
RaftVoteRequest { term: u64, candidate_id: String },
|
||
RaftVoteResponse { term: u64, vote_granted: bool },
|
||
RaftAppendEntries { term: u64, leader_id: String },
|
||
}
|
||
|
||
/// Lock-Free очередь репликации
|
||
struct LockFreeReplicationQueue {
|
||
queue: SegQueue<ReplicationEvent>,
|
||
size: AtomicUsize,
|
||
}
|
||
|
||
impl LockFreeReplicationQueue {
|
||
fn new() -> Self {
|
||
Self {
|
||
queue: SegQueue::new(),
|
||
size: AtomicUsize::new(0),
|
||
}
|
||
}
|
||
|
||
fn push(&self, event: ReplicationEvent) {
|
||
self.queue.push(event);
|
||
self.size.fetch_add(1, Ordering::SeqCst);
|
||
}
|
||
|
||
fn pop(&self) -> Option<ReplicationEvent> {
|
||
let event = self.queue.pop();
|
||
if event.is_some() {
|
||
self.size.fetch_sub(1, Ordering::SeqCst);
|
||
}
|
||
event
|
||
}
|
||
|
||
fn len(&self) -> usize {
|
||
self.size.load(Ordering::Acquire)
|
||
}
|
||
}
|
||
|
||
/// Менеджер шардинга и репликации с Raft
|
||
#[derive(Clone)]
|
||
pub struct ShardingManager {
|
||
// Шардинг компоненты
|
||
nodes: Arc<DashMap<String, ShardNode>>, // Lock-free хранение узлов
|
||
collections: Arc<DashMap<String, CollectionSharding>>, // Lock-free хранение коллекций
|
||
virtual_nodes_per_node: usize,
|
||
min_nodes_for_cluster: usize,
|
||
|
||
// Raft компоненты
|
||
current_term: Arc<AtomicU64>, // Текущий терм Raft
|
||
voted_for: Arc<DashMap<u64, String>>, // Голоса за термы
|
||
is_leader: Arc<AtomicBool>, // Флаг лидера
|
||
cluster_formed: Arc<AtomicBool>, // Флаг сформированности кластера
|
||
|
||
// Репликация компоненты
|
||
replication_queue: Arc<LockFreeReplicationQueue>,
|
||
sequence_number: Arc<AtomicU64>,
|
||
replication_enabled: Arc<AtomicBool>,
|
||
node_id: String, // ID текущего узла
|
||
}
|
||
|
||
impl ShardingManager {
|
||
/// Создание нового менеджера шардинга и репликации
|
||
pub fn new(
|
||
virtual_nodes_per_node: usize,
|
||
replication_enabled: bool,
|
||
min_nodes_for_cluster: usize,
|
||
node_id: String
|
||
) -> Self {
|
||
let manager = Self {
|
||
nodes: Arc::new(DashMap::new()),
|
||
collections: Arc::new(DashMap::new()),
|
||
virtual_nodes_per_node,
|
||
min_nodes_for_cluster,
|
||
current_term: Arc::new(AtomicU64::new(0)),
|
||
voted_for: Arc::new(DashMap::new()),
|
||
is_leader: Arc::new(AtomicBool::new(false)),
|
||
cluster_formed: Arc::new(AtomicBool::new(false)),
|
||
replication_queue: Arc::new(LockFreeReplicationQueue::new()),
|
||
sequence_number: Arc::new(AtomicU64::new(0)),
|
||
replication_enabled: Arc::new(AtomicBool::new(replication_enabled)),
|
||
node_id,
|
||
};
|
||
|
||
// Добавляем текущий узел в кластер
|
||
let _ = manager.add_node(
|
||
manager.node_id.clone(),
|
||
"127.0.0.1:8081".to_string(),
|
||
1024 * 1024 * 1024
|
||
);
|
||
|
||
// Запуск фоновой задачи обработки репликации и Raft
|
||
let manager_clone = manager.clone();
|
||
tokio::spawn(async move {
|
||
manager_clone.run_replication_loop().await;
|
||
});
|
||
|
||
manager
|
||
}
|
||
|
||
/// Фоновая задача обработки репликации и Raft
|
||
async fn run_replication_loop(self) {
|
||
let mut heartbeat_interval = interval(Duration::from_millis(1000));
|
||
let mut election_timeout = interval(Duration::from_millis(5000));
|
||
|
||
loop {
|
||
tokio::select! {
|
||
_ = heartbeat_interval.tick() => {
|
||
// ИСПРАВЛЕНИЕ: Проверяем, что кластер сформирован перед отправкой heartbeat
|
||
if self.is_leader.load(Ordering::SeqCst) &&
|
||
self.replication_enabled.load(Ordering::SeqCst) &&
|
||
self.cluster_formed.load(Ordering::SeqCst) {
|
||
let _ = self.send_heartbeat().await;
|
||
}
|
||
}
|
||
_ = election_timeout.tick() => {
|
||
// Если мы follower и не получали heartbeat, начинаем выборы
|
||
if !self.is_leader.load(Ordering::SeqCst) &&
|
||
self.replication_enabled.load(Ordering::SeqCst) &&
|
||
self.cluster_formed.load(Ordering::SeqCst) {
|
||
let _ = self.start_election();
|
||
}
|
||
}
|
||
_ = tokio::time::sleep(Duration::from_millis(10)) => {
|
||
// Обработка событий из lock-free очереди
|
||
while let Some(event) = self.replication_queue.pop() {
|
||
self.handle_replication_event(event).await;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Обработка событий репликации
|
||
async fn handle_replication_event(&self, event: ReplicationEvent) {
|
||
if !self.replication_enabled.load(Ordering::SeqCst) {
|
||
return;
|
||
}
|
||
|
||
match event {
|
||
ReplicationEvent::Command(cmd) => {
|
||
self.replicate_command(cmd).await;
|
||
}
|
||
ReplicationEvent::SyncRequest => {
|
||
self.sync_with_nodes().await;
|
||
}
|
||
ReplicationEvent::Heartbeat => {
|
||
let _ = self.send_heartbeat().await;
|
||
}
|
||
ReplicationEvent::RaftVoteRequest { term, candidate_id } => {
|
||
self.handle_vote_request(term, candidate_id).await;
|
||
}
|
||
ReplicationEvent::RaftVoteResponse { term, vote_granted } => {
|
||
self.handle_vote_response(term, vote_granted).await;
|
||
}
|
||
ReplicationEvent::RaftAppendEntries { term, leader_id } => {
|
||
self.handle_append_entries(term, leader_id).await;
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Репликация команды на другие узлы
|
||
async fn replicate_command(&self, command: protocol::Command) {
|
||
if !self.cluster_formed.load(Ordering::SeqCst) {
|
||
return;
|
||
}
|
||
|
||
let sequence = self.sequence_number.fetch_add(1, Ordering::SeqCst);
|
||
|
||
for entry in self.nodes.iter() {
|
||
let node = entry.value();
|
||
// Реплицируем на все узлы, кроме текущего лидера (если мы лидер)
|
||
if self.is_leader.load(Ordering::SeqCst) && node.raft_info.node_id == self.node_id {
|
||
continue;
|
||
}
|
||
|
||
let node_addr = node.address.clone();
|
||
let cmd_clone = command.clone();
|
||
let seq_clone = sequence;
|
||
|
||
tokio::spawn(async move {
|
||
if let Err(e) = Self::send_command_to_node(&node_addr, &cmd_clone, seq_clone).await {
|
||
eprintln!("Failed to replicate to {}: {}", node_addr, e);
|
||
}
|
||
});
|
||
}
|
||
}
|
||
|
||
/// Отправка команды на удаленный узел
|
||
async fn send_command_to_node(node: &str, command: &protocol::Command, sequence: u64) -> Result<()> {
|
||
let mut stream = match tokio::net::TcpStream::connect(node).await {
|
||
Ok(stream) => stream,
|
||
Err(e) => {
|
||
eprintln!("Failed to connect to {}: {}", node, e);
|
||
return Ok(());
|
||
}
|
||
};
|
||
|
||
let message = protocol::ReplicationMessage {
|
||
sequence,
|
||
command: command.clone(),
|
||
timestamp: chrono::Utc::now().timestamp(),
|
||
};
|
||
|
||
let bytes = protocol::serialize(&message)?;
|
||
|
||
if let Err(e) = stream.write_all(&bytes).await {
|
||
eprintln!("Failed to send command to {}: {}", node, e);
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
/// Синхронизация с другими узлами
|
||
async fn sync_with_nodes(&self) {
|
||
if !self.cluster_formed.load(Ordering::SeqCst) {
|
||
return;
|
||
}
|
||
|
||
println!("Starting sync with {} nodes", self.nodes.len());
|
||
for entry in self.nodes.iter() {
|
||
let node_addr = entry.value().address.clone();
|
||
tokio::spawn(async move {
|
||
if let Err(e) = Self::sync_with_node(&node_addr).await {
|
||
eprintln!("Failed to sync with {}: {}", node_addr, e);
|
||
}
|
||
});
|
||
}
|
||
}
|
||
|
||
/// Синхронизация с удаленным узлом
|
||
async fn sync_with_node(_node: &str) -> Result<()> {
|
||
// TODO: Реализовать lock-free синхронизацию данных
|
||
Ok(())
|
||
}
|
||
|
||
/// Отправка heartbeat
|
||
async fn send_heartbeat(&self) -> Result<()> {
|
||
if !self.cluster_formed.load(Ordering::SeqCst) {
|
||
return Ok(());
|
||
}
|
||
|
||
for entry in self.nodes.iter() {
|
||
let node = entry.value();
|
||
// Отправляем heartbeat только на follower узлы, кроме себя
|
||
if node.raft_info.state == RaftState::Follower && node.raft_info.node_id != self.node_id {
|
||
let node_addr = node.address.clone();
|
||
tokio::spawn(async move {
|
||
if let Err(e) = Self::send_heartbeat_to_node(&node_addr).await {
|
||
eprintln!("Heartbeat failed for {}: {}", node_addr, e);
|
||
}
|
||
});
|
||
}
|
||
}
|
||
Ok(())
|
||
}
|
||
|
||
/// Отправка heartbeat на удаленный узел
|
||
async fn send_heartbeat_to_node(node: &str) -> Result<()> {
|
||
let mut stream = match tokio::net::TcpStream::connect(node).await {
|
||
Ok(stream) => stream,
|
||
Err(e) => {
|
||
eprintln!("Failed to connect to {} for heartbeat: {}", node, e);
|
||
return Ok(());
|
||
}
|
||
};
|
||
|
||
let heartbeat = protocol::ReplicationMessage {
|
||
sequence: 0,
|
||
command: protocol::Command::CallProcedure { name: "heartbeat".to_string() },
|
||
timestamp: chrono::Utc::now().timestamp(),
|
||
};
|
||
|
||
let bytes = protocol::serialize(&heartbeat)?;
|
||
|
||
if let Err(e) = stream.write_all(&bytes).await {
|
||
eprintln!("Failed to send heartbeat to {}: {}", node, e);
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
// Raft методы
|
||
/// Обработка запроса голоса
|
||
async fn handle_vote_request(&self, term: u64, candidate_id: String) {
|
||
let current_term = self.current_term.load(Ordering::SeqCst);
|
||
|
||
if term > current_term {
|
||
self.current_term.store(term, Ordering::SeqCst);
|
||
self.voted_for.insert(term, candidate_id.clone());
|
||
// TODO: Отправить положительный ответ
|
||
}
|
||
// TODO: Отправить отрицательный ответ если условия не выполнены
|
||
}
|
||
|
||
/// Обработка ответа голоса
|
||
async fn handle_vote_response(&self, term: u64, vote_granted: bool) {
|
||
if vote_granted && term == self.current_term.load(Ordering::SeqCst) {
|
||
// TODO: Подсчитать голоса и перейти в лидеры при большинстве
|
||
}
|
||
}
|
||
|
||
/// Обработка AppendEntries RPC
|
||
async fn handle_append_entries(&self, term: u64, leader_id: String) {
|
||
let current_term = self.current_term.load(Ordering::SeqCst);
|
||
|
||
if term >= current_term {
|
||
self.current_term.store(term, Ordering::SeqCst);
|
||
self.is_leader.store(false, Ordering::SeqCst);
|
||
|
||
// Обновляем состояние узла как follower
|
||
if let Some(mut node) = self.nodes.get_mut(&self.node_id) {
|
||
node.raft_info.state = RaftState::Follower;
|
||
node.raft_info.term = term;
|
||
node.raft_info.last_heartbeat = chrono::Utc::now().timestamp();
|
||
}
|
||
}
|
||
}
|
||
|
||
// Шардинг методы
|
||
/// Добавление шард-узла с Raft информацией
|
||
pub fn add_node(&self, node_id: String, address: String, capacity: u64) -> Result<()> {
|
||
let raft_node = RaftNode {
|
||
node_id: node_id.clone(),
|
||
address: address.clone(),
|
||
state: RaftState::Follower,
|
||
term: 0,
|
||
voted_for: None,
|
||
last_heartbeat: chrono::Utc::now().timestamp(),
|
||
};
|
||
|
||
let node = ShardNode {
|
||
node_id: node_id.clone(),
|
||
address,
|
||
capacity,
|
||
used: 0,
|
||
collections: Vec::new(),
|
||
raft_info: raft_node,
|
||
};
|
||
|
||
self.nodes.insert(node_id, node);
|
||
|
||
// Проверяем сформированность кластера
|
||
if self.nodes.len() >= self.min_nodes_for_cluster {
|
||
self.cluster_formed.store(true, Ordering::SeqCst);
|
||
println!("Cluster formed with {} nodes (minimum required: {})",
|
||
self.nodes.len(), self.min_nodes_for_cluster);
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
/// Удаление шард-узла
|
||
pub fn remove_node(&self, node_id: &str) -> Result<()> {
|
||
self.nodes.remove(node_id);
|
||
|
||
// Проверяем сформированность кластера после удаления
|
||
if self.nodes.len() < self.min_nodes_for_cluster {
|
||
self.cluster_formed.store(false, Ordering::SeqCst);
|
||
self.is_leader.store(false, Ordering::SeqCst);
|
||
println!("Cluster no longer formed. Have {} nodes (need {})",
|
||
self.nodes.len(), self.min_nodes_for_cluster);
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
/// Настройка шардинга для коллекции
|
||
pub fn setup_collection_sharding(&self, collection: &str, shard_key: &str) -> Result<()> {
|
||
// Проверка наличия кластера перед настройкой шардинга
|
||
if !self.cluster_formed.load(Ordering::SeqCst) {
|
||
return Err(crate::common::FutriixError::ShardingError(
|
||
format!("Cannot setup sharding: cluster not formed. Need at least {} nodes.",
|
||
self.min_nodes_for_cluster)
|
||
));
|
||
}
|
||
|
||
let sharding = CollectionSharding {
|
||
shard_key: shard_key.to_string(),
|
||
virtual_nodes: self.virtual_nodes_per_node,
|
||
ring: BTreeMap::new(),
|
||
};
|
||
|
||
self.collections.insert(collection.to_string(), sharding);
|
||
self.rebuild_ring(collection)?;
|
||
Ok(())
|
||
}
|
||
|
||
/// Перестроение хэш-ринга для коллекции
|
||
fn rebuild_ring(&self, collection: &str) -> Result<()> {
|
||
if let Some(mut sharding) = self.collections.get_mut(collection) {
|
||
sharding.ring.clear();
|
||
|
||
for entry in self.nodes.iter() {
|
||
let node_id = entry.key();
|
||
for i in 0..sharding.virtual_nodes {
|
||
let key = format!("{}-{}", node_id, i);
|
||
let hash = self.hash_key(&key);
|
||
sharding.ring.insert(hash, node_id.clone());
|
||
}
|
||
}
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
/// Хэширование ключа
|
||
fn hash_key(&self, key: &str) -> u64 {
|
||
let mut hasher = SipHasher13::new();
|
||
key.hash(&mut hasher);
|
||
hasher.finish()
|
||
}
|
||
|
||
/// Поиск узла для ключа
|
||
pub fn find_node_for_key(&self, collection: &str, key_value: &str) -> Result<Option<String>> {
|
||
// Проверка наличия кластера перед поиском узла
|
||
if !self.cluster_formed.load(Ordering::SeqCst) {
|
||
return Err(crate::common::FutriixError::ShardingError(
|
||
format!("Cannot find node: cluster not formed. Need at least {} nodes.",
|
||
self.min_nodes_for_cluster)
|
||
));
|
||
}
|
||
|
||
if let Some(sharding) = self.collections.get(collection) {
|
||
let key_hash = self.hash_key(key_value);
|
||
|
||
// Поиск в хэш-ринге (консистентное хэширование)
|
||
let mut range = sharding.ring.range(key_hash..);
|
||
if let Some((_, node_id)) = range.next() {
|
||
return Ok(Some(node_id.clone()));
|
||
}
|
||
|
||
// Если не найдено в верхней части ринга, берем первый узел
|
||
if let Some((_, node_id)) = sharding.ring.iter().next() {
|
||
return Ok(Some(node_id.clone()));
|
||
}
|
||
}
|
||
|
||
Ok(None)
|
||
}
|
||
|
||
/// Миграция шарда
|
||
pub fn migrate_shard(&self, collection: &str, from_node: &str, to_node: &str, shard_key: &str) -> Result<()> {
|
||
// Проверка наличия кластера перед миграцией
|
||
if !self.cluster_formed.load(Ordering::SeqCst) {
|
||
return Err(crate::common::FutriixError::ShardingError(
|
||
format!("Cannot migrate shard: cluster not formed. Need at least {} nodes.",
|
||
self.min_nodes_for_cluster)
|
||
));
|
||
}
|
||
|
||
// Проверяем существование узлов
|
||
if !self.nodes.contains_key(from_node) {
|
||
return Err(crate::common::FutriixError::ShardingError(
|
||
format!("Source node '{}' not found in cluster", from_node)
|
||
));
|
||
}
|
||
|
||
if !self.nodes.contains_key(to_node) {
|
||
return Err(crate::common::FutriixError::ShardingError(
|
||
format!("Destination node '{}' not found in cluster", to_node)
|
||
));
|
||
}
|
||
|
||
println!("Migrating shard for collection '{}' from {} to {} with key {}",
|
||
collection, from_node, to_node, shard_key);
|
||
|
||
// TODO: Реализовать фактическую миграцию данных
|
||
|
||
self.rebuild_ring(collection)?;
|
||
Ok(())
|
||
}
|
||
|
||
/// Ребалансировка кластера
|
||
pub fn rebalance_cluster(&self) -> Result<()> {
|
||
// Проверка наличия кластера перед ребалансировкой
|
||
if !self.cluster_formed.load(Ordering::SeqCst) {
|
||
return Err(crate::common::FutriixError::ShardingError(
|
||
format!("Cannot rebalance cluster: cluster not formed. Need at least {} nodes.",
|
||
self.min_nodes_for_cluster)
|
||
));
|
||
}
|
||
|
||
println!("Rebalancing cluster with {} nodes", self.nodes.len());
|
||
|
||
// Перестраиваем все хэш-ринги
|
||
for mut entry in self.collections.iter_mut() {
|
||
let sharding = entry.value_mut();
|
||
sharding.ring.clear();
|
||
|
||
for node_entry in self.nodes.iter() {
|
||
let node_id = node_entry.key();
|
||
for i in 0..sharding.virtual_nodes {
|
||
let key = format!("{}-{}", node_id, i);
|
||
let hash = self.hash_key(&key);
|
||
sharding.ring.insert(hash, node_id.clone());
|
||
}
|
||
}
|
||
}
|
||
|
||
// Ребалансировка узлов кластера
|
||
self.rebalance_nodes()?;
|
||
|
||
Ok(())
|
||
}
|
||
|
||
/// Ребалансировка узлов кластера
|
||
fn rebalance_nodes(&self) -> Result<()> {
|
||
println!("Rebalancing nodes in cluster...");
|
||
|
||
// Рассчитываем среднюю загрузку
|
||
let total_capacity: u64 = self.nodes.iter().map(|entry| entry.value().capacity).sum();
|
||
let total_used: u64 = self.nodes.iter().map(|entry| entry.value().used).sum();
|
||
let avg_usage = if total_capacity > 0 { total_used as f64 / total_capacity as f64 } else { 0.0 };
|
||
|
||
println!("Cluster usage: {:.2}% ({} / {})", avg_usage * 100.0, total_used, total_capacity);
|
||
|
||
// Находим перегруженные и недогруженные узлы
|
||
let mut overloaded_nodes = Vec::new();
|
||
let mut underloaded_nodes = Vec::new();
|
||
|
||
for entry in self.nodes.iter() {
|
||
let node = entry.value();
|
||
let usage = if node.capacity > 0 { node.used as f64 / node.capacity as f64 } else { 0.0 };
|
||
|
||
if usage > avg_usage * 1.2 { // Более чем на 20% выше среднего
|
||
overloaded_nodes.push((node.node_id.clone(), usage));
|
||
} else if usage < avg_usage * 0.8 { // Более чем на 20% ниже среднего
|
||
underloaded_nodes.push((node.node_id.clone(), usage));
|
||
}
|
||
}
|
||
|
||
println!("Overloaded nodes: {}", overloaded_nodes.len());
|
||
println!("Underloaded nodes: {}", underloaded_nodes.len());
|
||
|
||
// TODO: Реализовать алгоритм миграции данных между узлами
|
||
|
||
Ok(())
|
||
}
|
||
|
||
/// Получение статуса кластера
|
||
pub fn get_cluster_status(&self) -> Result<protocol::ClusterStatus> {
|
||
let mut cluster_nodes = Vec::new();
|
||
let mut total_capacity = 0;
|
||
let mut total_used = 0;
|
||
let mut raft_nodes = Vec::new();
|
||
|
||
for entry in self.nodes.iter() {
|
||
let node = entry.value();
|
||
total_capacity += node.capacity;
|
||
total_used += node.used;
|
||
|
||
cluster_nodes.push(protocol::ShardInfo {
|
||
node_id: node.node_id.clone(),
|
||
address: node.address.clone(),
|
||
capacity: node.capacity,
|
||
used: node.used,
|
||
collections: node.collections.clone(),
|
||
});
|
||
|
||
raft_nodes.push(protocol::RaftNodeInfo {
|
||
node_id: node.node_id.clone(),
|
||
address: node.address.clone(),
|
||
state: match node.raft_info.state {
|
||
RaftState::Leader => "leader".to_string(),
|
||
RaftState::Follower => "follower".to_string(),
|
||
RaftState::Candidate => "candidate".to_string(),
|
||
},
|
||
term: node.raft_info.term,
|
||
last_heartbeat: node.raft_info.last_heartbeat,
|
||
});
|
||
}
|
||
|
||
// Проверяем, нужна ли ребалансировка
|
||
let rebalance_needed = {
|
||
if total_capacity == 0 {
|
||
false
|
||
} else {
|
||
let avg_usage = total_used as f64 / total_capacity as f64;
|
||
let mut needs_rebalance = false;
|
||
|
||
for node in self.nodes.iter() {
|
||
let usage = if node.value().capacity > 0 {
|
||
node.value().used as f64 / node.value().capacity as f64
|
||
} else {
|
||
0.0
|
||
};
|
||
|
||
if usage > avg_usage * 1.2 || usage < avg_usage * 0.8 {
|
||
needs_rebalance = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
needs_rebalance
|
||
}
|
||
};
|
||
|
||
Ok(protocol::ClusterStatus {
|
||
nodes: cluster_nodes,
|
||
total_capacity,
|
||
total_used,
|
||
rebalance_needed,
|
||
cluster_formed: self.cluster_formed.load(Ordering::SeqCst),
|
||
leader_exists: self.is_leader.load(Ordering::SeqCst),
|
||
raft_nodes,
|
||
})
|
||
}
|
||
|
||
/// Получение списка Raft узлов
|
||
pub fn get_raft_nodes(&self) -> Vec<RaftNode> {
|
||
self.nodes.iter()
|
||
.map(|entry| entry.value().raft_info.clone())
|
||
.collect()
|
||
}
|
||
|
||
/// Проверка сформированности кластера
|
||
pub fn is_cluster_formed(&self) -> bool {
|
||
self.cluster_formed.load(Ordering::SeqCst)
|
||
}
|
||
|
||
/// Raft выборы - начало кампании
|
||
pub fn start_election(&self) -> Result<()> {
|
||
if !self.cluster_formed.load(Ordering::SeqCst) {
|
||
return Err(crate::common::FutriixError::ShardingError(
|
||
format!("Cluster not formed. Need at least {} nodes.", self.min_nodes_for_cluster)
|
||
));
|
||
}
|
||
|
||
let new_term = self.current_term.fetch_add(1, Ordering::SeqCst) + 1;
|
||
println!("Starting election for term {}", new_term);
|
||
|
||
// Переход в состояние candidate
|
||
self.is_leader.store(false, Ordering::SeqCst);
|
||
|
||
// Обновляем состояние текущего узла
|
||
if let Some(mut node) = self.nodes.get_mut(&self.node_id) {
|
||
node.raft_info.state = RaftState::Candidate;
|
||
node.raft_info.term = new_term;
|
||
node.raft_info.voted_for = Some(self.node_id.clone());
|
||
}
|
||
|
||
// Отправляем запросы на голосование
|
||
self.replication_queue.push(ReplicationEvent::RaftVoteRequest {
|
||
term: new_term,
|
||
candidate_id: self.node_id.clone(),
|
||
});
|
||
|
||
Ok(())
|
||
}
|
||
|
||
/// Отправка команды на репликацию
|
||
pub async fn replicate(&self, command: protocol::Command) -> Result<()> {
|
||
if !self.replication_enabled.load(Ordering::SeqCst) {
|
||
return Ok(());
|
||
}
|
||
|
||
if !self.cluster_formed.load(Ordering::SeqCst) {
|
||
return Err(crate::common::FutriixError::ShardingError(
|
||
"Cannot replicate: cluster not formed".to_string()
|
||
));
|
||
}
|
||
|
||
self.replication_queue.push(ReplicationEvent::Command(command));
|
||
Ok(())
|
||
}
|
||
|
||
/// Запрос синхронизации с другими узлами
|
||
pub async fn request_sync(&self) -> Result<()> {
|
||
if !self.replication_enabled.load(Ordering::SeqCst) {
|
||
return Ok(());
|
||
}
|
||
|
||
self.replication_queue.push(ReplicationEvent::SyncRequest);
|
||
Ok(())
|
||
}
|
||
|
||
/// Получение списка узлов репликации
|
||
pub fn get_nodes(&self) -> Vec<ShardNode> {
|
||
self.nodes.iter()
|
||
.map(|entry| entry.value().clone())
|
||
.collect()
|
||
}
|
||
|
||
/// Получение текущего номера последовательности
|
||
pub fn get_sequence_number(&self) -> u64 {
|
||
self.sequence_number.load(Ordering::SeqCst)
|
||
}
|
||
|
||
/// Проверка, включена ли репликация
|
||
pub fn is_replication_enabled(&self) -> bool {
|
||
self.replication_enabled.load(Ordering::SeqCst)
|
||
}
|
||
|
||
/// Получение информации об узле
|
||
pub fn get_node(&self, node_id: &str) -> Option<ShardNode> {
|
||
self.nodes.get(node_id).map(|entry| entry.value().clone())
|
||
}
|
||
|
||
/// Получение ID текущего узла
|
||
pub fn get_node_id(&self) -> &str {
|
||
&self.node_id
|
||
}
|
||
}
|