futriix/tests/unit/hyperloglog.tcl
Nugine 3df609ef06
Optimize PFCOUNT, PFMERGE command by SIMD acceleration (#1293)
This PR optimizes the performance of HyperLogLog commands (PFCOUNT,
PFMERGE) by adding AVX2 fast paths.

Two AVX2 functions are added for conversion between raw representation
and dense representation. They are 15 ~ 30 times faster than scalar
implementaion. Note that sparse representation is not accelerated.

AVX2 fast paths are enabled when the CPU supports AVX2 (checked at
runtime) and the hyperloglog configuration is default (HLL_REGISTERS ==
16384 && HLL_BITS == 6).

`PFDEBUG SIMD (ON|OFF)` subcommand is added for unit tests. A new TCL
unit test checks that the results produced by non-AVX2 and AVX2
implementations are exactly equal.

When merging 3 dense hll structures, the benchmark shows a 12x speedup
compared to the scalar version.

```
pfcount key1 key2 key3
pfmerge keyall key1 key2 key3
```

```
======================================================================================================
Type             Ops/sec    Avg. Latency     p50 Latency     p99 Latency   p99.9 Latency       KB/sec 
------------------------------------------------------------------------------------------------------
PFCOUNT-scalar    5665.56        35.29839        32.25500        63.99900        67.58300       608.60
PFCOUNT-avx2     72377.83         2.75834         2.67100         5.34300         6.81500      7774.96
------------------------------------------------------------------------------------------------------
PFMERGE-scalar    9851.29        20.28806        20.09500        36.86300        39.16700       615.71
PFMERGE-avx2    125621.89         1.59126         1.55100         3.11900         4.70300     15702.74
------------------------------------------------------------------------------------------------------

scalar: valkey:unstable  2df56d87c0ebe802f38e8922bb2ea1e4ca9cfa76
avx2:   Nugine:hll-simd  8f9adc34021080d96e60bd0abe06b043f3ed0275

CPU:    13th Gen Intel® Core™ i9-13900H × 20
Memory: 32.0 GiB
OS:     Ubuntu 22.04.5 LTS
```

Experiment repo: https://github.com/Nugine/redis-hyperloglog
Benchmark script:
https://github.com/Nugine/redis-hyperloglog/blob/main/scripts/memtier.sh
Algorithm:
https://github.com/Nugine/redis-hyperloglog/blob/main/cpp/bench.cpp

---------

Signed-off-by: Xuyang Wang <xuyangwang@link.cuhk.edu.cn>
2024-12-02 19:40:38 +01:00

312 lines
9.8 KiB
Tcl

start_server {tags {"hll"}} {
test {HyperLogLog self test passes} {
catch {r pfselftest} e
set e
} {OK} {needs:pfdebug}
test {PFADD without arguments creates an HLL value} {
r pfadd hll
r exists hll
} {1}
test {Approximated cardinality after creation is zero} {
r pfcount hll
} {0}
test {PFADD returns 1 when at least 1 reg was modified} {
r pfadd hll a b c
} {1}
test {PFADD returns 0 when no reg was modified} {
r pfadd hll a b c
} {0}
test {PFADD works with empty string (regression)} {
r pfadd hll ""
}
# Note that the self test stresses much better the
# cardinality estimation error. We are testing just the
# command implementation itself here.
test {PFCOUNT returns approximated cardinality of set} {
r del hll
set res {}
r pfadd hll 1 2 3 4 5
lappend res [r pfcount hll]
# Call it again to test cached value invalidation.
r pfadd hll 6 7 8 8 9 10
lappend res [r pfcount hll]
set res
} {5 10}
test {HyperLogLogs are promote from sparse to dense} {
r del hll
r config set hll-sparse-max-bytes 3000
set n 0
while {$n < 100000} {
set elements {}
for {set j 0} {$j < 100} {incr j} {lappend elements [expr rand()]}
incr n 100
r pfadd hll {*}$elements
set card [r pfcount hll]
set err [expr {abs($card-$n)}]
assert {$err < (double($card)/100)*5}
if {$n < 1000} {
assert {[r pfdebug encoding hll] eq {sparse}}
} elseif {$n > 10000} {
assert {[r pfdebug encoding hll] eq {dense}}
}
}
} {} {needs:pfdebug}
test {Change hll-sparse-max-bytes} {
r config set hll-sparse-max-bytes 3000
r del hll
r pfadd hll a b c d e d g h i j k
assert {[r pfdebug encoding hll] eq {sparse}}
r config set hll-sparse-max-bytes 30
r pfadd hll new_element
assert {[r pfdebug encoding hll] eq {dense}}
} {} {needs:pfdebug}
test {Hyperloglog promote to dense well in different hll-sparse-max-bytes} {
set max(0) 100
set max(1) 500
set max(2) 3000
for {set i 0} {$i < [array size max]} {incr i} {
r config set hll-sparse-max-bytes $max($i)
r del hll
r pfadd hll
set len [r strlen hll]
while {$len <= $max($i)} {
assert {[r pfdebug encoding hll] eq {sparse}}
set elements {}
for {set j 0} {$j < 10} {incr j} { lappend elements [expr rand()]}
r pfadd hll {*}$elements
set len [r strlen hll]
}
assert {[r pfdebug encoding hll] eq {dense}}
}
} {} {needs:pfdebug}
test {HyperLogLog sparse encoding stress test} {
for {set x 0} {$x < 1000} {incr x} {
r del hll1
r del hll2
set numele [randomInt 100]
set elements {}
for {set j 0} {$j < $numele} {incr j} {
lappend elements [expr rand()]
}
# Force dense representation of hll2
r pfadd hll2
r pfdebug todense hll2
r pfadd hll1 {*}$elements
r pfadd hll2 {*}$elements
assert {[r pfdebug encoding hll1] eq {sparse}}
assert {[r pfdebug encoding hll2] eq {dense}}
# Cardinality estimated should match exactly.
assert {[r pfcount hll1] eq [r pfcount hll2]}
}
} {} {needs:pfdebug}
test {Corrupted sparse HyperLogLogs are detected: Additional at tail} {
r del hll
r pfadd hll a b c
r append hll "hello"
set e {}
catch {r pfcount hll} e
set e
} {*INVALIDOBJ*}
test {Corrupted sparse HyperLogLogs are detected: Broken magic} {
r del hll
r pfadd hll a b c
r setrange hll 0 "0123"
set e {}
catch {r pfcount hll} e
set e
} {*WRONGTYPE*}
test {Corrupted sparse HyperLogLogs are detected: Invalid encoding} {
r del hll
r pfadd hll a b c
r setrange hll 4 "x"
set e {}
catch {r pfcount hll} e
set e
} {*WRONGTYPE*}
test {Corrupted dense HyperLogLogs are detected: Wrong length} {
r del hll
r pfadd hll a b c
r setrange hll 4 "\x00"
set e {}
catch {r pfcount hll} e
set e
} {*WRONGTYPE*}
test {Fuzzing dense/sparse encoding: Server should always detect errors} {
for {set j 0} {$j < 1000} {incr j} {
r del hll
set items {}
set numitems [randomInt 3000]
for {set i 0} {$i < $numitems} {incr i} {
lappend items [expr {rand()}]
}
r pfadd hll {*}$items
# Corrupt it in some random way.
for {set i 0} {$i < 5} {incr i} {
set len [r strlen hll]
set pos [randomInt $len]
set byte [randstring 1 1 binary]
r setrange hll $pos $byte
# Don't modify more bytes 50% of times
if {rand() < 0.5} break
}
# Use the hyperloglog to check if it crashes
# the server in some way.
catch {
r pfcount hll
}
}
}
test {PFADD, PFCOUNT, PFMERGE type checking works} {
r set foo{t} bar
catch {r pfadd foo{t} 1} e
assert_match {*WRONGTYPE*} $e
catch {r pfcount foo{t}} e
assert_match {*WRONGTYPE*} $e
catch {r pfmerge bar{t} foo{t}} e
assert_match {*WRONGTYPE*} $e
catch {r pfmerge foo{t} bar{t}} e
assert_match {*WRONGTYPE*} $e
}
test {PFMERGE results on the cardinality of union of sets} {
r del hll{t} hll1{t} hll2{t} hll3{t}
r pfadd hll1{t} a b c
r pfadd hll2{t} b c d
r pfadd hll3{t} c d e
r pfmerge hll{t} hll1{t} hll2{t} hll3{t}
r pfcount hll{t}
} {5}
test {PFMERGE on missing source keys will create an empty destkey} {
r del sourcekey{t} sourcekey2{t} destkey{t} destkey2{t}
assert_equal {OK} [r pfmerge destkey{t} sourcekey{t}]
assert_equal 1 [r exists destkey{t}]
assert_equal 0 [r pfcount destkey{t}]
assert_equal {OK} [r pfmerge destkey2{t} sourcekey{t} sourcekey2{t}]
assert_equal 1 [r exists destkey2{t}]
assert_equal 0 [r pfcount destkey{t}]
}
test {PFMERGE with one empty input key, create an empty destkey} {
r del destkey
assert_equal {OK} [r pfmerge destkey]
assert_equal 1 [r exists destkey]
assert_equal 0 [r pfcount destkey]
}
test {PFMERGE with one non-empty input key, dest key is actually one of the source keys} {
r del destkey
assert_equal 1 [r pfadd destkey a b c]
assert_equal {OK} [r pfmerge destkey]
assert_equal 1 [r exists destkey]
assert_equal 3 [r pfcount destkey]
}
test {PFMERGE results with simd} {
r del hllscalar{t} hllsimd{t} hll1{t} hll2{t} hll3{t}
for {set x 1} {$x < 2000} {incr x} {
r pfadd hll1{t} [expr rand()]
}
for {set x 1} {$x < 4000} {incr x} {
r pfadd hll2{t} [expr rand()]
}
for {set x 1} {$x < 8000} {incr x} {
r pfadd hll3{t} [expr rand()]
}
assert {[r pfcount hll1{t}] > 0}
assert {[r pfcount hll2{t}] > 0}
assert {[r pfcount hll3{t}] > 0}
r pfdebug simd off
set scalar [r pfcount hll1{t} hll2{t} hll3{t}]
r pfdebug simd on
set simd [r pfcount hll1{t} hll2{t} hll3{t}]
assert {$scalar > 0}
assert {$simd > 0}
assert_equal $scalar $simd
r pfdebug simd off
r pfmerge hllscalar{t} hll1{t} hll2{t} hll3{t}
r pfdebug simd on
r pfmerge hllsimd{t} hll1{t} hll2{t} hll3{t}
set scalar [r pfcount hllscalar{t}]
set simd [r pfcount hllsimd{t}]
assert {$scalar > 0}
assert {$simd > 0}
assert_equal $scalar $simd
set scalar [r get hllscalar{t}]
set simd [r get hllsimd{t}]
assert_equal $scalar $simd
} {} {needs:pfdebug}
test {PFCOUNT multiple-keys merge returns cardinality of union #1} {
r del hll1{t} hll2{t} hll3{t}
for {set x 1} {$x < 10000} {incr x} {
r pfadd hll1{t} "foo-$x"
r pfadd hll2{t} "bar-$x"
r pfadd hll3{t} "zap-$x"
set card [r pfcount hll1{t} hll2{t} hll3{t}]
set realcard [expr {$x*3}]
set err [expr {abs($card-$realcard)}]
assert {$err < (double($card)/100)*5}
}
}
test {PFCOUNT multiple-keys merge returns cardinality of union #2} {
r del hll1{t} hll2{t} hll3{t}
set elements {}
for {set x 1} {$x < 10000} {incr x} {
for {set j 1} {$j <= 3} {incr j} {
set rint [randomInt 20000]
r pfadd hll$j{t} $rint
lappend elements $rint
}
}
set realcard [llength [lsort -unique $elements]]
set card [r pfcount hll1{t} hll2{t} hll3{t}]
set err [expr {abs($card-$realcard)}]
assert {$err < (double($card)/100)*5}
}
test {PFDEBUG GETREG returns the HyperLogLog raw registers} {
r del hll
r pfadd hll 1 2 3
llength [r pfdebug getreg hll]
} {16384} {needs:pfdebug}
test {PFADD / PFCOUNT cache invalidation works} {
r del hll
r pfadd hll a b c
r pfcount hll
assert {[r getrange hll 15 15] eq "\x00"}
r pfadd hll a b c
assert {[r getrange hll 15 15] eq "\x00"}
r pfadd hll 1 2 3
assert {[r getrange hll 15 15] eq "\x80"}
}
}