futriix/src/kvstore.c
Harkrishn Patro 8faf2788a2
Embed key into dict entry (#541)
This PR incorporates changes related to key embedding described in the
https://github.com/redis/redis/issues/12216
With this change there will be no `key` pointer and embedded the key
within the `dictEntry`. 1 byte is used for additional bookkeeping.
Overall the saving would be 7 bytes on average.

Key changes:

New dict entry type introduced, which is now used as an entry for the
main dictionary:

```c
typedef struct {
    union {
        void *val;
        uint64_t u64;
        int64_t s64;
        double d;
    } v;
    struct dictEntry *next;  /* Next entry in the same hash bucket. */
    uint8_t key_header_size; /* offset into key_buf where the key is located at. */
    unsigned char key_buf[]; /* buffer with embedded key. */
} embeddedDictEntry;
```

One new function has been added to the dictType:

```c
size_t (*embedKey)(unsigned char *buf, size_t buf_len, const void *key, unsigned char *header_size);
```


Change is opt-in per dict type, hence sets, hashes and other types that
are using dictionary are not impacted.
With this change main dictionary now owns the data, so copy on insert in
dbAdd is no longer needed.

### Benchmarking results

TLDR; Around 9-10% memory usage reduction in overall memory usage for
scenario with key of 16 bytes and value of 8 bytes and 16 bytes. The
throughput per second varies but is similar or greater in most of the
run(s) with the changes against unstable (ae2d421).

---------

Signed-off-by: Harkrishn Patro <harkrisp@amazon.com>
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2024-07-02 15:45:37 -07:00

831 lines
31 KiB
C

/*
* Index-based KV store implementation
* This file implements a KV store comprised of an array of dicts (see dict.c)
* The purpose of this KV store is to have easy access to all keys that belong
* in the same dict (i.e. are in the same dict-index)
*
* For example, when the server is running in cluster mode, we use kvstore to save
* all keys that map to the same hash-slot in a separate dict within the kvstore
* struct.
* This enables us to easily access all keys that map to a specific hash-slot.
*
* Copyright (c) Redis contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "fmacros.h"
#include <string.h>
#include <stddef.h>
#include "zmalloc.h"
#include "kvstore.h"
#include "serverassert.h"
#include "monotonic.h"
#define UNUSED(V) ((void)V)
static dict *kvstoreIteratorNextDict(kvstoreIterator *kvs_it);
struct _kvstore {
int flags;
dictType dtype;
dict **dicts;
long long num_dicts;
long long num_dicts_bits;
list *rehashing; /* List of dictionaries in this kvstore that are currently rehashing. */
int resize_cursor; /* Cron job uses this cursor to gradually resize dictionaries (only used if num_dicts > 1). */
int allocated_dicts; /* The number of allocated dicts. */
int non_empty_dicts; /* The number of non-empty dicts. */
unsigned long long key_count; /* Total number of keys in this kvstore. */
unsigned long long bucket_count; /* Total number of buckets in this kvstore across dictionaries. */
unsigned long long *dict_size_index; /* Binary indexed tree (BIT) that describes cumulative key frequencies up until
given dict-index. */
size_t overhead_hashtable_lut; /* The overhead of all dictionaries. */
size_t overhead_hashtable_rehashing; /* The overhead of dictionaries rehashing. */
};
/* Structure for kvstore iterator that allows iterating across multiple dicts. */
struct _kvstoreIterator {
kvstore *kvs;
long long didx;
long long next_didx;
dictIterator di;
};
/* Structure for kvstore dict iterator that allows iterating the corresponding dict. */
struct _kvstoreDictIterator {
kvstore *kvs;
long long didx;
dictIterator di;
};
/* Dict metadata for database, used for record the position in rehashing list. */
typedef struct {
listNode *rehashing_node; /* list node in rehashing list */
} kvstoreDictMetadata;
/**********************************/
/*** Helpers **********************/
/**********************************/
/* Get the dictionary pointer based on dict-index. */
static dict *kvstoreGetDict(kvstore *kvs, int didx) {
return kvs->dicts[didx];
}
static dict **kvstoreGetDictRef(kvstore *kvs, int didx) {
return &kvs->dicts[didx];
}
static int kvstoreDictIsRehashingPaused(kvstore *kvs, int didx) {
dict *d = kvstoreGetDict(kvs, didx);
return d ? dictIsRehashingPaused(d) : 0;
}
/* Returns total (cumulative) number of keys up until given dict-index (inclusive).
* Time complexity is O(log(kvs->num_dicts)). */
static unsigned long long cumulativeKeyCountRead(kvstore *kvs, int didx) {
if (kvs->num_dicts == 1) {
assert(didx == 0);
return kvstoreSize(kvs);
}
int idx = didx + 1;
unsigned long long sum = 0;
while (idx > 0) {
sum += kvs->dict_size_index[idx];
idx -= (idx & -idx);
}
return sum;
}
static void addDictIndexToCursor(kvstore *kvs, int didx, unsigned long long *cursor) {
if (kvs->num_dicts == 1) return;
/* didx can be -1 when iteration is over and there are no more dicts to visit. */
if (didx < 0) return;
*cursor = (*cursor << kvs->num_dicts_bits) | didx;
}
static int getAndClearDictIndexFromCursor(kvstore *kvs, unsigned long long *cursor) {
if (kvs->num_dicts == 1) return 0;
int didx = (int)(*cursor & (kvs->num_dicts - 1));
*cursor = *cursor >> kvs->num_dicts_bits;
return didx;
}
/* Updates binary index tree (also known as Fenwick tree), increasing key count for a given dict.
* You can read more about this data structure here https://en.wikipedia.org/wiki/Fenwick_tree
* Time complexity is O(log(kvs->num_dicts)). */
static void cumulativeKeyCountAdd(kvstore *kvs, int didx, long delta) {
kvs->key_count += delta;
dict *d = kvstoreGetDict(kvs, didx);
size_t dsize = dictSize(d);
int non_empty_dicts_delta = dsize == 1 ? 1 : dsize == 0 ? -1 : 0;
kvs->non_empty_dicts += non_empty_dicts_delta;
/* BIT does not need to be calculated when there's only one dict. */
if (kvs->num_dicts == 1) return;
/* Update the BIT */
int idx = didx + 1; /* Unlike dict indices, BIT is 1-based, so we need to add 1. */
while (idx <= kvs->num_dicts) {
if (delta < 0) {
assert(kvs->dict_size_index[idx] >= (unsigned long long)labs(delta));
}
kvs->dict_size_index[idx] += delta;
idx += (idx & -idx);
}
}
/* Create the dict if it does not exist and return it. */
static dict *createDictIfNeeded(kvstore *kvs, int didx) {
dict *d = kvstoreGetDict(kvs, didx);
if (d) return d;
kvs->dicts[didx] = dictCreate(&kvs->dtype);
kvs->allocated_dicts++;
return kvs->dicts[didx];
}
/* Called when the dict will delete entries, the function will check
* KVSTORE_FREE_EMPTY_DICTS to determine whether the empty dict needs
* to be freed.
*
* Note that for rehashing dicts, that is, in the case of safe iterators
* and Scan, we won't delete the dict. We will check whether it needs
* to be deleted when we're releasing the iterator. */
static void freeDictIfNeeded(kvstore *kvs, int didx) {
if (!(kvs->flags & KVSTORE_FREE_EMPTY_DICTS) || !kvstoreGetDict(kvs, didx) || kvstoreDictSize(kvs, didx) != 0 ||
kvstoreDictIsRehashingPaused(kvs, didx))
return;
dictRelease(kvs->dicts[didx]);
kvs->dicts[didx] = NULL;
kvs->allocated_dicts--;
}
/**********************************/
/*** dict callbacks ***************/
/**********************************/
/* Adds dictionary to the rehashing list, which allows us
* to quickly find rehash targets during incremental rehashing.
*
* If there are multiple dicts, updates the bucket count for the given dictionary
* in a DB, bucket count incremented with the new ht size during the rehashing phase.
* If there's one dict, bucket count can be retrieved directly from single dict bucket. */
static void kvstoreDictRehashingStarted(dict *d) {
kvstore *kvs = d->type->userdata;
kvstoreDictMetadata *metadata = (kvstoreDictMetadata *)dictMetadata(d);
listAddNodeTail(kvs->rehashing, d);
metadata->rehashing_node = listLast(kvs->rehashing);
unsigned long long from, to;
dictRehashingInfo(d, &from, &to);
kvs->bucket_count += to; /* Started rehashing (Add the new ht size) */
kvs->overhead_hashtable_lut += to;
kvs->overhead_hashtable_rehashing += from;
}
/* Remove dictionary from the rehashing list.
*
* Updates the bucket count for the given dictionary in a DB. It removes
* the old ht size of the dictionary from the total sum of buckets for a DB. */
static void kvstoreDictRehashingCompleted(dict *d) {
kvstore *kvs = d->type->userdata;
kvstoreDictMetadata *metadata = (kvstoreDictMetadata *)dictMetadata(d);
if (metadata->rehashing_node) {
listDelNode(kvs->rehashing, metadata->rehashing_node);
metadata->rehashing_node = NULL;
}
unsigned long long from, to;
dictRehashingInfo(d, &from, &to);
kvs->bucket_count -= from; /* Finished rehashing (Remove the old ht size) */
kvs->overhead_hashtable_lut -= from;
kvs->overhead_hashtable_rehashing -= from;
}
/* Returns the size of the DB dict metadata in bytes. */
static size_t kvstoreDictMetadataSize(dict *d) {
UNUSED(d);
return sizeof(kvstoreDictMetadata);
}
/**********************************/
/*** API **************************/
/**********************************/
/* Create an array of dictionaries
* num_dicts_bits is the log2 of the amount of dictionaries needed (e.g. 0 for 1 dict,
* 3 for 8 dicts, etc.)
*
* The kvstore handles `key` based on `dictType` during initialization:
* - If `dictType.embedded-entry` is 1, it clones the `key`.
* - Otherwise, it assumes ownership of the `key`.
*/
kvstore *kvstoreCreate(dictType *type, int num_dicts_bits, int flags) {
/* We can't support more than 2^16 dicts because we want to save 48 bits
* for the dict cursor, see kvstoreScan */
assert(num_dicts_bits <= 16);
kvstore *kvs = zcalloc(sizeof(*kvs));
memcpy(&kvs->dtype, type, sizeof(kvs->dtype));
kvs->flags = flags;
/* kvstore must be the one to set these callbacks, so we make sure the
* caller didn't do it */
assert(!type->userdata);
assert(!type->dictMetadataBytes);
assert(!type->rehashingStarted);
assert(!type->rehashingCompleted);
kvs->dtype.userdata = kvs;
kvs->dtype.dictMetadataBytes = kvstoreDictMetadataSize;
kvs->dtype.rehashingStarted = kvstoreDictRehashingStarted;
kvs->dtype.rehashingCompleted = kvstoreDictRehashingCompleted;
kvs->num_dicts_bits = num_dicts_bits;
kvs->num_dicts = 1 << kvs->num_dicts_bits;
kvs->dicts = zcalloc(sizeof(dict *) * kvs->num_dicts);
if (!(kvs->flags & KVSTORE_ALLOCATE_DICTS_ON_DEMAND)) {
for (int i = 0; i < kvs->num_dicts; i++) createDictIfNeeded(kvs, i);
}
kvs->rehashing = listCreate();
kvs->key_count = 0;
kvs->non_empty_dicts = 0;
kvs->resize_cursor = 0;
kvs->dict_size_index = kvs->num_dicts > 1 ? zcalloc(sizeof(unsigned long long) * (kvs->num_dicts + 1)) : NULL;
kvs->bucket_count = 0;
kvs->overhead_hashtable_lut = 0;
kvs->overhead_hashtable_rehashing = 0;
return kvs;
}
void kvstoreEmpty(kvstore *kvs, void(callback)(dict *)) {
for (int didx = 0; didx < kvs->num_dicts; didx++) {
dict *d = kvstoreGetDict(kvs, didx);
if (!d) continue;
kvstoreDictMetadata *metadata = (kvstoreDictMetadata *)dictMetadata(d);
if (metadata->rehashing_node) metadata->rehashing_node = NULL;
dictEmpty(d, callback);
freeDictIfNeeded(kvs, didx);
}
listEmpty(kvs->rehashing);
kvs->key_count = 0;
kvs->non_empty_dicts = 0;
kvs->resize_cursor = 0;
kvs->bucket_count = 0;
if (kvs->dict_size_index) memset(kvs->dict_size_index, 0, sizeof(unsigned long long) * (kvs->num_dicts + 1));
kvs->overhead_hashtable_lut = 0;
kvs->overhead_hashtable_rehashing = 0;
}
void kvstoreRelease(kvstore *kvs) {
for (int didx = 0; didx < kvs->num_dicts; didx++) {
dict *d = kvstoreGetDict(kvs, didx);
if (!d) continue;
kvstoreDictMetadata *metadata = (kvstoreDictMetadata *)dictMetadata(d);
if (metadata->rehashing_node) metadata->rehashing_node = NULL;
dictRelease(d);
}
zfree(kvs->dicts);
listRelease(kvs->rehashing);
if (kvs->dict_size_index) zfree(kvs->dict_size_index);
zfree(kvs);
}
unsigned long long int kvstoreSize(kvstore *kvs) {
if (kvs->num_dicts != 1) {
return kvs->key_count;
} else {
return kvs->dicts[0] ? dictSize(kvs->dicts[0]) : 0;
}
}
/* This method provides the cumulative sum of all the dictionary buckets
* across dictionaries in a database. */
unsigned long kvstoreBuckets(kvstore *kvs) {
if (kvs->num_dicts != 1) {
return kvs->bucket_count;
} else {
return kvs->dicts[0] ? dictBuckets(kvs->dicts[0]) : 0;
}
}
size_t kvstoreMemUsage(kvstore *kvs) {
size_t mem = sizeof(*kvs);
unsigned long long keys_count = kvstoreSize(kvs);
mem += keys_count * dictEntryMemUsage(NULL) + kvstoreBuckets(kvs) * sizeof(dictEntry *) +
kvs->allocated_dicts * (sizeof(dict) + kvstoreDictMetadataSize(NULL));
/* Values are dict* shared with kvs->dicts */
mem += listLength(kvs->rehashing) * sizeof(listNode);
if (kvs->dict_size_index) mem += sizeof(unsigned long long) * (kvs->num_dicts + 1);
return mem;
}
/*
* This method is used to iterate over the elements of the entire kvstore specifically across dicts.
* It's a three pronged approach.
*
* 1. It uses the provided cursor `cursor` to retrieve the dict index from it.
* 2. If the dictionary is in a valid state checked through the provided callback `dictScanValidFunction`,
* it performs a dictScan over the appropriate `keyType` dictionary of `db`.
* 3. If the dict is entirely scanned i.e. the cursor has reached 0, the next non empty dict is discovered.
* The dict information is embedded into the cursor and returned.
*
* To restrict the scan to a single dict, pass a valid dict index as
* 'onlydidx', otherwise pass -1.
*/
unsigned long long kvstoreScan(kvstore *kvs,
unsigned long long cursor,
int onlydidx,
dictScanFunction *scan_cb,
kvstoreScanShouldSkipDict *skip_cb,
void *privdata) {
unsigned long long _cursor = 0;
/* During dictionary traversal, 48 upper bits in the cursor are used for positioning in the HT.
* Following lower bits are used for the dict index number, ranging from 0 to 2^num_dicts_bits-1.
* Dict index is always 0 at the start of iteration and can be incremented only if there are
* multiple dicts. */
int didx = getAndClearDictIndexFromCursor(kvs, &cursor);
if (onlydidx >= 0) {
if (didx < onlydidx) {
/* Fast-forward to onlydidx. */
assert(onlydidx < kvs->num_dicts);
didx = onlydidx;
cursor = 0;
} else if (didx > onlydidx) {
/* The cursor is already past onlydidx. */
return 0;
}
}
dict *d = kvstoreGetDict(kvs, didx);
int skip = !d || (skip_cb && skip_cb(d));
if (!skip) {
_cursor = dictScan(d, cursor, scan_cb, privdata);
/* In dictScan, scan_cb may delete entries (e.g., in active expire case). */
freeDictIfNeeded(kvs, didx);
}
/* scanning done for the current dictionary or if the scanning wasn't possible, move to the next dict index. */
if (_cursor == 0 || skip) {
if (onlydidx >= 0) return 0;
didx = kvstoreGetNextNonEmptyDictIndex(kvs, didx);
}
if (didx == -1) {
return 0;
}
addDictIndexToCursor(kvs, didx, &_cursor);
return _cursor;
}
/*
* This functions increases size of kvstore to match desired number.
* It resizes all individual dictionaries, unless skip_cb indicates otherwise.
*
* Based on the parameter `try_expand`, appropriate dict expand API is invoked.
* if try_expand is set to 1, `dictTryExpand` is used else `dictExpand`.
* The return code is either `DICT_OK`/`DICT_ERR` for both the API(s).
* `DICT_OK` response is for successful expansion. However, `DICT_ERR` response signifies failure in allocation in
* `dictTryExpand` call and in case of `dictExpand` call it signifies no expansion was performed.
*/
int kvstoreExpand(kvstore *kvs, uint64_t newsize, int try_expand, kvstoreExpandShouldSkipDictIndex *skip_cb) {
for (int i = 0; i < kvs->num_dicts; i++) {
dict *d = kvstoreGetDict(kvs, i);
if (!d || (skip_cb && skip_cb(i))) continue;
int result = try_expand ? dictTryExpand(d, newsize) : dictExpand(d, newsize);
if (try_expand && result == DICT_ERR) return 0;
}
return 1;
}
/* Returns fair random dict index, probability of each dict being returned is proportional to the number of elements
* that dictionary holds. This function guarantees that it returns a dict-index of a non-empty dict, unless the entire
* kvstore is empty. Time complexity of this function is O(log(kvs->num_dicts)). */
int kvstoreGetFairRandomDictIndex(kvstore *kvs) {
unsigned long target = kvstoreSize(kvs) ? (randomULong() % kvstoreSize(kvs)) + 1 : 0;
return kvstoreFindDictIndexByKeyIndex(kvs, target);
}
void kvstoreGetStats(kvstore *kvs, char *buf, size_t bufsize, int full) {
buf[0] = '\0';
size_t l;
char *orig_buf = buf;
size_t orig_bufsize = bufsize;
dictStats *mainHtStats = NULL;
dictStats *rehashHtStats = NULL;
dict *d;
kvstoreIterator *kvs_it = kvstoreIteratorInit(kvs);
while ((d = kvstoreIteratorNextDict(kvs_it))) {
dictStats *stats = dictGetStatsHt(d, 0, full);
if (!mainHtStats) {
mainHtStats = stats;
} else {
dictCombineStats(stats, mainHtStats);
dictFreeStats(stats);
}
if (dictIsRehashing(d)) {
stats = dictGetStatsHt(d, 1, full);
if (!rehashHtStats) {
rehashHtStats = stats;
} else {
dictCombineStats(stats, rehashHtStats);
dictFreeStats(stats);
}
}
}
kvstoreIteratorRelease(kvs_it);
if (mainHtStats && bufsize > 0) {
l = dictGetStatsMsg(buf, bufsize, mainHtStats, full);
dictFreeStats(mainHtStats);
buf += l;
bufsize -= l;
}
if (rehashHtStats && bufsize > 0) {
l = dictGetStatsMsg(buf, bufsize, rehashHtStats, full);
dictFreeStats(rehashHtStats);
buf += l;
bufsize -= l;
}
/* Make sure there is a NULL term at the end. */
if (orig_bufsize) orig_buf[orig_bufsize - 1] = '\0';
}
/* Finds a dict containing target element in a key space ordered by dict index.
* Consider this example. Dictionaries are represented by brackets and keys by dots:
* #0 #1 #2 #3 #4
* [..][....][...][.......][.]
* ^
* target
*
* In this case dict #3 contains key that we are trying to find.
*
* The return value is 0 based dict-index, and the range of the target is [1..kvstoreSize], kvstoreSize inclusive.
*
* To find the dict, we start with the root node of the binary index tree and search through its children
* from the highest index (2^num_dicts_bits in our case) to the lowest index. At each node, we check if the target
* value is greater than the node's value. If it is, we remove the node's value from the target and recursively
* search for the new target using the current node as the parent.
* Time complexity of this function is O(log(kvs->num_dicts))
*/
int kvstoreFindDictIndexByKeyIndex(kvstore *kvs, unsigned long target) {
if (kvs->num_dicts == 1 || kvstoreSize(kvs) == 0) return 0;
assert(target <= kvstoreSize(kvs));
int result = 0, bit_mask = 1 << kvs->num_dicts_bits;
for (int i = bit_mask; i != 0; i >>= 1) {
int current = result + i;
/* When the target index is greater than 'current' node value the we will update
* the target and search in the 'current' node tree. */
if (target > kvs->dict_size_index[current]) {
target -= kvs->dict_size_index[current];
result = current;
}
}
/* Adjust the result to get the correct dict:
* 1. result += 1;
* After the calculations, the index of target in dict_size_index should be the next one,
* so we should add 1.
* 2. result -= 1;
* Unlike BIT(dict_size_index is 1-based), dict indices are 0-based, so we need to subtract 1.
* As the addition and subtraction cancel each other out, we can simply return the result. */
return result;
}
/* Wrapper for kvstoreFindDictIndexByKeyIndex to get the first non-empty dict index in the kvstore. */
int kvstoreGetFirstNonEmptyDictIndex(kvstore *kvs) {
return kvstoreFindDictIndexByKeyIndex(kvs, 1);
}
/* Returns next non-empty dict index strictly after given one, or -1 if provided didx is the last one. */
int kvstoreGetNextNonEmptyDictIndex(kvstore *kvs, int didx) {
if (kvs->num_dicts == 1) {
assert(didx == 0);
return -1;
}
unsigned long long next_key = cumulativeKeyCountRead(kvs, didx) + 1;
return next_key <= kvstoreSize(kvs) ? kvstoreFindDictIndexByKeyIndex(kvs, next_key) : -1;
}
int kvstoreNumNonEmptyDicts(kvstore *kvs) {
return kvs->non_empty_dicts;
}
int kvstoreNumAllocatedDicts(kvstore *kvs) {
return kvs->allocated_dicts;
}
int kvstoreNumDicts(kvstore *kvs) {
return kvs->num_dicts;
}
/* Returns kvstore iterator that can be used to iterate through sub-dictionaries.
*
* The caller should free the resulting kvs_it with kvstoreIteratorRelease. */
kvstoreIterator *kvstoreIteratorInit(kvstore *kvs) {
kvstoreIterator *kvs_it = zmalloc(sizeof(*kvs_it));
kvs_it->kvs = kvs;
kvs_it->didx = -1;
kvs_it->next_didx = kvstoreGetFirstNonEmptyDictIndex(kvs_it->kvs); /* Finds first non-empty dict index. */
dictInitSafeIterator(&kvs_it->di, NULL);
return kvs_it;
}
/* Free the kvs_it returned by kvstoreIteratorInit. */
void kvstoreIteratorRelease(kvstoreIterator *kvs_it) {
dictIterator *iter = &kvs_it->di;
dictResetIterator(iter);
/* In the safe iterator context, we may delete entries. */
freeDictIfNeeded(kvs_it->kvs, kvs_it->didx);
zfree(kvs_it);
}
/* Returns next dictionary from the iterator, or NULL if iteration is complete. */
static dict *kvstoreIteratorNextDict(kvstoreIterator *kvs_it) {
if (kvs_it->next_didx == -1) return NULL;
/* The dict may be deleted during the iteration process, so here need to check for NULL. */
if (kvs_it->didx != -1 && kvstoreGetDict(kvs_it->kvs, kvs_it->didx)) {
/* Before we move to the next dict, reset the iter of the previous dict. */
dictIterator *iter = &kvs_it->di;
dictResetIterator(iter);
/* In the safe iterator context, we may delete entries. */
freeDictIfNeeded(kvs_it->kvs, kvs_it->didx);
}
kvs_it->didx = kvs_it->next_didx;
kvs_it->next_didx = kvstoreGetNextNonEmptyDictIndex(kvs_it->kvs, kvs_it->didx);
return kvs_it->kvs->dicts[kvs_it->didx];
}
int kvstoreIteratorGetCurrentDictIndex(kvstoreIterator *kvs_it) {
assert(kvs_it->didx >= 0 && kvs_it->didx < kvs_it->kvs->num_dicts);
return kvs_it->didx;
}
/* Returns next entry. */
dictEntry *kvstoreIteratorNext(kvstoreIterator *kvs_it) {
dictEntry *de = kvs_it->di.d ? dictNext(&kvs_it->di) : NULL;
if (!de) { /* No current dict or reached the end of the dictionary. */
dict *d = kvstoreIteratorNextDict(kvs_it);
if (!d) return NULL;
dictInitSafeIterator(&kvs_it->di, d);
de = dictNext(&kvs_it->di);
}
return de;
}
/* This method traverses through kvstore dictionaries and triggers a resize.
* It first tries to shrink if needed, and if it isn't, it tries to expand. */
void kvstoreTryResizeDicts(kvstore *kvs, int limit) {
if (limit > kvs->num_dicts) limit = kvs->num_dicts;
for (int i = 0; i < limit; i++) {
int didx = kvs->resize_cursor;
dict *d = kvstoreGetDict(kvs, didx);
if (d && dictShrinkIfNeeded(d) == DICT_ERR) {
dictExpandIfNeeded(d);
}
kvs->resize_cursor = (didx + 1) % kvs->num_dicts;
}
}
/* Our hash table implementation performs rehashing incrementally while
* we write/read from the hash table. Still if the server is idle, the hash
* table will use two tables for a long time. So we try to use threshold_us
* of CPU time at every call of this function to perform some rehashing.
*
* The function returns the amount of microsecs spent if some rehashing was
* performed, otherwise 0 is returned. */
uint64_t kvstoreIncrementallyRehash(kvstore *kvs, uint64_t threshold_us) {
if (listLength(kvs->rehashing) == 0) return 0;
/* Our goal is to rehash as many dictionaries as we can before reaching threshold_us,
* after each dictionary completes rehashing, it removes itself from the list. */
listNode *node;
monotime timer;
uint64_t elapsed_us = 0;
elapsedStart(&timer);
while ((node = listFirst(kvs->rehashing))) {
dictRehashMicroseconds(listNodeValue(node), threshold_us - elapsed_us);
elapsed_us = elapsedUs(timer);
if (elapsed_us >= threshold_us) {
break; /* Reached the time limit. */
}
}
return elapsed_us;
}
size_t kvstoreOverheadHashtableLut(kvstore *kvs) {
return kvs->overhead_hashtable_lut * sizeof(dictEntry *);
}
size_t kvstoreOverheadHashtableRehashing(kvstore *kvs) {
return kvs->overhead_hashtable_rehashing * sizeof(dictEntry *);
}
unsigned long kvstoreDictRehashingCount(kvstore *kvs) {
return listLength(kvs->rehashing);
}
unsigned long kvstoreDictSize(kvstore *kvs, int didx) {
dict *d = kvstoreGetDict(kvs, didx);
if (!d) return 0;
return dictSize(d);
}
kvstoreDictIterator *kvstoreGetDictIterator(kvstore *kvs, int didx) {
kvstoreDictIterator *kvs_di = zmalloc(sizeof(*kvs_di));
kvs_di->kvs = kvs;
kvs_di->didx = didx;
dictInitIterator(&kvs_di->di, kvstoreGetDict(kvs, didx));
return kvs_di;
}
kvstoreDictIterator *kvstoreGetDictSafeIterator(kvstore *kvs, int didx) {
kvstoreDictIterator *kvs_di = zmalloc(sizeof(*kvs_di));
kvs_di->kvs = kvs;
kvs_di->didx = didx;
dictInitSafeIterator(&kvs_di->di, kvstoreGetDict(kvs, didx));
return kvs_di;
}
/* Free the kvs_di returned by kvstoreGetDictIterator and kvstoreGetDictSafeIterator. */
void kvstoreReleaseDictIterator(kvstoreDictIterator *kvs_di) {
/* The dict may be deleted during the iteration process, so here need to check for NULL. */
if (kvstoreGetDict(kvs_di->kvs, kvs_di->didx)) {
dictResetIterator(&kvs_di->di);
/* In the safe iterator context, we may delete entries. */
freeDictIfNeeded(kvs_di->kvs, kvs_di->didx);
}
zfree(kvs_di);
}
/* Get the next element of the dict through kvstoreDictIterator and dictNext. */
dictEntry *kvstoreDictIteratorNext(kvstoreDictIterator *kvs_di) {
/* The dict may be deleted during the iteration process, so here need to check for NULL. */
dict *d = kvstoreGetDict(kvs_di->kvs, kvs_di->didx);
if (!d) return NULL;
return dictNext(&kvs_di->di);
}
dictEntry *kvstoreDictGetRandomKey(kvstore *kvs, int didx) {
dict *d = kvstoreGetDict(kvs, didx);
if (!d) return NULL;
return dictGetRandomKey(d);
}
dictEntry *kvstoreDictGetFairRandomKey(kvstore *kvs, int didx) {
dict *d = kvstoreGetDict(kvs, didx);
if (!d) return NULL;
return dictGetFairRandomKey(d);
}
unsigned int kvstoreDictGetSomeKeys(kvstore *kvs, int didx, dictEntry **des, unsigned int count) {
dict *d = kvstoreGetDict(kvs, didx);
if (!d) return 0;
return dictGetSomeKeys(d, des, count);
}
int kvstoreDictExpand(kvstore *kvs, int didx, unsigned long size) {
dict *d = kvstoreGetDict(kvs, didx);
if (!d) return DICT_ERR;
return dictExpand(d, size);
}
unsigned long kvstoreDictScanDefrag(kvstore *kvs,
int didx,
unsigned long v,
dictScanFunction *fn,
dictDefragFunctions *defragfns,
void *privdata) {
dict *d = kvstoreGetDict(kvs, didx);
if (!d) return 0;
return dictScanDefrag(d, v, fn, defragfns, privdata);
}
/* Unlike kvstoreDictScanDefrag(), this method doesn't defrag the data(keys and values)
* within dict, it only reallocates the memory used by the dict structure itself using
* the provided allocation function. This feature was added for the active defrag feature.
*
* The 'defragfn' callback is called with a reference to the dict
* that callback can reallocate. */
void kvstoreDictLUTDefrag(kvstore *kvs, kvstoreDictLUTDefragFunction *defragfn) {
for (int didx = 0; didx < kvs->num_dicts; didx++) {
dict **d = kvstoreGetDictRef(kvs, didx), *newd;
if (!*d) continue;
if ((newd = defragfn(*d))) *d = newd;
}
}
uint64_t kvstoreGetHash(kvstore *kvs, const void *key) {
return kvs->dtype.hashFunction(key);
}
void *kvstoreDictFetchValue(kvstore *kvs, int didx, const void *key) {
dict *d = kvstoreGetDict(kvs, didx);
if (!d) return NULL;
return dictFetchValue(d, key);
}
dictEntry *kvstoreDictFind(kvstore *kvs, int didx, void *key) {
dict *d = kvstoreGetDict(kvs, didx);
if (!d) return NULL;
return dictFind(d, key);
}
/*
* The kvstore handles `key` based on `dictType` during initialization:
* - If `dictType.embedded-entry` is 1, it clones the `key`.
* - Otherwise, it assumes ownership of the `key`.
* The caller must ensure the `key` is properly freed.
*
* kvstore current usage:
*
* 1. keyspace (db.keys) kvstore - creates a copy of the key.
* 2. expiry (db.expires), pubsub_channels and pubsubshard_channels kvstore - takes ownership of the key.
*/
dictEntry *kvstoreDictAddRaw(kvstore *kvs, int didx, void *key, dictEntry **existing) {
dict *d = createDictIfNeeded(kvs, didx);
dictEntry *ret = dictAddRaw(d, key, existing);
if (ret) cumulativeKeyCountAdd(kvs, didx, 1);
return ret;
}
void kvstoreDictSetKey(kvstore *kvs, int didx, dictEntry *de, void *key) {
dict *d = kvstoreGetDict(kvs, didx);
dictSetKey(d, de, key);
}
void kvstoreDictSetVal(kvstore *kvs, int didx, dictEntry *de, void *val) {
UNUSED(kvs);
UNUSED(didx);
dictSetVal(NULL, de, val);
}
dictEntry *
kvstoreDictTwoPhaseUnlinkFind(kvstore *kvs, int didx, const void *key, dictEntry ***plink, int *table_index) {
dict *d = kvstoreGetDict(kvs, didx);
if (!d) return NULL;
return dictTwoPhaseUnlinkFind(kvstoreGetDict(kvs, didx), key, plink, table_index);
}
void kvstoreDictTwoPhaseUnlinkFree(kvstore *kvs, int didx, dictEntry *he, dictEntry **plink, int table_index) {
dict *d = kvstoreGetDict(kvs, didx);
dictTwoPhaseUnlinkFree(d, he, plink, table_index);
cumulativeKeyCountAdd(kvs, didx, -1);
freeDictIfNeeded(kvs, didx);
}
int kvstoreDictDelete(kvstore *kvs, int didx, const void *key) {
dict *d = kvstoreGetDict(kvs, didx);
if (!d) return DICT_ERR;
int ret = dictDelete(d, key);
if (ret == DICT_OK) {
cumulativeKeyCountAdd(kvs, didx, -1);
freeDictIfNeeded(kvs, didx);
}
return ret;
}