
This commit hopefully improves the formatting of the codebase by setting ColumnLimit to 0 and hence stopping clang-format from trying to put as much stuff in one line as possible. This change enabled us to remove most of `clang-format off` directives and fixed a bunch of lines that looked like this: ```c #define KEY \ VALUE /* comment */ ``` Additionally, one pair of `clang-format off` / `clang-format on` had `clang-format off` as the second comment and hence didn't enable the formatting for the rest of the file. This commit addresses this issue as well. Please tell me if anything in the changes seem off. If everything is fine, I will add this commit to `.git-blame-ignore-revs` later. --------- Signed-off-by: Mikhail Koviazin <mikhail.koviazin@aiven.io>
4371 lines
152 KiB
C
4371 lines
152 KiB
C
/*
|
|
* Copyright (c) 2009-2012, Redis Ltd.
|
|
* Copyright (c) 2009-2012, Pieter Noordhuis <pcnoordhuis at gmail dot com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Sorted set API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
/* ZSETs are ordered sets using two data structures to hold the same elements
|
|
* in order to get O(log(N)) INSERT and REMOVE operations into a sorted
|
|
* data structure.
|
|
*
|
|
* The elements are added to a hash table mapping Objects to scores.
|
|
* At the same time the elements are added to a skip list mapping scores
|
|
* to Objects (so objects are sorted by scores in this "view").
|
|
*
|
|
* Note that the SDS string representing the element is the same in both
|
|
* the hash table and skiplist in order to save memory. What we do in order
|
|
* to manage the shared SDS string more easily is to free the SDS string
|
|
* only in zslFreeNode(). The dictionary has no value free method set.
|
|
* So we should always remove an element from the dictionary, and later from
|
|
* the skiplist.
|
|
*
|
|
* This skiplist implementation is almost a C translation of the original
|
|
* algorithm described by William Pugh in "Skip Lists: A Probabilistic
|
|
* Alternative to Balanced Trees", modified in three ways:
|
|
* a) this implementation allows for repeated scores.
|
|
* b) the comparison is not just by key (our 'score') but by satellite data.
|
|
* c) there is a back pointer, so it's a doubly linked list with the back
|
|
* pointers being only at "level 1". This allows to traverse the list
|
|
* from tail to head, useful for ZREVRANGE. */
|
|
|
|
#include "server.h"
|
|
#include "intset.h" /* Compact integer set structure */
|
|
#include <math.h>
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Skiplist implementation of the low level API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int zslLexValueGteMin(sds value, zlexrangespec *spec);
|
|
int zslLexValueLteMax(sds value, zlexrangespec *spec);
|
|
void zsetConvertAndExpand(robj *zobj, int encoding, unsigned long cap);
|
|
zskiplistNode *zslGetElementByRankFromNode(zskiplistNode *start_node, int start_level, unsigned long rank);
|
|
zskiplistNode *zslGetElementByRank(zskiplist *zsl, unsigned long rank);
|
|
|
|
/* Create a skiplist node with the specified number of levels.
|
|
* The SDS string 'ele' is referenced by the node after the call. */
|
|
zskiplistNode *zslCreateNode(int level, double score, sds ele) {
|
|
zskiplistNode *zn = zmalloc(sizeof(*zn) + level * sizeof(struct zskiplistLevel));
|
|
zn->score = score;
|
|
zn->ele = ele;
|
|
return zn;
|
|
}
|
|
|
|
/* Create a new skiplist. */
|
|
zskiplist *zslCreate(void) {
|
|
int j;
|
|
zskiplist *zsl;
|
|
|
|
zsl = zmalloc(sizeof(*zsl));
|
|
zsl->level = 1;
|
|
zsl->length = 0;
|
|
zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL, 0, NULL);
|
|
for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {
|
|
zsl->header->level[j].forward = NULL;
|
|
zsl->header->level[j].span = 0;
|
|
}
|
|
zsl->header->backward = NULL;
|
|
zsl->tail = NULL;
|
|
return zsl;
|
|
}
|
|
|
|
/* Free the specified skiplist node. The referenced SDS string representation
|
|
* of the element is freed too, unless node->ele is set to NULL before calling
|
|
* this function. */
|
|
void zslFreeNode(zskiplistNode *node) {
|
|
sdsfree(node->ele);
|
|
zfree(node);
|
|
}
|
|
|
|
/* Free a whole skiplist. */
|
|
void zslFree(zskiplist *zsl) {
|
|
zskiplistNode *node = zsl->header->level[0].forward, *next;
|
|
|
|
zfree(zsl->header);
|
|
while (node) {
|
|
next = node->level[0].forward;
|
|
zslFreeNode(node);
|
|
node = next;
|
|
}
|
|
zfree(zsl);
|
|
}
|
|
|
|
/* Returns a random level for the new skiplist node we are going to create.
|
|
* The return value of this function is between 1 and ZSKIPLIST_MAXLEVEL
|
|
* (both inclusive), with a powerlaw-alike distribution where higher
|
|
* levels are less likely to be returned. */
|
|
int zslRandomLevel(void) {
|
|
static const int threshold = ZSKIPLIST_P * RAND_MAX;
|
|
int level = 1;
|
|
while (random() < threshold) level += 1;
|
|
return (level < ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;
|
|
}
|
|
|
|
/* Insert a new node in the skiplist. Assumes the element does not already
|
|
* exist (up to the caller to enforce that). The skiplist takes ownership
|
|
* of the passed SDS string 'ele'. */
|
|
zskiplistNode *zslInsert(zskiplist *zsl, double score, sds ele) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
unsigned long rank[ZSKIPLIST_MAXLEVEL];
|
|
int i, level;
|
|
|
|
serverAssert(!isnan(score));
|
|
x = zsl->header;
|
|
for (i = zsl->level - 1; i >= 0; i--) {
|
|
/* store rank that is crossed to reach the insert position */
|
|
rank[i] = i == (zsl->level - 1) ? 0 : rank[i + 1];
|
|
while (x->level[i].forward &&
|
|
(x->level[i].forward->score < score ||
|
|
(x->level[i].forward->score == score && sdscmp(x->level[i].forward->ele, ele) < 0))) {
|
|
rank[i] += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
update[i] = x;
|
|
}
|
|
/* we assume the element is not already inside, since we allow duplicated
|
|
* scores, reinserting the same element should never happen since the
|
|
* caller of zslInsert() should test in the hash table if the element is
|
|
* already inside or not. */
|
|
level = zslRandomLevel();
|
|
if (level > zsl->level) {
|
|
for (i = zsl->level; i < level; i++) {
|
|
rank[i] = 0;
|
|
update[i] = zsl->header;
|
|
update[i]->level[i].span = zsl->length;
|
|
}
|
|
zsl->level = level;
|
|
}
|
|
x = zslCreateNode(level, score, ele);
|
|
for (i = 0; i < level; i++) {
|
|
x->level[i].forward = update[i]->level[i].forward;
|
|
update[i]->level[i].forward = x;
|
|
|
|
/* update span covered by update[i] as x is inserted here */
|
|
x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]);
|
|
update[i]->level[i].span = (rank[0] - rank[i]) + 1;
|
|
}
|
|
|
|
/* increment span for untouched levels */
|
|
for (i = level; i < zsl->level; i++) {
|
|
update[i]->level[i].span++;
|
|
}
|
|
|
|
x->backward = (update[0] == zsl->header) ? NULL : update[0];
|
|
if (x->level[0].forward)
|
|
x->level[0].forward->backward = x;
|
|
else
|
|
zsl->tail = x;
|
|
zsl->length++;
|
|
return x;
|
|
}
|
|
|
|
/* Internal function used by zslDelete, zslDeleteRangeByScore and
|
|
* zslDeleteRangeByRank. */
|
|
void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) {
|
|
int i;
|
|
for (i = 0; i < zsl->level; i++) {
|
|
if (update[i]->level[i].forward == x) {
|
|
update[i]->level[i].span += x->level[i].span - 1;
|
|
update[i]->level[i].forward = x->level[i].forward;
|
|
} else {
|
|
update[i]->level[i].span -= 1;
|
|
}
|
|
}
|
|
if (x->level[0].forward) {
|
|
x->level[0].forward->backward = x->backward;
|
|
} else {
|
|
zsl->tail = x->backward;
|
|
}
|
|
while (zsl->level > 1 && zsl->header->level[zsl->level - 1].forward == NULL) zsl->level--;
|
|
zsl->length--;
|
|
}
|
|
|
|
/* Delete an element with matching score/element from the skiplist.
|
|
* The function returns 1 if the node was found and deleted, otherwise
|
|
* 0 is returned.
|
|
*
|
|
* If 'node' is NULL the deleted node is freed by zslFreeNode(), otherwise
|
|
* it is not freed (but just unlinked) and *node is set to the node pointer,
|
|
* so that it is possible for the caller to reuse the node (including the
|
|
* referenced SDS string at node->ele). */
|
|
int zslDelete(zskiplist *zsl, double score, sds ele, zskiplistNode **node) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level - 1; i >= 0; i--) {
|
|
while (x->level[i].forward &&
|
|
(x->level[i].forward->score < score ||
|
|
(x->level[i].forward->score == score && sdscmp(x->level[i].forward->ele, ele) < 0))) {
|
|
x = x->level[i].forward;
|
|
}
|
|
update[i] = x;
|
|
}
|
|
/* We may have multiple elements with the same score, what we need
|
|
* is to find the element with both the right score and object. */
|
|
x = x->level[0].forward;
|
|
if (x && score == x->score && sdscmp(x->ele, ele) == 0) {
|
|
zslDeleteNode(zsl, x, update);
|
|
if (!node)
|
|
zslFreeNode(x);
|
|
else
|
|
*node = x;
|
|
return 1;
|
|
}
|
|
return 0; /* not found */
|
|
}
|
|
|
|
/* Update the score of an element inside the sorted set skiplist.
|
|
* Note that the element must exist and must match 'score'.
|
|
* This function does not update the score in the hash table side, the
|
|
* caller should take care of it.
|
|
*
|
|
* Note that this function attempts to just update the node, in case after
|
|
* the score update, the node would be exactly at the same position.
|
|
* Otherwise the skiplist is modified by removing and re-adding a new
|
|
* element, which is more costly.
|
|
*
|
|
* The function returns the updated element skiplist node pointer. */
|
|
zskiplistNode *zslUpdateScore(zskiplist *zsl, double curscore, sds ele, double newscore) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
int i;
|
|
|
|
/* We need to seek to element to update to start: this is useful anyway,
|
|
* we'll have to update or remove it. */
|
|
x = zsl->header;
|
|
for (i = zsl->level - 1; i >= 0; i--) {
|
|
while (x->level[i].forward &&
|
|
(x->level[i].forward->score < curscore ||
|
|
(x->level[i].forward->score == curscore && sdscmp(x->level[i].forward->ele, ele) < 0))) {
|
|
x = x->level[i].forward;
|
|
}
|
|
update[i] = x;
|
|
}
|
|
|
|
/* Jump to our element: note that this function assumes that the
|
|
* element with the matching score exists. */
|
|
x = x->level[0].forward;
|
|
serverAssert(x && curscore == x->score && sdscmp(x->ele, ele) == 0);
|
|
|
|
/* If the node, after the score update, would be still exactly
|
|
* at the same position, we can just update the score without
|
|
* actually removing and re-inserting the element in the skiplist. */
|
|
if ((x->backward == NULL || x->backward->score < newscore) &&
|
|
(x->level[0].forward == NULL || x->level[0].forward->score > newscore)) {
|
|
x->score = newscore;
|
|
return x;
|
|
}
|
|
|
|
/* No way to reuse the old node: we need to remove and insert a new
|
|
* one at a different place. */
|
|
zslDeleteNode(zsl, x, update);
|
|
zskiplistNode *newnode = zslInsert(zsl, newscore, x->ele);
|
|
/* We reused the old node x->ele SDS string, free the node now
|
|
* since zslInsert created a new one. */
|
|
x->ele = NULL;
|
|
zslFreeNode(x);
|
|
return newnode;
|
|
}
|
|
|
|
int zslValueGteMin(double value, zrangespec *spec) {
|
|
return spec->minex ? (value > spec->min) : (value >= spec->min);
|
|
}
|
|
|
|
int zslValueLteMax(double value, zrangespec *spec) {
|
|
return spec->maxex ? (value < spec->max) : (value <= spec->max);
|
|
}
|
|
|
|
/* Returns if there is a part of the zset is in range. */
|
|
int zslIsInRange(zskiplist *zsl, zrangespec *range) {
|
|
zskiplistNode *x;
|
|
|
|
/* Test for ranges that will always be empty. */
|
|
if (range->min > range->max || (range->min == range->max && (range->minex || range->maxex))) return 0;
|
|
x = zsl->tail;
|
|
if (x == NULL || !zslValueGteMin(x->score, range)) return 0;
|
|
x = zsl->header->level[0].forward;
|
|
if (x == NULL || !zslValueLteMax(x->score, range)) return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Find the Nth node that is contained in the specified range. N should be 0-based.
|
|
* Negative N works for reversed order (-1 represents the last element). Returns
|
|
* NULL when no element is contained in the range. */
|
|
zskiplistNode *zslNthInRange(zskiplist *zsl, zrangespec *range, long n) {
|
|
zskiplistNode *x;
|
|
int i;
|
|
long edge_rank = 0;
|
|
long last_highest_level_rank = 0;
|
|
zskiplistNode *last_highest_level_node = NULL;
|
|
unsigned long rank_diff;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zslIsInRange(zsl, range)) return NULL;
|
|
|
|
/* Go forward while *OUT* of range at level of zsl->level-1. */
|
|
x = zsl->header;
|
|
i = zsl->level - 1;
|
|
while (x->level[i].forward && !zslValueGteMin(x->level[i].forward->score, range)) {
|
|
edge_rank += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
/* Remember the last node which has zsl->level-1 levels and its rank. */
|
|
last_highest_level_node = x;
|
|
last_highest_level_rank = edge_rank;
|
|
|
|
if (n >= 0) {
|
|
for (i = zsl->level - 2; i >= 0; i--) {
|
|
/* Go forward while *OUT* of range. */
|
|
while (x->level[i].forward && !zslValueGteMin(x->level[i].forward->score, range)) {
|
|
/* Count the rank of the last element smaller than the range. */
|
|
edge_rank += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
}
|
|
/* Check if zsl is long enough. */
|
|
if ((unsigned long)(edge_rank + n) >= zsl->length) return NULL;
|
|
if (n < ZSKIPLIST_MAX_SEARCH) {
|
|
/* If offset is small, we can just jump node by node */
|
|
/* rank+1 is the first element in range, so we need n+1 steps to reach target. */
|
|
for (i = 0; i < n + 1; i++) {
|
|
x = x->level[0].forward;
|
|
}
|
|
} else {
|
|
/* If offset is big, we can jump from the last zsl->level-1 node. */
|
|
rank_diff = edge_rank + 1 + n - last_highest_level_rank;
|
|
x = zslGetElementByRankFromNode(last_highest_level_node, zsl->level - 1, rank_diff);
|
|
}
|
|
/* Check if score <= max. */
|
|
if (x && !zslValueLteMax(x->score, range)) return NULL;
|
|
} else {
|
|
for (i = zsl->level - 1; i >= 0; i--) {
|
|
/* Go forward while *IN* range. */
|
|
while (x->level[i].forward && zslValueLteMax(x->level[i].forward->score, range)) {
|
|
/* Count the rank of the last element in range. */
|
|
edge_rank += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
}
|
|
/* Check if the range is big enough. */
|
|
if (edge_rank < -n) return NULL;
|
|
if (n + 1 > -ZSKIPLIST_MAX_SEARCH) {
|
|
/* If offset is small, we can just jump node by node */
|
|
/* rank is the -1th element in range, so we need -n-1 steps to reach target. */
|
|
for (i = 0; i < -n - 1; i++) {
|
|
x = x->backward;
|
|
}
|
|
} else {
|
|
/* If offset is big, we can jump from the last zsl->level-1 node. */
|
|
/* rank is the last element in range, n is -1-based, so we need n+1 to count backwards. */
|
|
rank_diff = edge_rank + 1 + n - last_highest_level_rank;
|
|
x = zslGetElementByRankFromNode(last_highest_level_node, zsl->level - 1, rank_diff);
|
|
}
|
|
/* Check if score >= min. */
|
|
if (x && !zslValueGteMin(x->score, range)) return NULL;
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
/* Delete all the elements with score between min and max from the skiplist.
|
|
* Both min and max can be inclusive or exclusive (see range->minex and
|
|
* range->maxex). When inclusive a score >= min && score <= max is deleted.
|
|
* Note that this function takes the reference to the hash table view of the
|
|
* sorted set, in order to remove the elements from the hash table too. */
|
|
unsigned long zslDeleteRangeByScore(zskiplist *zsl, zrangespec *range, dict *dict) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
unsigned long removed = 0;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level - 1; i >= 0; i--) {
|
|
while (x->level[i].forward && !zslValueGteMin(x->level[i].forward->score, range)) x = x->level[i].forward;
|
|
update[i] = x;
|
|
}
|
|
|
|
/* Current node is the last with score < or <= min. */
|
|
x = x->level[0].forward;
|
|
|
|
/* Delete nodes while in range. */
|
|
while (x && zslValueLteMax(x->score, range)) {
|
|
zskiplistNode *next = x->level[0].forward;
|
|
zslDeleteNode(zsl, x, update);
|
|
dictDelete(dict, x->ele);
|
|
zslFreeNode(x); /* Here is where x->ele is actually released. */
|
|
removed++;
|
|
x = next;
|
|
}
|
|
return removed;
|
|
}
|
|
|
|
unsigned long zslDeleteRangeByLex(zskiplist *zsl, zlexrangespec *range, dict *dict) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
unsigned long removed = 0;
|
|
int i;
|
|
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level - 1; i >= 0; i--) {
|
|
while (x->level[i].forward && !zslLexValueGteMin(x->level[i].forward->ele, range)) x = x->level[i].forward;
|
|
update[i] = x;
|
|
}
|
|
|
|
/* Current node is the last with score < or <= min. */
|
|
x = x->level[0].forward;
|
|
|
|
/* Delete nodes while in range. */
|
|
while (x && zslLexValueLteMax(x->ele, range)) {
|
|
zskiplistNode *next = x->level[0].forward;
|
|
zslDeleteNode(zsl, x, update);
|
|
dictDelete(dict, x->ele);
|
|
zslFreeNode(x); /* Here is where x->ele is actually released. */
|
|
removed++;
|
|
x = next;
|
|
}
|
|
return removed;
|
|
}
|
|
|
|
/* Delete all the elements with rank between start and end from the skiplist.
|
|
* Start and end are inclusive. Note that start and end need to be 1-based */
|
|
unsigned long zslDeleteRangeByRank(zskiplist *zsl, unsigned int start, unsigned int end, dict *dict) {
|
|
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
|
|
unsigned long traversed = 0, removed = 0;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level - 1; i >= 0; i--) {
|
|
while (x->level[i].forward && (traversed + x->level[i].span) < start) {
|
|
traversed += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
update[i] = x;
|
|
}
|
|
|
|
traversed++;
|
|
x = x->level[0].forward;
|
|
while (x && traversed <= end) {
|
|
zskiplistNode *next = x->level[0].forward;
|
|
zslDeleteNode(zsl, x, update);
|
|
dictDelete(dict, x->ele);
|
|
zslFreeNode(x);
|
|
removed++;
|
|
traversed++;
|
|
x = next;
|
|
}
|
|
return removed;
|
|
}
|
|
|
|
/* Find the rank for an element by both score and key.
|
|
* Returns 0 when the element cannot be found, rank otherwise.
|
|
* Note that the rank is 1-based due to the span of zsl->header to the
|
|
* first element. */
|
|
unsigned long zslGetRank(zskiplist *zsl, double score, sds ele) {
|
|
zskiplistNode *x;
|
|
unsigned long rank = 0;
|
|
int i;
|
|
|
|
x = zsl->header;
|
|
for (i = zsl->level - 1; i >= 0; i--) {
|
|
while (x->level[i].forward &&
|
|
(x->level[i].forward->score < score ||
|
|
(x->level[i].forward->score == score && sdscmp(x->level[i].forward->ele, ele) <= 0))) {
|
|
rank += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
|
|
/* x might be equal to zsl->header, so test if obj is non-NULL */
|
|
if (x->ele && x->score == score && sdscmp(x->ele, ele) == 0) {
|
|
return rank;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Finds an element by its rank from start node. The rank argument needs to be 1-based. */
|
|
zskiplistNode *zslGetElementByRankFromNode(zskiplistNode *start_node, int start_level, unsigned long rank) {
|
|
zskiplistNode *x;
|
|
unsigned long traversed = 0;
|
|
int i;
|
|
|
|
x = start_node;
|
|
for (i = start_level; i >= 0; i--) {
|
|
while (x->level[i].forward && (traversed + x->level[i].span) <= rank) {
|
|
traversed += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
if (traversed == rank) {
|
|
return x;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Finds an element by its rank. The rank argument needs to be 1-based. */
|
|
zskiplistNode *zslGetElementByRank(zskiplist *zsl, unsigned long rank) {
|
|
return zslGetElementByRankFromNode(zsl->header, zsl->level - 1, rank);
|
|
}
|
|
|
|
/* Populate the rangespec according to the objects min and max. */
|
|
static int zslParseRange(robj *min, robj *max, zrangespec *spec) {
|
|
char *eptr;
|
|
spec->minex = spec->maxex = 0;
|
|
|
|
/* Parse the min-max interval. If one of the values is prefixed
|
|
* by the "(" character, it's considered "open". For instance
|
|
* ZRANGEBYSCORE zset (1.5 (2.5 will match min < x < max
|
|
* ZRANGEBYSCORE zset 1.5 2.5 will instead match min <= x <= max */
|
|
if (min->encoding == OBJ_ENCODING_INT) {
|
|
spec->min = (long)min->ptr;
|
|
} else {
|
|
if (((char *)min->ptr)[0] == '(') {
|
|
spec->min = strtod((char *)min->ptr + 1, &eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->min)) return C_ERR;
|
|
spec->minex = 1;
|
|
} else {
|
|
spec->min = strtod((char *)min->ptr, &eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->min)) return C_ERR;
|
|
}
|
|
}
|
|
if (max->encoding == OBJ_ENCODING_INT) {
|
|
spec->max = (long)max->ptr;
|
|
} else {
|
|
if (((char *)max->ptr)[0] == '(') {
|
|
spec->max = strtod((char *)max->ptr + 1, &eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->max)) return C_ERR;
|
|
spec->maxex = 1;
|
|
} else {
|
|
spec->max = strtod((char *)max->ptr, &eptr);
|
|
if (eptr[0] != '\0' || isnan(spec->max)) return C_ERR;
|
|
}
|
|
}
|
|
|
|
return C_OK;
|
|
}
|
|
|
|
/* ------------------------ Lexicographic ranges ---------------------------- */
|
|
|
|
/* Parse max or min argument of ZRANGEBYLEX.
|
|
* (foo means foo (open interval)
|
|
* [foo means foo (closed interval)
|
|
* - means the min string possible
|
|
* + means the max string possible
|
|
*
|
|
* If the string is valid the *dest pointer is set to the Object
|
|
* that will be used for the comparison, and ex will be set to 0 or 1
|
|
* respectively if the item is exclusive or inclusive. C_OK will be
|
|
* returned.
|
|
*
|
|
* If the string is not a valid range C_ERR is returned, and the value
|
|
* of *dest and *ex is undefined. */
|
|
int zslParseLexRangeItem(robj *item, sds *dest, int *ex) {
|
|
char *c = item->ptr;
|
|
|
|
switch (c[0]) {
|
|
case '+':
|
|
if (c[1] != '\0') return C_ERR;
|
|
*ex = 1;
|
|
*dest = shared.maxstring;
|
|
return C_OK;
|
|
case '-':
|
|
if (c[1] != '\0') return C_ERR;
|
|
*ex = 1;
|
|
*dest = shared.minstring;
|
|
return C_OK;
|
|
case '(':
|
|
*ex = 1;
|
|
*dest = sdsnewlen(c + 1, sdslen(c) - 1);
|
|
return C_OK;
|
|
case '[':
|
|
*ex = 0;
|
|
*dest = sdsnewlen(c + 1, sdslen(c) - 1);
|
|
return C_OK;
|
|
default: return C_ERR;
|
|
}
|
|
}
|
|
|
|
/* Free a lex range structure, must be called only after zslParseLexRange()
|
|
* populated the structure with success (C_OK returned). */
|
|
void zslFreeLexRange(zlexrangespec *spec) {
|
|
if (spec->min != shared.minstring && spec->min != shared.maxstring) sdsfree(spec->min);
|
|
if (spec->max != shared.minstring && spec->max != shared.maxstring) sdsfree(spec->max);
|
|
}
|
|
|
|
/* Populate the lex rangespec according to the objects min and max.
|
|
*
|
|
* Return C_OK on success. On error C_ERR is returned.
|
|
* When OK is returned the structure must be freed with zslFreeLexRange(),
|
|
* otherwise no release is needed. */
|
|
int zslParseLexRange(robj *min, robj *max, zlexrangespec *spec) {
|
|
/* The range can't be valid if objects are integer encoded.
|
|
* Every item must start with ( or [. */
|
|
if (min->encoding == OBJ_ENCODING_INT || max->encoding == OBJ_ENCODING_INT) return C_ERR;
|
|
|
|
spec->min = spec->max = NULL;
|
|
if (zslParseLexRangeItem(min, &spec->min, &spec->minex) == C_ERR ||
|
|
zslParseLexRangeItem(max, &spec->max, &spec->maxex) == C_ERR) {
|
|
zslFreeLexRange(spec);
|
|
return C_ERR;
|
|
} else {
|
|
return C_OK;
|
|
}
|
|
}
|
|
|
|
/* This is just a wrapper to sdscmp() that is able to
|
|
* handle shared.minstring and shared.maxstring as the equivalent of
|
|
* -inf and +inf for strings */
|
|
int sdscmplex(sds a, sds b) {
|
|
if (a == b) return 0;
|
|
if (a == shared.minstring || b == shared.maxstring) return -1;
|
|
if (a == shared.maxstring || b == shared.minstring) return 1;
|
|
return sdscmp(a, b);
|
|
}
|
|
|
|
int zslLexValueGteMin(sds value, zlexrangespec *spec) {
|
|
return spec->minex ? (sdscmplex(value, spec->min) > 0) : (sdscmplex(value, spec->min) >= 0);
|
|
}
|
|
|
|
int zslLexValueLteMax(sds value, zlexrangespec *spec) {
|
|
return spec->maxex ? (sdscmplex(value, spec->max) < 0) : (sdscmplex(value, spec->max) <= 0);
|
|
}
|
|
|
|
/* Returns if there is a part of the zset is in the lex range. */
|
|
int zslIsInLexRange(zskiplist *zsl, zlexrangespec *range) {
|
|
zskiplistNode *x;
|
|
|
|
/* Test for ranges that will always be empty. */
|
|
int cmp = sdscmplex(range->min, range->max);
|
|
if (cmp > 0 || (cmp == 0 && (range->minex || range->maxex))) return 0;
|
|
x = zsl->tail;
|
|
if (x == NULL || !zslLexValueGteMin(x->ele, range)) return 0;
|
|
x = zsl->header->level[0].forward;
|
|
if (x == NULL || !zslLexValueLteMax(x->ele, range)) return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Find the Nth node that is contained in the specified range. N should be 0-based.
|
|
* Negative N works for reversed order (-1 represents the last element). Returns
|
|
* NULL when no element is contained in the range. */
|
|
zskiplistNode *zslNthInLexRange(zskiplist *zsl, zlexrangespec *range, long n) {
|
|
zskiplistNode *x;
|
|
int i;
|
|
long edge_rank = 0;
|
|
long last_highest_level_rank = 0;
|
|
zskiplistNode *last_highest_level_node = NULL;
|
|
unsigned long rank_diff;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zslIsInLexRange(zsl, range)) return NULL;
|
|
|
|
/* Go forward while *OUT* of range at level of zsl->level-1. */
|
|
x = zsl->header;
|
|
i = zsl->level - 1;
|
|
while (x->level[i].forward && !zslLexValueGteMin(x->level[i].forward->ele, range)) {
|
|
edge_rank += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
/* Remember the last node which has zsl->level-1 levels and its rank. */
|
|
last_highest_level_node = x;
|
|
last_highest_level_rank = edge_rank;
|
|
|
|
if (n >= 0) {
|
|
for (i = zsl->level - 2; i >= 0; i--) {
|
|
/* Go forward while *OUT* of range. */
|
|
while (x->level[i].forward && !zslLexValueGteMin(x->level[i].forward->ele, range)) {
|
|
/* Count the rank of the last element smaller than the range. */
|
|
edge_rank += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
}
|
|
/* Check if zsl is long enough. */
|
|
if ((unsigned long)(edge_rank + n) >= zsl->length) return NULL;
|
|
if (n < ZSKIPLIST_MAX_SEARCH) {
|
|
/* If offset is small, we can just jump node by node */
|
|
/* rank+1 is the first element in range, so we need n+1 steps to reach target. */
|
|
for (i = 0; i < n + 1; i++) {
|
|
x = x->level[0].forward;
|
|
}
|
|
} else {
|
|
/* If offset is big, we caasn jump from the last zsl->level-1 node. */
|
|
rank_diff = edge_rank + 1 + n - last_highest_level_rank;
|
|
x = zslGetElementByRankFromNode(last_highest_level_node, zsl->level - 1, rank_diff);
|
|
}
|
|
/* Check if score <= max. */
|
|
if (x && !zslLexValueLteMax(x->ele, range)) return NULL;
|
|
} else {
|
|
for (i = zsl->level - 1; i >= 0; i--) {
|
|
/* Go forward while *IN* range. */
|
|
while (x->level[i].forward && zslLexValueLteMax(x->level[i].forward->ele, range)) {
|
|
/* Count the rank of the last element in range. */
|
|
edge_rank += x->level[i].span;
|
|
x = x->level[i].forward;
|
|
}
|
|
}
|
|
/* Check if the range is big enough. */
|
|
if (edge_rank < -n) return NULL;
|
|
if (n + 1 > -ZSKIPLIST_MAX_SEARCH) {
|
|
/* If offset is small, we can just jump node by node */
|
|
for (i = 0; i < -n - 1; i++) {
|
|
x = x->backward;
|
|
}
|
|
} else {
|
|
/* If offset is big, we can jump from the last zsl->level-1 node. */
|
|
/* rank is the last element in range, n is -1-based, so we need n+1 to count backwards. */
|
|
rank_diff = edge_rank + 1 + n - last_highest_level_rank;
|
|
x = zslGetElementByRankFromNode(last_highest_level_node, zsl->level - 1, rank_diff);
|
|
}
|
|
/* Check if score >= min. */
|
|
if (x && !zslLexValueGteMin(x->ele, range)) return NULL;
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Listpack-backed sorted set API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
double zzlStrtod(unsigned char *vstr, unsigned int vlen) {
|
|
char buf[128];
|
|
if (vlen > sizeof(buf) - 1) vlen = sizeof(buf) - 1;
|
|
memcpy(buf, vstr, vlen);
|
|
buf[vlen] = '\0';
|
|
return strtod(buf, NULL);
|
|
}
|
|
|
|
double zzlGetScore(unsigned char *sptr) {
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
double score;
|
|
|
|
serverAssert(sptr != NULL);
|
|
vstr = lpGetValue(sptr, &vlen, &vlong);
|
|
|
|
if (vstr) {
|
|
score = zzlStrtod(vstr, vlen);
|
|
} else {
|
|
score = vlong;
|
|
}
|
|
|
|
return score;
|
|
}
|
|
|
|
/* Return a listpack element as an SDS string. */
|
|
sds lpGetObject(unsigned char *sptr) {
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
serverAssert(sptr != NULL);
|
|
vstr = lpGetValue(sptr, &vlen, &vlong);
|
|
|
|
if (vstr) {
|
|
return sdsnewlen((char *)vstr, vlen);
|
|
} else {
|
|
return sdsfromlonglong(vlong);
|
|
}
|
|
}
|
|
|
|
/* Compare element in sorted set with given element. */
|
|
int zzlCompareElements(unsigned char *eptr, unsigned char *cstr, unsigned int clen) {
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
unsigned char vbuf[32];
|
|
int minlen, cmp;
|
|
|
|
vstr = lpGetValue(eptr, &vlen, &vlong);
|
|
if (vstr == NULL) {
|
|
/* Store string representation of long long in buf. */
|
|
vlen = ll2string((char *)vbuf, sizeof(vbuf), vlong);
|
|
vstr = vbuf;
|
|
}
|
|
|
|
minlen = (vlen < clen) ? vlen : clen;
|
|
cmp = memcmp(vstr, cstr, minlen);
|
|
if (cmp == 0) return vlen - clen;
|
|
return cmp;
|
|
}
|
|
|
|
unsigned int zzlLength(unsigned char *zl) {
|
|
return lpLength(zl) / 2;
|
|
}
|
|
|
|
/* Move to next entry based on the values in eptr and sptr. Both are set to
|
|
* NULL when there is no next entry. */
|
|
void zzlNext(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) {
|
|
unsigned char *_eptr, *_sptr;
|
|
serverAssert(*eptr != NULL && *sptr != NULL);
|
|
|
|
_eptr = lpNext(zl, *sptr);
|
|
if (_eptr != NULL) {
|
|
_sptr = lpNext(zl, _eptr);
|
|
serverAssert(_sptr != NULL);
|
|
} else {
|
|
/* No next entry. */
|
|
_sptr = NULL;
|
|
}
|
|
|
|
*eptr = _eptr;
|
|
*sptr = _sptr;
|
|
}
|
|
|
|
/* Move to the previous entry based on the values in eptr and sptr. Both are
|
|
* set to NULL when there is no prev entry. */
|
|
void zzlPrev(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) {
|
|
unsigned char *_eptr, *_sptr;
|
|
serverAssert(*eptr != NULL && *sptr != NULL);
|
|
|
|
_sptr = lpPrev(zl, *eptr);
|
|
if (_sptr != NULL) {
|
|
_eptr = lpPrev(zl, _sptr);
|
|
serverAssert(_eptr != NULL);
|
|
} else {
|
|
/* No previous entry. */
|
|
_eptr = NULL;
|
|
}
|
|
|
|
*eptr = _eptr;
|
|
*sptr = _sptr;
|
|
}
|
|
|
|
/* Returns if there is a part of the zset is in range. Should only be used
|
|
* internally by zzlFirstInRange and zzlLastInRange. */
|
|
int zzlIsInRange(unsigned char *zl, zrangespec *range) {
|
|
unsigned char *p;
|
|
double score;
|
|
|
|
/* Test for ranges that will always be empty. */
|
|
if (range->min > range->max || (range->min == range->max && (range->minex || range->maxex))) return 0;
|
|
|
|
p = lpSeek(zl, -1); /* Last score. */
|
|
if (p == NULL) return 0; /* Empty sorted set */
|
|
score = zzlGetScore(p);
|
|
if (!zslValueGteMin(score, range)) return 0;
|
|
|
|
p = lpSeek(zl, 1); /* First score. */
|
|
serverAssert(p != NULL);
|
|
score = zzlGetScore(p);
|
|
if (!zslValueLteMax(score, range)) return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Find pointer to the first element contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
unsigned char *zzlFirstInRange(unsigned char *zl, zrangespec *range) {
|
|
unsigned char *eptr = lpSeek(zl, 0), *sptr;
|
|
double score;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zzlIsInRange(zl, range)) return NULL;
|
|
|
|
while (eptr != NULL) {
|
|
sptr = lpNext(zl, eptr);
|
|
serverAssert(sptr != NULL);
|
|
|
|
score = zzlGetScore(sptr);
|
|
if (zslValueGteMin(score, range)) {
|
|
/* Check if score <= max. */
|
|
if (zslValueLteMax(score, range)) return eptr;
|
|
return NULL;
|
|
}
|
|
|
|
/* Move to next element. */
|
|
eptr = lpNext(zl, sptr);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Find pointer to the last element contained in the specified range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
unsigned char *zzlLastInRange(unsigned char *zl, zrangespec *range) {
|
|
unsigned char *eptr = lpSeek(zl, -2), *sptr;
|
|
double score;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zzlIsInRange(zl, range)) return NULL;
|
|
|
|
while (eptr != NULL) {
|
|
sptr = lpNext(zl, eptr);
|
|
serverAssert(sptr != NULL);
|
|
|
|
score = zzlGetScore(sptr);
|
|
if (zslValueLteMax(score, range)) {
|
|
/* Check if score >= min. */
|
|
if (zslValueGteMin(score, range)) return eptr;
|
|
return NULL;
|
|
}
|
|
|
|
/* Move to previous element by moving to the score of previous element.
|
|
* When this returns NULL, we know there also is no element. */
|
|
sptr = lpPrev(zl, eptr);
|
|
if (sptr != NULL)
|
|
serverAssert((eptr = lpPrev(zl, sptr)) != NULL);
|
|
else
|
|
eptr = NULL;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int zzlLexValueGteMin(unsigned char *p, zlexrangespec *spec) {
|
|
sds value = lpGetObject(p);
|
|
int res = zslLexValueGteMin(value, spec);
|
|
sdsfree(value);
|
|
return res;
|
|
}
|
|
|
|
int zzlLexValueLteMax(unsigned char *p, zlexrangespec *spec) {
|
|
sds value = lpGetObject(p);
|
|
int res = zslLexValueLteMax(value, spec);
|
|
sdsfree(value);
|
|
return res;
|
|
}
|
|
|
|
/* Returns if there is a part of the zset is in range. Should only be used
|
|
* internally by zzlFirstInLexRange and zzlLastInLexRange. */
|
|
int zzlIsInLexRange(unsigned char *zl, zlexrangespec *range) {
|
|
unsigned char *p;
|
|
|
|
/* Test for ranges that will always be empty. */
|
|
int cmp = sdscmplex(range->min, range->max);
|
|
if (cmp > 0 || (cmp == 0 && (range->minex || range->maxex))) return 0;
|
|
|
|
p = lpSeek(zl, -2); /* Last element. */
|
|
if (p == NULL) return 0;
|
|
if (!zzlLexValueGteMin(p, range)) return 0;
|
|
|
|
p = lpSeek(zl, 0); /* First element. */
|
|
serverAssert(p != NULL);
|
|
if (!zzlLexValueLteMax(p, range)) return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Find pointer to the first element contained in the specified lex range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
unsigned char *zzlFirstInLexRange(unsigned char *zl, zlexrangespec *range) {
|
|
unsigned char *eptr = lpSeek(zl, 0), *sptr;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zzlIsInLexRange(zl, range)) return NULL;
|
|
|
|
while (eptr != NULL) {
|
|
if (zzlLexValueGteMin(eptr, range)) {
|
|
/* Check if score <= max. */
|
|
if (zzlLexValueLteMax(eptr, range)) return eptr;
|
|
return NULL;
|
|
}
|
|
|
|
/* Move to next element. */
|
|
sptr = lpNext(zl, eptr); /* This element score. Skip it. */
|
|
serverAssert(sptr != NULL);
|
|
eptr = lpNext(zl, sptr); /* Next element. */
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Find pointer to the last element contained in the specified lex range.
|
|
* Returns NULL when no element is contained in the range. */
|
|
unsigned char *zzlLastInLexRange(unsigned char *zl, zlexrangespec *range) {
|
|
unsigned char *eptr = lpSeek(zl, -2), *sptr;
|
|
|
|
/* If everything is out of range, return early. */
|
|
if (!zzlIsInLexRange(zl, range)) return NULL;
|
|
|
|
while (eptr != NULL) {
|
|
if (zzlLexValueLteMax(eptr, range)) {
|
|
/* Check if score >= min. */
|
|
if (zzlLexValueGteMin(eptr, range)) return eptr;
|
|
return NULL;
|
|
}
|
|
|
|
/* Move to previous element by moving to the score of previous element.
|
|
* When this returns NULL, we know there also is no element. */
|
|
sptr = lpPrev(zl, eptr);
|
|
if (sptr != NULL)
|
|
serverAssert((eptr = lpPrev(zl, sptr)) != NULL);
|
|
else
|
|
eptr = NULL;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
unsigned char *zzlFind(unsigned char *lp, sds ele, double *score) {
|
|
unsigned char *eptr, *sptr;
|
|
|
|
if ((eptr = lpFirst(lp)) == NULL) return NULL;
|
|
eptr = lpFind(lp, eptr, (unsigned char *)ele, sdslen(ele), 1);
|
|
if (eptr) {
|
|
sptr = lpNext(lp, eptr);
|
|
serverAssert(sptr != NULL);
|
|
|
|
/* Matching element, pull out score. */
|
|
if (score != NULL) *score = zzlGetScore(sptr);
|
|
return eptr;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Delete (element,score) pair from listpack. Use local copy of eptr because we
|
|
* don't want to modify the one given as argument. */
|
|
unsigned char *zzlDelete(unsigned char *zl, unsigned char *eptr) {
|
|
return lpDeleteRangeWithEntry(zl, &eptr, 2);
|
|
}
|
|
|
|
unsigned char *zzlInsertAt(unsigned char *zl, unsigned char *eptr, sds ele, double score) {
|
|
unsigned char *sptr;
|
|
char scorebuf[MAX_D2STRING_CHARS];
|
|
int scorelen = 0;
|
|
long long lscore;
|
|
int score_is_long = double2ll(score, &lscore);
|
|
if (!score_is_long) scorelen = d2string(scorebuf, sizeof(scorebuf), score);
|
|
if (eptr == NULL) {
|
|
zl = lpAppend(zl, (unsigned char *)ele, sdslen(ele));
|
|
if (score_is_long)
|
|
zl = lpAppendInteger(zl, lscore);
|
|
else
|
|
zl = lpAppend(zl, (unsigned char *)scorebuf, scorelen);
|
|
} else {
|
|
/* Insert member before the element 'eptr'. */
|
|
zl = lpInsertString(zl, (unsigned char *)ele, sdslen(ele), eptr, LP_BEFORE, &sptr);
|
|
|
|
/* Insert score after the member. */
|
|
if (score_is_long)
|
|
zl = lpInsertInteger(zl, lscore, sptr, LP_AFTER, NULL);
|
|
else
|
|
zl = lpInsertString(zl, (unsigned char *)scorebuf, scorelen, sptr, LP_AFTER, NULL);
|
|
}
|
|
return zl;
|
|
}
|
|
|
|
/* Insert (element,score) pair in listpack. This function assumes the element is
|
|
* not yet present in the list. */
|
|
unsigned char *zzlInsert(unsigned char *zl, sds ele, double score) {
|
|
unsigned char *eptr = lpSeek(zl, 0), *sptr;
|
|
double s;
|
|
|
|
while (eptr != NULL) {
|
|
sptr = lpNext(zl, eptr);
|
|
serverAssert(sptr != NULL);
|
|
s = zzlGetScore(sptr);
|
|
|
|
if (s > score) {
|
|
/* First element with score larger than score for element to be
|
|
* inserted. This means we should take its spot in the list to
|
|
* maintain ordering. */
|
|
zl = zzlInsertAt(zl, eptr, ele, score);
|
|
break;
|
|
} else if (s == score) {
|
|
/* Ensure lexicographical ordering for elements. */
|
|
if (zzlCompareElements(eptr, (unsigned char *)ele, sdslen(ele)) > 0) {
|
|
zl = zzlInsertAt(zl, eptr, ele, score);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Move to next element. */
|
|
eptr = lpNext(zl, sptr);
|
|
}
|
|
|
|
/* Push on tail of list when it was not yet inserted. */
|
|
if (eptr == NULL) zl = zzlInsertAt(zl, NULL, ele, score);
|
|
return zl;
|
|
}
|
|
|
|
unsigned char *zzlDeleteRangeByScore(unsigned char *zl, zrangespec *range, unsigned long *deleted) {
|
|
unsigned char *eptr, *sptr;
|
|
double score;
|
|
unsigned long num = 0;
|
|
|
|
if (deleted != NULL) *deleted = 0;
|
|
|
|
eptr = zzlFirstInRange(zl, range);
|
|
if (eptr == NULL) return zl;
|
|
|
|
/* When the tail of the listpack is deleted, eptr will be NULL. */
|
|
while (eptr && (sptr = lpNext(zl, eptr)) != NULL) {
|
|
score = zzlGetScore(sptr);
|
|
if (zslValueLteMax(score, range)) {
|
|
/* Delete both the element and the score. */
|
|
zl = lpDeleteRangeWithEntry(zl, &eptr, 2);
|
|
num++;
|
|
} else {
|
|
/* No longer in range. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (deleted != NULL) *deleted = num;
|
|
return zl;
|
|
}
|
|
|
|
unsigned char *zzlDeleteRangeByLex(unsigned char *zl, zlexrangespec *range, unsigned long *deleted) {
|
|
unsigned char *eptr, *sptr;
|
|
unsigned long num = 0;
|
|
|
|
if (deleted != NULL) *deleted = 0;
|
|
|
|
eptr = zzlFirstInLexRange(zl, range);
|
|
if (eptr == NULL) return zl;
|
|
|
|
/* When the tail of the listpack is deleted, eptr will be NULL. */
|
|
while (eptr && (sptr = lpNext(zl, eptr)) != NULL) {
|
|
if (zzlLexValueLteMax(eptr, range)) {
|
|
/* Delete both the element and the score. */
|
|
zl = lpDeleteRangeWithEntry(zl, &eptr, 2);
|
|
num++;
|
|
} else {
|
|
/* No longer in range. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (deleted != NULL) *deleted = num;
|
|
return zl;
|
|
}
|
|
|
|
/* Delete all the elements with rank between start and end from the skiplist.
|
|
* Start and end are inclusive. Note that start and end need to be 1-based */
|
|
unsigned char *zzlDeleteRangeByRank(unsigned char *zl, unsigned int start, unsigned int end, unsigned long *deleted) {
|
|
unsigned int num = (end - start) + 1;
|
|
if (deleted) *deleted = num;
|
|
zl = lpDeleteRange(zl, 2 * (start - 1), 2 * num);
|
|
return zl;
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Common sorted set API
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
unsigned long zsetLength(const robj *zobj) {
|
|
unsigned long length = 0;
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
length = zzlLength(zobj->ptr);
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
length = ((const zset *)zobj->ptr)->zsl->length;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
return length;
|
|
}
|
|
|
|
/* Factory method to return a zset.
|
|
*
|
|
* The size hint indicates approximately how many items will be added,
|
|
* and the value len hint indicates the approximate individual size of the added elements,
|
|
* they are used to determine the initial representation.
|
|
*
|
|
* If the hints are not known, and underestimation or 0 is suitable.
|
|
* We should never pass a negative value because it will convert to a very large unsigned number. */
|
|
robj *zsetTypeCreate(size_t size_hint, size_t val_len_hint) {
|
|
if (size_hint <= server.zset_max_listpack_entries && val_len_hint <= server.zset_max_listpack_value) {
|
|
return createZsetListpackObject();
|
|
}
|
|
|
|
robj *zobj = createZsetObject();
|
|
zset *zs = zobj->ptr;
|
|
dictExpand(zs->dict, size_hint);
|
|
return zobj;
|
|
}
|
|
|
|
/* Check if the existing zset should be converted to another encoding based off the
|
|
* the size hint. */
|
|
void zsetTypeMaybeConvert(robj *zobj, size_t size_hint, size_t value_len_hint) {
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK &&
|
|
(size_hint > server.zset_max_listpack_entries || value_len_hint > server.zset_max_listpack_value)) {
|
|
zsetConvertAndExpand(zobj, OBJ_ENCODING_SKIPLIST, size_hint);
|
|
}
|
|
}
|
|
|
|
/* Convert the zset to specified encoding. The zset dict (when converting
|
|
* to a skiplist) is presized to hold the number of elements in the original
|
|
* zset. */
|
|
void zsetConvert(robj *zobj, int encoding) {
|
|
zsetConvertAndExpand(zobj, encoding, zsetLength(zobj));
|
|
}
|
|
|
|
/* Converts a zset to the specified encoding, pre-sizing it for 'cap' elements. */
|
|
void zsetConvertAndExpand(robj *zobj, int encoding, unsigned long cap) {
|
|
zset *zs;
|
|
zskiplistNode *node, *next;
|
|
sds ele;
|
|
double score;
|
|
|
|
if (zobj->encoding == encoding) return;
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
if (encoding != OBJ_ENCODING_SKIPLIST) serverPanic("Unknown target encoding");
|
|
|
|
zs = zmalloc(sizeof(*zs));
|
|
zs->dict = dictCreate(&zsetDictType);
|
|
zs->zsl = zslCreate();
|
|
|
|
/* Presize the dict to avoid rehashing */
|
|
dictExpand(zs->dict, cap);
|
|
|
|
eptr = lpSeek(zl, 0);
|
|
if (eptr != NULL) {
|
|
sptr = lpNext(zl, eptr);
|
|
serverAssertWithInfo(NULL, zobj, sptr != NULL);
|
|
}
|
|
|
|
while (eptr != NULL) {
|
|
score = zzlGetScore(sptr);
|
|
vstr = lpGetValue(eptr, &vlen, &vlong);
|
|
if (vstr == NULL)
|
|
ele = sdsfromlonglong(vlong);
|
|
else
|
|
ele = sdsnewlen((char *)vstr, vlen);
|
|
|
|
node = zslInsert(zs->zsl, score, ele);
|
|
serverAssert(dictAdd(zs->dict, ele, &node->score) == DICT_OK);
|
|
zzlNext(zl, &eptr, &sptr);
|
|
}
|
|
|
|
zfree(zobj->ptr);
|
|
zobj->ptr = zs;
|
|
zobj->encoding = OBJ_ENCODING_SKIPLIST;
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
unsigned char *zl = lpNew(0);
|
|
|
|
if (encoding != OBJ_ENCODING_LISTPACK) serverPanic("Unknown target encoding");
|
|
|
|
/* Approach similar to zslFree(), since we want to free the skiplist at
|
|
* the same time as creating the listpack. */
|
|
zs = zobj->ptr;
|
|
dictRelease(zs->dict);
|
|
node = zs->zsl->header->level[0].forward;
|
|
zfree(zs->zsl->header);
|
|
zfree(zs->zsl);
|
|
|
|
while (node) {
|
|
zl = zzlInsertAt(zl, NULL, node->ele, node->score);
|
|
next = node->level[0].forward;
|
|
zslFreeNode(node);
|
|
node = next;
|
|
}
|
|
|
|
zfree(zs);
|
|
zobj->ptr = zl;
|
|
zobj->encoding = OBJ_ENCODING_LISTPACK;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
}
|
|
|
|
/* Convert the sorted set object into a listpack if it is not already a listpack
|
|
* and if the number of elements and the maximum element size and total elements size
|
|
* are within the expected ranges. */
|
|
void zsetConvertToListpackIfNeeded(robj *zobj, size_t maxelelen, size_t totelelen) {
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) return;
|
|
zset *zset = zobj->ptr;
|
|
|
|
if (zset->zsl->length <= server.zset_max_listpack_entries && maxelelen <= server.zset_max_listpack_value &&
|
|
lpSafeToAdd(NULL, totelelen)) {
|
|
zsetConvert(zobj, OBJ_ENCODING_LISTPACK);
|
|
}
|
|
}
|
|
|
|
/* Return (by reference) the score of the specified member of the sorted set
|
|
* storing it into *score. If the element does not exist C_ERR is returned
|
|
* otherwise C_OK is returned and *score is correctly populated.
|
|
* If 'zobj' or 'member' is NULL, C_ERR is returned. */
|
|
int zsetScore(robj *zobj, sds member, double *score) {
|
|
if (!zobj || !member) return C_ERR;
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
if (zzlFind(zobj->ptr, member, score) == NULL) return C_ERR;
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
dictEntry *de = dictFind(zs->dict, member);
|
|
if (de == NULL) return C_ERR;
|
|
*score = *(double *)dictGetVal(de);
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
return C_OK;
|
|
}
|
|
|
|
/* Add a new element or update the score of an existing element in a sorted
|
|
* set, regardless of its encoding.
|
|
*
|
|
* The set of flags change the command behavior.
|
|
*
|
|
* The input flags are the following:
|
|
*
|
|
* ZADD_INCR: Increment the current element score by 'score' instead of updating
|
|
* the current element score. If the element does not exist, we
|
|
* assume 0 as previous score.
|
|
* ZADD_NX: Perform the operation only if the element does not exist.
|
|
* ZADD_XX: Perform the operation only if the element already exist.
|
|
* ZADD_GT: Perform the operation on existing elements only if the new score is
|
|
* greater than the current score.
|
|
* ZADD_LT: Perform the operation on existing elements only if the new score is
|
|
* less than the current score.
|
|
*
|
|
* When ZADD_INCR is used, the new score of the element is stored in
|
|
* '*newscore' if 'newscore' is not NULL.
|
|
*
|
|
* The returned flags are the following:
|
|
*
|
|
* ZADD_NAN: The resulting score is not a number.
|
|
* ZADD_ADDED: The element was added (not present before the call).
|
|
* ZADD_UPDATED: The element score was updated.
|
|
* ZADD_NOP: No operation was performed because of NX or XX.
|
|
*
|
|
* Return value:
|
|
*
|
|
* The function returns 1 on success, and sets the appropriate flags
|
|
* ADDED or UPDATED to signal what happened during the operation (note that
|
|
* none could be set if we re-added an element using the same score it used
|
|
* to have, or in the case a zero increment is used).
|
|
*
|
|
* The function returns 0 on error, currently only when the increment
|
|
* produces a NAN condition, or when the 'score' value is NAN since the
|
|
* start.
|
|
*
|
|
* The command as a side effect of adding a new element may convert the sorted
|
|
* set internal encoding from listpack to hashtable+skiplist.
|
|
*
|
|
* Memory management of 'ele':
|
|
*
|
|
* The function does not take ownership of the 'ele' SDS string, but copies
|
|
* it if needed. */
|
|
int zsetAdd(robj *zobj, double score, sds ele, int in_flags, int *out_flags, double *newscore) {
|
|
/* Turn options into simple to check vars. */
|
|
int incr = (in_flags & ZADD_IN_INCR) != 0;
|
|
int nx = (in_flags & ZADD_IN_NX) != 0;
|
|
int xx = (in_flags & ZADD_IN_XX) != 0;
|
|
int gt = (in_flags & ZADD_IN_GT) != 0;
|
|
int lt = (in_flags & ZADD_IN_LT) != 0;
|
|
*out_flags = 0; /* We'll return our response flags. */
|
|
double curscore;
|
|
|
|
/* NaN as input is an error regardless of all the other parameters. */
|
|
if (isnan(score)) {
|
|
*out_flags = ZADD_OUT_NAN;
|
|
return 0;
|
|
}
|
|
|
|
/* Update the sorted set according to its encoding. */
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *eptr;
|
|
|
|
if ((eptr = zzlFind(zobj->ptr, ele, &curscore)) != NULL) {
|
|
/* NX? Return, same element already exists. */
|
|
if (nx) {
|
|
*out_flags |= ZADD_OUT_NOP;
|
|
return 1;
|
|
}
|
|
|
|
/* Prepare the score for the increment if needed. */
|
|
if (incr) {
|
|
score += curscore;
|
|
if (isnan(score)) {
|
|
*out_flags |= ZADD_OUT_NAN;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* GT/LT? Only update if score is greater/less than current. */
|
|
if ((lt && score >= curscore) || (gt && score <= curscore)) {
|
|
*out_flags |= ZADD_OUT_NOP;
|
|
return 1;
|
|
}
|
|
|
|
if (newscore) *newscore = score;
|
|
|
|
/* Remove and re-insert when score changed. */
|
|
if (score != curscore) {
|
|
zobj->ptr = zzlDelete(zobj->ptr, eptr);
|
|
zobj->ptr = zzlInsert(zobj->ptr, ele, score);
|
|
*out_flags |= ZADD_OUT_UPDATED;
|
|
}
|
|
return 1;
|
|
} else if (!xx) {
|
|
/* check if the element is too large or the list
|
|
* becomes too long *before* executing zzlInsert. */
|
|
if (zzlLength(zobj->ptr) + 1 > server.zset_max_listpack_entries ||
|
|
sdslen(ele) > server.zset_max_listpack_value || !lpSafeToAdd(zobj->ptr, sdslen(ele))) {
|
|
zsetConvertAndExpand(zobj, OBJ_ENCODING_SKIPLIST, zsetLength(zobj) + 1);
|
|
} else {
|
|
zobj->ptr = zzlInsert(zobj->ptr, ele, score);
|
|
if (newscore) *newscore = score;
|
|
*out_flags |= ZADD_OUT_ADDED;
|
|
return 1;
|
|
}
|
|
} else {
|
|
*out_flags |= ZADD_OUT_NOP;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Note that the above block handling listpack would have either returned or
|
|
* converted the key to skiplist. */
|
|
if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplistNode *znode;
|
|
dictEntry *de;
|
|
|
|
de = dictFind(zs->dict, ele);
|
|
if (de != NULL) {
|
|
/* NX? Return, same element already exists. */
|
|
if (nx) {
|
|
*out_flags |= ZADD_OUT_NOP;
|
|
return 1;
|
|
}
|
|
|
|
curscore = *(double *)dictGetVal(de);
|
|
|
|
/* Prepare the score for the increment if needed. */
|
|
if (incr) {
|
|
score += curscore;
|
|
if (isnan(score)) {
|
|
*out_flags |= ZADD_OUT_NAN;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* GT/LT? Only update if score is greater/less than current. */
|
|
if ((lt && score >= curscore) || (gt && score <= curscore)) {
|
|
*out_flags |= ZADD_OUT_NOP;
|
|
return 1;
|
|
}
|
|
|
|
if (newscore) *newscore = score;
|
|
|
|
/* Remove and re-insert when score changes. */
|
|
if (score != curscore) {
|
|
znode = zslUpdateScore(zs->zsl, curscore, ele, score);
|
|
/* Note that we did not removed the original element from
|
|
* the hash table representing the sorted set, so we just
|
|
* update the score. */
|
|
dictSetVal(zs->dict, de, &znode->score); /* Update score ptr. */
|
|
*out_flags |= ZADD_OUT_UPDATED;
|
|
}
|
|
return 1;
|
|
} else if (!xx) {
|
|
ele = sdsdup(ele);
|
|
znode = zslInsert(zs->zsl, score, ele);
|
|
serverAssert(dictAdd(zs->dict, ele, &znode->score) == DICT_OK);
|
|
*out_flags |= ZADD_OUT_ADDED;
|
|
if (newscore) *newscore = score;
|
|
return 1;
|
|
} else {
|
|
*out_flags |= ZADD_OUT_NOP;
|
|
return 1;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
return 0; /* Never reached. */
|
|
}
|
|
|
|
/* Deletes the element 'ele' from the sorted set encoded as a skiplist+dict,
|
|
* returning 1 if the element existed and was deleted, 0 otherwise (the
|
|
* element was not there). It does not resize the dict after deleting the
|
|
* element. */
|
|
static int zsetRemoveFromSkiplist(zset *zs, sds ele) {
|
|
dictEntry *de;
|
|
double score;
|
|
|
|
de = dictUnlink(zs->dict, ele);
|
|
if (de != NULL) {
|
|
/* Get the score in order to delete from the skiplist later. */
|
|
score = *(double *)dictGetVal(de);
|
|
|
|
/* Delete from the hash table and later from the skiplist.
|
|
* Note that the order is important: deleting from the skiplist
|
|
* actually releases the SDS string representing the element,
|
|
* which is shared between the skiplist and the hash table, so
|
|
* we need to delete from the skiplist as the final step. */
|
|
dictFreeUnlinkedEntry(zs->dict, de);
|
|
|
|
/* Delete from skiplist. */
|
|
int retval = zslDelete(zs->zsl, score, ele, NULL);
|
|
serverAssert(retval);
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Delete the element 'ele' from the sorted set, returning 1 if the element
|
|
* existed and was deleted, 0 otherwise (the element was not there). */
|
|
int zsetDel(robj *zobj, sds ele) {
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *eptr;
|
|
|
|
if ((eptr = zzlFind(zobj->ptr, ele, NULL)) != NULL) {
|
|
zobj->ptr = zzlDelete(zobj->ptr, eptr);
|
|
return 1;
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
if (zsetRemoveFromSkiplist(zs, ele)) {
|
|
return 1;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
return 0; /* No such element found. */
|
|
}
|
|
|
|
/* Given a sorted set object returns the 0-based rank of the object or
|
|
* -1 if the object does not exist.
|
|
*
|
|
* For rank we mean the position of the element in the sorted collection
|
|
* of elements. So the first element has rank 0, the second rank 1, and so
|
|
* forth up to length-1 elements.
|
|
*
|
|
* If 'reverse' is false, the rank is returned considering as first element
|
|
* the one with the lowest score. Otherwise if 'reverse' is non-zero
|
|
* the rank is computed considering as element with rank 0 the one with
|
|
* the highest score. */
|
|
long zsetRank(robj *zobj, sds ele, int reverse, double *output_score) {
|
|
unsigned long llen;
|
|
unsigned long rank;
|
|
|
|
llen = zsetLength(zobj);
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
|
|
eptr = lpSeek(zl, 0);
|
|
serverAssert(eptr != NULL);
|
|
sptr = lpNext(zl, eptr);
|
|
serverAssert(sptr != NULL);
|
|
|
|
rank = 1;
|
|
while (eptr != NULL) {
|
|
if (lpCompare(eptr, (unsigned char *)ele, sdslen(ele))) break;
|
|
rank++;
|
|
zzlNext(zl, &eptr, &sptr);
|
|
}
|
|
|
|
if (eptr != NULL) {
|
|
if (output_score) *output_score = zzlGetScore(sptr);
|
|
if (reverse)
|
|
return llen - rank;
|
|
else
|
|
return rank - 1;
|
|
} else {
|
|
return -1;
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
dictEntry *de;
|
|
double score;
|
|
|
|
de = dictFind(zs->dict, ele);
|
|
if (de != NULL) {
|
|
score = *(double *)dictGetVal(de);
|
|
rank = zslGetRank(zsl, score, ele);
|
|
/* Existing elements always have a rank. */
|
|
serverAssert(rank != 0);
|
|
if (output_score) *output_score = score;
|
|
if (reverse)
|
|
return llen - rank;
|
|
else
|
|
return rank - 1;
|
|
} else {
|
|
return -1;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
}
|
|
|
|
/* This is a helper function for the COPY command.
|
|
* Duplicate a sorted set object, with the guarantee that the returned object
|
|
* has the same encoding as the original one.
|
|
*
|
|
* The resulting object always has refcount set to 1 */
|
|
robj *zsetDup(robj *o) {
|
|
robj *zobj;
|
|
zset *zs;
|
|
zset *new_zs;
|
|
|
|
serverAssert(o->type == OBJ_ZSET);
|
|
|
|
/* Create a new sorted set object that have the same encoding as the original object's encoding */
|
|
if (o->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = o->ptr;
|
|
size_t sz = lpBytes(zl);
|
|
unsigned char *new_zl = zmalloc(sz);
|
|
memcpy(new_zl, zl, sz);
|
|
zobj = createObject(OBJ_ZSET, new_zl);
|
|
zobj->encoding = OBJ_ENCODING_LISTPACK;
|
|
} else if (o->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zobj = createZsetObject();
|
|
zs = o->ptr;
|
|
new_zs = zobj->ptr;
|
|
dictExpand(new_zs->dict, dictSize(zs->dict));
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *ln;
|
|
sds ele;
|
|
long llen = zsetLength(o);
|
|
|
|
/* We copy the skiplist elements from the greatest to the
|
|
* smallest (that's trivial since the elements are already ordered in
|
|
* the skiplist): this improves the load process, since the next loaded
|
|
* element will always be the smaller, so adding to the skiplist
|
|
* will always immediately stop at the head, making the insertion
|
|
* O(1) instead of O(log(N)). */
|
|
ln = zsl->tail;
|
|
while (llen--) {
|
|
ele = ln->ele;
|
|
sds new_ele = sdsdup(ele);
|
|
zskiplistNode *znode = zslInsert(new_zs->zsl, ln->score, new_ele);
|
|
dictAdd(new_zs->dict, new_ele, &znode->score);
|
|
ln = ln->backward;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
return zobj;
|
|
}
|
|
|
|
/* Create a new sds string from the listpack entry. */
|
|
sds zsetSdsFromListpackEntry(listpackEntry *e) {
|
|
return e->sval ? sdsnewlen(e->sval, e->slen) : sdsfromlonglong(e->lval);
|
|
}
|
|
|
|
/* Reply with bulk string from the listpack entry. */
|
|
void zsetReplyFromListpackEntry(client *c, listpackEntry *e) {
|
|
if (e->sval)
|
|
addReplyBulkCBuffer(c, e->sval, e->slen);
|
|
else
|
|
addReplyBulkLongLong(c, e->lval);
|
|
}
|
|
|
|
|
|
/* Return random element from a non empty zset.
|
|
* 'key' and 'val' will be set to hold the element.
|
|
* The memory in `key` is not to be freed or modified by the caller.
|
|
* 'score' can be NULL in which case it's not extracted. */
|
|
void zsetTypeRandomElement(robj *zsetobj, unsigned long zsetsize, listpackEntry *key, double *score) {
|
|
if (zsetobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zsetobj->ptr;
|
|
dictEntry *de = dictGetFairRandomKey(zs->dict);
|
|
sds s = dictGetKey(de);
|
|
key->sval = (unsigned char *)s;
|
|
key->slen = sdslen(s);
|
|
if (score) *score = *(double *)dictGetVal(de);
|
|
} else if (zsetobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
listpackEntry val;
|
|
lpRandomPair(zsetobj->ptr, zsetsize, key, &val);
|
|
if (score) {
|
|
if (val.sval) {
|
|
*score = zzlStrtod(val.sval, val.slen);
|
|
} else {
|
|
*score = (double)val.lval;
|
|
}
|
|
}
|
|
} else {
|
|
serverPanic("Unknown zset encoding");
|
|
}
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
* Sorted set commands
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
/* This generic command implements both ZADD and ZINCRBY. */
|
|
void zaddGenericCommand(client *c, int flags) {
|
|
static char *nanerr = "resulting score is not a number (NaN)";
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
sds ele;
|
|
double score = 0, *scores = NULL;
|
|
int j, elements, ch = 0;
|
|
size_t maxelelen = 0;
|
|
int scoreidx = 0;
|
|
/* The following vars are used in order to track what the command actually
|
|
* did during the execution, to reply to the client and to trigger the
|
|
* notification of keyspace change. */
|
|
int added = 0; /* Number of new elements added. */
|
|
int updated = 0; /* Number of elements with updated score. */
|
|
int processed = 0; /* Number of elements processed, may remain zero with
|
|
options like XX. */
|
|
|
|
/* Parse options. At the end 'scoreidx' is set to the argument position
|
|
* of the score of the first score-element pair. */
|
|
scoreidx = 2;
|
|
while (scoreidx < c->argc) {
|
|
char *opt = c->argv[scoreidx]->ptr;
|
|
if (!strcasecmp(opt, "nx"))
|
|
flags |= ZADD_IN_NX;
|
|
else if (!strcasecmp(opt, "xx"))
|
|
flags |= ZADD_IN_XX;
|
|
else if (!strcasecmp(opt, "ch"))
|
|
ch = 1; /* Return num of elements added or updated. */
|
|
else if (!strcasecmp(opt, "incr"))
|
|
flags |= ZADD_IN_INCR;
|
|
else if (!strcasecmp(opt, "gt"))
|
|
flags |= ZADD_IN_GT;
|
|
else if (!strcasecmp(opt, "lt"))
|
|
flags |= ZADD_IN_LT;
|
|
else
|
|
break;
|
|
scoreidx++;
|
|
}
|
|
|
|
/* Turn options into simple to check vars. */
|
|
int incr = (flags & ZADD_IN_INCR) != 0;
|
|
int nx = (flags & ZADD_IN_NX) != 0;
|
|
int xx = (flags & ZADD_IN_XX) != 0;
|
|
int gt = (flags & ZADD_IN_GT) != 0;
|
|
int lt = (flags & ZADD_IN_LT) != 0;
|
|
|
|
/* After the options, we expect to have an even number of args, since
|
|
* we expect any number of score-element pairs. */
|
|
elements = c->argc - scoreidx;
|
|
if (elements % 2 || !elements) {
|
|
addReplyErrorObject(c, shared.syntaxerr);
|
|
return;
|
|
}
|
|
elements /= 2; /* Now this holds the number of score-element pairs. */
|
|
|
|
/* Check for incompatible options. */
|
|
if (nx && xx) {
|
|
addReplyError(c, "XX and NX options at the same time are not compatible");
|
|
return;
|
|
}
|
|
|
|
if ((gt && nx) || (lt && nx) || (gt && lt)) {
|
|
addReplyError(c, "GT, LT, and/or NX options at the same time are not compatible");
|
|
return;
|
|
}
|
|
/* Note that XX is compatible with either GT or LT */
|
|
|
|
if (incr && elements > 1) {
|
|
addReplyError(c, "INCR option supports a single increment-element pair");
|
|
return;
|
|
}
|
|
|
|
/* Start parsing all the scores, we need to emit any syntax error
|
|
* before executing additions to the sorted set, as the command should
|
|
* either execute fully or nothing at all. */
|
|
scores = zmalloc(sizeof(double) * elements);
|
|
for (j = 0; j < elements; j++) {
|
|
if (getDoubleFromObjectOrReply(c, c->argv[scoreidx + j * 2], &scores[j], NULL) != C_OK) goto cleanup;
|
|
ele = c->argv[scoreidx + 1 + j * 2]->ptr;
|
|
size_t elelen = sdslen(ele);
|
|
if (elelen > maxelelen) maxelelen = elelen;
|
|
}
|
|
|
|
/* Lookup the key and create the sorted set if does not exist. */
|
|
zobj = lookupKeyWrite(c->db, key);
|
|
if (checkType(c, zobj, OBJ_ZSET)) goto cleanup;
|
|
if (zobj == NULL) {
|
|
if (xx) goto reply_to_client; /* No key + XX option: nothing to do. */
|
|
zobj = zsetTypeCreate(elements, maxelelen);
|
|
dbAdd(c->db, key, zobj);
|
|
} else {
|
|
zsetTypeMaybeConvert(zobj, elements, maxelelen);
|
|
}
|
|
|
|
for (j = 0; j < elements; j++) {
|
|
double newscore;
|
|
score = scores[j];
|
|
int retflags = 0;
|
|
|
|
ele = c->argv[scoreidx + 1 + j * 2]->ptr;
|
|
int retval = zsetAdd(zobj, score, ele, flags, &retflags, &newscore);
|
|
if (retval == 0) {
|
|
addReplyError(c, nanerr);
|
|
goto cleanup;
|
|
}
|
|
if (retflags & ZADD_OUT_ADDED) added++;
|
|
if (retflags & ZADD_OUT_UPDATED) updated++;
|
|
if (!(retflags & ZADD_OUT_NOP)) processed++;
|
|
score = newscore;
|
|
}
|
|
server.dirty += (added + updated);
|
|
|
|
reply_to_client:
|
|
if (incr) { /* ZINCRBY or INCR option. */
|
|
if (processed)
|
|
addReplyDouble(c, score);
|
|
else
|
|
addReplyNull(c);
|
|
} else { /* ZADD. */
|
|
addReplyLongLong(c, ch ? added + updated : added);
|
|
}
|
|
|
|
cleanup:
|
|
zfree(scores);
|
|
if (added || updated) {
|
|
signalModifiedKey(c, c->db, key);
|
|
notifyKeyspaceEvent(NOTIFY_ZSET, incr ? "zincr" : "zadd", key, c->db->id);
|
|
}
|
|
}
|
|
|
|
void zaddCommand(client *c) {
|
|
zaddGenericCommand(c, ZADD_IN_NONE);
|
|
}
|
|
|
|
void zincrbyCommand(client *c) {
|
|
zaddGenericCommand(c, ZADD_IN_INCR);
|
|
}
|
|
|
|
void zremCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
int deleted = 0, keyremoved = 0, j;
|
|
|
|
if ((zobj = lookupKeyWriteOrReply(c, key, shared.czero)) == NULL || checkType(c, zobj, OBJ_ZSET)) return;
|
|
|
|
for (j = 2; j < c->argc; j++) {
|
|
if (zsetDel(zobj, c->argv[j]->ptr)) deleted++;
|
|
if (zsetLength(zobj) == 0) {
|
|
dbDelete(c->db, key);
|
|
keyremoved = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (deleted) {
|
|
notifyKeyspaceEvent(NOTIFY_ZSET, "zrem", key, c->db->id);
|
|
if (keyremoved) notifyKeyspaceEvent(NOTIFY_GENERIC, "del", key, c->db->id);
|
|
signalModifiedKey(c, c->db, key);
|
|
server.dirty += deleted;
|
|
}
|
|
addReplyLongLong(c, deleted);
|
|
}
|
|
|
|
typedef enum {
|
|
ZRANGE_AUTO = 0,
|
|
ZRANGE_RANK,
|
|
ZRANGE_SCORE,
|
|
ZRANGE_LEX,
|
|
} zrange_type;
|
|
|
|
/* Implements ZREMRANGEBYRANK, ZREMRANGEBYSCORE, ZREMRANGEBYLEX commands. */
|
|
void zremrangeGenericCommand(client *c, zrange_type rangetype) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
int keyremoved = 0;
|
|
unsigned long deleted = 0;
|
|
zrangespec range;
|
|
zlexrangespec lexrange;
|
|
long start, end, llen;
|
|
char *notify_type = NULL;
|
|
|
|
/* Step 1: Parse the range. */
|
|
if (rangetype == ZRANGE_RANK) {
|
|
notify_type = "zremrangebyrank";
|
|
if ((getLongFromObjectOrReply(c, c->argv[2], &start, NULL) != C_OK) ||
|
|
(getLongFromObjectOrReply(c, c->argv[3], &end, NULL) != C_OK))
|
|
return;
|
|
} else if (rangetype == ZRANGE_SCORE) {
|
|
notify_type = "zremrangebyscore";
|
|
if (zslParseRange(c->argv[2], c->argv[3], &range) != C_OK) {
|
|
addReplyError(c, "min or max is not a float");
|
|
return;
|
|
}
|
|
} else if (rangetype == ZRANGE_LEX) {
|
|
notify_type = "zremrangebylex";
|
|
if (zslParseLexRange(c->argv[2], c->argv[3], &lexrange) != C_OK) {
|
|
addReplyError(c, "min or max not valid string range item");
|
|
return;
|
|
}
|
|
} else {
|
|
serverPanic("unknown rangetype %d", (int)rangetype);
|
|
}
|
|
|
|
/* Step 2: Lookup & range sanity checks if needed. */
|
|
if ((zobj = lookupKeyWriteOrReply(c, key, shared.czero)) == NULL || checkType(c, zobj, OBJ_ZSET)) goto cleanup;
|
|
|
|
if (rangetype == ZRANGE_RANK) {
|
|
/* Sanitize indexes. */
|
|
llen = zsetLength(zobj);
|
|
if (start < 0) start = llen + start;
|
|
if (end < 0) end = llen + end;
|
|
if (start < 0) start = 0;
|
|
|
|
/* Invariant: start >= 0, so this test will be true when end < 0.
|
|
* The range is empty when start > end or start >= length. */
|
|
if (start > end || start >= llen) {
|
|
addReply(c, shared.czero);
|
|
goto cleanup;
|
|
}
|
|
if (end >= llen) end = llen - 1;
|
|
}
|
|
|
|
/* Step 3: Perform the range deletion operation. */
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
switch (rangetype) {
|
|
case ZRANGE_AUTO:
|
|
case ZRANGE_RANK: zobj->ptr = zzlDeleteRangeByRank(zobj->ptr, start + 1, end + 1, &deleted); break;
|
|
case ZRANGE_SCORE: zobj->ptr = zzlDeleteRangeByScore(zobj->ptr, &range, &deleted); break;
|
|
case ZRANGE_LEX: zobj->ptr = zzlDeleteRangeByLex(zobj->ptr, &lexrange, &deleted); break;
|
|
}
|
|
if (zzlLength(zobj->ptr) == 0) {
|
|
dbDelete(c->db, key);
|
|
keyremoved = 1;
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
dictPauseAutoResize(zs->dict);
|
|
switch (rangetype) {
|
|
case ZRANGE_AUTO:
|
|
case ZRANGE_RANK: deleted = zslDeleteRangeByRank(zs->zsl, start + 1, end + 1, zs->dict); break;
|
|
case ZRANGE_SCORE: deleted = zslDeleteRangeByScore(zs->zsl, &range, zs->dict); break;
|
|
case ZRANGE_LEX: deleted = zslDeleteRangeByLex(zs->zsl, &lexrange, zs->dict); break;
|
|
}
|
|
dictResumeAutoResize(zs->dict);
|
|
if (dictSize(zs->dict) == 0) {
|
|
dbDelete(c->db, key);
|
|
keyremoved = 1;
|
|
} else {
|
|
dictShrinkIfNeeded(zs->dict);
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
/* Step 4: Notifications and reply. */
|
|
if (deleted) {
|
|
signalModifiedKey(c, c->db, key);
|
|
notifyKeyspaceEvent(NOTIFY_ZSET, notify_type, key, c->db->id);
|
|
if (keyremoved) notifyKeyspaceEvent(NOTIFY_GENERIC, "del", key, c->db->id);
|
|
}
|
|
server.dirty += deleted;
|
|
addReplyLongLong(c, deleted);
|
|
|
|
cleanup:
|
|
if (rangetype == ZRANGE_LEX) zslFreeLexRange(&lexrange);
|
|
}
|
|
|
|
void zremrangebyrankCommand(client *c) {
|
|
zremrangeGenericCommand(c, ZRANGE_RANK);
|
|
}
|
|
|
|
void zremrangebyscoreCommand(client *c) {
|
|
zremrangeGenericCommand(c, ZRANGE_SCORE);
|
|
}
|
|
|
|
void zremrangebylexCommand(client *c) {
|
|
zremrangeGenericCommand(c, ZRANGE_LEX);
|
|
}
|
|
|
|
typedef struct {
|
|
robj *subject;
|
|
int type; /* Set, sorted set */
|
|
int encoding;
|
|
double weight;
|
|
|
|
union {
|
|
/* Set iterators. */
|
|
union _iterset {
|
|
struct {
|
|
intset *is;
|
|
int ii;
|
|
} is;
|
|
struct {
|
|
dict *dict;
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
} ht;
|
|
struct {
|
|
unsigned char *lp;
|
|
unsigned char *p;
|
|
} lp;
|
|
} set;
|
|
|
|
/* Sorted set iterators. */
|
|
union _iterzset {
|
|
struct {
|
|
unsigned char *zl;
|
|
unsigned char *eptr, *sptr;
|
|
} zl;
|
|
struct {
|
|
zset *zs;
|
|
zskiplistNode *node;
|
|
} sl;
|
|
} zset;
|
|
} iter;
|
|
} zsetopsrc;
|
|
|
|
|
|
/* Use dirty flags for pointers that need to be cleaned up in the next
|
|
* iteration over the zsetopval. The dirty flag for the long long value is
|
|
* special, since long long values don't need cleanup. Instead, it means that
|
|
* we already checked that "ell" holds a long long, or tried to convert another
|
|
* representation into a long long value. When this was successful,
|
|
* OPVAL_VALID_LL is set as well. */
|
|
#define OPVAL_DIRTY_SDS 1
|
|
#define OPVAL_DIRTY_LL 2
|
|
#define OPVAL_VALID_LL 4
|
|
|
|
/* Store value retrieved from the iterator. */
|
|
typedef struct {
|
|
int flags;
|
|
unsigned char _buf[32]; /* Private buffer. */
|
|
sds ele;
|
|
unsigned char *estr;
|
|
unsigned int elen;
|
|
long long ell;
|
|
double score;
|
|
} zsetopval;
|
|
|
|
typedef union _iterset iterset;
|
|
typedef union _iterzset iterzset;
|
|
|
|
void zuiInitIterator(zsetopsrc *op) {
|
|
if (op->subject == NULL) return;
|
|
|
|
if (op->type == OBJ_SET) {
|
|
iterset *it = &op->iter.set;
|
|
if (op->encoding == OBJ_ENCODING_INTSET) {
|
|
it->is.is = op->subject->ptr;
|
|
it->is.ii = 0;
|
|
} else if (op->encoding == OBJ_ENCODING_HT) {
|
|
it->ht.dict = op->subject->ptr;
|
|
it->ht.di = dictGetIterator(op->subject->ptr);
|
|
it->ht.de = dictNext(it->ht.di);
|
|
} else if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
it->lp.lp = op->subject->ptr;
|
|
it->lp.p = lpFirst(it->lp.lp);
|
|
} else {
|
|
serverPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == OBJ_ZSET) {
|
|
/* Sorted sets are traversed in reverse order to optimize for
|
|
* the insertion of the elements in a new list as in
|
|
* ZDIFF/ZINTER/ZUNION */
|
|
iterzset *it = &op->iter.zset;
|
|
if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
it->zl.zl = op->subject->ptr;
|
|
it->zl.eptr = lpSeek(it->zl.zl, -2);
|
|
if (it->zl.eptr != NULL) {
|
|
it->zl.sptr = lpNext(it->zl.zl, it->zl.eptr);
|
|
serverAssert(it->zl.sptr != NULL);
|
|
}
|
|
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
it->sl.zs = op->subject->ptr;
|
|
it->sl.node = it->sl.zs->zsl->tail;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
serverPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
void zuiClearIterator(zsetopsrc *op) {
|
|
if (op->subject == NULL) return;
|
|
|
|
if (op->type == OBJ_SET) {
|
|
iterset *it = &op->iter.set;
|
|
if (op->encoding == OBJ_ENCODING_INTSET) {
|
|
UNUSED(it); /* skip */
|
|
} else if (op->encoding == OBJ_ENCODING_HT) {
|
|
dictReleaseIterator(it->ht.di);
|
|
} else if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
UNUSED(it);
|
|
} else {
|
|
serverPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == OBJ_ZSET) {
|
|
iterzset *it = &op->iter.zset;
|
|
if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
UNUSED(it); /* skip */
|
|
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
UNUSED(it); /* skip */
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
serverPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
void zuiDiscardDirtyValue(zsetopval *val) {
|
|
if (val->flags & OPVAL_DIRTY_SDS) {
|
|
sdsfree(val->ele);
|
|
val->ele = NULL;
|
|
val->flags &= ~OPVAL_DIRTY_SDS;
|
|
}
|
|
}
|
|
|
|
unsigned long zuiLength(zsetopsrc *op) {
|
|
if (op->subject == NULL) return 0;
|
|
|
|
if (op->type == OBJ_SET) {
|
|
return setTypeSize(op->subject);
|
|
} else if (op->type == OBJ_ZSET) {
|
|
if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
return zzlLength(op->subject->ptr);
|
|
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = op->subject->ptr;
|
|
return zs->zsl->length;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
serverPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
/* Check if the current value is valid. If so, store it in the passed structure
|
|
* and move to the next element. If not valid, this means we have reached the
|
|
* end of the structure and can abort. */
|
|
int zuiNext(zsetopsrc *op, zsetopval *val) {
|
|
if (op->subject == NULL) return 0;
|
|
|
|
zuiDiscardDirtyValue(val);
|
|
|
|
memset(val, 0, sizeof(zsetopval));
|
|
|
|
if (op->type == OBJ_SET) {
|
|
iterset *it = &op->iter.set;
|
|
if (op->encoding == OBJ_ENCODING_INTSET) {
|
|
int64_t ell;
|
|
|
|
if (!intsetGet(it->is.is, it->is.ii, &ell)) return 0;
|
|
val->ell = ell;
|
|
val->score = 1.0;
|
|
|
|
/* Move to next element. */
|
|
it->is.ii++;
|
|
} else if (op->encoding == OBJ_ENCODING_HT) {
|
|
if (it->ht.de == NULL) return 0;
|
|
val->ele = dictGetKey(it->ht.de);
|
|
val->score = 1.0;
|
|
|
|
/* Move to next element. */
|
|
it->ht.de = dictNext(it->ht.di);
|
|
} else if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
if (it->lp.p == NULL) return 0;
|
|
val->estr = lpGetValue(it->lp.p, &val->elen, &val->ell);
|
|
val->score = 1.0;
|
|
|
|
/* Move to next element. */
|
|
it->lp.p = lpNext(it->lp.lp, it->lp.p);
|
|
} else {
|
|
serverPanic("Unknown set encoding");
|
|
}
|
|
} else if (op->type == OBJ_ZSET) {
|
|
iterzset *it = &op->iter.zset;
|
|
if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
/* No need to check both, but better be explicit. */
|
|
if (it->zl.eptr == NULL || it->zl.sptr == NULL) return 0;
|
|
val->estr = lpGetValue(it->zl.eptr, &val->elen, &val->ell);
|
|
val->score = zzlGetScore(it->zl.sptr);
|
|
|
|
/* Move to next element (going backwards, see zuiInitIterator). */
|
|
zzlPrev(it->zl.zl, &it->zl.eptr, &it->zl.sptr);
|
|
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
if (it->sl.node == NULL) return 0;
|
|
val->ele = it->sl.node->ele;
|
|
val->score = it->sl.node->score;
|
|
|
|
/* Move to next element. (going backwards, see zuiInitIterator) */
|
|
it->sl.node = it->sl.node->backward;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
serverPanic("Unsupported type");
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int zuiLongLongFromValue(zsetopval *val) {
|
|
if (!(val->flags & OPVAL_DIRTY_LL)) {
|
|
val->flags |= OPVAL_DIRTY_LL;
|
|
|
|
if (val->ele != NULL) {
|
|
if (string2ll(val->ele, sdslen(val->ele), &val->ell)) val->flags |= OPVAL_VALID_LL;
|
|
} else if (val->estr != NULL) {
|
|
if (string2ll((char *)val->estr, val->elen, &val->ell)) val->flags |= OPVAL_VALID_LL;
|
|
} else {
|
|
/* The long long was already set, flag as valid. */
|
|
val->flags |= OPVAL_VALID_LL;
|
|
}
|
|
}
|
|
return val->flags & OPVAL_VALID_LL;
|
|
}
|
|
|
|
sds zuiSdsFromValue(zsetopval *val) {
|
|
if (val->ele == NULL) {
|
|
if (val->estr != NULL) {
|
|
val->ele = sdsnewlen((char *)val->estr, val->elen);
|
|
} else {
|
|
val->ele = sdsfromlonglong(val->ell);
|
|
}
|
|
val->flags |= OPVAL_DIRTY_SDS;
|
|
}
|
|
return val->ele;
|
|
}
|
|
|
|
/* This is different from zuiSdsFromValue since returns a new SDS string
|
|
* which is up to the caller to free. */
|
|
sds zuiNewSdsFromValue(zsetopval *val) {
|
|
if (val->flags & OPVAL_DIRTY_SDS) {
|
|
/* We have already one to return! */
|
|
sds ele = val->ele;
|
|
val->flags &= ~OPVAL_DIRTY_SDS;
|
|
val->ele = NULL;
|
|
return ele;
|
|
} else if (val->ele) {
|
|
return sdsdup(val->ele);
|
|
} else if (val->estr) {
|
|
return sdsnewlen((char *)val->estr, val->elen);
|
|
} else {
|
|
return sdsfromlonglong(val->ell);
|
|
}
|
|
}
|
|
|
|
int zuiBufferFromValue(zsetopval *val) {
|
|
if (val->estr == NULL) {
|
|
if (val->ele != NULL) {
|
|
val->elen = sdslen(val->ele);
|
|
val->estr = (unsigned char *)val->ele;
|
|
} else {
|
|
val->elen = ll2string((char *)val->_buf, sizeof(val->_buf), val->ell);
|
|
val->estr = val->_buf;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Find value pointed to by val in the source pointer to by op. When found,
|
|
* return 1 and store its score in target. Return 0 otherwise. */
|
|
int zuiFind(zsetopsrc *op, zsetopval *val, double *score) {
|
|
if (op->subject == NULL) return 0;
|
|
|
|
if (op->type == OBJ_SET) {
|
|
char *str = val->ele ? val->ele : (char *)val->estr;
|
|
size_t len = val->ele ? sdslen(val->ele) : val->elen;
|
|
if (setTypeIsMemberAux(op->subject, str, len, val->ell, val->ele != NULL)) {
|
|
*score = 1.0;
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else if (op->type == OBJ_ZSET) {
|
|
zuiSdsFromValue(val);
|
|
|
|
if (op->encoding == OBJ_ENCODING_LISTPACK) {
|
|
if (zzlFind(op->subject->ptr, val->ele, score) != NULL) {
|
|
/* Score is already set by zzlFind. */
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = op->subject->ptr;
|
|
dictEntry *de;
|
|
if ((de = dictFind(zs->dict, val->ele)) != NULL) {
|
|
*score = *(double *)dictGetVal(de);
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
} else {
|
|
serverPanic("Unsupported type");
|
|
}
|
|
}
|
|
|
|
int zuiCompareByCardinality(const void *s1, const void *s2) {
|
|
unsigned long first = zuiLength((zsetopsrc *)s1);
|
|
unsigned long second = zuiLength((zsetopsrc *)s2);
|
|
if (first > second) return 1;
|
|
if (first < second) return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int zuiCompareByRevCardinality(const void *s1, const void *s2) {
|
|
return zuiCompareByCardinality(s1, s2) * -1;
|
|
}
|
|
|
|
#define REDIS_AGGR_SUM 1
|
|
#define REDIS_AGGR_MIN 2
|
|
#define REDIS_AGGR_MAX 3
|
|
#define zunionInterDictValue(_e) (dictGetVal(_e) == NULL ? 1.0 : *(double *)dictGetVal(_e))
|
|
|
|
inline static void zunionInterAggregate(double *target, double val, int aggregate) {
|
|
if (aggregate == REDIS_AGGR_SUM) {
|
|
*target = *target + val;
|
|
/* The result of adding two doubles is NaN when one variable
|
|
* is +inf and the other is -inf. When these numbers are added,
|
|
* we maintain the convention of the result being 0.0. */
|
|
if (isnan(*target)) *target = 0.0;
|
|
} else if (aggregate == REDIS_AGGR_MIN) {
|
|
*target = val < *target ? val : *target;
|
|
} else if (aggregate == REDIS_AGGR_MAX) {
|
|
*target = val > *target ? val : *target;
|
|
} else {
|
|
/* safety net */
|
|
serverPanic("Unknown ZUNION/INTER aggregate type");
|
|
}
|
|
}
|
|
|
|
static size_t zsetDictGetMaxElementLength(dict *d, size_t *totallen) {
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
size_t maxelelen = 0;
|
|
|
|
di = dictGetIterator(d);
|
|
|
|
while ((de = dictNext(di)) != NULL) {
|
|
sds ele = dictGetKey(de);
|
|
if (sdslen(ele) > maxelelen) maxelelen = sdslen(ele);
|
|
if (totallen) (*totallen) += sdslen(ele);
|
|
}
|
|
|
|
dictReleaseIterator(di);
|
|
|
|
return maxelelen;
|
|
}
|
|
|
|
static void zdiffAlgorithm1(zsetopsrc *src, long setnum, zset *dstzset, size_t *maxelelen, size_t *totelelen) {
|
|
/* DIFF Algorithm 1:
|
|
*
|
|
* We perform the diff by iterating all the elements of the first set,
|
|
* and only adding it to the target set if the element does not exist
|
|
* into all the other sets.
|
|
*
|
|
* This way we perform at max N*M operations, where N is the size of
|
|
* the first set, and M the number of sets.
|
|
*
|
|
* There is also a O(K*log(K)) cost for adding the resulting elements
|
|
* to the target set, where K is the final size of the target set.
|
|
*
|
|
* The final complexity of this algorithm is O(N*M + K*log(K)). */
|
|
int j;
|
|
zsetopval zval;
|
|
zskiplistNode *znode;
|
|
sds tmp;
|
|
|
|
/* With algorithm 1 it is better to order the sets to subtract
|
|
* by decreasing size, so that we are more likely to find
|
|
* duplicated elements ASAP. */
|
|
qsort(src + 1, setnum - 1, sizeof(zsetopsrc), zuiCompareByRevCardinality);
|
|
|
|
memset(&zval, 0, sizeof(zval));
|
|
zuiInitIterator(&src[0]);
|
|
while (zuiNext(&src[0], &zval)) {
|
|
double value;
|
|
int exists = 0;
|
|
|
|
for (j = 1; j < setnum; j++) {
|
|
/* It is not safe to access the zset we are
|
|
* iterating, so explicitly check for equal object.
|
|
* This check isn't really needed anymore since we already
|
|
* check for a duplicate set in the zsetChooseDiffAlgorithm
|
|
* function, but we're leaving it for future-proofing. */
|
|
if (src[j].subject == src[0].subject || zuiFind(&src[j], &zval, &value)) {
|
|
exists = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!exists) {
|
|
tmp = zuiNewSdsFromValue(&zval);
|
|
znode = zslInsert(dstzset->zsl, zval.score, tmp);
|
|
dictAdd(dstzset->dict, tmp, &znode->score);
|
|
if (sdslen(tmp) > *maxelelen) *maxelelen = sdslen(tmp);
|
|
(*totelelen) += sdslen(tmp);
|
|
}
|
|
}
|
|
zuiClearIterator(&src[0]);
|
|
}
|
|
|
|
|
|
static void zdiffAlgorithm2(zsetopsrc *src, long setnum, zset *dstzset, size_t *maxelelen, size_t *totelelen) {
|
|
/* DIFF Algorithm 2:
|
|
*
|
|
* Add all the elements of the first set to the auxiliary set.
|
|
* Then remove all the elements of all the next sets from it.
|
|
*
|
|
|
|
* This is O(L + (N-K)log(N)) where L is the sum of all the elements in every
|
|
* set, N is the size of the first set, and K is the size of the result set.
|
|
*
|
|
* Note that from the (L-N) dict searches, (N-K) got to the zsetRemoveFromSkiplist
|
|
* which costs log(N)
|
|
*
|
|
* There is also a O(K) cost at the end for finding the largest element
|
|
* size, but this doesn't change the algorithm complexity since K < L, and
|
|
* O(2L) is the same as O(L). */
|
|
int j;
|
|
int cardinality = 0;
|
|
zsetopval zval;
|
|
zskiplistNode *znode;
|
|
sds tmp;
|
|
|
|
for (j = 0; j < setnum; j++) {
|
|
if (zuiLength(&src[j]) == 0) continue;
|
|
|
|
memset(&zval, 0, sizeof(zval));
|
|
zuiInitIterator(&src[j]);
|
|
while (zuiNext(&src[j], &zval)) {
|
|
if (j == 0) {
|
|
tmp = zuiNewSdsFromValue(&zval);
|
|
znode = zslInsert(dstzset->zsl, zval.score, tmp);
|
|
dictAdd(dstzset->dict, tmp, &znode->score);
|
|
cardinality++;
|
|
} else {
|
|
dictPauseAutoResize(dstzset->dict);
|
|
tmp = zuiSdsFromValue(&zval);
|
|
if (zsetRemoveFromSkiplist(dstzset, tmp)) {
|
|
cardinality--;
|
|
}
|
|
dictResumeAutoResize(dstzset->dict);
|
|
}
|
|
|
|
/* Exit if result set is empty as any additional removal
|
|
* of elements will have no effect. */
|
|
if (cardinality == 0) break;
|
|
}
|
|
zuiClearIterator(&src[j]);
|
|
|
|
if (cardinality == 0) break;
|
|
}
|
|
|
|
/* Resize dict if needed after removing multiple elements */
|
|
dictShrinkIfNeeded(dstzset->dict);
|
|
|
|
/* Using this algorithm, we can't calculate the max element as we go,
|
|
* we have to iterate through all elements to find the max one after. */
|
|
*maxelelen = zsetDictGetMaxElementLength(dstzset->dict, totelelen);
|
|
}
|
|
|
|
static int zsetChooseDiffAlgorithm(zsetopsrc *src, long setnum) {
|
|
int j;
|
|
|
|
/* Select what DIFF algorithm to use.
|
|
*
|
|
* Algorithm 1 is O(N*M + K*log(K)) where N is the size of the
|
|
* first set, M the total number of sets, and K is the size of the
|
|
* result set.
|
|
*
|
|
* Algorithm 2 is O(L + (N-K)log(N)) where L is the total number of elements
|
|
* in all the sets, N is the size of the first set, and K is the size of the
|
|
* result set.
|
|
*
|
|
* We compute what is the best bet with the current input here. */
|
|
long long algo_one_work = 0;
|
|
long long algo_two_work = 0;
|
|
|
|
for (j = 0; j < setnum; j++) {
|
|
/* If any other set is equal to the first set, there is nothing to be
|
|
* done, since we would remove all elements anyway. */
|
|
if (j > 0 && src[0].subject == src[j].subject) {
|
|
return 0;
|
|
}
|
|
|
|
algo_one_work += zuiLength(&src[0]);
|
|
algo_two_work += zuiLength(&src[j]);
|
|
}
|
|
|
|
/* Algorithm 1 has better constant times and performs less operations
|
|
* if there are elements in common. Give it some advantage. */
|
|
algo_one_work /= 2;
|
|
return (algo_one_work <= algo_two_work) ? 1 : 2;
|
|
}
|
|
|
|
static void zdiff(zsetopsrc *src, long setnum, zset *dstzset, size_t *maxelelen, size_t *totelelen) {
|
|
/* Skip everything if the smallest input is empty. */
|
|
if (zuiLength(&src[0]) > 0) {
|
|
int diff_algo = zsetChooseDiffAlgorithm(src, setnum);
|
|
if (diff_algo == 1) {
|
|
zdiffAlgorithm1(src, setnum, dstzset, maxelelen, totelelen);
|
|
} else if (diff_algo == 2) {
|
|
zdiffAlgorithm2(src, setnum, dstzset, maxelelen, totelelen);
|
|
} else if (diff_algo != 0) {
|
|
serverPanic("Unknown algorithm");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The zunionInterDiffGenericCommand() function is called in order to implement the
|
|
* following commands: ZUNION, ZINTER, ZDIFF, ZUNIONSTORE, ZINTERSTORE, ZDIFFSTORE,
|
|
* ZINTERCARD.
|
|
*
|
|
* 'numkeysIndex' parameter position of key number. for ZUNION/ZINTER/ZDIFF command,
|
|
* this value is 1, for ZUNIONSTORE/ZINTERSTORE/ZDIFFSTORE command, this value is 2.
|
|
*
|
|
* 'op' SET_OP_INTER, SET_OP_UNION or SET_OP_DIFF.
|
|
*
|
|
* 'cardinality_only' is currently only applicable when 'op' is SET_OP_INTER.
|
|
* Work for SINTERCARD, only return the cardinality with minimum processing and memory overheads.
|
|
*/
|
|
void zunionInterDiffGenericCommand(client *c, robj *dstkey, int numkeysIndex, int op, int cardinality_only) {
|
|
int i, j;
|
|
long setnum;
|
|
int aggregate = REDIS_AGGR_SUM;
|
|
zsetopsrc *src;
|
|
zsetopval zval;
|
|
sds tmp;
|
|
size_t maxelelen = 0, totelelen = 0;
|
|
robj *dstobj = NULL;
|
|
zset *dstzset = NULL;
|
|
zskiplistNode *znode;
|
|
int withscores = 0;
|
|
unsigned long cardinality = 0;
|
|
long limit = 0; /* Stop searching after reaching the limit. 0 means unlimited. */
|
|
|
|
/* expect setnum input keys to be given */
|
|
if ((getLongFromObjectOrReply(c, c->argv[numkeysIndex], &setnum, NULL) != C_OK)) return;
|
|
|
|
if (setnum < 1) {
|
|
addReplyErrorFormat(c, "at least 1 input key is needed for '%s' command", c->cmd->fullname);
|
|
return;
|
|
}
|
|
|
|
/* test if the expected number of keys would overflow */
|
|
if (setnum > (c->argc - (numkeysIndex + 1))) {
|
|
addReplyErrorObject(c, shared.syntaxerr);
|
|
return;
|
|
}
|
|
|
|
/* Try to allocate the src table, and abort on insufficient memory. */
|
|
src = ztrycalloc(sizeof(zsetopsrc) * setnum);
|
|
if (src == NULL) {
|
|
addReplyError(c, "Insufficient memory, failed allocating transient memory, too many args.");
|
|
return;
|
|
}
|
|
|
|
/* read keys to be used for input */
|
|
for (i = 0, j = numkeysIndex + 1; i < setnum; i++, j++) {
|
|
robj *obj = lookupKeyRead(c->db, c->argv[j]);
|
|
if (obj != NULL) {
|
|
if (obj->type != OBJ_ZSET && obj->type != OBJ_SET) {
|
|
zfree(src);
|
|
addReplyErrorObject(c, shared.wrongtypeerr);
|
|
return;
|
|
}
|
|
|
|
src[i].subject = obj;
|
|
src[i].type = obj->type;
|
|
src[i].encoding = obj->encoding;
|
|
} else {
|
|
src[i].subject = NULL;
|
|
}
|
|
|
|
/* Default all weights to 1. */
|
|
src[i].weight = 1.0;
|
|
}
|
|
|
|
/* parse optional extra arguments */
|
|
if (j < c->argc) {
|
|
int remaining = c->argc - j;
|
|
|
|
while (remaining) {
|
|
if (op != SET_OP_DIFF && !cardinality_only && remaining >= (setnum + 1) &&
|
|
!strcasecmp(c->argv[j]->ptr, "weights")) {
|
|
j++;
|
|
remaining--;
|
|
for (i = 0; i < setnum; i++, j++, remaining--) {
|
|
if (getDoubleFromObjectOrReply(c, c->argv[j], &src[i].weight, "weight value is not a float") !=
|
|
C_OK) {
|
|
zfree(src);
|
|
return;
|
|
}
|
|
}
|
|
} else if (op != SET_OP_DIFF && !cardinality_only && remaining >= 2 &&
|
|
!strcasecmp(c->argv[j]->ptr, "aggregate")) {
|
|
j++;
|
|
remaining--;
|
|
if (!strcasecmp(c->argv[j]->ptr, "sum")) {
|
|
aggregate = REDIS_AGGR_SUM;
|
|
} else if (!strcasecmp(c->argv[j]->ptr, "min")) {
|
|
aggregate = REDIS_AGGR_MIN;
|
|
} else if (!strcasecmp(c->argv[j]->ptr, "max")) {
|
|
aggregate = REDIS_AGGR_MAX;
|
|
} else {
|
|
zfree(src);
|
|
addReplyErrorObject(c, shared.syntaxerr);
|
|
return;
|
|
}
|
|
j++;
|
|
remaining--;
|
|
} else if (remaining >= 1 && !dstkey && !cardinality_only && !strcasecmp(c->argv[j]->ptr, "withscores")) {
|
|
j++;
|
|
remaining--;
|
|
withscores = 1;
|
|
} else if (cardinality_only && remaining >= 2 && !strcasecmp(c->argv[j]->ptr, "limit")) {
|
|
j++;
|
|
remaining--;
|
|
if (getPositiveLongFromObjectOrReply(c, c->argv[j], &limit, "LIMIT can't be negative") != C_OK) {
|
|
zfree(src);
|
|
return;
|
|
}
|
|
j++;
|
|
remaining--;
|
|
} else {
|
|
zfree(src);
|
|
addReplyErrorObject(c, shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (op != SET_OP_DIFF) {
|
|
/* sort sets from the smallest to largest, this will improve our
|
|
* algorithm's performance */
|
|
qsort(src, setnum, sizeof(zsetopsrc), zuiCompareByCardinality);
|
|
}
|
|
|
|
/* We need a temp zset object to store our union/inter/diff. If the dstkey
|
|
* is not NULL (that is, we are inside an ZUNIONSTORE/ZINTERSTORE/ZDIFFSTORE operation) then
|
|
* this zset object will be the resulting object to zset into the target key.
|
|
* In SINTERCARD case, we don't need the temp obj, so we can avoid creating it. */
|
|
if (!cardinality_only) {
|
|
dstobj = createZsetObject();
|
|
dstzset = dstobj->ptr;
|
|
}
|
|
memset(&zval, 0, sizeof(zval));
|
|
|
|
if (op == SET_OP_INTER) {
|
|
/* Skip everything if the smallest input is empty. */
|
|
if (zuiLength(&src[0]) > 0) {
|
|
/* Precondition: as src[0] is non-empty and the inputs are ordered
|
|
* by size, all src[i > 0] are non-empty too. */
|
|
zuiInitIterator(&src[0]);
|
|
while (zuiNext(&src[0], &zval)) {
|
|
double score, value;
|
|
|
|
score = src[0].weight * zval.score;
|
|
if (isnan(score)) score = 0;
|
|
|
|
for (j = 1; j < setnum; j++) {
|
|
/* It is not safe to access the zset we are
|
|
* iterating, so explicitly check for equal object. */
|
|
if (src[j].subject == src[0].subject) {
|
|
value = zval.score * src[j].weight;
|
|
zunionInterAggregate(&score, value, aggregate);
|
|
} else if (zuiFind(&src[j], &zval, &value)) {
|
|
value *= src[j].weight;
|
|
zunionInterAggregate(&score, value, aggregate);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Only continue when present in every input. */
|
|
if (j == setnum && cardinality_only) {
|
|
cardinality++;
|
|
|
|
/* We stop the searching after reaching the limit. */
|
|
if (limit && cardinality >= (unsigned long)limit) {
|
|
/* Cleanup before we break the zuiNext loop. */
|
|
zuiDiscardDirtyValue(&zval);
|
|
break;
|
|
}
|
|
} else if (j == setnum) {
|
|
tmp = zuiNewSdsFromValue(&zval);
|
|
znode = zslInsert(dstzset->zsl, score, tmp);
|
|
dictAdd(dstzset->dict, tmp, &znode->score);
|
|
totelelen += sdslen(tmp);
|
|
if (sdslen(tmp) > maxelelen) maxelelen = sdslen(tmp);
|
|
}
|
|
}
|
|
zuiClearIterator(&src[0]);
|
|
}
|
|
} else if (op == SET_OP_UNION) {
|
|
dictIterator *di;
|
|
dictEntry *de, *existing;
|
|
double score;
|
|
|
|
if (setnum) {
|
|
/* Our union is at least as large as the largest set.
|
|
* Resize the dictionary ASAP to avoid useless rehashing. */
|
|
dictExpand(dstzset->dict, zuiLength(&src[setnum - 1]));
|
|
}
|
|
|
|
/* Step 1: Create a dictionary of elements -> aggregated-scores
|
|
* by iterating one sorted set after the other. */
|
|
for (i = 0; i < setnum; i++) {
|
|
if (zuiLength(&src[i]) == 0) continue;
|
|
|
|
zuiInitIterator(&src[i]);
|
|
while (zuiNext(&src[i], &zval)) {
|
|
/* Initialize value */
|
|
score = src[i].weight * zval.score;
|
|
if (isnan(score)) score = 0;
|
|
|
|
/* Search for this element in the accumulating dictionary. */
|
|
de = dictAddRaw(dstzset->dict, zuiSdsFromValue(&zval), &existing);
|
|
/* If we don't have it, we need to create a new entry. */
|
|
if (!existing) {
|
|
tmp = zuiNewSdsFromValue(&zval);
|
|
/* Remember the longest single element encountered,
|
|
* to understand if it's possible to convert to listpack
|
|
* at the end. */
|
|
totelelen += sdslen(tmp);
|
|
if (sdslen(tmp) > maxelelen) maxelelen = sdslen(tmp);
|
|
/* Update the element with its initial score. */
|
|
dictSetKey(dstzset->dict, de, tmp);
|
|
dictSetDoubleVal(de, score);
|
|
} else {
|
|
/* Update the score with the score of the new instance
|
|
* of the element found in the current sorted set.
|
|
*
|
|
* Here we access directly the dictEntry double
|
|
* value inside the union as it is a big speedup
|
|
* compared to using the getDouble/setDouble API. */
|
|
double *existing_score_ptr = dictGetDoubleValPtr(existing);
|
|
zunionInterAggregate(existing_score_ptr, score, aggregate);
|
|
}
|
|
}
|
|
zuiClearIterator(&src[i]);
|
|
}
|
|
|
|
/* Step 2: convert the dictionary into the final sorted set. */
|
|
di = dictGetIterator(dstzset->dict);
|
|
|
|
while ((de = dictNext(di)) != NULL) {
|
|
sds ele = dictGetKey(de);
|
|
score = dictGetDoubleVal(de);
|
|
znode = zslInsert(dstzset->zsl, score, ele);
|
|
dictSetVal(dstzset->dict, de, &znode->score);
|
|
}
|
|
dictReleaseIterator(di);
|
|
} else if (op == SET_OP_DIFF) {
|
|
zdiff(src, setnum, dstzset, &maxelelen, &totelelen);
|
|
} else {
|
|
serverPanic("Unknown operator");
|
|
}
|
|
|
|
if (dstkey) {
|
|
if (dstzset->zsl->length) {
|
|
zsetConvertToListpackIfNeeded(dstobj, maxelelen, totelelen);
|
|
setKey(c, c->db, dstkey, dstobj, 0);
|
|
addReplyLongLong(c, zsetLength(dstobj));
|
|
notifyKeyspaceEvent(
|
|
NOTIFY_ZSET, (op == SET_OP_UNION) ? "zunionstore" : (op == SET_OP_INTER ? "zinterstore" : "zdiffstore"),
|
|
dstkey, c->db->id);
|
|
server.dirty++;
|
|
} else {
|
|
addReply(c, shared.czero);
|
|
if (dbDelete(c->db, dstkey)) {
|
|
signalModifiedKey(c, c->db, dstkey);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC, "del", dstkey, c->db->id);
|
|
server.dirty++;
|
|
}
|
|
}
|
|
decrRefCount(dstobj);
|
|
} else if (cardinality_only) {
|
|
addReplyLongLong(c, cardinality);
|
|
} else {
|
|
unsigned long length = dstzset->zsl->length;
|
|
zskiplist *zsl = dstzset->zsl;
|
|
zskiplistNode *zn = zsl->header->level[0].forward;
|
|
/* In case of WITHSCORES, respond with a single array in RESP2, and
|
|
* nested arrays in RESP3. We can't use a map response type since the
|
|
* client library needs to know to respect the order. */
|
|
if (withscores && c->resp == 2)
|
|
addReplyArrayLen(c, length * 2);
|
|
else
|
|
addReplyArrayLen(c, length);
|
|
|
|
while (zn != NULL) {
|
|
if (withscores && c->resp > 2) addReplyArrayLen(c, 2);
|
|
addReplyBulkCBuffer(c, zn->ele, sdslen(zn->ele));
|
|
if (withscores) addReplyDouble(c, zn->score);
|
|
zn = zn->level[0].forward;
|
|
}
|
|
server.lazyfree_lazy_server_del ? freeObjAsync(NULL, dstobj, -1) : decrRefCount(dstobj);
|
|
}
|
|
zfree(src);
|
|
}
|
|
|
|
/* ZUNIONSTORE destination numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] */
|
|
void zunionstoreCommand(client *c) {
|
|
zunionInterDiffGenericCommand(c, c->argv[1], 2, SET_OP_UNION, 0);
|
|
}
|
|
|
|
/* ZINTERSTORE destination numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] */
|
|
void zinterstoreCommand(client *c) {
|
|
zunionInterDiffGenericCommand(c, c->argv[1], 2, SET_OP_INTER, 0);
|
|
}
|
|
|
|
/* ZDIFFSTORE destination numkeys key [key ...] */
|
|
void zdiffstoreCommand(client *c) {
|
|
zunionInterDiffGenericCommand(c, c->argv[1], 2, SET_OP_DIFF, 0);
|
|
}
|
|
|
|
/* ZUNION numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] [WITHSCORES] */
|
|
void zunionCommand(client *c) {
|
|
zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_UNION, 0);
|
|
}
|
|
|
|
/* ZINTER numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] [WITHSCORES] */
|
|
void zinterCommand(client *c) {
|
|
zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_INTER, 0);
|
|
}
|
|
|
|
/* ZINTERCARD numkeys key [key ...] [LIMIT limit] */
|
|
void zinterCardCommand(client *c) {
|
|
zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_INTER, 1);
|
|
}
|
|
|
|
/* ZDIFF numkeys key [key ...] [WITHSCORES] */
|
|
void zdiffCommand(client *c) {
|
|
zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_DIFF, 0);
|
|
}
|
|
|
|
typedef enum {
|
|
ZRANGE_DIRECTION_AUTO = 0,
|
|
ZRANGE_DIRECTION_FORWARD,
|
|
ZRANGE_DIRECTION_REVERSE
|
|
} zrange_direction;
|
|
|
|
typedef enum {
|
|
ZRANGE_CONSUMER_TYPE_CLIENT = 0,
|
|
ZRANGE_CONSUMER_TYPE_INTERNAL
|
|
} zrange_consumer_type;
|
|
|
|
typedef struct zrange_result_handler zrange_result_handler;
|
|
|
|
typedef void (*zrangeResultBeginFunction)(zrange_result_handler *c, long length);
|
|
typedef void (*zrangeResultFinalizeFunction)(zrange_result_handler *c, size_t result_count);
|
|
typedef void (*zrangeResultEmitCBufferFunction)(zrange_result_handler *c, const void *p, size_t len, double score);
|
|
typedef void (*zrangeResultEmitLongLongFunction)(zrange_result_handler *c, long long ll, double score);
|
|
|
|
void zrangeGenericCommand(zrange_result_handler *handler,
|
|
int argc_start,
|
|
int store,
|
|
zrange_type rangetype,
|
|
zrange_direction direction);
|
|
|
|
/* Interface struct for ZRANGE/ZRANGESTORE generic implementation.
|
|
* There is one implementation of this interface that sends a RESP reply to clients.
|
|
* and one implementation that stores the range result into a zset object. */
|
|
struct zrange_result_handler {
|
|
zrange_consumer_type type;
|
|
client *client;
|
|
robj *dstkey;
|
|
robj *dstobj;
|
|
void *userdata;
|
|
int withscores;
|
|
int should_emit_array_length;
|
|
zrangeResultBeginFunction beginResultEmission;
|
|
zrangeResultFinalizeFunction finalizeResultEmission;
|
|
zrangeResultEmitCBufferFunction emitResultFromCBuffer;
|
|
zrangeResultEmitLongLongFunction emitResultFromLongLong;
|
|
};
|
|
|
|
/* Result handler methods for responding the ZRANGE to clients.
|
|
* length can be used to provide the result length in advance (avoids deferred reply overhead).
|
|
* length can be set to -1 if the result length is not know in advance.
|
|
*/
|
|
static void zrangeResultBeginClient(zrange_result_handler *handler, long length) {
|
|
if (length > 0) {
|
|
/* In case of WITHSCORES, respond with a single array in RESP2, and
|
|
* nested arrays in RESP3. We can't use a map response type since the
|
|
* client library needs to know to respect the order. */
|
|
if (handler->withscores && (handler->client->resp == 2)) {
|
|
length *= 2;
|
|
}
|
|
addReplyArrayLen(handler->client, length);
|
|
handler->userdata = NULL;
|
|
return;
|
|
}
|
|
handler->userdata = addReplyDeferredLen(handler->client);
|
|
}
|
|
|
|
static void zrangeResultEmitCBufferToClient(zrange_result_handler *handler,
|
|
const void *value,
|
|
size_t value_length_in_bytes,
|
|
double score) {
|
|
if (handler->should_emit_array_length) {
|
|
addReplyArrayLen(handler->client, 2);
|
|
}
|
|
|
|
addReplyBulkCBuffer(handler->client, value, value_length_in_bytes);
|
|
|
|
if (handler->withscores) {
|
|
addReplyDouble(handler->client, score);
|
|
}
|
|
}
|
|
|
|
static void zrangeResultEmitLongLongToClient(zrange_result_handler *handler, long long value, double score) {
|
|
if (handler->should_emit_array_length) {
|
|
addReplyArrayLen(handler->client, 2);
|
|
}
|
|
|
|
addReplyBulkLongLong(handler->client, value);
|
|
|
|
if (handler->withscores) {
|
|
addReplyDouble(handler->client, score);
|
|
}
|
|
}
|
|
|
|
static void zrangeResultFinalizeClient(zrange_result_handler *handler, size_t result_count) {
|
|
/* If the reply size was know at start there's nothing left to do */
|
|
if (!handler->userdata) return;
|
|
/* In case of WITHSCORES, respond with a single array in RESP2, and
|
|
* nested arrays in RESP3. We can't use a map response type since the
|
|
* client library needs to know to respect the order. */
|
|
if (handler->withscores && (handler->client->resp == 2)) {
|
|
result_count *= 2;
|
|
}
|
|
|
|
setDeferredArrayLen(handler->client, handler->userdata, result_count);
|
|
}
|
|
|
|
/* Result handler methods for storing the ZRANGESTORE to a zset. */
|
|
static void zrangeResultBeginStore(zrange_result_handler *handler, long length) {
|
|
handler->dstobj = zsetTypeCreate(length >= 0 ? length : 0, 0);
|
|
}
|
|
|
|
static void zrangeResultEmitCBufferForStore(zrange_result_handler *handler,
|
|
const void *value,
|
|
size_t value_length_in_bytes,
|
|
double score) {
|
|
double newscore;
|
|
int retflags = 0;
|
|
sds ele = sdsnewlen(value, value_length_in_bytes);
|
|
int retval = zsetAdd(handler->dstobj, score, ele, ZADD_IN_NONE, &retflags, &newscore);
|
|
sdsfree(ele);
|
|
serverAssert(retval);
|
|
}
|
|
|
|
static void zrangeResultEmitLongLongForStore(zrange_result_handler *handler, long long value, double score) {
|
|
double newscore;
|
|
int retflags = 0;
|
|
sds ele = sdsfromlonglong(value);
|
|
int retval = zsetAdd(handler->dstobj, score, ele, ZADD_IN_NONE, &retflags, &newscore);
|
|
sdsfree(ele);
|
|
serverAssert(retval);
|
|
}
|
|
|
|
static void zrangeResultFinalizeStore(zrange_result_handler *handler, size_t result_count) {
|
|
if (result_count) {
|
|
setKey(handler->client, handler->client->db, handler->dstkey, handler->dstobj, 0);
|
|
addReplyLongLong(handler->client, result_count);
|
|
notifyKeyspaceEvent(NOTIFY_ZSET, "zrangestore", handler->dstkey, handler->client->db->id);
|
|
server.dirty++;
|
|
} else {
|
|
addReply(handler->client, shared.czero);
|
|
if (dbDelete(handler->client->db, handler->dstkey)) {
|
|
signalModifiedKey(handler->client, handler->client->db, handler->dstkey);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC, "del", handler->dstkey, handler->client->db->id);
|
|
server.dirty++;
|
|
}
|
|
}
|
|
decrRefCount(handler->dstobj);
|
|
}
|
|
|
|
/* Initialize the consumer interface type with the requested type. */
|
|
static void zrangeResultHandlerInit(zrange_result_handler *handler, client *client, zrange_consumer_type type) {
|
|
memset(handler, 0, sizeof(*handler));
|
|
|
|
handler->client = client;
|
|
|
|
switch (type) {
|
|
case ZRANGE_CONSUMER_TYPE_CLIENT:
|
|
handler->beginResultEmission = zrangeResultBeginClient;
|
|
handler->finalizeResultEmission = zrangeResultFinalizeClient;
|
|
handler->emitResultFromCBuffer = zrangeResultEmitCBufferToClient;
|
|
handler->emitResultFromLongLong = zrangeResultEmitLongLongToClient;
|
|
break;
|
|
|
|
case ZRANGE_CONSUMER_TYPE_INTERNAL:
|
|
handler->beginResultEmission = zrangeResultBeginStore;
|
|
handler->finalizeResultEmission = zrangeResultFinalizeStore;
|
|
handler->emitResultFromCBuffer = zrangeResultEmitCBufferForStore;
|
|
handler->emitResultFromLongLong = zrangeResultEmitLongLongForStore;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void zrangeResultHandlerScoreEmissionEnable(zrange_result_handler *handler) {
|
|
handler->withscores = 1;
|
|
handler->should_emit_array_length = (handler->client->resp > 2);
|
|
}
|
|
|
|
static void zrangeResultHandlerDestinationKeySet(zrange_result_handler *handler, robj *dstkey) {
|
|
handler->dstkey = dstkey;
|
|
}
|
|
|
|
/* This command implements ZRANGE, ZREVRANGE. */
|
|
void genericZrangebyrankCommand(zrange_result_handler *handler,
|
|
robj *zobj,
|
|
long start,
|
|
long end,
|
|
int withscores,
|
|
int reverse) {
|
|
client *c = handler->client;
|
|
long llen;
|
|
long rangelen;
|
|
size_t result_cardinality;
|
|
|
|
/* Sanitize indexes. */
|
|
llen = zsetLength(zobj);
|
|
if (start < 0) start = llen + start;
|
|
if (end < 0) end = llen + end;
|
|
if (start < 0) start = 0;
|
|
|
|
|
|
/* Invariant: start >= 0, so this test will be true when end < 0.
|
|
* The range is empty when start > end or start >= length. */
|
|
if (start > end || start >= llen) {
|
|
handler->beginResultEmission(handler, 0);
|
|
handler->finalizeResultEmission(handler, 0);
|
|
return;
|
|
}
|
|
if (end >= llen) end = llen - 1;
|
|
rangelen = (end - start) + 1;
|
|
result_cardinality = rangelen;
|
|
|
|
handler->beginResultEmission(handler, rangelen);
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
double score = 0.0;
|
|
|
|
if (reverse)
|
|
eptr = lpSeek(zl, -2 - (2 * start));
|
|
else
|
|
eptr = lpSeek(zl, 2 * start);
|
|
|
|
serverAssertWithInfo(c, zobj, eptr != NULL);
|
|
sptr = lpNext(zl, eptr);
|
|
|
|
while (rangelen--) {
|
|
serverAssertWithInfo(c, zobj, eptr != NULL && sptr != NULL);
|
|
vstr = lpGetValue(eptr, &vlen, &vlong);
|
|
|
|
if (withscores) /* don't bother to extract the score if it's gonna be ignored. */
|
|
score = zzlGetScore(sptr);
|
|
|
|
if (vstr == NULL) {
|
|
handler->emitResultFromLongLong(handler, vlong, score);
|
|
} else {
|
|
handler->emitResultFromCBuffer(handler, vstr, vlen, score);
|
|
}
|
|
|
|
if (reverse)
|
|
zzlPrev(zl, &eptr, &sptr);
|
|
else
|
|
zzlNext(zl, &eptr, &sptr);
|
|
}
|
|
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *ln;
|
|
|
|
/* Check if starting point is trivial, before doing log(N) lookup. */
|
|
if (reverse) {
|
|
ln = zsl->tail;
|
|
if (start > 0) ln = zslGetElementByRank(zsl, llen - start);
|
|
} else {
|
|
ln = zsl->header->level[0].forward;
|
|
if (start > 0) ln = zslGetElementByRank(zsl, start + 1);
|
|
}
|
|
|
|
while (rangelen--) {
|
|
serverAssertWithInfo(c, zobj, ln != NULL);
|
|
sds ele = ln->ele;
|
|
handler->emitResultFromCBuffer(handler, ele, sdslen(ele), ln->score);
|
|
ln = reverse ? ln->backward : ln->level[0].forward;
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
handler->finalizeResultEmission(handler, result_cardinality);
|
|
}
|
|
|
|
/* ZRANGESTORE <dst> <src> <min> <max> [BYSCORE | BYLEX] [REV] [LIMIT offset count] */
|
|
void zrangestoreCommand(client *c) {
|
|
robj *dstkey = c->argv[1];
|
|
zrange_result_handler handler;
|
|
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_INTERNAL);
|
|
zrangeResultHandlerDestinationKeySet(&handler, dstkey);
|
|
zrangeGenericCommand(&handler, 2, 1, ZRANGE_AUTO, ZRANGE_DIRECTION_AUTO);
|
|
}
|
|
|
|
/* ZRANGE <key> <min> <max> [BYSCORE | BYLEX] [REV] [WITHSCORES] [LIMIT offset count] */
|
|
void zrangeCommand(client *c) {
|
|
zrange_result_handler handler;
|
|
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
|
|
zrangeGenericCommand(&handler, 1, 0, ZRANGE_AUTO, ZRANGE_DIRECTION_AUTO);
|
|
}
|
|
|
|
/* ZREVRANGE <key> <start> <stop> [WITHSCORES] */
|
|
void zrevrangeCommand(client *c) {
|
|
zrange_result_handler handler;
|
|
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
|
|
zrangeGenericCommand(&handler, 1, 0, ZRANGE_RANK, ZRANGE_DIRECTION_REVERSE);
|
|
}
|
|
|
|
/* This command implements ZRANGEBYSCORE, ZREVRANGEBYSCORE. */
|
|
void genericZrangebyscoreCommand(zrange_result_handler *handler,
|
|
zrangespec *range,
|
|
robj *zobj,
|
|
long offset,
|
|
long limit,
|
|
int reverse) {
|
|
unsigned long rangelen = 0;
|
|
|
|
handler->beginResultEmission(handler, -1);
|
|
|
|
/* For invalid offset, return directly. */
|
|
if (offset > 0 && offset >= (long)zsetLength(zobj)) {
|
|
handler->finalizeResultEmission(handler, 0);
|
|
return;
|
|
}
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
/* If reversed, get the last node in range as starting point. */
|
|
if (reverse) {
|
|
eptr = zzlLastInRange(zl, range);
|
|
} else {
|
|
eptr = zzlFirstInRange(zl, range);
|
|
}
|
|
|
|
/* Get score pointer for the first element. */
|
|
if (eptr) sptr = lpNext(zl, eptr);
|
|
|
|
/* If there is an offset, just traverse the number of elements without
|
|
* checking the score because that is done in the next loop. */
|
|
while (eptr && offset--) {
|
|
if (reverse) {
|
|
zzlPrev(zl, &eptr, &sptr);
|
|
} else {
|
|
zzlNext(zl, &eptr, &sptr);
|
|
}
|
|
}
|
|
|
|
while (eptr && limit--) {
|
|
double score = zzlGetScore(sptr);
|
|
|
|
/* Abort when the node is no longer in range. */
|
|
if (reverse) {
|
|
if (!zslValueGteMin(score, range)) break;
|
|
} else {
|
|
if (!zslValueLteMax(score, range)) break;
|
|
}
|
|
|
|
vstr = lpGetValue(eptr, &vlen, &vlong);
|
|
rangelen++;
|
|
if (vstr == NULL) {
|
|
handler->emitResultFromLongLong(handler, vlong, score);
|
|
} else {
|
|
handler->emitResultFromCBuffer(handler, vstr, vlen, score);
|
|
}
|
|
|
|
/* Move to next node */
|
|
if (reverse) {
|
|
zzlPrev(zl, &eptr, &sptr);
|
|
} else {
|
|
zzlNext(zl, &eptr, &sptr);
|
|
}
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *ln;
|
|
|
|
/* If reversed, get the last node in range as starting point. */
|
|
if (reverse) {
|
|
ln = zslNthInRange(zsl, range, -offset - 1);
|
|
} else {
|
|
ln = zslNthInRange(zsl, range, offset);
|
|
}
|
|
|
|
while (ln && limit--) {
|
|
/* Abort when the node is no longer in range. */
|
|
if (reverse) {
|
|
if (!zslValueGteMin(ln->score, range)) break;
|
|
} else {
|
|
if (!zslValueLteMax(ln->score, range)) break;
|
|
}
|
|
|
|
rangelen++;
|
|
handler->emitResultFromCBuffer(handler, ln->ele, sdslen(ln->ele), ln->score);
|
|
|
|
/* Move to next node */
|
|
if (reverse) {
|
|
ln = ln->backward;
|
|
} else {
|
|
ln = ln->level[0].forward;
|
|
}
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
handler->finalizeResultEmission(handler, rangelen);
|
|
}
|
|
|
|
/* ZRANGEBYSCORE <key> <min> <max> [WITHSCORES] [LIMIT offset count] */
|
|
void zrangebyscoreCommand(client *c) {
|
|
zrange_result_handler handler;
|
|
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
|
|
zrangeGenericCommand(&handler, 1, 0, ZRANGE_SCORE, ZRANGE_DIRECTION_FORWARD);
|
|
}
|
|
|
|
/* ZREVRANGEBYSCORE <key> <max> <min> [WITHSCORES] [LIMIT offset count] */
|
|
void zrevrangebyscoreCommand(client *c) {
|
|
zrange_result_handler handler;
|
|
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
|
|
zrangeGenericCommand(&handler, 1, 0, ZRANGE_SCORE, ZRANGE_DIRECTION_REVERSE);
|
|
}
|
|
|
|
void zcountCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
zrangespec range;
|
|
unsigned long count = 0;
|
|
|
|
/* Parse the range arguments */
|
|
if (zslParseRange(c->argv[2], c->argv[3], &range) != C_OK) {
|
|
addReplyError(c, "min or max is not a float");
|
|
return;
|
|
}
|
|
|
|
/* Lookup the sorted set */
|
|
if ((zobj = lookupKeyReadOrReply(c, key, shared.czero)) == NULL || checkType(c, zobj, OBJ_ZSET)) return;
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
double score;
|
|
|
|
/* Use the first element in range as the starting point */
|
|
eptr = zzlFirstInRange(zl, &range);
|
|
|
|
/* No "first" element */
|
|
if (eptr == NULL) {
|
|
addReply(c, shared.czero);
|
|
return;
|
|
}
|
|
|
|
/* First element is in range */
|
|
sptr = lpNext(zl, eptr);
|
|
score = zzlGetScore(sptr);
|
|
serverAssertWithInfo(c, zobj, zslValueLteMax(score, &range));
|
|
|
|
/* Iterate over elements in range */
|
|
while (eptr) {
|
|
score = zzlGetScore(sptr);
|
|
|
|
/* Abort when the node is no longer in range. */
|
|
if (!zslValueLteMax(score, &range)) {
|
|
break;
|
|
} else {
|
|
count++;
|
|
zzlNext(zl, &eptr, &sptr);
|
|
}
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *zn;
|
|
unsigned long rank;
|
|
|
|
/* Find first element in range */
|
|
zn = zslNthInRange(zsl, &range, 0);
|
|
|
|
/* Use rank of first element, if any, to determine preliminary count */
|
|
if (zn != NULL) {
|
|
rank = zslGetRank(zsl, zn->score, zn->ele);
|
|
count = (zsl->length - (rank - 1));
|
|
|
|
/* Find last element in range */
|
|
zn = zslNthInRange(zsl, &range, -1);
|
|
|
|
/* Use rank of last element, if any, to determine the actual count */
|
|
if (zn != NULL) {
|
|
rank = zslGetRank(zsl, zn->score, zn->ele);
|
|
count -= (zsl->length - rank);
|
|
}
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
addReplyLongLong(c, count);
|
|
}
|
|
|
|
void zlexcountCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
zlexrangespec range;
|
|
unsigned long count = 0;
|
|
|
|
/* Parse the range arguments */
|
|
if (zslParseLexRange(c->argv[2], c->argv[3], &range) != C_OK) {
|
|
addReplyError(c, "min or max not valid string range item");
|
|
return;
|
|
}
|
|
|
|
/* Lookup the sorted set */
|
|
if ((zobj = lookupKeyReadOrReply(c, key, shared.czero)) == NULL || checkType(c, zobj, OBJ_ZSET)) {
|
|
zslFreeLexRange(&range);
|
|
return;
|
|
}
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
|
|
/* Use the first element in range as the starting point */
|
|
eptr = zzlFirstInLexRange(zl, &range);
|
|
|
|
/* No "first" element */
|
|
if (eptr == NULL) {
|
|
zslFreeLexRange(&range);
|
|
addReply(c, shared.czero);
|
|
return;
|
|
}
|
|
|
|
/* First element is in range */
|
|
sptr = lpNext(zl, eptr);
|
|
serverAssertWithInfo(c, zobj, zzlLexValueLteMax(eptr, &range));
|
|
|
|
/* Iterate over elements in range */
|
|
while (eptr) {
|
|
/* Abort when the node is no longer in range. */
|
|
if (!zzlLexValueLteMax(eptr, &range)) {
|
|
break;
|
|
} else {
|
|
count++;
|
|
zzlNext(zl, &eptr, &sptr);
|
|
}
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *zn;
|
|
unsigned long rank;
|
|
|
|
/* Find first element in range */
|
|
zn = zslNthInLexRange(zsl, &range, 0);
|
|
|
|
/* Use rank of first element, if any, to determine preliminary count */
|
|
if (zn != NULL) {
|
|
rank = zslGetRank(zsl, zn->score, zn->ele);
|
|
count = (zsl->length - (rank - 1));
|
|
|
|
/* Find last element in range */
|
|
zn = zslNthInLexRange(zsl, &range, -1);
|
|
|
|
/* Use rank of last element, if any, to determine the actual count */
|
|
if (zn != NULL) {
|
|
rank = zslGetRank(zsl, zn->score, zn->ele);
|
|
count -= (zsl->length - rank);
|
|
}
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
zslFreeLexRange(&range);
|
|
addReplyLongLong(c, count);
|
|
}
|
|
|
|
/* This command implements ZRANGEBYLEX, ZREVRANGEBYLEX. */
|
|
void genericZrangebylexCommand(zrange_result_handler *handler,
|
|
zlexrangespec *range,
|
|
robj *zobj,
|
|
int withscores,
|
|
long offset,
|
|
long limit,
|
|
int reverse) {
|
|
unsigned long rangelen = 0;
|
|
|
|
handler->beginResultEmission(handler, -1);
|
|
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
/* If reversed, get the last node in range as starting point. */
|
|
if (reverse) {
|
|
eptr = zzlLastInLexRange(zl, range);
|
|
} else {
|
|
eptr = zzlFirstInLexRange(zl, range);
|
|
}
|
|
|
|
/* Get score pointer for the first element. */
|
|
if (eptr) sptr = lpNext(zl, eptr);
|
|
|
|
/* If there is an offset, just traverse the number of elements without
|
|
* checking the score because that is done in the next loop. */
|
|
while (eptr && offset--) {
|
|
if (reverse) {
|
|
zzlPrev(zl, &eptr, &sptr);
|
|
} else {
|
|
zzlNext(zl, &eptr, &sptr);
|
|
}
|
|
}
|
|
|
|
while (eptr && limit--) {
|
|
double score = 0;
|
|
if (withscores) /* don't bother to extract the score if it's gonna be ignored. */
|
|
score = zzlGetScore(sptr);
|
|
|
|
/* Abort when the node is no longer in range. */
|
|
if (reverse) {
|
|
if (!zzlLexValueGteMin(eptr, range)) break;
|
|
} else {
|
|
if (!zzlLexValueLteMax(eptr, range)) break;
|
|
}
|
|
|
|
vstr = lpGetValue(eptr, &vlen, &vlong);
|
|
rangelen++;
|
|
if (vstr == NULL) {
|
|
handler->emitResultFromLongLong(handler, vlong, score);
|
|
} else {
|
|
handler->emitResultFromCBuffer(handler, vstr, vlen, score);
|
|
}
|
|
|
|
/* Move to next node */
|
|
if (reverse) {
|
|
zzlPrev(zl, &eptr, &sptr);
|
|
} else {
|
|
zzlNext(zl, &eptr, &sptr);
|
|
}
|
|
}
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *ln;
|
|
|
|
/* If reversed, get the last node in range as starting point. */
|
|
if (reverse) {
|
|
ln = zslNthInLexRange(zsl, range, -offset - 1);
|
|
} else {
|
|
ln = zslNthInLexRange(zsl, range, offset);
|
|
}
|
|
|
|
while (ln && limit--) {
|
|
/* Abort when the node is no longer in range. */
|
|
if (reverse) {
|
|
if (!zslLexValueGteMin(ln->ele, range)) break;
|
|
} else {
|
|
if (!zslLexValueLteMax(ln->ele, range)) break;
|
|
}
|
|
|
|
rangelen++;
|
|
handler->emitResultFromCBuffer(handler, ln->ele, sdslen(ln->ele), ln->score);
|
|
|
|
/* Move to next node */
|
|
if (reverse) {
|
|
ln = ln->backward;
|
|
} else {
|
|
ln = ln->level[0].forward;
|
|
}
|
|
}
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
handler->finalizeResultEmission(handler, rangelen);
|
|
}
|
|
|
|
/* ZRANGEBYLEX <key> <min> <max> [LIMIT offset count] */
|
|
void zrangebylexCommand(client *c) {
|
|
zrange_result_handler handler;
|
|
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
|
|
zrangeGenericCommand(&handler, 1, 0, ZRANGE_LEX, ZRANGE_DIRECTION_FORWARD);
|
|
}
|
|
|
|
/* ZREVRANGEBYLEX <key> <max> <min> [LIMIT offset count] */
|
|
void zrevrangebylexCommand(client *c) {
|
|
zrange_result_handler handler;
|
|
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
|
|
zrangeGenericCommand(&handler, 1, 0, ZRANGE_LEX, ZRANGE_DIRECTION_REVERSE);
|
|
}
|
|
|
|
/**
|
|
* This function handles ZRANGE and ZRANGESTORE, and also the deprecated
|
|
* Z[REV]RANGE[BYSCORE|BYLEX] commands.
|
|
*
|
|
* The simple ZRANGE and ZRANGESTORE can take _AUTO in rangetype and direction,
|
|
* other command pass explicit value.
|
|
*
|
|
* The argc_start points to the src key argument, so following syntax is like:
|
|
* <src> <min> <max> [BYSCORE | BYLEX] [REV] [WITHSCORES] [LIMIT offset count]
|
|
*/
|
|
void zrangeGenericCommand(zrange_result_handler *handler,
|
|
int argc_start,
|
|
int store,
|
|
zrange_type rangetype,
|
|
zrange_direction direction) {
|
|
client *c = handler->client;
|
|
robj *key = c->argv[argc_start];
|
|
robj *zobj;
|
|
zrangespec range;
|
|
zlexrangespec lexrange;
|
|
int minidx = argc_start + 1;
|
|
int maxidx = argc_start + 2;
|
|
|
|
/* Options common to all */
|
|
long opt_start = 0;
|
|
long opt_end = 0;
|
|
int opt_withscores = 0;
|
|
long opt_offset = 0;
|
|
long opt_limit = -1;
|
|
|
|
/* Step 1: Skip the <src> <min> <max> args and parse remaining optional arguments. */
|
|
for (int j = argc_start + 3; j < c->argc; j++) {
|
|
int leftargs = c->argc - j - 1;
|
|
if (!store && !strcasecmp(c->argv[j]->ptr, "withscores")) {
|
|
opt_withscores = 1;
|
|
} else if (!strcasecmp(c->argv[j]->ptr, "limit") && leftargs >= 2) {
|
|
if ((getLongFromObjectOrReply(c, c->argv[j + 1], &opt_offset, NULL) != C_OK) ||
|
|
(getLongFromObjectOrReply(c, c->argv[j + 2], &opt_limit, NULL) != C_OK)) {
|
|
return;
|
|
}
|
|
j += 2;
|
|
} else if (direction == ZRANGE_DIRECTION_AUTO && !strcasecmp(c->argv[j]->ptr, "rev")) {
|
|
direction = ZRANGE_DIRECTION_REVERSE;
|
|
} else if (rangetype == ZRANGE_AUTO && !strcasecmp(c->argv[j]->ptr, "bylex")) {
|
|
rangetype = ZRANGE_LEX;
|
|
} else if (rangetype == ZRANGE_AUTO && !strcasecmp(c->argv[j]->ptr, "byscore")) {
|
|
rangetype = ZRANGE_SCORE;
|
|
} else {
|
|
addReplyErrorObject(c, shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Use defaults if not overridden by arguments. */
|
|
if (direction == ZRANGE_DIRECTION_AUTO) direction = ZRANGE_DIRECTION_FORWARD;
|
|
if (rangetype == ZRANGE_AUTO) rangetype = ZRANGE_RANK;
|
|
|
|
/* Check for conflicting arguments. */
|
|
if (opt_limit != -1 && rangetype == ZRANGE_RANK) {
|
|
addReplyError(c, "syntax error, LIMIT is only supported in combination with either BYSCORE or BYLEX");
|
|
return;
|
|
}
|
|
if (opt_withscores && rangetype == ZRANGE_LEX) {
|
|
addReplyError(c, "syntax error, WITHSCORES not supported in combination with BYLEX");
|
|
return;
|
|
}
|
|
|
|
if (direction == ZRANGE_DIRECTION_REVERSE && ((ZRANGE_SCORE == rangetype) || (ZRANGE_LEX == rangetype))) {
|
|
/* Range is given as [max,min] */
|
|
int tmp = maxidx;
|
|
maxidx = minidx;
|
|
minidx = tmp;
|
|
}
|
|
|
|
/* Step 2: Parse the range. */
|
|
switch (rangetype) {
|
|
case ZRANGE_AUTO:
|
|
case ZRANGE_RANK:
|
|
/* Z[REV]RANGE, ZRANGESTORE [REV]RANGE */
|
|
if ((getLongFromObjectOrReply(c, c->argv[minidx], &opt_start, NULL) != C_OK) ||
|
|
(getLongFromObjectOrReply(c, c->argv[maxidx], &opt_end, NULL) != C_OK)) {
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case ZRANGE_SCORE:
|
|
/* Z[REV]RANGEBYSCORE, ZRANGESTORE [REV]RANGEBYSCORE */
|
|
if (zslParseRange(c->argv[minidx], c->argv[maxidx], &range) != C_OK) {
|
|
addReplyError(c, "min or max is not a float");
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case ZRANGE_LEX:
|
|
/* Z[REV]RANGEBYLEX, ZRANGESTORE [REV]RANGEBYLEX */
|
|
if (zslParseLexRange(c->argv[minidx], c->argv[maxidx], &lexrange) != C_OK) {
|
|
addReplyError(c, "min or max not valid string range item");
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (opt_withscores || store) {
|
|
zrangeResultHandlerScoreEmissionEnable(handler);
|
|
}
|
|
|
|
/* Step 3: Lookup the key and get the range. */
|
|
zobj = lookupKeyRead(c->db, key);
|
|
if (zobj == NULL) {
|
|
if (store) {
|
|
handler->beginResultEmission(handler, -1);
|
|
handler->finalizeResultEmission(handler, 0);
|
|
} else {
|
|
addReply(c, shared.emptyarray);
|
|
}
|
|
goto cleanup;
|
|
}
|
|
|
|
if (checkType(c, zobj, OBJ_ZSET)) goto cleanup;
|
|
|
|
/* Step 4: Pass this to the command-specific handler. */
|
|
switch (rangetype) {
|
|
case ZRANGE_AUTO:
|
|
case ZRANGE_RANK:
|
|
genericZrangebyrankCommand(handler, zobj, opt_start, opt_end, opt_withscores || store,
|
|
direction == ZRANGE_DIRECTION_REVERSE);
|
|
break;
|
|
|
|
case ZRANGE_SCORE:
|
|
genericZrangebyscoreCommand(handler, &range, zobj, opt_offset, opt_limit,
|
|
direction == ZRANGE_DIRECTION_REVERSE);
|
|
break;
|
|
|
|
case ZRANGE_LEX:
|
|
genericZrangebylexCommand(handler, &lexrange, zobj, opt_withscores || store, opt_offset, opt_limit,
|
|
direction == ZRANGE_DIRECTION_REVERSE);
|
|
break;
|
|
}
|
|
|
|
/* Instead of returning here, we'll just fall-through the clean-up. */
|
|
|
|
cleanup:
|
|
|
|
if (rangetype == ZRANGE_LEX) {
|
|
zslFreeLexRange(&lexrange);
|
|
}
|
|
}
|
|
|
|
void zcardCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
|
|
if ((zobj = lookupKeyReadOrReply(c, key, shared.czero)) == NULL || checkType(c, zobj, OBJ_ZSET)) return;
|
|
|
|
addReplyLongLong(c, zsetLength(zobj));
|
|
}
|
|
|
|
void zscoreCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
double score;
|
|
|
|
if ((zobj = lookupKeyReadOrReply(c, key, shared.null[c->resp])) == NULL || checkType(c, zobj, OBJ_ZSET)) return;
|
|
|
|
if (zsetScore(zobj, c->argv[2]->ptr, &score) == C_ERR) {
|
|
addReplyNull(c);
|
|
} else {
|
|
addReplyDouble(c, score);
|
|
}
|
|
}
|
|
|
|
void zmscoreCommand(client *c) {
|
|
robj *key = c->argv[1];
|
|
robj *zobj;
|
|
double score;
|
|
zobj = lookupKeyRead(c->db, key);
|
|
if (checkType(c, zobj, OBJ_ZSET)) return;
|
|
|
|
addReplyArrayLen(c, c->argc - 2);
|
|
for (int j = 2; j < c->argc; j++) {
|
|
/* Treat a missing set the same way as an empty set */
|
|
if (zobj == NULL || zsetScore(zobj, c->argv[j]->ptr, &score) == C_ERR) {
|
|
addReplyNull(c);
|
|
} else {
|
|
addReplyDouble(c, score);
|
|
}
|
|
}
|
|
}
|
|
|
|
void zrankGenericCommand(client *c, int reverse) {
|
|
robj *key = c->argv[1];
|
|
robj *ele = c->argv[2];
|
|
robj *zobj;
|
|
robj *reply;
|
|
long rank;
|
|
int opt_withscore = 0;
|
|
double score;
|
|
|
|
if (c->argc > 4) {
|
|
addReplyErrorArity(c);
|
|
return;
|
|
}
|
|
if (c->argc > 3) {
|
|
if (!strcasecmp(c->argv[3]->ptr, "withscore")) {
|
|
opt_withscore = 1;
|
|
} else {
|
|
addReplyErrorObject(c, shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
reply = opt_withscore ? shared.nullarray[c->resp] : shared.null[c->resp];
|
|
if ((zobj = lookupKeyReadOrReply(c, key, reply)) == NULL || checkType(c, zobj, OBJ_ZSET)) {
|
|
return;
|
|
}
|
|
serverAssertWithInfo(c, ele, sdsEncodedObject(ele));
|
|
rank = zsetRank(zobj, ele->ptr, reverse, opt_withscore ? &score : NULL);
|
|
if (rank >= 0) {
|
|
if (opt_withscore) {
|
|
addReplyArrayLen(c, 2);
|
|
}
|
|
addReplyLongLong(c, rank);
|
|
if (opt_withscore) {
|
|
addReplyDouble(c, score);
|
|
}
|
|
} else {
|
|
if (opt_withscore) {
|
|
addReplyNullArray(c);
|
|
} else {
|
|
addReplyNull(c);
|
|
}
|
|
}
|
|
}
|
|
|
|
void zrankCommand(client *c) {
|
|
zrankGenericCommand(c, 0);
|
|
}
|
|
|
|
void zrevrankCommand(client *c) {
|
|
zrankGenericCommand(c, 1);
|
|
}
|
|
|
|
void zscanCommand(client *c) {
|
|
robj *o;
|
|
unsigned long long cursor;
|
|
|
|
if (parseScanCursorOrReply(c, c->argv[2], &cursor) == C_ERR) return;
|
|
if ((o = lookupKeyReadOrReply(c, c->argv[1], shared.emptyscan)) == NULL || checkType(c, o, OBJ_ZSET)) return;
|
|
scanGenericCommand(c, o, cursor);
|
|
}
|
|
|
|
/* This command implements the generic zpop operation, used by:
|
|
* ZPOPMIN, ZPOPMAX, BZPOPMIN, BZPOPMAX and ZMPOP. This function is also used
|
|
* inside blocked.c in the unblocking stage of BZPOPMIN, BZPOPMAX and BZMPOP.
|
|
*
|
|
* If 'emitkey' is true also the key name is emitted, useful for the blocking
|
|
* behavior of BZPOP[MIN|MAX], since we can block into multiple keys.
|
|
* Or in ZMPOP/BZMPOP, because we also can take multiple keys.
|
|
*
|
|
* 'count' is the number of elements requested to pop, or -1 for plain single pop.
|
|
*
|
|
* 'use_nested_array' when false it generates a flat array (with or without key name).
|
|
* When true, it generates a nested 2 level array of field + score pairs, or 3 level when emitkey is set.
|
|
*
|
|
* 'reply_nil_when_empty' when true we reply a NIL if we are not able to pop up any elements.
|
|
* Like in ZMPOP/BZMPOP we reply with a structured nested array containing key name
|
|
* and member + score pairs. In these commands, we reply with null when we have no result.
|
|
* Otherwise in ZPOPMIN/ZPOPMAX we reply an empty array by default.
|
|
*
|
|
* 'deleted' is an optional output argument to get an indication
|
|
* if the key got deleted by this function.
|
|
* */
|
|
void genericZpopCommand(client *c,
|
|
robj **keyv,
|
|
int keyc,
|
|
int where,
|
|
int emitkey,
|
|
long count,
|
|
int use_nested_array,
|
|
int reply_nil_when_empty,
|
|
int *deleted) {
|
|
int idx;
|
|
robj *key = NULL;
|
|
robj *zobj = NULL;
|
|
sds ele;
|
|
double score;
|
|
|
|
if (deleted) *deleted = 0;
|
|
|
|
/* Check type and break on the first error, otherwise identify candidate. */
|
|
idx = 0;
|
|
while (idx < keyc) {
|
|
key = keyv[idx++];
|
|
zobj = lookupKeyWrite(c->db, key);
|
|
if (!zobj) continue;
|
|
if (checkType(c, zobj, OBJ_ZSET)) return;
|
|
break;
|
|
}
|
|
|
|
/* No candidate for zpopping, return empty. */
|
|
if (!zobj) {
|
|
if (reply_nil_when_empty) {
|
|
addReplyNullArray(c);
|
|
} else {
|
|
addReply(c, shared.emptyarray);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (count == 0) {
|
|
/* ZPOPMIN/ZPOPMAX with count 0. */
|
|
addReply(c, shared.emptyarray);
|
|
return;
|
|
}
|
|
|
|
long result_count = 0;
|
|
|
|
/* When count is -1, we need to correct it to 1 for plain single pop. */
|
|
if (count == -1) count = 1;
|
|
|
|
long llen = zsetLength(zobj);
|
|
long rangelen = (count > llen) ? llen : count;
|
|
|
|
if (!use_nested_array && !emitkey) {
|
|
/* ZPOPMIN/ZPOPMAX with or without COUNT option in RESP2. */
|
|
addReplyArrayLen(c, rangelen * 2);
|
|
} else if (use_nested_array && !emitkey) {
|
|
/* ZPOPMIN/ZPOPMAX with COUNT option in RESP3. */
|
|
addReplyArrayLen(c, rangelen);
|
|
} else if (!use_nested_array && emitkey) {
|
|
/* BZPOPMIN/BZPOPMAX in RESP2 and RESP3. */
|
|
addReplyArrayLen(c, rangelen * 2 + 1);
|
|
addReplyBulk(c, key);
|
|
} else if (use_nested_array && emitkey) {
|
|
/* ZMPOP/BZMPOP in RESP2 and RESP3. */
|
|
addReplyArrayLen(c, 2);
|
|
addReplyBulk(c, key);
|
|
addReplyArrayLen(c, rangelen);
|
|
}
|
|
|
|
/* Remove the element. */
|
|
do {
|
|
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
unsigned char *zl = zobj->ptr;
|
|
unsigned char *eptr, *sptr;
|
|
unsigned char *vstr;
|
|
unsigned int vlen;
|
|
long long vlong;
|
|
|
|
/* Get the first or last element in the sorted set. */
|
|
eptr = lpSeek(zl, where == ZSET_MAX ? -2 : 0);
|
|
serverAssertWithInfo(c, zobj, eptr != NULL);
|
|
vstr = lpGetValue(eptr, &vlen, &vlong);
|
|
if (vstr == NULL)
|
|
ele = sdsfromlonglong(vlong);
|
|
else
|
|
ele = sdsnewlen(vstr, vlen);
|
|
|
|
/* Get the score. */
|
|
sptr = lpNext(zl, eptr);
|
|
serverAssertWithInfo(c, zobj, sptr != NULL);
|
|
score = zzlGetScore(sptr);
|
|
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zobj->ptr;
|
|
zskiplist *zsl = zs->zsl;
|
|
zskiplistNode *zln;
|
|
|
|
/* Get the first or last element in the sorted set. */
|
|
zln = (where == ZSET_MAX ? zsl->tail : zsl->header->level[0].forward);
|
|
|
|
/* There must be an element in the sorted set. */
|
|
serverAssertWithInfo(c, zobj, zln != NULL);
|
|
ele = sdsdup(zln->ele);
|
|
score = zln->score;
|
|
} else {
|
|
serverPanic("Unknown sorted set encoding");
|
|
}
|
|
|
|
serverAssertWithInfo(c, zobj, zsetDel(zobj, ele));
|
|
server.dirty++;
|
|
|
|
if (result_count == 0) { /* Do this only for the first iteration. */
|
|
char *events[2] = {"zpopmin", "zpopmax"};
|
|
notifyKeyspaceEvent(NOTIFY_ZSET, events[where], key, c->db->id);
|
|
}
|
|
|
|
if (use_nested_array) {
|
|
addReplyArrayLen(c, 2);
|
|
}
|
|
addReplyBulkCBuffer(c, ele, sdslen(ele));
|
|
addReplyDouble(c, score);
|
|
sdsfree(ele);
|
|
++result_count;
|
|
} while (--rangelen);
|
|
|
|
/* Remove the key, if indeed needed. */
|
|
if (zsetLength(zobj) == 0) {
|
|
if (deleted) *deleted = 1;
|
|
|
|
dbDelete(c->db, key);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC, "del", key, c->db->id);
|
|
}
|
|
signalModifiedKey(c, c->db, key);
|
|
|
|
if (c->cmd->proc == zmpopCommand) {
|
|
/* Always replicate it as ZPOP[MIN|MAX] with COUNT option instead of ZMPOP. */
|
|
robj *count_obj = createStringObjectFromLongLong((count > llen) ? llen : count);
|
|
rewriteClientCommandVector(c, 3, (where == ZSET_MAX) ? shared.zpopmax : shared.zpopmin, key, count_obj);
|
|
decrRefCount(count_obj);
|
|
}
|
|
}
|
|
|
|
/* ZPOPMIN/ZPOPMAX key [<count>] */
|
|
void zpopMinMaxCommand(client *c, int where) {
|
|
if (c->argc > 3) {
|
|
addReplyErrorObject(c, shared.syntaxerr);
|
|
return;
|
|
}
|
|
|
|
long count = -1; /* -1 for plain single pop. */
|
|
if (c->argc == 3 && getPositiveLongFromObjectOrReply(c, c->argv[2], &count, NULL) != C_OK) return;
|
|
|
|
/* Respond with a single (flat) array in RESP2 or if count is -1
|
|
* (returning a single element). In RESP3, when count > 0 use nested array. */
|
|
int use_nested_array = (c->resp > 2 && count != -1);
|
|
|
|
genericZpopCommand(c, &c->argv[1], 1, where, 0, count, use_nested_array, 0, NULL);
|
|
}
|
|
|
|
/* ZPOPMIN key [<count>] */
|
|
void zpopminCommand(client *c) {
|
|
zpopMinMaxCommand(c, ZSET_MIN);
|
|
}
|
|
|
|
/* ZPOPMAX key [<count>] */
|
|
void zpopmaxCommand(client *c) {
|
|
zpopMinMaxCommand(c, ZSET_MAX);
|
|
}
|
|
|
|
/* BZPOPMIN, BZPOPMAX, BZMPOP actual implementation.
|
|
*
|
|
* 'numkeys' is the number of keys.
|
|
*
|
|
* 'timeout_idx' parameter position of block timeout.
|
|
*
|
|
* 'where' ZSET_MIN or ZSET_MAX.
|
|
*
|
|
* 'count' is the number of elements requested to pop, or -1 for plain single pop.
|
|
*
|
|
* 'use_nested_array' when false it generates a flat array (with or without key name).
|
|
* When true, it generates a nested 3 level array of keyname, field + score pairs.
|
|
* */
|
|
void blockingGenericZpopCommand(client *c,
|
|
robj **keys,
|
|
int numkeys,
|
|
int where,
|
|
int timeout_idx,
|
|
long count,
|
|
int use_nested_array,
|
|
int reply_nil_when_empty) {
|
|
robj *o;
|
|
robj *key;
|
|
mstime_t timeout;
|
|
int j;
|
|
|
|
if (getTimeoutFromObjectOrReply(c, c->argv[timeout_idx], &timeout, UNIT_SECONDS) != C_OK) return;
|
|
|
|
for (j = 0; j < numkeys; j++) {
|
|
key = keys[j];
|
|
o = lookupKeyWrite(c->db, key);
|
|
/* Non-existing key, move to next key. */
|
|
if (o == NULL) continue;
|
|
|
|
if (checkType(c, o, OBJ_ZSET)) return;
|
|
|
|
long llen = zsetLength(o);
|
|
/* Empty zset, move to next key. */
|
|
if (llen == 0) continue;
|
|
|
|
/* Non empty zset, this is like a normal ZPOP[MIN|MAX]. */
|
|
genericZpopCommand(c, &key, 1, where, 1, count, use_nested_array, reply_nil_when_empty, NULL);
|
|
|
|
if (count == -1) {
|
|
/* Replicate it as ZPOP[MIN|MAX] instead of BZPOP[MIN|MAX]. */
|
|
rewriteClientCommandVector(c, 2, (where == ZSET_MAX) ? shared.zpopmax : shared.zpopmin, key);
|
|
} else {
|
|
/* Replicate it as ZPOP[MIN|MAX] with COUNT option. */
|
|
robj *count_obj = createStringObjectFromLongLong((count > llen) ? llen : count);
|
|
rewriteClientCommandVector(c, 3, (where == ZSET_MAX) ? shared.zpopmax : shared.zpopmin, key, count_obj);
|
|
decrRefCount(count_obj);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* If we are not allowed to block the client and the zset is empty the only thing
|
|
* we can do is treating it as a timeout (even with timeout 0). */
|
|
if (c->flag.deny_blocking) {
|
|
addReplyNullArray(c);
|
|
return;
|
|
}
|
|
|
|
/* If the keys do not exist we must block */
|
|
blockForKeys(c, BLOCKED_ZSET, keys, numkeys, timeout, 0);
|
|
}
|
|
|
|
// BZPOPMIN key [key ...] timeout
|
|
void bzpopminCommand(client *c) {
|
|
blockingGenericZpopCommand(c, c->argv + 1, c->argc - 2, ZSET_MIN, c->argc - 1, -1, 0, 0);
|
|
}
|
|
|
|
// BZPOPMAX key [key ...] timeout
|
|
void bzpopmaxCommand(client *c) {
|
|
blockingGenericZpopCommand(c, c->argv + 1, c->argc - 2, ZSET_MAX, c->argc - 1, -1, 0, 0);
|
|
}
|
|
|
|
static void zrandmemberReplyWithListpack(client *c, unsigned int count, listpackEntry *keys, listpackEntry *vals) {
|
|
for (unsigned long i = 0; i < count; i++) {
|
|
if (vals && c->resp > 2) addReplyArrayLen(c, 2);
|
|
if (keys[i].sval)
|
|
addReplyBulkCBuffer(c, keys[i].sval, keys[i].slen);
|
|
else
|
|
addReplyBulkLongLong(c, keys[i].lval);
|
|
if (vals) {
|
|
if (vals[i].sval) {
|
|
addReplyDouble(c, zzlStrtod(vals[i].sval, vals[i].slen));
|
|
} else
|
|
addReplyDouble(c, vals[i].lval);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* How many times bigger should be the zset compared to the requested size
|
|
* for us to not use the "remove elements" strategy? Read later in the
|
|
* implementation for more info. */
|
|
#define ZRANDMEMBER_SUB_STRATEGY_MUL 3
|
|
|
|
/* If client is trying to ask for a very large number of random elements,
|
|
* queuing may consume an unlimited amount of memory, so we want to limit
|
|
* the number of randoms per time. */
|
|
#define ZRANDMEMBER_RANDOM_SAMPLE_LIMIT 1000
|
|
|
|
void zrandmemberWithCountCommand(client *c, long l, int withscores) {
|
|
unsigned long count, size;
|
|
int uniq = 1;
|
|
robj *zsetobj;
|
|
|
|
if ((zsetobj = lookupKeyReadOrReply(c, c->argv[1], shared.emptyarray)) == NULL || checkType(c, zsetobj, OBJ_ZSET))
|
|
return;
|
|
size = zsetLength(zsetobj);
|
|
|
|
if (l >= 0) {
|
|
count = (unsigned long)l;
|
|
} else {
|
|
count = -l;
|
|
uniq = 0;
|
|
}
|
|
|
|
/* If count is zero, serve it ASAP to avoid special cases later. */
|
|
if (count == 0) {
|
|
addReply(c, shared.emptyarray);
|
|
return;
|
|
}
|
|
|
|
/* CASE 1: The count was negative, so the extraction method is just:
|
|
* "return N random elements" sampling the whole set every time.
|
|
* This case is trivial and can be served without auxiliary data
|
|
* structures. This case is the only one that also needs to return the
|
|
* elements in random order. */
|
|
if (!uniq || count == 1) {
|
|
if (withscores && c->resp == 2)
|
|
addReplyArrayLen(c, count * 2);
|
|
else
|
|
addReplyArrayLen(c, count);
|
|
if (zsetobj->encoding == OBJ_ENCODING_SKIPLIST) {
|
|
zset *zs = zsetobj->ptr;
|
|
while (count--) {
|
|
dictEntry *de = dictGetFairRandomKey(zs->dict);
|
|
sds key = dictGetKey(de);
|
|
if (withscores && c->resp > 2) addReplyArrayLen(c, 2);
|
|
addReplyBulkCBuffer(c, key, sdslen(key));
|
|
if (withscores) addReplyDouble(c, *(double *)dictGetVal(de));
|
|
if (c->flag.close_asap) break;
|
|
}
|
|
} else if (zsetobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
listpackEntry *keys, *vals = NULL;
|
|
unsigned long limit, sample_count;
|
|
limit = count > ZRANDMEMBER_RANDOM_SAMPLE_LIMIT ? ZRANDMEMBER_RANDOM_SAMPLE_LIMIT : count;
|
|
keys = zmalloc(sizeof(listpackEntry) * limit);
|
|
if (withscores) vals = zmalloc(sizeof(listpackEntry) * limit);
|
|
while (count) {
|
|
sample_count = count > limit ? limit : count;
|
|
count -= sample_count;
|
|
lpRandomPairs(zsetobj->ptr, sample_count, keys, vals);
|
|
zrandmemberReplyWithListpack(c, sample_count, keys, vals);
|
|
if (c->flag.close_asap) break;
|
|
}
|
|
zfree(keys);
|
|
zfree(vals);
|
|
}
|
|
return;
|
|
}
|
|
|
|
zsetopsrc src;
|
|
zsetopval zval;
|
|
src.subject = zsetobj;
|
|
src.type = zsetobj->type;
|
|
src.encoding = zsetobj->encoding;
|
|
zuiInitIterator(&src);
|
|
memset(&zval, 0, sizeof(zval));
|
|
|
|
/* Initiate reply count, RESP3 responds with nested array, RESP2 with flat one. */
|
|
long reply_size = count < size ? count : size;
|
|
if (withscores && c->resp == 2)
|
|
addReplyArrayLen(c, reply_size * 2);
|
|
else
|
|
addReplyArrayLen(c, reply_size);
|
|
|
|
/* CASE 2:
|
|
* The number of requested elements is greater than the number of
|
|
* elements inside the zset: simply return the whole zset. */
|
|
if (count >= size) {
|
|
while (zuiNext(&src, &zval)) {
|
|
if (withscores && c->resp > 2) addReplyArrayLen(c, 2);
|
|
addReplyBulkSds(c, zuiNewSdsFromValue(&zval));
|
|
if (withscores) addReplyDouble(c, zval.score);
|
|
}
|
|
zuiClearIterator(&src);
|
|
return;
|
|
}
|
|
|
|
/* CASE 2.5 listpack only. Sampling unique elements, in non-random order.
|
|
* Listpack encoded zsets are meant to be relatively small, so
|
|
* ZRANDMEMBER_SUB_STRATEGY_MUL isn't necessary and we rather not make
|
|
* copies of the entries. Instead, we emit them directly to the output
|
|
* buffer.
|
|
*
|
|
* And it is inefficient to repeatedly pick one random element from a
|
|
* listpack in CASE 4. So we use this instead. */
|
|
if (zsetobj->encoding == OBJ_ENCODING_LISTPACK) {
|
|
listpackEntry *keys, *vals = NULL;
|
|
keys = zmalloc(sizeof(listpackEntry) * count);
|
|
if (withscores) vals = zmalloc(sizeof(listpackEntry) * count);
|
|
serverAssert(lpRandomPairsUnique(zsetobj->ptr, count, keys, vals) == count);
|
|
zrandmemberReplyWithListpack(c, count, keys, vals);
|
|
zfree(keys);
|
|
zfree(vals);
|
|
zuiClearIterator(&src);
|
|
return;
|
|
}
|
|
|
|
/* CASE 3:
|
|
* The number of elements inside the zset is not greater than
|
|
* ZRANDMEMBER_SUB_STRATEGY_MUL times the number of requested elements.
|
|
* In this case we create a dict from scratch with all the elements, and
|
|
* subtract random elements to reach the requested number of elements.
|
|
*
|
|
* This is done because if the number of requested elements is just
|
|
* a bit less than the number of elements in the set, the natural approach
|
|
* used into CASE 4 is highly inefficient. */
|
|
if (count * ZRANDMEMBER_SUB_STRATEGY_MUL > size) {
|
|
/* Hashtable encoding (generic implementation) */
|
|
dict *d = dictCreate(&sdsReplyDictType);
|
|
dictExpand(d, size);
|
|
/* Add all the elements into the temporary dictionary. */
|
|
while (zuiNext(&src, &zval)) {
|
|
sds key = zuiNewSdsFromValue(&zval);
|
|
dictEntry *de = dictAddRaw(d, key, NULL);
|
|
serverAssert(de);
|
|
if (withscores) dictSetDoubleVal(de, zval.score);
|
|
}
|
|
serverAssert(dictSize(d) == size);
|
|
|
|
/* Remove random elements to reach the right count. */
|
|
while (size > count) {
|
|
dictEntry *de;
|
|
de = dictGetFairRandomKey(d);
|
|
dictUnlink(d, dictGetKey(de));
|
|
sdsfree(dictGetKey(de));
|
|
dictFreeUnlinkedEntry(d, de);
|
|
size--;
|
|
}
|
|
|
|
/* Reply with what's in the dict and release memory */
|
|
dictIterator *di;
|
|
dictEntry *de;
|
|
di = dictGetIterator(d);
|
|
while ((de = dictNext(di)) != NULL) {
|
|
if (withscores && c->resp > 2) addReplyArrayLen(c, 2);
|
|
addReplyBulkSds(c, dictGetKey(de));
|
|
if (withscores) addReplyDouble(c, dictGetDoubleVal(de));
|
|
}
|
|
|
|
dictReleaseIterator(di);
|
|
dictRelease(d);
|
|
}
|
|
|
|
/* CASE 4: We have a big zset compared to the requested number of elements.
|
|
* In this case we can simply get random elements from the zset and add
|
|
* to the temporary set, trying to eventually get enough unique elements
|
|
* to reach the specified count. */
|
|
else {
|
|
/* Hashtable encoding (generic implementation) */
|
|
unsigned long added = 0;
|
|
dict *d = dictCreate(&hashDictType);
|
|
dictExpand(d, count);
|
|
|
|
while (added < count) {
|
|
listpackEntry key;
|
|
double score;
|
|
zsetTypeRandomElement(zsetobj, size, &key, withscores ? &score : NULL);
|
|
|
|
/* Try to add the object to the dictionary. If it already exists
|
|
* free it, otherwise increment the number of objects we have
|
|
* in the result dictionary. */
|
|
sds skey = zsetSdsFromListpackEntry(&key);
|
|
if (dictAdd(d, skey, NULL) != DICT_OK) {
|
|
sdsfree(skey);
|
|
continue;
|
|
}
|
|
added++;
|
|
|
|
if (withscores && c->resp > 2) addReplyArrayLen(c, 2);
|
|
zsetReplyFromListpackEntry(c, &key);
|
|
if (withscores) addReplyDouble(c, score);
|
|
}
|
|
|
|
/* Release memory */
|
|
dictRelease(d);
|
|
}
|
|
zuiClearIterator(&src);
|
|
}
|
|
|
|
/* ZRANDMEMBER key [<count> [WITHSCORES]] */
|
|
void zrandmemberCommand(client *c) {
|
|
long l;
|
|
int withscores = 0;
|
|
robj *zset;
|
|
listpackEntry ele;
|
|
|
|
if (c->argc >= 3) {
|
|
if (getRangeLongFromObjectOrReply(c, c->argv[2], -LONG_MAX, LONG_MAX, &l, NULL) != C_OK) return;
|
|
if (c->argc > 4 || (c->argc == 4 && strcasecmp(c->argv[3]->ptr, "withscores"))) {
|
|
addReplyErrorObject(c, shared.syntaxerr);
|
|
return;
|
|
} else if (c->argc == 4) {
|
|
withscores = 1;
|
|
if (l < -LONG_MAX / 2 || l > LONG_MAX / 2) {
|
|
addReplyError(c, "value is out of range");
|
|
return;
|
|
}
|
|
}
|
|
zrandmemberWithCountCommand(c, l, withscores);
|
|
return;
|
|
}
|
|
|
|
/* Handle variant without <count> argument. Reply with simple bulk string */
|
|
if ((zset = lookupKeyReadOrReply(c, c->argv[1], shared.null[c->resp])) == NULL || checkType(c, zset, OBJ_ZSET)) {
|
|
return;
|
|
}
|
|
|
|
zsetTypeRandomElement(zset, zsetLength(zset), &ele, NULL);
|
|
zsetReplyFromListpackEntry(c, &ele);
|
|
}
|
|
|
|
/* ZMPOP/BZMPOP
|
|
*
|
|
* 'numkeys_idx' parameter position of key number.
|
|
* 'is_block' this indicates whether it is a blocking variant. */
|
|
void zmpopGenericCommand(client *c, int numkeys_idx, int is_block) {
|
|
long j;
|
|
long numkeys = 0; /* Number of keys. */
|
|
int where = 0; /* ZSET_MIN or ZSET_MAX. */
|
|
long count = -1; /* Reply will consist of up to count elements, depending on the zset's length. */
|
|
|
|
/* Parse the numkeys. */
|
|
if (getRangeLongFromObjectOrReply(c, c->argv[numkeys_idx], 1, LONG_MAX, &numkeys,
|
|
"numkeys should be greater than 0") != C_OK)
|
|
return;
|
|
|
|
/* Parse the where. where_idx: the index of where in the c->argv. */
|
|
long where_idx = numkeys_idx + numkeys + 1;
|
|
if (where_idx >= c->argc) {
|
|
addReplyErrorObject(c, shared.syntaxerr);
|
|
return;
|
|
}
|
|
if (!strcasecmp(c->argv[where_idx]->ptr, "MIN")) {
|
|
where = ZSET_MIN;
|
|
} else if (!strcasecmp(c->argv[where_idx]->ptr, "MAX")) {
|
|
where = ZSET_MAX;
|
|
} else {
|
|
addReplyErrorObject(c, shared.syntaxerr);
|
|
return;
|
|
}
|
|
|
|
/* Parse the optional arguments. */
|
|
for (j = where_idx + 1; j < c->argc; j++) {
|
|
char *opt = c->argv[j]->ptr;
|
|
int moreargs = (c->argc - 1) - j;
|
|
|
|
if (count == -1 && !strcasecmp(opt, "COUNT") && moreargs) {
|
|
j++;
|
|
if (getRangeLongFromObjectOrReply(c, c->argv[j], 1, LONG_MAX, &count, "count should be greater than 0") !=
|
|
C_OK)
|
|
return;
|
|
} else {
|
|
addReplyErrorObject(c, shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (count == -1) count = 1;
|
|
|
|
if (is_block) {
|
|
/* BLOCK. We will handle CLIENT_DENY_BLOCKING flag in blockingGenericZpopCommand. */
|
|
blockingGenericZpopCommand(c, c->argv + numkeys_idx + 1, numkeys, where, 1, count, 1, 1);
|
|
} else {
|
|
/* NON-BLOCK */
|
|
genericZpopCommand(c, c->argv + numkeys_idx + 1, numkeys, where, 1, count, 1, 1, NULL);
|
|
}
|
|
}
|
|
|
|
/* ZMPOP numkeys key [<key> ...] MIN|MAX [COUNT count] */
|
|
void zmpopCommand(client *c) {
|
|
zmpopGenericCommand(c, 1, 0);
|
|
}
|
|
|
|
/* BZMPOP timeout numkeys key [<key> ...] MIN|MAX [COUNT count] */
|
|
void bzmpopCommand(client *c) {
|
|
zmpopGenericCommand(c, 2, 1);
|
|
}
|