
In old way, we always increase server.dirty in BITSET and BITFIELD SET. Even the command doesn't really change anything. This commit make sure BITSET and BITFIELD SET only increase dirty when the value changed. Because of that, if the value not changed, some others implications: - Avoid adding useless AOF - Reduce replication traffic - Will not trigger keyspace notifications (setbit) - Will not invalidate WATCH - Will not sent the invalidation message to the tracking client
413 lines
13 KiB
Tcl
413 lines
13 KiB
Tcl
# Compare Redis commands against Tcl implementations of the same commands.
|
|
proc count_bits s {
|
|
binary scan $s b* bits
|
|
string length [regsub -all {0} $bits {}]
|
|
}
|
|
|
|
proc simulate_bit_op {op args} {
|
|
set maxlen 0
|
|
set j 0
|
|
set count [llength $args]
|
|
foreach a $args {
|
|
binary scan $a b* bits
|
|
set b($j) $bits
|
|
if {[string length $bits] > $maxlen} {
|
|
set maxlen [string length $bits]
|
|
}
|
|
incr j
|
|
}
|
|
for {set j 0} {$j < $count} {incr j} {
|
|
if {[string length $b($j)] < $maxlen} {
|
|
append b($j) [string repeat 0 [expr $maxlen-[string length $b($j)]]]
|
|
}
|
|
}
|
|
set out {}
|
|
for {set x 0} {$x < $maxlen} {incr x} {
|
|
set bit [string range $b(0) $x $x]
|
|
if {$op eq {not}} {set bit [expr {!$bit}]}
|
|
for {set j 1} {$j < $count} {incr j} {
|
|
set bit2 [string range $b($j) $x $x]
|
|
switch $op {
|
|
and {set bit [expr {$bit & $bit2}]}
|
|
or {set bit [expr {$bit | $bit2}]}
|
|
xor {set bit [expr {$bit ^ $bit2}]}
|
|
}
|
|
}
|
|
append out $bit
|
|
}
|
|
binary format b* $out
|
|
}
|
|
|
|
start_server {tags {"bitops"}} {
|
|
test {BITCOUNT returns 0 against non existing key} {
|
|
r bitcount no-key
|
|
} 0
|
|
|
|
test {BITCOUNT returns 0 with out of range indexes} {
|
|
r set str "xxxx"
|
|
r bitcount str 4 10
|
|
} 0
|
|
|
|
test {BITCOUNT returns 0 with negative indexes where start > end} {
|
|
r set str "xxxx"
|
|
r bitcount str -6 -7
|
|
} 0
|
|
|
|
catch {unset num}
|
|
foreach vec [list "" "\xaa" "\x00\x00\xff" "foobar" "123"] {
|
|
incr num
|
|
test "BITCOUNT against test vector #$num" {
|
|
r set str $vec
|
|
assert {[r bitcount str] == [count_bits $vec]}
|
|
}
|
|
}
|
|
|
|
test {BITCOUNT fuzzing without start/end} {
|
|
for {set j 0} {$j < 100} {incr j} {
|
|
set str [randstring 0 3000]
|
|
r set str $str
|
|
assert {[r bitcount str] == [count_bits $str]}
|
|
}
|
|
}
|
|
|
|
test {BITCOUNT fuzzing with start/end} {
|
|
for {set j 0} {$j < 100} {incr j} {
|
|
set str [randstring 0 3000]
|
|
r set str $str
|
|
set l [string length $str]
|
|
set start [randomInt $l]
|
|
set end [randomInt $l]
|
|
if {$start > $end} {
|
|
lassign [list $end $start] start end
|
|
}
|
|
assert {[r bitcount str $start $end] == [count_bits [string range $str $start $end]]}
|
|
}
|
|
}
|
|
|
|
test {BITCOUNT with start, end} {
|
|
r set s "foobar"
|
|
assert_equal [r bitcount s 0 -1] [count_bits "foobar"]
|
|
assert_equal [r bitcount s 1 -2] [count_bits "ooba"]
|
|
assert_equal [r bitcount s -2 1] [count_bits ""]
|
|
assert_equal [r bitcount s 0 1000] [count_bits "foobar"]
|
|
}
|
|
|
|
test {BITCOUNT syntax error #1} {
|
|
catch {r bitcount s 0} e
|
|
set e
|
|
} {ERR*syntax*}
|
|
|
|
test {BITCOUNT regression test for github issue #582} {
|
|
r del foo
|
|
r setbit foo 0 1
|
|
if {[catch {r bitcount foo 0 4294967296} e]} {
|
|
assert_match {*ERR*out of range*} $e
|
|
set _ 1
|
|
} else {
|
|
set e
|
|
}
|
|
} {1}
|
|
|
|
test {BITCOUNT misaligned prefix} {
|
|
r del str
|
|
r set str ab
|
|
r bitcount str 1 -1
|
|
} {3}
|
|
|
|
test {BITCOUNT misaligned prefix + full words + remainder} {
|
|
r del str
|
|
r set str __PPxxxxxxxxxxxxxxxxRR__
|
|
r bitcount str 2 -3
|
|
} {74}
|
|
|
|
test {BITOP NOT (empty string)} {
|
|
r set s{t} ""
|
|
r bitop not dest{t} s{t}
|
|
r get dest{t}
|
|
} {}
|
|
|
|
test {BITOP NOT (known string)} {
|
|
r set s{t} "\xaa\x00\xff\x55"
|
|
r bitop not dest{t} s{t}
|
|
r get dest{t}
|
|
} "\x55\xff\x00\xaa"
|
|
|
|
test {BITOP where dest and target are the same key} {
|
|
r set s "\xaa\x00\xff\x55"
|
|
r bitop not s s
|
|
r get s
|
|
} "\x55\xff\x00\xaa"
|
|
|
|
test {BITOP AND|OR|XOR don't change the string with single input key} {
|
|
r set a{t} "\x01\x02\xff"
|
|
r bitop and res1{t} a{t}
|
|
r bitop or res2{t} a{t}
|
|
r bitop xor res3{t} a{t}
|
|
list [r get res1{t}] [r get res2{t}] [r get res3{t}]
|
|
} [list "\x01\x02\xff" "\x01\x02\xff" "\x01\x02\xff"]
|
|
|
|
test {BITOP missing key is considered a stream of zero} {
|
|
r set a{t} "\x01\x02\xff"
|
|
r bitop and res1{t} no-suck-key{t} a{t}
|
|
r bitop or res2{t} no-suck-key{t} a{t} no-such-key{t}
|
|
r bitop xor res3{t} no-such-key{t} a{t}
|
|
list [r get res1{t}] [r get res2{t}] [r get res3{t}]
|
|
} [list "\x00\x00\x00" "\x01\x02\xff" "\x01\x02\xff"]
|
|
|
|
test {BITOP shorter keys are zero-padded to the key with max length} {
|
|
r set a{t} "\x01\x02\xff\xff"
|
|
r set b{t} "\x01\x02\xff"
|
|
r bitop and res1{t} a{t} b{t}
|
|
r bitop or res2{t} a{t} b{t}
|
|
r bitop xor res3{t} a{t} b{t}
|
|
list [r get res1{t}] [r get res2{t}] [r get res3{t}]
|
|
} [list "\x01\x02\xff\x00" "\x01\x02\xff\xff" "\x00\x00\x00\xff"]
|
|
|
|
foreach op {and or xor} {
|
|
test "BITOP $op fuzzing" {
|
|
for {set i 0} {$i < 10} {incr i} {
|
|
r flushall
|
|
set vec {}
|
|
set veckeys {}
|
|
set numvec [expr {[randomInt 10]+1}]
|
|
for {set j 0} {$j < $numvec} {incr j} {
|
|
set str [randstring 0 1000]
|
|
lappend vec $str
|
|
lappend veckeys vector_$j{t}
|
|
r set vector_$j{t} $str
|
|
}
|
|
r bitop $op target{t} {*}$veckeys
|
|
assert_equal [r get target{t}] [simulate_bit_op $op {*}$vec]
|
|
}
|
|
}
|
|
}
|
|
|
|
test {BITOP NOT fuzzing} {
|
|
for {set i 0} {$i < 10} {incr i} {
|
|
r flushall
|
|
set str [randstring 0 1000]
|
|
r set str{t} $str
|
|
r bitop not target{t} str{t}
|
|
assert_equal [r get target{t}] [simulate_bit_op not $str]
|
|
}
|
|
}
|
|
|
|
test {BITOP with integer encoded source objects} {
|
|
r set a{t} 1
|
|
r set b{t} 2
|
|
r bitop xor dest{t} a{t} b{t} a{t}
|
|
r get dest{t}
|
|
} {2}
|
|
|
|
test {BITOP with non string source key} {
|
|
r del c{t}
|
|
r set a{t} 1
|
|
r set b{t} 2
|
|
r lpush c{t} foo
|
|
catch {r bitop xor dest{t} a{t} b{t} c{t} d{t}} e
|
|
set e
|
|
} {WRONGTYPE*}
|
|
|
|
test {BITOP with empty string after non empty string (issue #529)} {
|
|
r flushdb
|
|
r set a{t} "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
r bitop or x{t} a{t} b{t}
|
|
} {32}
|
|
|
|
test {BITPOS bit=0 with empty key returns 0} {
|
|
r del str
|
|
r bitpos str 0
|
|
} {0}
|
|
|
|
test {BITPOS bit=1 with empty key returns -1} {
|
|
r del str
|
|
r bitpos str 1
|
|
} {-1}
|
|
|
|
test {BITPOS bit=0 with string less than 1 word works} {
|
|
r set str "\xff\xf0\x00"
|
|
r bitpos str 0
|
|
} {12}
|
|
|
|
test {BITPOS bit=1 with string less than 1 word works} {
|
|
r set str "\x00\x0f\x00"
|
|
r bitpos str 1
|
|
} {12}
|
|
|
|
test {BITPOS bit=0 starting at unaligned address} {
|
|
r set str "\xff\xf0\x00"
|
|
r bitpos str 0 1
|
|
} {12}
|
|
|
|
test {BITPOS bit=1 starting at unaligned address} {
|
|
r set str "\x00\x0f\xff"
|
|
r bitpos str 1 1
|
|
} {12}
|
|
|
|
test {BITPOS bit=0 unaligned+full word+reminder} {
|
|
r del str
|
|
r set str "\xff\xff\xff" ; # Prefix
|
|
# Followed by two (or four in 32 bit systems) full words
|
|
r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
|
|
r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
|
|
r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
|
|
# First zero bit.
|
|
r append str "\x0f"
|
|
assert {[r bitpos str 0] == 216}
|
|
assert {[r bitpos str 0 1] == 216}
|
|
assert {[r bitpos str 0 2] == 216}
|
|
assert {[r bitpos str 0 3] == 216}
|
|
assert {[r bitpos str 0 4] == 216}
|
|
assert {[r bitpos str 0 5] == 216}
|
|
assert {[r bitpos str 0 6] == 216}
|
|
assert {[r bitpos str 0 7] == 216}
|
|
assert {[r bitpos str 0 8] == 216}
|
|
}
|
|
|
|
test {BITPOS bit=1 unaligned+full word+reminder} {
|
|
r del str
|
|
r set str "\x00\x00\x00" ; # Prefix
|
|
# Followed by two (or four in 32 bit systems) full words
|
|
r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
# First zero bit.
|
|
r append str "\xf0"
|
|
assert {[r bitpos str 1] == 216}
|
|
assert {[r bitpos str 1 1] == 216}
|
|
assert {[r bitpos str 1 2] == 216}
|
|
assert {[r bitpos str 1 3] == 216}
|
|
assert {[r bitpos str 1 4] == 216}
|
|
assert {[r bitpos str 1 5] == 216}
|
|
assert {[r bitpos str 1 6] == 216}
|
|
assert {[r bitpos str 1 7] == 216}
|
|
assert {[r bitpos str 1 8] == 216}
|
|
}
|
|
|
|
test {BITPOS bit=1 returns -1 if string is all 0 bits} {
|
|
r set str ""
|
|
for {set j 0} {$j < 20} {incr j} {
|
|
assert {[r bitpos str 1] == -1}
|
|
r append str "\x00"
|
|
}
|
|
}
|
|
|
|
test {BITPOS bit=0 works with intervals} {
|
|
r set str "\x00\xff\x00"
|
|
assert {[r bitpos str 0 0 -1] == 0}
|
|
assert {[r bitpos str 0 1 -1] == 16}
|
|
assert {[r bitpos str 0 2 -1] == 16}
|
|
assert {[r bitpos str 0 2 200] == 16}
|
|
assert {[r bitpos str 0 1 1] == -1}
|
|
}
|
|
|
|
test {BITPOS bit=1 works with intervals} {
|
|
r set str "\x00\xff\x00"
|
|
assert {[r bitpos str 1 0 -1] == 8}
|
|
assert {[r bitpos str 1 1 -1] == 8}
|
|
assert {[r bitpos str 1 2 -1] == -1}
|
|
assert {[r bitpos str 1 2 200] == -1}
|
|
assert {[r bitpos str 1 1 1] == 8}
|
|
}
|
|
|
|
test {BITPOS bit=0 changes behavior if end is given} {
|
|
r set str "\xff\xff\xff"
|
|
assert {[r bitpos str 0] == 24}
|
|
assert {[r bitpos str 0 0] == 24}
|
|
assert {[r bitpos str 0 0 -1] == -1}
|
|
}
|
|
|
|
test {SETBIT/BITFIELD only increase dirty when the value changed} {
|
|
r del foo{t} foo2{t} foo3{t}
|
|
set dirty [s rdb_changes_since_last_save]
|
|
|
|
# Create a new key, always increase the dirty.
|
|
r setbit foo{t} 0 0
|
|
r bitfield foo2{t} set i5 0 0
|
|
set dirty2 [s rdb_changes_since_last_save]
|
|
assert {$dirty2 == $dirty + 2}
|
|
|
|
# No change.
|
|
r setbit foo{t} 0 0
|
|
r bitfield foo2{t} set i5 0 0
|
|
set dirty3 [s rdb_changes_since_last_save]
|
|
assert {$dirty3 == $dirty2}
|
|
|
|
# Do a change and a no change.
|
|
r setbit foo{t} 0 1
|
|
r setbit foo{t} 0 1
|
|
r setbit foo{t} 0 0
|
|
r setbit foo{t} 0 0
|
|
r bitfield foo2{t} set i5 0 1
|
|
r bitfield foo2{t} set i5 0 1
|
|
r bitfield foo2{t} set i5 0 0
|
|
r bitfield foo2{t} set i5 0 0
|
|
set dirty4 [s rdb_changes_since_last_save]
|
|
assert {$dirty4 == $dirty3 + 4}
|
|
|
|
# BITFIELD INCRBY always increase dirty.
|
|
r bitfield foo3{t} incrby i5 0 1
|
|
r bitfield foo3{t} incrby i5 0 1
|
|
set dirty5 [s rdb_changes_since_last_save]
|
|
assert {$dirty5 == $dirty4 + 2}
|
|
}
|
|
|
|
test {BITPOS bit=1 fuzzy testing using SETBIT} {
|
|
r del str
|
|
set max 524288; # 64k
|
|
set first_one_pos -1
|
|
for {set j 0} {$j < 1000} {incr j} {
|
|
assert {[r bitpos str 1] == $first_one_pos}
|
|
set pos [randomInt $max]
|
|
r setbit str $pos 1
|
|
if {$first_one_pos == -1 || $first_one_pos > $pos} {
|
|
# Update the position of the first 1 bit in the array
|
|
# if the bit we set is on the left of the previous one.
|
|
set first_one_pos $pos
|
|
}
|
|
}
|
|
}
|
|
|
|
test {BITPOS bit=0 fuzzy testing using SETBIT} {
|
|
set max 524288; # 64k
|
|
set first_zero_pos $max
|
|
r set str [string repeat "\xff" [expr $max/8]]
|
|
for {set j 0} {$j < 1000} {incr j} {
|
|
assert {[r bitpos str 0] == $first_zero_pos}
|
|
set pos [randomInt $max]
|
|
r setbit str $pos 0
|
|
if {$first_zero_pos > $pos} {
|
|
# Update the position of the first 0 bit in the array
|
|
# if the bit we clear is on the left of the previous one.
|
|
set first_zero_pos $pos
|
|
}
|
|
}
|
|
}
|
|
|
|
test "BIT pos larger than UINT_MAX" {
|
|
set bytes [expr (1 << 29) + 1]
|
|
set bitpos [expr (1 << 32)]
|
|
set oldval [lindex [r config get proto-max-bulk-len] 1]
|
|
r config set proto-max-bulk-len $bytes
|
|
r setbit mykey $bitpos 1
|
|
assert_equal $bytes [r strlen mykey]
|
|
assert_equal 1 [r getbit mykey $bitpos]
|
|
assert_equal [list 128 128 -1] [r bitfield mykey get u8 $bitpos set u8 $bitpos 255 get i8 $bitpos]
|
|
assert_equal $bitpos [r bitpos mykey 1]
|
|
assert_equal $bitpos [r bitpos mykey 1 [expr $bytes - 1]]
|
|
if {$::accurate} {
|
|
# set all bits to 1
|
|
set mega [expr (1 << 23)]
|
|
set part [string repeat "\xFF" $mega]
|
|
for {set i 0} {$i < 64} {incr i} {
|
|
r setrange mykey [expr $i * $mega] $part
|
|
}
|
|
r setrange mykey [expr $bytes - 1] "\xFF"
|
|
assert_equal [expr $bitpos + 8] [r bitcount mykey]
|
|
assert_equal -1 [r bitpos mykey 0 0 [expr $bytes - 1]]
|
|
}
|
|
r config set proto-max-bulk-len $oldval
|
|
r del mykey
|
|
} {1} {large-memory}
|
|
}
|