eifrah-aws 07b3e7ae7a
Add CMake build system for valkey (#1196)
With this commit, users are able to build valkey using `CMake`.

## Example usage:

Build `valkey-server` in Release mode with TLS enabled and using
`jemalloc` as the allocator:

```bash
mkdir build-release
cd $_
cmake .. -DCMAKE_BUILD_TYPE=Release \
         -DCMAKE_INSTALL_PREFIX=/tmp/valkey-install \
         -DBUILD_MALLOC=jemalloc -DBUILD_TLS=1
make -j$(nproc) install

# start valkey
/tmp/valkey-install/bin/valkey-server
```

Build `valkey-unit-tests`:

```bash
mkdir build-release-ut
cd $_
cmake .. -DCMAKE_BUILD_TYPE=Release \
         -DBUILD_MALLOC=jemalloc -DBUILD_UNIT_TESTS=1
make -j$(nproc)

# Run the tests
./bin/valkey-unit-tests 
```

Current features supported by this PR:

- Building against different allocators: (`jemalloc`, `tcmalloc`,
`tcmalloc_minimal` and `libc`), e.g. to enable `jemalloc` pass
`-DBUILD_MALLOC=jemalloc` to `cmake`
- OpenSSL builds (to enable TLS, pass `-DBUILD_TLS=1` to `cmake`)
- Sanitizier: pass `-DBUILD_SANITIZER=<address|thread|undefined>` to
`cmake`
- Install target + redis symbolic links
- Build `valkey-unit-tests` executable
- Standard CMake variables are supported. e.g. to install `valkey` under
`/home/you/root` pass `-DCMAKE_INSTALL_PREFIX=/home/you/root`

Why using `CMake`? To list *some* of the advantages of using `CMake`:

- Superior IDE integrations: cmake generates the file
`compile_commands.json` which is required by `clangd` to get a compiler
accuracy code completion (in other words: your VScode will thank you)
- Out of the source build tree: with the current build system, object
files are created all over the place polluting the build source tree,
the best practice is to build the project on a separate folder
- Multiple build types co-existing: with the current build system, it is
often hard to have multiple build configurations. With cmake you can do
it easily:
- It is the de-facto standard for C/C++ project these days

More build examples: 

ASAN build:

```bash
mkdir build-asan
cd $_
cmake .. -DBUILD_SANITIZER=address -DBUILD_MALLOC=libc
make -j$(nproc)
```

ASAN with jemalloc:

```bash
mkdir build-asan-jemalloc
cd $_
cmake .. -DBUILD_SANITIZER=address -DBUILD_MALLOC=jemalloc 
make -j$(nproc)
```

As seen by the previous examples, any combination is allowed and
co-exist on the same source tree.

## Valkey installation

With this new `CMake`, it is possible to install the binary by running
`make install` or creating a package `make package` (currently supported
on Debian like distros)

### Example 1: build & install using `make install`:

```bash
mkdir build-release
cd $_
cmake .. -DCMAKE_INSTALL_PREFIX=$HOME/valkey-install -DCMAKE_BUILD_TYPE=Release
make -j$(nproc) install
# valkey is now installed under $HOME/valkey-install
```

### Example 2: create a `.deb` installer:

```bash
mkdir build-release
cd $_
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j$(nproc) package
# ... CPack deb generation output
sudo gdebi -n ./valkey_8.1.0_amd64.deb
# valkey is now installed under /opt/valkey
```

### Example 3: create installer for non Debian systems (e.g. FreeBSD or
macOS):

```bash
mkdir build-release
cd $_
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j$(nproc) package
mkdir -p /opt/valkey && ./valkey-8.1.0-Darwin.sh --prefix=/opt/valkey  --exclude-subdir
# valkey-server is now installed under /opt/valkey

```

Signed-off-by: Eran Ifrah <eifrah@amazon.com>
2024-11-07 18:01:37 -08:00
..

Valkey Test Suite

Overview

Integration tests are written in Tcl, a high-level, general-purpose, interpreted, dynamic programming language [source]. runtest is the main entrance point for running integration tests. For example, to run a single test;

./runtest --single unit/your_test_name
# For additional arguments, you may refer to the `runtest` script itself.

The normal execution mode of the test suite involves starting and manipulating local valkey-server instances, inspecting process state, log files, etc.

The test suite also supports execution against an external server, which is enabled using the --host and --port parameters. When executing against an external server, tests tagged external:skip are skipped.

There are additional runtime options that can further adjust the test suite to match different external server configurations. All options are listed by ./runtest --help. The following table is just a subset of the options:

Option Impact
--singledb Only use database 0, don't assume others are supported.
--ignore-encoding Skip all checks for specific encoding.
--ignore-digest Skip key value digest validations.
--cluster-mode Run in strict Valkey Cluster compatibility mode.
--large-memory Enables tests that consume more than 100MB
--tls Run tests with TLS. See below.
--tls-module Run tests with TLS, when TLS support is built as a module.
--help Displays the full set of options.

Running with TLS requires the following preparations:

  • Build Valkey is TLS support, e.g. using make BUILD_TLS=yes, or make BUILD_TLS=module.
  • Run ./utils/gen-test-certs.sh to generate a root CA and a server certificate.
  • Install TLS support for TCL, e.g. the tcl-tls package on Debian/Ubuntu.

Additional tests

Not all tests are included in the ./runtest scripts. Some additional entry points are provided by the following scripts, which support a subset of the options listed above:

  • ./runtest-cluster runs more extensive tests for Valkey Cluster. Some cluster tests are included in ./runtest, but not all.
  • ./runtest-sentinel runs tests of Valkey Sentinel.
  • ./runtests-module runs tests of the module API.

Debugging

You can set a breakpoint and invoke a minimal debugger using the bp function.

... your test code before break-point
bp 1
... your test code after break-point

The bp 1 will give back the tcl interpreter to the developer, and allow you to interactively print local variables (through puts), run functions and so forth [source]. bp takes a single argument, which is 1 for the case above, and is used to label a breakpoint with a string. Labels are printed out when breakpoints are hit, so you can identify which breakpoint was triggered. Breakpoints can be skipped by setting the global variable ::bp_skip, and by providing the labels you want to skip.

The minimal debugger comes with the following predefined functions.

  • Press c to continue past the breakpoint.
  • Press i to print local variables.

Tags

Tags are applied to tests to classify them according to the subsystem they test, but also to indicate compatibility with different run modes and required capabilities.

Tags can be applied in different context levels:

  • start_server context
  • tags context that bundles several tests together
  • A single test context.

The following compatibility and capability tags are currently used:

Tag Indicates
external:skip Not compatible with external servers.
cluster:skip Not compatible with --cluster-mode.
large-memory Test that requires more than 100MB
tls:skip Not compatible with --tls.
needs:repl Uses replication and needs to be able to SYNC from server.
needs:debug Uses the DEBUG command or other debugging focused commands (like OBJECT REFCOUNT).
needs:pfdebug Uses the PFDEBUG command.
needs:config-maxmemory Uses CONFIG SET to manipulate memory limit, eviction policies, etc.
needs:config-resetstat Uses CONFIG RESETSTAT to reset statistics.
needs:reset Uses RESET to reset client connections.
needs:save Uses SAVE or BGSAVE to create an RDB file.

When using an external server (--host and --port), filtering using the external:skip tags is done automatically.

When using --cluster-mode, filtering using the cluster:skip tag is done automatically.

When not using --large-memory, filtering using the largemem:skip tag is done automatically.

In addition, it is possible to specify additional configuration. For example, to run tests on a server that does not permit SYNC use:

./runtest --host <host> --port <port> --tags -needs:repl