/* hyperloglog.c - HyperLogLog probabilistic cardinality approximation. * This file implements the algorithm and the exported commands. * * Copyright (c) 2014, Salvatore Sanfilippo * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Redis nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "server.h" #include #include /* The HyperLogLog implementation is based on the following ideas: * * * The use of a 64 bit hash function as proposed in [1], in order to estimate * cardinalities larger than 10^9, at the cost of just 1 additional bit per * register. * * The use of 16384 6-bit registers for a great level of accuracy, using * a total of 12k per key. * * The use of the string data type. No new type is introduced. * * No attempt is made to compress the data structure as in [1]. Also the * algorithm used is the original HyperLogLog Algorithm as in [2], with * the only difference that a 64 bit hash function is used, so no correction * is performed for values near 2^32 as in [1]. * * [1] Heule, Nunkesser, Hall: HyperLogLog in Practice: Algorithmic * Engineering of a State of The Art Cardinality Estimation Algorithm. * * [2] P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The * analysis of a near-optimal cardinality estimation algorithm. * * We use two representations: * * 1) A "dense" representation where every entry is represented by * a 6-bit integer. * 2) A "sparse" representation using run length compression suitable * for representing HyperLogLogs with many registers set to 0 in * a memory efficient way. * * * HLL header * === * * Both the dense and sparse representation have a 16 byte header as follows: * * +------+---+-----+----------+ * | HYLL | E | N/U | Cardin. | * +------+---+-----+----------+ * * The first 4 bytes are a magic string set to the bytes "HYLL". * "E" is one byte encoding, currently set to HLL_DENSE or * HLL_SPARSE. N/U are three not used bytes. * * The "Cardin." field is a 64 bit integer stored in little endian format * with the latest cardinality computed that can be reused if the data * structure was not modified since the last computation (this is useful * because there are high probabilities that HLLADD operations don't * modify the actual data structure and hence the approximated cardinality). * * When the most significant bit in the most significant byte of the cached * cardinality is set, it means that the data structure was modified and * we can't reuse the cached value that must be recomputed. * * Dense representation * === * * The dense representation is the following: * * +--------+--------+--------+------// //--+ * |11000000|22221111|33333322|55444444 .... | * +--------+--------+--------+------// //--+ * * The 6 bits counters are encoded one after the other starting from the * LSB to the MSB, and using the next bytes as needed. * * Sparse representation * === * * The sparse representation encodes registers using a run length * encoding composed of three opcodes, two using one byte, and one using * of two bytes. The opcodes are called ZERO, XZERO and VAL. * * ZERO opcode is represented as 00xxxxxx. The 6-bit integer represented * by the six bits 'xxxxxx', plus 1, means that there are N registers set * to 0. This opcode can represent from 1 to 64 contiguous registers set * to the value of 0. * * XZERO opcode is represented by two bytes 01xxxxxx yyyyyyyy. The 14-bit * integer represented by the bits 'xxxxxx' as most significant bits and * 'yyyyyyyy' as least significant bits, plus 1, means that there are N * registers set to 0. This opcode can represent from 0 to 16384 contiguous * registers set to the value of 0. * * VAL opcode is represented as 1vvvvvxx. It contains a 5-bit integer * representing the value of a register, and a 2-bit integer representing * the number of contiguous registers set to that value 'vvvvv'. * To obtain the value and run length, the integers vvvvv and xx must be * incremented by one. This opcode can represent values from 1 to 32, * repeated from 1 to 4 times. * * The sparse representation can't represent registers with a value greater * than 32, however it is very unlikely that we find such a register in an * HLL with a cardinality where the sparse representation is still more * memory efficient than the dense representation. When this happens the * HLL is converted to the dense representation. * * The sparse representation is purely positional. For example a sparse * representation of an empty HLL is just: XZERO:16384. * * An HLL having only 3 non-zero registers at position 1000, 1020, 1021 * respectively set to 2, 3, 3, is represented by the following three * opcodes: * * XZERO:1000 (Registers 0-999 are set to 0) * VAL:2,1 (1 register set to value 2, that is register 1000) * ZERO:19 (Registers 1001-1019 set to 0) * VAL:3,2 (2 registers set to value 3, that is registers 1020,1021) * XZERO:15362 (Registers 1022-16383 set to 0) * * In the example the sparse representation used just 7 bytes instead * of 12k in order to represent the HLL registers. In general for low * cardinality there is a big win in terms of space efficiency, traded * with CPU time since the sparse representation is slower to access. * * The following table shows average cardinality vs bytes used, 100 * samples per cardinality (when the set was not representable because * of registers with too big value, the dense representation size was used * as a sample). * * 100 267 * 200 485 * 300 678 * 400 859 * 500 1033 * 600 1205 * 700 1375 * 800 1544 * 900 1713 * 1000 1882 * 2000 3480 * 3000 4879 * 4000 6089 * 5000 7138 * 6000 8042 * 7000 8823 * 8000 9500 * 9000 10088 * 10000 10591 * * The dense representation uses 12288 bytes, so there is a big win up to * a cardinality of ~2000-3000. For bigger cardinalities the constant times * involved in updating the sparse representation is not justified by the * memory savings. The exact maximum length of the sparse representation * when this implementation switches to the dense representation is * configured via the define server.hll_sparse_max_bytes. */ struct hllhdr { char magic[4]; /* "HYLL" */ uint8_t encoding; /* HLL_DENSE or HLL_SPARSE. */ uint8_t notused[3]; /* Reserved for future use, must be zero. */ uint8_t card[8]; /* Cached cardinality, little endian. */ uint8_t registers[]; /* Data bytes. */ }; /* The cached cardinality MSB is used to signal validity of the cached value. */ #define HLL_INVALIDATE_CACHE(hdr) (hdr)->card[7] |= (1 << 7) #define HLL_VALID_CACHE(hdr) (((hdr)->card[7] & (1 << 7)) == 0) #define HLL_P 14 /* The greater is P, the smaller the error. */ #define HLL_Q \ (64 - HLL_P) /* The number of bits of the hash value used for \ determining the number of leading zeros. */ #define HLL_REGISTERS (1 << HLL_P) /* With P=14, 16384 registers. */ #define HLL_P_MASK (HLL_REGISTERS - 1) /* Mask to index register. */ #define HLL_BITS 6 /* Enough to count up to 63 leading zeroes. */ #define HLL_REGISTER_MAX ((1 << HLL_BITS) - 1) #define HLL_HDR_SIZE sizeof(struct hllhdr) #define HLL_DENSE_SIZE (HLL_HDR_SIZE + ((HLL_REGISTERS * HLL_BITS + 7) / 8)) #define HLL_DENSE 0 /* Dense encoding. */ #define HLL_SPARSE 1 /* Sparse encoding. */ #define HLL_RAW 255 /* Only used internally, never exposed. */ #define HLL_MAX_ENCODING 1 static char *invalid_hll_err = "-INVALIDOBJ Corrupted HLL object detected"; /* =========================== Low level bit macros ========================= */ /* Macros to access the dense representation. * * We need to get and set 6 bit counters in an array of 8 bit bytes. * We use macros to make sure the code is inlined since speed is critical * especially in order to compute the approximated cardinality in * HLLCOUNT where we need to access all the registers at once. * For the same reason we also want to avoid conditionals in this code path. * * +--------+--------+--------+------// * |11000000|22221111|33333322|55444444 * +--------+--------+--------+------// * * Note: in the above representation the most significant bit (MSB) * of every byte is on the left. We start using bits from the LSB to MSB, * and so forth passing to the next byte. * * Example, we want to access to counter at pos = 1 ("111111" in the * illustration above). * * The index of the first byte b0 containing our data is: * * b0 = 6 * pos / 8 = 0 * * +--------+ * |11000000| <- Our byte at b0 * +--------+ * * The position of the first bit (counting from the LSB = 0) in the byte * is given by: * * fb = 6 * pos % 8 -> 6 * * Right shift b0 of 'fb' bits. * * +--------+ * |11000000| <- Initial value of b0 * |00000011| <- After right shift of 6 pos. * +--------+ * * Left shift b1 of bits 8-fb bits (2 bits) * * +--------+ * |22221111| <- Initial value of b1 * |22111100| <- After left shift of 2 bits. * +--------+ * * OR the two bits, and finally AND with 111111 (63 in decimal) to * clean the higher order bits we are not interested in: * * +--------+ * |00000011| <- b0 right shifted * |22111100| <- b1 left shifted * |22111111| <- b0 OR b1 * | 111111| <- (b0 OR b1) AND 63, our value. * +--------+ * * We can try with a different example, like pos = 0. In this case * the 6-bit counter is actually contained in a single byte. * * b0 = 6 * pos / 8 = 0 * * +--------+ * |11000000| <- Our byte at b0 * +--------+ * * fb = 6 * pos % 8 = 0 * * So we right shift of 0 bits (no shift in practice) and * left shift the next byte of 8 bits, even if we don't use it, * but this has the effect of clearing the bits so the result * will not be affected after the OR. * * ------------------------------------------------------------------------- * * Setting the register is a bit more complex, let's assume that 'val' * is the value we want to set, already in the right range. * * We need two steps, in one we need to clear the bits, and in the other * we need to bitwise-OR the new bits. * * Let's try with 'pos' = 1, so our first byte at 'b' is 0, * * "fb" is 6 in this case. * * +--------+ * |11000000| <- Our byte at b0 * +--------+ * * To create an AND-mask to clear the bits about this position, we just * initialize the mask with the value 63, left shift it of "fs" bits, * and finally invert the result. * * +--------+ * |00111111| <- "mask" starts at 63 * |11000000| <- "mask" after left shift of "ls" bits. * |00111111| <- "mask" after invert. * +--------+ * * Now we can bitwise-AND the byte at "b" with the mask, and bitwise-OR * it with "val" left-shifted of "ls" bits to set the new bits. * * Now let's focus on the next byte b1: * * +--------+ * |22221111| <- Initial value of b1 * +--------+ * * To build the AND mask we start again with the 63 value, right shift * it by 8-fb bits, and invert it. * * +--------+ * |00111111| <- "mask" set at 2&6-1 * |00001111| <- "mask" after the right shift by 8-fb = 2 bits * |11110000| <- "mask" after bitwise not. * +--------+ * * Now we can mask it with b+1 to clear the old bits, and bitwise-OR * with "val" left-shifted by "rs" bits to set the new value. */ /* Note: if we access the last counter, we will also access the b+1 byte * that is out of the array, but sds strings always have an implicit null * term, so the byte exists, and we can skip the conditional (or the need * to allocate 1 byte more explicitly). */ /* Store the value of the register at position 'regnum' into variable 'target'. * 'p' is an array of unsigned bytes. */ #define HLL_DENSE_GET_REGISTER(target, p, regnum) \ do { \ uint8_t *_p = (uint8_t *)p; \ unsigned long _byte = regnum * HLL_BITS / 8; \ unsigned long _fb = regnum * HLL_BITS & 7; \ unsigned long _fb8 = 8 - _fb; \ unsigned long b0 = _p[_byte]; \ unsigned long b1 = _p[_byte + 1]; \ target = ((b0 >> _fb) | (b1 << _fb8)) & HLL_REGISTER_MAX; \ } while (0) /* Set the value of the register at position 'regnum' to 'val'. * 'p' is an array of unsigned bytes. */ #define HLL_DENSE_SET_REGISTER(p, regnum, val) \ do { \ uint8_t *_p = (uint8_t *)p; \ unsigned long _byte = (regnum) * HLL_BITS / 8; \ unsigned long _fb = (regnum) * HLL_BITS & 7; \ unsigned long _fb8 = 8 - _fb; \ unsigned long _v = (val); \ _p[_byte] &= ~(HLL_REGISTER_MAX << _fb); \ _p[_byte] |= _v << _fb; \ _p[_byte + 1] &= ~(HLL_REGISTER_MAX >> _fb8); \ _p[_byte + 1] |= _v >> _fb8; \ } while (0) /* Macros to access the sparse representation. * The macros parameter is expected to be an uint8_t pointer. */ #define HLL_SPARSE_XZERO_BIT 0x40 /* 01xxxxxx */ #define HLL_SPARSE_VAL_BIT 0x80 /* 1vvvvvxx */ #define HLL_SPARSE_IS_ZERO(p) (((*(p)) & 0xc0) == 0) /* 00xxxxxx */ #define HLL_SPARSE_IS_XZERO(p) (((*(p)) & 0xc0) == HLL_SPARSE_XZERO_BIT) #define HLL_SPARSE_IS_VAL(p) ((*(p)) & HLL_SPARSE_VAL_BIT) #define HLL_SPARSE_ZERO_LEN(p) (((*(p)) & 0x3f) + 1) #define HLL_SPARSE_XZERO_LEN(p) (((((*(p)) & 0x3f) << 8) | (*((p) + 1))) + 1) #define HLL_SPARSE_VAL_VALUE(p) ((((*(p)) >> 2) & 0x1f) + 1) #define HLL_SPARSE_VAL_LEN(p) (((*(p)) & 0x3) + 1) #define HLL_SPARSE_VAL_MAX_VALUE 32 #define HLL_SPARSE_VAL_MAX_LEN 4 #define HLL_SPARSE_ZERO_MAX_LEN 64 #define HLL_SPARSE_XZERO_MAX_LEN 16384 #define HLL_SPARSE_VAL_SET(p, val, len) \ do { \ *(p) = (((val) - 1) << 2 | ((len) - 1)) | HLL_SPARSE_VAL_BIT; \ } while (0) #define HLL_SPARSE_ZERO_SET(p, len) \ do { \ *(p) = (len) - 1; \ } while (0) #define HLL_SPARSE_XZERO_SET(p, len) \ do { \ int _l = (len) - 1; \ *(p) = (_l >> 8) | HLL_SPARSE_XZERO_BIT; \ *((p) + 1) = (_l & 0xff); \ } while (0) #define HLL_ALPHA_INF 0.721347520444481703680 /* constant for 0.5/ln(2) */ /* ========================= HyperLogLog algorithm ========================= */ /* Our hash function is MurmurHash2, 64 bit version. * It was modified in order to provide the same result in * big and little endian archs (endian neutral). */ VALKEY_NO_SANITIZE("alignment") uint64_t MurmurHash64A(const void *key, int len, unsigned int seed) { const uint64_t m = 0xc6a4a7935bd1e995; const int r = 47; uint64_t h = seed ^ (len * m); const uint8_t *data = (const uint8_t *)key; const uint8_t *end = data + (len - (len & 7)); while (data != end) { uint64_t k; #if (BYTE_ORDER == LITTLE_ENDIAN) #ifdef USE_ALIGNED_ACCESS memcpy(&k, data, sizeof(uint64_t)); #else k = *((uint64_t *)data); #endif #else k = (uint64_t)data[0]; k |= (uint64_t)data[1] << 8; k |= (uint64_t)data[2] << 16; k |= (uint64_t)data[3] << 24; k |= (uint64_t)data[4] << 32; k |= (uint64_t)data[5] << 40; k |= (uint64_t)data[6] << 48; k |= (uint64_t)data[7] << 56; #endif k *= m; k ^= k >> r; k *= m; h ^= k; h *= m; data += 8; } switch (len & 7) { case 7: h ^= (uint64_t)data[6] << 48; /* fall-thru */ case 6: h ^= (uint64_t)data[5] << 40; /* fall-thru */ case 5: h ^= (uint64_t)data[4] << 32; /* fall-thru */ case 4: h ^= (uint64_t)data[3] << 24; /* fall-thru */ case 3: h ^= (uint64_t)data[2] << 16; /* fall-thru */ case 2: h ^= (uint64_t)data[1] << 8; /* fall-thru */ case 1: h ^= (uint64_t)data[0]; h *= m; /* fall-thru */ }; h ^= h >> r; h *= m; h ^= h >> r; return h; } /* Given a string element to add to the HyperLogLog, returns the length * of the pattern 000..1 of the element hash. As a side effect 'regp' is * set to the register index this element hashes to. */ int hllPatLen(unsigned char *ele, size_t elesize, long *regp) { uint64_t hash, bit, index; int count; /* Count the number of zeroes starting from bit HLL_REGISTERS * (that is a power of two corresponding to the first bit we don't use * as index). The max run can be 64-P+1 = Q+1 bits. * * Note that the final "1" ending the sequence of zeroes must be * included in the count, so if we find "001" the count is 3, and * the smallest count possible is no zeroes at all, just a 1 bit * at the first position, that is a count of 1. * * This may sound like inefficient, but actually in the average case * there are high probabilities to find a 1 after a few iterations. */ hash = MurmurHash64A(ele, elesize, 0xadc83b19ULL); index = hash & HLL_P_MASK; /* Register index. */ hash >>= HLL_P; /* Remove bits used to address the register. */ hash |= ((uint64_t)1 << HLL_Q); /* Make sure the loop terminates and count will be <= Q+1. */ bit = 1; count = 1; /* Initialized to 1 since we count the "00000...1" pattern. */ while ((hash & bit) == 0) { count++; bit <<= 1; } *regp = (int)index; return count; } /* ================== Dense representation implementation ================== */ /* Low level function to set the dense HLL register at 'index' to the * specified value if the current value is smaller than 'count'. * * 'registers' is expected to have room for HLL_REGISTERS plus an * additional byte on the right. This requirement is met by sds strings * automatically since they are implicitly null terminated. * * The function always succeed, however if as a result of the operation * the approximated cardinality changed, 1 is returned. Otherwise 0 * is returned. */ int hllDenseSet(uint8_t *registers, long index, uint8_t count) { uint8_t oldcount; HLL_DENSE_GET_REGISTER(oldcount, registers, index); if (count > oldcount) { HLL_DENSE_SET_REGISTER(registers, index, count); return 1; } else { return 0; } } /* "Add" the element in the dense hyperloglog data structure. * Actually nothing is added, but the max 0 pattern counter of the subset * the element belongs to is incremented if needed. * * This is just a wrapper to hllDenseSet(), performing the hashing of the * element in order to retrieve the index and zero-run count. */ int hllDenseAdd(uint8_t *registers, unsigned char *ele, size_t elesize) { long index; uint8_t count = hllPatLen(ele, elesize, &index); /* Update the register if this element produced a longer run of zeroes. */ return hllDenseSet(registers, index, count); } /* Compute the register histogram in the dense representation. */ void hllDenseRegHisto(uint8_t *registers, int *reghisto) { int j; /* Default is to use 16384 registers 6 bits each. The code works * with other values by modifying the defines, but for our target value * we take a faster path with unrolled loops. */ if (HLL_REGISTERS == 16384 && HLL_BITS == 6) { uint8_t *r = registers; unsigned long r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15; for (j = 0; j < 1024; j++) { /* Handle 16 registers per iteration. */ r0 = r[0] & 63; r1 = (r[0] >> 6 | r[1] << 2) & 63; r2 = (r[1] >> 4 | r[2] << 4) & 63; r3 = (r[2] >> 2) & 63; r4 = r[3] & 63; r5 = (r[3] >> 6 | r[4] << 2) & 63; r6 = (r[4] >> 4 | r[5] << 4) & 63; r7 = (r[5] >> 2) & 63; r8 = r[6] & 63; r9 = (r[6] >> 6 | r[7] << 2) & 63; r10 = (r[7] >> 4 | r[8] << 4) & 63; r11 = (r[8] >> 2) & 63; r12 = r[9] & 63; r13 = (r[9] >> 6 | r[10] << 2) & 63; r14 = (r[10] >> 4 | r[11] << 4) & 63; r15 = (r[11] >> 2) & 63; reghisto[r0]++; reghisto[r1]++; reghisto[r2]++; reghisto[r3]++; reghisto[r4]++; reghisto[r5]++; reghisto[r6]++; reghisto[r7]++; reghisto[r8]++; reghisto[r9]++; reghisto[r10]++; reghisto[r11]++; reghisto[r12]++; reghisto[r13]++; reghisto[r14]++; reghisto[r15]++; r += 12; } } else { for (j = 0; j < HLL_REGISTERS; j++) { unsigned long reg; HLL_DENSE_GET_REGISTER(reg, registers, j); reghisto[reg]++; } } } /* ================== Sparse representation implementation ================= */ /* Convert the HLL with sparse representation given as input in its dense * representation. Both representations are represented by SDS strings, and * the input representation is freed as a side effect. * * The function returns C_OK if the sparse representation was valid, * otherwise C_ERR is returned if the representation was corrupted. */ int hllSparseToDense(robj *o) { sds sparse = o->ptr, dense; struct hllhdr *hdr, *oldhdr = (struct hllhdr *)sparse; int idx = 0, runlen, regval; uint8_t *p = (uint8_t *)sparse, *end = p + sdslen(sparse); /* If the representation is already the right one return ASAP. */ hdr = (struct hllhdr *)sparse; if (hdr->encoding == HLL_DENSE) return C_OK; /* Create a string of the right size filled with zero bytes. * Note that the cached cardinality is set to 0 as a side effect * that is exactly the cardinality of an empty HLL. */ dense = sdsnewlen(NULL, HLL_DENSE_SIZE); hdr = (struct hllhdr *)dense; *hdr = *oldhdr; /* This will copy the magic and cached cardinality. */ hdr->encoding = HLL_DENSE; /* Now read the sparse representation and set non-zero registers * accordingly. */ p += HLL_HDR_SIZE; while (p < end) { if (HLL_SPARSE_IS_ZERO(p)) { runlen = HLL_SPARSE_ZERO_LEN(p); idx += runlen; p++; } else if (HLL_SPARSE_IS_XZERO(p)) { runlen = HLL_SPARSE_XZERO_LEN(p); idx += runlen; p += 2; } else { runlen = HLL_SPARSE_VAL_LEN(p); regval = HLL_SPARSE_VAL_VALUE(p); if ((runlen + idx) > HLL_REGISTERS) break; /* Overflow. */ while (runlen--) { HLL_DENSE_SET_REGISTER(hdr->registers, idx, regval); idx++; } p++; } } /* If the sparse representation was valid, we expect to find idx * set to HLL_REGISTERS. */ if (idx != HLL_REGISTERS) { sdsfree(dense); return C_ERR; } /* Free the old representation and set the new one. */ sdsfree(o->ptr); o->ptr = dense; return C_OK; } /* Low level function to set the sparse HLL register at 'index' to the * specified value if the current value is smaller than 'count'. * * The object 'o' is the String object holding the HLL. The function requires * a reference to the object in order to be able to enlarge the string if * needed. * * On success, the function returns 1 if the cardinality changed, or 0 * if the register for this element was not updated. * On error (if the representation is invalid) -1 is returned. * * As a side effect the function may promote the HLL representation from * sparse to dense: this happens when a register requires to be set to a value * not representable with the sparse representation, or when the resulting * size would be greater than server.hll_sparse_max_bytes. */ int hllSparseSet(robj *o, long index, uint8_t count) { struct hllhdr *hdr; uint8_t oldcount, *sparse, *end, *p, *prev, *next; long first, span; long is_zero = 0, is_xzero = 0, is_val = 0, runlen = 0; /* If the count is too big to be representable by the sparse representation * switch to dense representation. */ if (count > HLL_SPARSE_VAL_MAX_VALUE) goto promote; /* When updating a sparse representation, sometimes we may need to enlarge the * buffer for up to 3 bytes in the worst case (XZERO split into XZERO-VAL-XZERO), * and the following code does the enlarge job. * Actually, we use a greedy strategy, enlarge more than 3 bytes to avoid the need * for future reallocates on incremental growth. But we do not allocate more than * 'server.hll_sparse_max_bytes' bytes for the sparse representation. * If the available size of hyperloglog sds string is not enough for the increment * we need, we promote the hyperloglog to dense representation in 'step 3'. */ if (sdsalloc(o->ptr) < server.hll_sparse_max_bytes && sdsavail(o->ptr) < 3) { size_t newlen = sdslen(o->ptr) + 3; newlen += min(newlen, 300); /* Greediness: double 'newlen' if it is smaller than 300, or add 300 to it when it exceeds 300 */ if (newlen > server.hll_sparse_max_bytes) newlen = server.hll_sparse_max_bytes; o->ptr = sdsResize(o->ptr, newlen, 1); } /* Step 1: we need to locate the opcode we need to modify to check * if a value update is actually needed. */ sparse = p = ((uint8_t *)o->ptr) + HLL_HDR_SIZE; end = p + sdslen(o->ptr) - HLL_HDR_SIZE; first = 0; prev = NULL; /* Points to previous opcode at the end of the loop. */ next = NULL; /* Points to the next opcode at the end of the loop. */ span = 0; while (p < end) { long oplen; /* Set span to the number of registers covered by this opcode. * * This is the most performance critical loop of the sparse * representation. Sorting the conditionals from the most to the * least frequent opcode in many-bytes sparse HLLs is faster. */ oplen = 1; if (HLL_SPARSE_IS_ZERO(p)) { span = HLL_SPARSE_ZERO_LEN(p); } else if (HLL_SPARSE_IS_VAL(p)) { span = HLL_SPARSE_VAL_LEN(p); } else { /* XZERO. */ span = HLL_SPARSE_XZERO_LEN(p); oplen = 2; } /* Break if this opcode covers the register as 'index'. */ if (index <= first + span - 1) break; prev = p; p += oplen; first += span; } if (span == 0 || p >= end) return -1; /* Invalid format. */ next = HLL_SPARSE_IS_XZERO(p) ? p + 2 : p + 1; if (next >= end) next = NULL; /* Cache current opcode type to avoid using the macro again and * again for something that will not change. * Also cache the run-length of the opcode. */ if (HLL_SPARSE_IS_ZERO(p)) { is_zero = 1; runlen = HLL_SPARSE_ZERO_LEN(p); } else if (HLL_SPARSE_IS_XZERO(p)) { is_xzero = 1; runlen = HLL_SPARSE_XZERO_LEN(p); } else { is_val = 1; runlen = HLL_SPARSE_VAL_LEN(p); } /* Step 2: After the loop: * * 'first' stores to the index of the first register covered * by the current opcode, which is pointed by 'p'. * * 'next' ad 'prev' store respectively the next and previous opcode, * or NULL if the opcode at 'p' is respectively the last or first. * * 'span' is set to the number of registers covered by the current * opcode. * * There are different cases in order to update the data structure * in place without generating it from scratch: * * A) If it is a VAL opcode already set to a value >= our 'count' * no update is needed, regardless of the VAL run-length field. * In this case PFADD returns 0 since no changes are performed. * * B) If it is a VAL opcode with len = 1 (representing only our * register) and the value is less than 'count', we just update it * since this is a trivial case. */ if (is_val) { oldcount = HLL_SPARSE_VAL_VALUE(p); /* Case A. */ if (oldcount >= count) return 0; /* Case B. */ if (runlen == 1) { HLL_SPARSE_VAL_SET(p, count, 1); goto updated; } } /* C) Another trivial to handle case is a ZERO opcode with a len of 1. * We can just replace it with a VAL opcode with our value and len of 1. */ if (is_zero && runlen == 1) { HLL_SPARSE_VAL_SET(p, count, 1); goto updated; } /* D) General case. * * The other cases are more complex: our register requires to be updated * and is either currently represented by a VAL opcode with len > 1, * by a ZERO opcode with len > 1, or by an XZERO opcode. * * In those cases the original opcode must be split into multiple * opcodes. The worst case is an XZERO split in the middle resulting into * XZERO - VAL - XZERO, so the resulting sequence max length is * 5 bytes. * * We perform the split writing the new sequence into the 'new' buffer * with 'newlen' as length. Later the new sequence is inserted in place * of the old one, possibly moving what is on the right a few bytes * if the new sequence is longer than the older one. */ uint8_t seq[5], *n = seq; int last = first + span - 1; /* Last register covered by the sequence. */ int len; if (is_zero || is_xzero) { /* Handle splitting of ZERO / XZERO. */ if (index != first) { len = index - first; if (len > HLL_SPARSE_ZERO_MAX_LEN) { HLL_SPARSE_XZERO_SET(n, len); n += 2; } else { HLL_SPARSE_ZERO_SET(n, len); n++; } } HLL_SPARSE_VAL_SET(n, count, 1); n++; if (index != last) { len = last - index; if (len > HLL_SPARSE_ZERO_MAX_LEN) { HLL_SPARSE_XZERO_SET(n, len); n += 2; } else { HLL_SPARSE_ZERO_SET(n, len); n++; } } } else { /* Handle splitting of VAL. */ int curval = HLL_SPARSE_VAL_VALUE(p); if (index != first) { len = index - first; HLL_SPARSE_VAL_SET(n, curval, len); n++; } HLL_SPARSE_VAL_SET(n, count, 1); n++; if (index != last) { len = last - index; HLL_SPARSE_VAL_SET(n, curval, len); n++; } } /* Step 3: substitute the new sequence with the old one. * * Note that we already allocated space on the sds string * calling sdsResize(). */ int seqlen = n - seq; int oldlen = is_xzero ? 2 : 1; int deltalen = seqlen - oldlen; if (deltalen > 0 && sdslen(o->ptr) + deltalen > server.hll_sparse_max_bytes) goto promote; serverAssert(sdslen(o->ptr) + deltalen <= sdsalloc(o->ptr)); if (deltalen && next) memmove(next + deltalen, next, end - next); sdsIncrLen(o->ptr, deltalen); memcpy(p, seq, seqlen); end += deltalen; updated: /* Step 4: Merge adjacent values if possible. * * The representation was updated, however the resulting representation * may not be optimal: adjacent VAL opcodes can sometimes be merged into * a single one. */ p = prev ? prev : sparse; int scanlen = 5; /* Scan up to 5 upcodes starting from prev. */ while (p < end && scanlen--) { if (HLL_SPARSE_IS_XZERO(p)) { p += 2; continue; } else if (HLL_SPARSE_IS_ZERO(p)) { p++; continue; } /* We need two adjacent VAL opcodes to try a merge, having * the same value, and a len that fits the VAL opcode max len. */ if (p + 1 < end && HLL_SPARSE_IS_VAL(p + 1)) { int v1 = HLL_SPARSE_VAL_VALUE(p); int v2 = HLL_SPARSE_VAL_VALUE(p + 1); if (v1 == v2) { int len = HLL_SPARSE_VAL_LEN(p) + HLL_SPARSE_VAL_LEN(p + 1); if (len <= HLL_SPARSE_VAL_MAX_LEN) { HLL_SPARSE_VAL_SET(p + 1, v1, len); memmove(p, p + 1, end - p); sdsIncrLen(o->ptr, -1); end--; /* After a merge we reiterate without incrementing 'p' * in order to try to merge the just merged value with * a value on its right. */ continue; } } } p++; } /* Invalidate the cached cardinality. */ hdr = o->ptr; HLL_INVALIDATE_CACHE(hdr); return 1; promote: /* Promote to dense representation. */ if (hllSparseToDense(o) == C_ERR) return -1; /* Corrupted HLL. */ hdr = o->ptr; /* We need to call hllDenseAdd() to perform the operation after the * conversion. However the result must be 1, since if we need to * convert from sparse to dense a register requires to be updated. * * Note that this in turn means that PFADD will make sure the command * is propagated to replicas / AOF, so if there is a sparse -> dense * conversion, it will be performed in all the replicas as well. */ int dense_retval = hllDenseSet(hdr->registers, index, count); serverAssert(dense_retval == 1); return dense_retval; } /* "Add" the element in the sparse hyperloglog data structure. * Actually nothing is added, but the max 0 pattern counter of the subset * the element belongs to is incremented if needed. * * This function is actually a wrapper for hllSparseSet(), it only performs * the hashing of the element to obtain the index and zeros run length. */ int hllSparseAdd(robj *o, unsigned char *ele, size_t elesize) { long index; uint8_t count = hllPatLen(ele, elesize, &index); /* Update the register if this element produced a longer run of zeroes. */ return hllSparseSet(o, index, count); } /* Compute the register histogram in the sparse representation. */ void hllSparseRegHisto(uint8_t *sparse, int sparselen, int *invalid, int *reghisto) { int idx = 0, runlen, regval; uint8_t *end = sparse + sparselen, *p = sparse; while (p < end) { if (HLL_SPARSE_IS_ZERO(p)) { runlen = HLL_SPARSE_ZERO_LEN(p); idx += runlen; reghisto[0] += runlen; p++; } else if (HLL_SPARSE_IS_XZERO(p)) { runlen = HLL_SPARSE_XZERO_LEN(p); idx += runlen; reghisto[0] += runlen; p += 2; } else { runlen = HLL_SPARSE_VAL_LEN(p); regval = HLL_SPARSE_VAL_VALUE(p); idx += runlen; reghisto[regval] += runlen; p++; } } if (idx != HLL_REGISTERS && invalid) *invalid = 1; } /* ========================= HyperLogLog Count ============================== * This is the core of the algorithm where the approximated count is computed. * The function uses the lower level hllDenseRegHisto() and hllSparseRegHisto() * functions as helpers to compute histogram of register values part of the * computation, which is representation-specific, while all the rest is common. */ /* Implements the register histogram calculation for uint8_t data type * which is only used internally as speedup for PFCOUNT with multiple keys. */ void hllRawRegHisto(uint8_t *registers, int *reghisto) { uint64_t *word = (uint64_t *)registers; uint8_t *bytes; int j; for (j = 0; j < HLL_REGISTERS / 8; j++) { if (*word == 0) { reghisto[0] += 8; } else { bytes = (uint8_t *)word; reghisto[bytes[0]]++; reghisto[bytes[1]]++; reghisto[bytes[2]]++; reghisto[bytes[3]]++; reghisto[bytes[4]]++; reghisto[bytes[5]]++; reghisto[bytes[6]]++; reghisto[bytes[7]]++; } word++; } } /* Helper function sigma as defined in * "New cardinality estimation algorithms for HyperLogLog sketches" * Otmar Ertl, arXiv:1702.01284 */ double hllSigma(double x) { if (x == 1.) return INFINITY; double zPrime; double y = 1; double z = x; do { x *= x; zPrime = z; z += x * y; y += y; } while (zPrime != z); return z; } /* Helper function tau as defined in * "New cardinality estimation algorithms for HyperLogLog sketches" * Otmar Ertl, arXiv:1702.01284 */ double hllTau(double x) { if (x == 0. || x == 1.) return 0.; double zPrime; double y = 1.0; double z = 1 - x; do { x = sqrt(x); zPrime = z; y *= 0.5; z -= pow(1 - x, 2) * y; } while (zPrime != z); return z / 3; } /* Return the approximated cardinality of the set based on the harmonic * mean of the registers values. 'hdr' points to the start of the SDS * representing the String object holding the HLL representation. * * If the sparse representation of the HLL object is not valid, the integer * pointed by 'invalid' is set to non-zero, otherwise it is left untouched. * * hllCount() supports a special internal-only encoding of HLL_RAW, that * is, hdr->registers will point to an uint8_t array of HLL_REGISTERS element. * This is useful in order to speedup PFCOUNT when called against multiple * keys (no need to work with 6-bit integers encoding). */ uint64_t hllCount(struct hllhdr *hdr, int *invalid) { double m = HLL_REGISTERS; double E; int j; /* Note that reghisto size could be just HLL_Q+2, because HLL_Q+1 is * the maximum frequency of the "000...1" sequence the hash function is * able to return. However it is slow to check for sanity of the * input: instead we history array at a safe size: overflows will * just write data to wrong, but correctly allocated, places. */ int reghisto[64] = {0}; /* Compute register histogram */ if (hdr->encoding == HLL_DENSE) { hllDenseRegHisto(hdr->registers, reghisto); } else if (hdr->encoding == HLL_SPARSE) { hllSparseRegHisto(hdr->registers, sdslen((sds)hdr) - HLL_HDR_SIZE, invalid, reghisto); } else if (hdr->encoding == HLL_RAW) { hllRawRegHisto(hdr->registers, reghisto); } else { serverPanic("Unknown HyperLogLog encoding in hllCount()"); } /* Estimate cardinality from register histogram. See: * "New cardinality estimation algorithms for HyperLogLog sketches" * Otmar Ertl, arXiv:1702.01284 */ double z = m * hllTau((m - reghisto[HLL_Q + 1]) / (double)m); for (j = HLL_Q; j >= 1; --j) { z += reghisto[j]; z *= 0.5; } z += m * hllSigma(reghisto[0] / (double)m); E = llroundl(HLL_ALPHA_INF * m * m / z); return (uint64_t)E; } /* Call hllDenseAdd() or hllSparseAdd() according to the HLL encoding. */ int hllAdd(robj *o, unsigned char *ele, size_t elesize) { struct hllhdr *hdr = o->ptr; switch (hdr->encoding) { case HLL_DENSE: return hllDenseAdd(hdr->registers, ele, elesize); case HLL_SPARSE: return hllSparseAdd(o, ele, elesize); default: return -1; /* Invalid representation. */ } } /* Merge by computing MAX(registers[i],hll[i]) the HyperLogLog 'hll' * with an array of uint8_t HLL_REGISTERS registers pointed by 'max'. * * The hll object must be already validated via isHLLObjectOrReply() * or in some other way. * * If the HyperLogLog is sparse and is found to be invalid, C_ERR * is returned, otherwise the function always succeeds. */ int hllMerge(uint8_t *max, robj *hll) { struct hllhdr *hdr = hll->ptr; int i; if (hdr->encoding == HLL_DENSE) { uint8_t val; for (i = 0; i < HLL_REGISTERS; i++) { HLL_DENSE_GET_REGISTER(val, hdr->registers, i); if (val > max[i]) max[i] = val; } } else { uint8_t *p = hll->ptr, *end = p + sdslen(hll->ptr); long runlen, regval; p += HLL_HDR_SIZE; i = 0; while (p < end) { if (HLL_SPARSE_IS_ZERO(p)) { runlen = HLL_SPARSE_ZERO_LEN(p); i += runlen; p++; } else if (HLL_SPARSE_IS_XZERO(p)) { runlen = HLL_SPARSE_XZERO_LEN(p); i += runlen; p += 2; } else { runlen = HLL_SPARSE_VAL_LEN(p); regval = HLL_SPARSE_VAL_VALUE(p); if ((runlen + i) > HLL_REGISTERS) break; /* Overflow. */ while (runlen--) { if (regval > max[i]) max[i] = regval; i++; } p++; } } if (i != HLL_REGISTERS) return C_ERR; } return C_OK; } /* ========================== HyperLogLog commands ========================== */ /* Create an HLL object. We always create the HLL using sparse encoding. * This will be upgraded to the dense representation as needed. */ robj *createHLLObject(void) { robj *o; struct hllhdr *hdr; sds s; uint8_t *p; int sparselen = HLL_HDR_SIZE + (((HLL_REGISTERS + (HLL_SPARSE_XZERO_MAX_LEN - 1)) / HLL_SPARSE_XZERO_MAX_LEN) * 2); int aux; /* Populate the sparse representation with as many XZERO opcodes as * needed to represent all the registers. */ aux = HLL_REGISTERS; s = sdsnewlen(NULL, sparselen); p = (uint8_t *)s + HLL_HDR_SIZE; while (aux) { int xzero = HLL_SPARSE_XZERO_MAX_LEN; if (xzero > aux) xzero = aux; HLL_SPARSE_XZERO_SET(p, xzero); p += 2; aux -= xzero; } serverAssert((p - (uint8_t *)s) == sparselen); /* Create the actual object. */ o = createObject(OBJ_STRING, s); hdr = o->ptr; memcpy(hdr->magic, "HYLL", 4); hdr->encoding = HLL_SPARSE; return o; } /* Check if the object is a String with a valid HLL representation. * Return C_OK if this is true, otherwise reply to the client * with an error and return C_ERR. */ int isHLLObjectOrReply(client *c, robj *o) { struct hllhdr *hdr; /* Key exists, check type */ if (checkType(c, o, OBJ_STRING)) return C_ERR; /* Error already sent. */ if (!sdsEncodedObject(o)) goto invalid; if (stringObjectLen(o) < sizeof(*hdr)) goto invalid; hdr = o->ptr; /* Magic should be "HYLL". */ if (hdr->magic[0] != 'H' || hdr->magic[1] != 'Y' || hdr->magic[2] != 'L' || hdr->magic[3] != 'L') goto invalid; if (hdr->encoding > HLL_MAX_ENCODING) goto invalid; /* Dense representation string length should match exactly. */ if (hdr->encoding == HLL_DENSE && stringObjectLen(o) != HLL_DENSE_SIZE) goto invalid; /* All tests passed. */ return C_OK; invalid: addReplyError(c, "-WRONGTYPE Key is not a valid " "HyperLogLog string value."); return C_ERR; } /* PFADD var ele ele ele ... ele => :0 or :1 */ void pfaddCommand(client *c) { robj *o = lookupKeyWrite(c->db, c->argv[1]); struct hllhdr *hdr; int updated = 0, j; if (o == NULL) { /* Create the key with a string value of the exact length to * hold our HLL data structure. sdsnewlen() when NULL is passed * is guaranteed to return bytes initialized to zero. */ o = createHLLObject(); dbAdd(c->db, c->argv[1], o); updated++; } else { if (isHLLObjectOrReply(c, o) != C_OK) return; o = dbUnshareStringValue(c->db, c->argv[1], o); } /* Perform the low level ADD operation for every element. */ for (j = 2; j < c->argc; j++) { int retval = hllAdd(o, (unsigned char *)c->argv[j]->ptr, sdslen(c->argv[j]->ptr)); switch (retval) { case 1: updated++; break; case -1: addReplyError(c, invalid_hll_err); return; } } hdr = o->ptr; if (updated) { HLL_INVALIDATE_CACHE(hdr); signalModifiedKey(c, c->db, c->argv[1]); notifyKeyspaceEvent(NOTIFY_STRING, "pfadd", c->argv[1], c->db->id); server.dirty += updated; } addReply(c, updated ? shared.cone : shared.czero); } /* PFCOUNT var -> approximated cardinality of set. */ void pfcountCommand(client *c) { robj *o; struct hllhdr *hdr; uint64_t card; /* Case 1: multi-key keys, cardinality of the union. * * When multiple keys are specified, PFCOUNT actually computes * the cardinality of the merge of the N HLLs specified. */ if (c->argc > 2) { uint8_t max[HLL_HDR_SIZE + HLL_REGISTERS], *registers; int j; /* Compute an HLL with M[i] = MAX(M[i]_j). */ memset(max, 0, sizeof(max)); hdr = (struct hllhdr *)max; hdr->encoding = HLL_RAW; /* Special internal-only encoding. */ registers = max + HLL_HDR_SIZE; for (j = 1; j < c->argc; j++) { /* Check type and size. */ robj *o = lookupKeyRead(c->db, c->argv[j]); if (o == NULL) continue; /* Assume empty HLL for non existing var.*/ if (isHLLObjectOrReply(c, o) != C_OK) return; /* Merge with this HLL with our 'max' HLL by setting max[i] * to MAX(max[i],hll[i]). */ if (hllMerge(registers, o) == C_ERR) { addReplyError(c, invalid_hll_err); return; } } /* Compute cardinality of the resulting set. */ addReplyLongLong(c, hllCount(hdr, NULL)); return; } /* Case 2: cardinality of the single HLL. * * The user specified a single key. Either return the cached value * or compute one and update the cache. * * Since a HLL is a regular string type value, updating the cache does * modify the value. We do a lookupKeyRead anyway since this is flagged as a * read-only command. The difference is that with lookupKeyWrite, a * logically expired key on a replica is deleted, while with lookupKeyRead * it isn't, but the lookup returns NULL either way if the key is logically * expired, which is what matters here. */ o = lookupKeyRead(c->db, c->argv[1]); if (o == NULL) { /* No key? Cardinality is zero since no element was added, otherwise * we would have a key as HLLADD creates it as a side effect. */ addReply(c, shared.czero); } else { if (isHLLObjectOrReply(c, o) != C_OK) return; o = dbUnshareStringValue(c->db, c->argv[1], o); /* Check if the cached cardinality is valid. */ hdr = o->ptr; if (HLL_VALID_CACHE(hdr)) { /* Just return the cached value. */ card = (uint64_t)hdr->card[0]; card |= (uint64_t)hdr->card[1] << 8; card |= (uint64_t)hdr->card[2] << 16; card |= (uint64_t)hdr->card[3] << 24; card |= (uint64_t)hdr->card[4] << 32; card |= (uint64_t)hdr->card[5] << 40; card |= (uint64_t)hdr->card[6] << 48; card |= (uint64_t)hdr->card[7] << 56; } else { int invalid = 0; /* Recompute it and update the cached value. */ card = hllCount(hdr, &invalid); if (invalid) { addReplyError(c, invalid_hll_err); return; } hdr->card[0] = card & 0xff; hdr->card[1] = (card >> 8) & 0xff; hdr->card[2] = (card >> 16) & 0xff; hdr->card[3] = (card >> 24) & 0xff; hdr->card[4] = (card >> 32) & 0xff; hdr->card[5] = (card >> 40) & 0xff; hdr->card[6] = (card >> 48) & 0xff; hdr->card[7] = (card >> 56) & 0xff; /* This is considered a read-only command even if the cached value * may be modified and given that the HLL is a string * we need to propagate the change. */ signalModifiedKey(c, c->db, c->argv[1]); server.dirty++; } addReplyLongLong(c, card); } } /* PFMERGE dest src1 src2 src3 ... srcN => OK */ void pfmergeCommand(client *c) { uint8_t max[HLL_REGISTERS]; struct hllhdr *hdr; int j; int use_dense = 0; /* Use dense representation as target? */ /* Compute an HLL with M[i] = MAX(M[i]_j). * We store the maximum into the max array of registers. We'll write * it to the target variable later. */ memset(max, 0, sizeof(max)); for (j = 1; j < c->argc; j++) { /* Check type and size. */ robj *o = lookupKeyRead(c->db, c->argv[j]); if (o == NULL) continue; /* Assume empty HLL for non existing var. */ if (isHLLObjectOrReply(c, o) != C_OK) return; /* If at least one involved HLL is dense, use the dense representation * as target ASAP to save time and avoid the conversion step. */ hdr = o->ptr; if (hdr->encoding == HLL_DENSE) use_dense = 1; /* Merge with this HLL with our 'max' HLL by setting max[i] * to MAX(max[i],hll[i]). */ if (hllMerge(max, o) == C_ERR) { addReplyError(c, invalid_hll_err); return; } } /* Create / unshare the destination key's value if needed. */ robj *o = lookupKeyWrite(c->db, c->argv[1]); if (o == NULL) { /* Create the key with a string value of the exact length to * hold our HLL data structure. sdsnewlen() when NULL is passed * is guaranteed to return bytes initialized to zero. */ o = createHLLObject(); dbAdd(c->db, c->argv[1], o); } else { /* If key exists we are sure it's of the right type/size * since we checked when merging the different HLLs, so we * don't check again. */ o = dbUnshareStringValue(c->db, c->argv[1], o); } /* Convert the destination object to dense representation if at least * one of the inputs was dense. */ if (use_dense && hllSparseToDense(o) == C_ERR) { addReplyError(c, invalid_hll_err); return; } /* Write the resulting HLL to the destination HLL registers and * invalidate the cached value. */ for (j = 0; j < HLL_REGISTERS; j++) { if (max[j] == 0) continue; hdr = o->ptr; switch (hdr->encoding) { case HLL_DENSE: hllDenseSet(hdr->registers, j, max[j]); break; case HLL_SPARSE: hllSparseSet(o, j, max[j]); break; } } hdr = o->ptr; /* o->ptr may be different now, as a side effect of last hllSparseSet() call. */ HLL_INVALIDATE_CACHE(hdr); signalModifiedKey(c, c->db, c->argv[1]); /* We generate a PFADD event for PFMERGE for semantical simplicity * since in theory this is a mass-add of elements. */ notifyKeyspaceEvent(NOTIFY_STRING, "pfadd", c->argv[1], c->db->id); server.dirty++; addReply(c, shared.ok); } /* ========================== Testing / Debugging ========================== */ /* PFSELFTEST * This command performs a self-test of the HLL registers implementation. * Something that is not easy to test from within the outside. */ #define HLL_TEST_CYCLES 1000 void pfselftestCommand(client *c) { unsigned int j, i; sds bitcounters = sdsnewlen(NULL, HLL_DENSE_SIZE); struct hllhdr *hdr = (struct hllhdr *)bitcounters, *hdr2; robj *o = NULL; uint8_t bytecounters[HLL_REGISTERS]; /* Test 1: access registers. * The test is conceived to test that the different counters of our data * structure are accessible and that setting their values both result in * the correct value to be retained and not affect adjacent values. */ for (j = 0; j < HLL_TEST_CYCLES; j++) { /* Set the HLL counters and an array of unsigned byes of the * same size to the same set of random values. */ for (i = 0; i < HLL_REGISTERS; i++) { unsigned int r = rand() & HLL_REGISTER_MAX; bytecounters[i] = r; HLL_DENSE_SET_REGISTER(hdr->registers, i, r); } /* Check that we are able to retrieve the same values. */ for (i = 0; i < HLL_REGISTERS; i++) { unsigned int val; HLL_DENSE_GET_REGISTER(val, hdr->registers, i); if (val != bytecounters[i]) { addReplyErrorFormat(c, "TESTFAILED Register %d should be %d but is %d", i, (int)bytecounters[i], (int)val); goto cleanup; } } } /* Test 2: approximation error. * The test adds unique elements and check that the estimated value * is always reasonable bounds. * * We check that the error is smaller than a few times than the expected * standard error, to make it very unlikely for the test to fail because * of a "bad" run. * * The test is performed with both dense and sparse HLLs at the same * time also verifying that the computed cardinality is the same. */ memset(hdr->registers, 0, HLL_DENSE_SIZE - HLL_HDR_SIZE); o = createHLLObject(); double relerr = 1.04 / sqrt(HLL_REGISTERS); int64_t checkpoint = 1; uint64_t seed = (uint64_t)rand() | (uint64_t)rand() << 32; uint64_t ele; for (j = 1; j <= 10000000; j++) { ele = j ^ seed; hllDenseAdd(hdr->registers, (unsigned char *)&ele, sizeof(ele)); hllAdd(o, (unsigned char *)&ele, sizeof(ele)); /* Make sure that for small cardinalities we use sparse * encoding. */ if (j == checkpoint && j < server.hll_sparse_max_bytes / 2) { hdr2 = o->ptr; if (hdr2->encoding != HLL_SPARSE) { addReplyError(c, "TESTFAILED sparse encoding not used"); goto cleanup; } } /* Check that dense and sparse representations agree. */ if (j == checkpoint && hllCount(hdr, NULL) != hllCount(o->ptr, NULL)) { addReplyError(c, "TESTFAILED dense/sparse disagree"); goto cleanup; } /* Check error. */ if (j == checkpoint) { int64_t abserr = checkpoint - (int64_t)hllCount(hdr, NULL); uint64_t maxerr = ceil(relerr * 6 * checkpoint); /* Adjust the max error we expect for cardinality 10 * since from time to time it is statistically likely to get * much higher error due to collision, resulting into a false * positive. */ if (j == 10) maxerr = 1; if (abserr < 0) abserr = -abserr; if (abserr > (int64_t)maxerr) { addReplyErrorFormat(c, "TESTFAILED Too big error. card:%llu abserr:%llu", (unsigned long long)checkpoint, (unsigned long long)abserr); goto cleanup; } checkpoint *= 10; } } /* Success! */ addReply(c, shared.ok); cleanup: sdsfree(bitcounters); if (o) decrRefCount(o); } /* Different debugging related operations about the HLL implementation. * * PFDEBUG GETREG * PFDEBUG DECODE * PFDEBUG ENCODING * PFDEBUG TODENSE */ void pfdebugCommand(client *c) { char *cmd = c->argv[1]->ptr; struct hllhdr *hdr; robj *o; int j; o = lookupKeyWrite(c->db, c->argv[2]); if (o == NULL) { addReplyError(c, "The specified key does not exist"); return; } if (isHLLObjectOrReply(c, o) != C_OK) return; o = dbUnshareStringValue(c->db, c->argv[2], o); hdr = o->ptr; /* PFDEBUG GETREG */ if (!strcasecmp(cmd, "getreg")) { if (c->argc != 3) goto arityerr; if (hdr->encoding == HLL_SPARSE) { if (hllSparseToDense(o) == C_ERR) { addReplyError(c, invalid_hll_err); return; } server.dirty++; /* Force propagation on encoding change. */ } hdr = o->ptr; addReplyArrayLen(c, HLL_REGISTERS); for (j = 0; j < HLL_REGISTERS; j++) { uint8_t val; HLL_DENSE_GET_REGISTER(val, hdr->registers, j); addReplyLongLong(c, val); } } /* PFDEBUG DECODE */ else if (!strcasecmp(cmd, "decode")) { if (c->argc != 3) goto arityerr; uint8_t *p = o->ptr, *end = p + sdslen(o->ptr); sds decoded = sdsempty(); if (hdr->encoding != HLL_SPARSE) { sdsfree(decoded); addReplyError(c, "HLL encoding is not sparse"); return; } p += HLL_HDR_SIZE; while (p < end) { int runlen, regval; if (HLL_SPARSE_IS_ZERO(p)) { runlen = HLL_SPARSE_ZERO_LEN(p); p++; decoded = sdscatprintf(decoded, "z:%d ", runlen); } else if (HLL_SPARSE_IS_XZERO(p)) { runlen = HLL_SPARSE_XZERO_LEN(p); p += 2; decoded = sdscatprintf(decoded, "Z:%d ", runlen); } else { runlen = HLL_SPARSE_VAL_LEN(p); regval = HLL_SPARSE_VAL_VALUE(p); p++; decoded = sdscatprintf(decoded, "v:%d,%d ", regval, runlen); } } decoded = sdstrim(decoded, " "); addReplyBulkCBuffer(c, decoded, sdslen(decoded)); sdsfree(decoded); } /* PFDEBUG ENCODING */ else if (!strcasecmp(cmd, "encoding")) { char *encodingstr[2] = {"dense", "sparse"}; if (c->argc != 3) goto arityerr; addReplyStatus(c, encodingstr[hdr->encoding]); } /* PFDEBUG TODENSE */ else if (!strcasecmp(cmd, "todense")) { int conv = 0; if (c->argc != 3) goto arityerr; if (hdr->encoding == HLL_SPARSE) { if (hllSparseToDense(o) == C_ERR) { addReplyError(c, invalid_hll_err); return; } conv = 1; server.dirty++; /* Force propagation on encoding change. */ } addReply(c, conv ? shared.cone : shared.czero); } else { addReplyErrorFormat(c, "Unknown PFDEBUG subcommand '%s'", cmd); } return; arityerr: addReplyErrorFormat(c, "Wrong number of arguments for the '%s' subcommand", cmd); }