// fast_float by Daniel Lemire
// fast_float by João Paulo Magalhaes
//
//
// with contributions from Eugene Golushkov
// with contributions from Maksim Kita
// with contributions from Marcin Wojdyr
// with contributions from Neal Richardson
// with contributions from Tim Paine
// with contributions from Fabio Pellacini
// with contributions from Lénárd Szolnoki
// with contributions from Jan Pharago
// with contributions from Maya Warrier
// with contributions from Taha Khokhar
//
//
// Licensed under the Apache License, Version 2.0, or the
// MIT License or the Boost License. This file may not be copied,
// modified, or distributed except according to those terms.
//
// MIT License Notice
//
//    MIT License
//
//    Copyright (c) 2021 The fast_float authors
//
//    Permission is hereby granted, free of charge, to any
//    person obtaining a copy of this software and associated
//    documentation files (the "Software"), to deal in the
//    Software without restriction, including without
//    limitation the rights to use, copy, modify, merge,
//    publish, distribute, sublicense, and/or sell copies of
//    the Software, and to permit persons to whom the Software
//    is furnished to do so, subject to the following
//    conditions:
//
//    The above copyright notice and this permission notice
//    shall be included in all copies or substantial portions
//    of the Software.
//
//    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
//    ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
//    TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
//    PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
//    SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
//    CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
//    OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
//    IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
//    DEALINGS IN THE SOFTWARE.
//
// Apache License (Version 2.0) Notice
//
//    Copyright 2021 The fast_float authors
//    Licensed under the Apache License, Version 2.0 (the "License");
//    you may not use this file except in compliance with the License.
//    You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
//    Unless required by applicable law or agreed to in writing, software
//    distributed under the License is distributed on an "AS IS" BASIS,
//    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//    See the License for the specific language governing permissions and
//
// BOOST License Notice
//
//    Boost Software License - Version 1.0 - August 17th, 2003
//
//    Permission is hereby granted, free of charge, to any person or organization
//    obtaining a copy of the software and accompanying documentation covered by
//    this license (the "Software") to use, reproduce, display, distribute,
//    execute, and transmit the Software, and to prepare derivative works of the
//    Software, and to permit third-parties to whom the Software is furnished to
//    do so, all subject to the following:
//
//    The copyright notices in the Software and this entire statement, including
//    the above license grant, this restriction and the following disclaimer,
//    must be included in all copies of the Software, in whole or in part, and
//    all derivative works of the Software, unless such copies or derivative
//    works are solely in the form of machine-executable object code generated by
//    a source language processor.
//
//    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//    FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
//    SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
//    FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
//    ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
//    DEALINGS IN THE SOFTWARE.
//

#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H

#ifdef __has_include
#if __has_include(<version>)
#include <version>
#endif
#endif

// Testing for https://wg21.link/N3652, adopted in C++14
#if __cpp_constexpr >= 201304
#define FASTFLOAT_CONSTEXPR14 constexpr
#else
#define FASTFLOAT_CONSTEXPR14
#endif

#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L
#define FASTFLOAT_HAS_BIT_CAST 1
#else
#define FASTFLOAT_HAS_BIT_CAST 0
#endif

#if defined(__cpp_lib_is_constant_evaluated) &&                                \
    __cpp_lib_is_constant_evaluated >= 201811L
#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1
#else
#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0
#endif

// Testing for relevant C++20 constexpr library features
#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED && FASTFLOAT_HAS_BIT_CAST &&           \
    __cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/
#define FASTFLOAT_CONSTEXPR20 constexpr
#define FASTFLOAT_IS_CONSTEXPR 1
#else
#define FASTFLOAT_CONSTEXPR20
#define FASTFLOAT_IS_CONSTEXPR 0
#endif

#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 0
#else
#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 1
#endif

#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H

#ifndef FASTFLOAT_FLOAT_COMMON_H
#define FASTFLOAT_FLOAT_COMMON_H

#include <cfloat>
#include <cstdint>
#include <cassert>
#include <cstring>
#include <type_traits>
#include <system_error>
#ifdef __has_include
#if __has_include(<stdfloat>) && (__cplusplus > 202002L || _MSVC_LANG > 202002L)
#include <stdfloat>
#endif
#endif

namespace fast_float {

#define FASTFLOAT_JSONFMT (1 << 5)
#define FASTFLOAT_FORTRANFMT (1 << 6)

enum chars_format {
  scientific = 1 << 0,
  fixed = 1 << 2,
  hex = 1 << 3,
  no_infnan = 1 << 4,
  // RFC 8259: https://datatracker.ietf.org/doc/html/rfc8259#section-6
  json = FASTFLOAT_JSONFMT | fixed | scientific | no_infnan,
  // Extension of RFC 8259 where, e.g., "inf" and "nan" are allowed.
  json_or_infnan = FASTFLOAT_JSONFMT | fixed | scientific,
  fortran = FASTFLOAT_FORTRANFMT | fixed | scientific,
  general = fixed | scientific
};

template <typename UC> struct from_chars_result_t {
  UC const *ptr;
  std::errc ec;
};
using from_chars_result = from_chars_result_t<char>;

template <typename UC> struct parse_options_t {
  constexpr explicit parse_options_t(chars_format fmt = chars_format::general,
                                     UC dot = UC('.'))
      : format(fmt), decimal_point(dot) {}

  /** Which number formats are accepted */
  chars_format format;
  /** The character used as decimal point */
  UC decimal_point;
};
using parse_options = parse_options_t<char>;

} // namespace fast_float

#if FASTFLOAT_HAS_BIT_CAST
#include <bit>
#endif

#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) ||            \
     defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) ||          \
     defined(__MINGW64__) || defined(__s390x__) ||                             \
     (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) ||      \
      defined(__PPC64LE__)) ||                                                 \
     defined(__loongarch64))
#define FASTFLOAT_64BIT 1
#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) ||             \
       defined(__arm__) || defined(_M_ARM) || defined(__ppc__) ||              \
       defined(__MINGW32__) || defined(__EMSCRIPTEN__))
#define FASTFLOAT_32BIT 1
#else
  // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow.
// We can never tell the register width, but the SIZE_MAX is a good
// approximation. UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max
// portability.
#if SIZE_MAX == 0xffff
#error Unknown platform (16-bit, unsupported)
#elif SIZE_MAX == 0xffffffff
#define FASTFLOAT_32BIT 1
#elif SIZE_MAX == 0xffffffffffffffff
#define FASTFLOAT_64BIT 1
#else
#error Unknown platform (not 32-bit, not 64-bit?)
#endif
#endif

#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) ||           \
    (defined(_M_ARM64) && !defined(__MINGW32__))
#include <intrin.h>
#endif

#if defined(_MSC_VER) && !defined(__clang__)
#define FASTFLOAT_VISUAL_STUDIO 1
#endif

#if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__
#define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
#elif defined _WIN32
#define FASTFLOAT_IS_BIG_ENDIAN 0
#else
#if defined(__APPLE__) || defined(__FreeBSD__)
#include <machine/endian.h>
#elif defined(sun) || defined(__sun)
#include <sys/byteorder.h>
#elif defined(__MVS__)
#include <sys/endian.h>
#else
#ifdef __has_include
#if __has_include(<endian.h>)
#include <endian.h>
#endif //__has_include(<endian.h>)
#endif //__has_include
#endif
#
#ifndef __BYTE_ORDER__
// safe choice
#define FASTFLOAT_IS_BIG_ENDIAN 0
#endif
#
#ifndef __ORDER_LITTLE_ENDIAN__
// safe choice
#define FASTFLOAT_IS_BIG_ENDIAN 0
#endif
#
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define FASTFLOAT_IS_BIG_ENDIAN 0
#else
#define FASTFLOAT_IS_BIG_ENDIAN 1
#endif
#endif

#if defined(__SSE2__) || (defined(FASTFLOAT_VISUAL_STUDIO) &&                  \
                          (defined(_M_AMD64) || defined(_M_X64) ||             \
                           (defined(_M_IX86_FP) && _M_IX86_FP == 2)))
#define FASTFLOAT_SSE2 1
#endif

#if defined(__aarch64__) || defined(_M_ARM64)
#define FASTFLOAT_NEON 1
#endif

#if defined(FASTFLOAT_SSE2) || defined(FASTFLOAT_NEON)
#define FASTFLOAT_HAS_SIMD 1
#endif

#if defined(__GNUC__)
// disable -Wcast-align=strict (GCC only)
#define FASTFLOAT_SIMD_DISABLE_WARNINGS                                        \
  _Pragma("GCC diagnostic push")                                               \
      _Pragma("GCC diagnostic ignored \"-Wcast-align\"")
#else
#define FASTFLOAT_SIMD_DISABLE_WARNINGS
#endif

#if defined(__GNUC__)
#define FASTFLOAT_SIMD_RESTORE_WARNINGS _Pragma("GCC diagnostic pop")
#else
#define FASTFLOAT_SIMD_RESTORE_WARNINGS
#endif

#ifdef FASTFLOAT_VISUAL_STUDIO
#define fastfloat_really_inline __forceinline
#else
#define fastfloat_really_inline inline __attribute__((always_inline))
#endif

#ifndef FASTFLOAT_ASSERT
#define FASTFLOAT_ASSERT(x)                                                    \
  { ((void)(x)); }
#endif

#ifndef FASTFLOAT_DEBUG_ASSERT
#define FASTFLOAT_DEBUG_ASSERT(x)                                              \
  { ((void)(x)); }
#endif

// rust style `try!()` macro, or `?` operator
#define FASTFLOAT_TRY(x)                                                       \
  {                                                                            \
    if (!(x))                                                                  \
      return false;                                                            \
  }

#define FASTFLOAT_ENABLE_IF(...)                                               \
  typename std::enable_if<(__VA_ARGS__), int>::type

namespace fast_float {

fastfloat_really_inline constexpr bool cpp20_and_in_constexpr() {
#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED
  return std::is_constant_evaluated();
#else
  return false;
#endif
}

template <typename T>
fastfloat_really_inline constexpr bool is_supported_float_type() {
  return std::is_same<T, float>::value || std::is_same<T, double>::value
#if __STDCPP_FLOAT32_T__
         || std::is_same<T, std::float32_t>::value
#endif
#if __STDCPP_FLOAT64_T__
         || std::is_same<T, std::float64_t>::value
#endif
      ;
}

template <typename UC>
fastfloat_really_inline constexpr bool is_supported_char_type() {
  return std::is_same<UC, char>::value || std::is_same<UC, wchar_t>::value ||
         std::is_same<UC, char16_t>::value || std::is_same<UC, char32_t>::value;
}

// Compares two ASCII strings in a case insensitive manner.
template <typename UC>
inline FASTFLOAT_CONSTEXPR14 bool
fastfloat_strncasecmp(UC const *input1, UC const *input2, size_t length) {
  char running_diff{0};
  for (size_t i = 0; i < length; ++i) {
    running_diff |= (char(input1[i]) ^ char(input2[i]));
  }
  return (running_diff == 0) || (running_diff == 32);
}

#ifndef FLT_EVAL_METHOD
#error "FLT_EVAL_METHOD should be defined, please include cfloat."
#endif

// a pointer and a length to a contiguous block of memory
template <typename T> struct span {
  const T *ptr;
  size_t length;
  constexpr span(const T *_ptr, size_t _length) : ptr(_ptr), length(_length) {}
  constexpr span() : ptr(nullptr), length(0) {}

  constexpr size_t len() const noexcept { return length; }

  FASTFLOAT_CONSTEXPR14 const T &operator[](size_t index) const noexcept {
    FASTFLOAT_DEBUG_ASSERT(index < length);
    return ptr[index];
  }
};

struct value128 {
  uint64_t low;
  uint64_t high;
  constexpr value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {}
  constexpr value128() : low(0), high(0) {}
};

/* Helper C++14 constexpr generic implementation of leading_zeroes */
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int
leading_zeroes_generic(uint64_t input_num, int last_bit = 0) {
  if (input_num & uint64_t(0xffffffff00000000)) {
    input_num >>= 32;
    last_bit |= 32;
  }
  if (input_num & uint64_t(0xffff0000)) {
    input_num >>= 16;
    last_bit |= 16;
  }
  if (input_num & uint64_t(0xff00)) {
    input_num >>= 8;
    last_bit |= 8;
  }
  if (input_num & uint64_t(0xf0)) {
    input_num >>= 4;
    last_bit |= 4;
  }
  if (input_num & uint64_t(0xc)) {
    input_num >>= 2;
    last_bit |= 2;
  }
  if (input_num & uint64_t(0x2)) { /* input_num >>=  1; */
    last_bit |= 1;
  }
  return 63 - last_bit;
}

/* result might be undefined when input_num is zero */
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 int
leading_zeroes(uint64_t input_num) {
  assert(input_num > 0);
  if (cpp20_and_in_constexpr()) {
    return leading_zeroes_generic(input_num);
  }
#ifdef FASTFLOAT_VISUAL_STUDIO
#if defined(_M_X64) || defined(_M_ARM64)
  unsigned long leading_zero = 0;
  // Search the mask data from most significant bit (MSB)
  // to least significant bit (LSB) for a set bit (1).
  _BitScanReverse64(&leading_zero, input_num);
  return (int)(63 - leading_zero);
#else
  return leading_zeroes_generic(input_num);
#endif
#else
  return __builtin_clzll(input_num);
#endif
}

// slow emulation routine for 32-bit
fastfloat_really_inline constexpr uint64_t emulu(uint32_t x, uint32_t y) {
  return x * (uint64_t)y;
}

fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t
umul128_generic(uint64_t ab, uint64_t cd, uint64_t *hi) {
  uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd);
  uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd);
  uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32));
  uint64_t adbc_carry = (uint64_t)(adbc < ad);
  uint64_t lo = bd + (adbc << 32);
  *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
        (adbc_carry << 32) + (uint64_t)(lo < bd);
  return lo;
}

#ifdef FASTFLOAT_32BIT

// slow emulation routine for 32-bit
#if !defined(__MINGW64__)
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t _umul128(uint64_t ab,
                                                                uint64_t cd,
                                                                uint64_t *hi) {
  return umul128_generic(ab, cd, hi);
}
#endif // !__MINGW64__

#endif // FASTFLOAT_32BIT

// compute 64-bit a*b
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128
full_multiplication(uint64_t a, uint64_t b) {
  if (cpp20_and_in_constexpr()) {
    value128 answer;
    answer.low = umul128_generic(a, b, &answer.high);
    return answer;
  }
  value128 answer;
#if defined(_M_ARM64) && !defined(__MINGW32__)
  // ARM64 has native support for 64-bit multiplications, no need to emulate
  // But MinGW on ARM64 doesn't have native support for 64-bit multiplications
  answer.high = __umulh(a, b);
  answer.low = a * b;
#elif defined(FASTFLOAT_32BIT) ||                                              \
    (defined(_WIN64) && !defined(__clang__) && !defined(_M_ARM64))
  answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64
#elif defined(FASTFLOAT_64BIT) && defined(__SIZEOF_INT128__)
  __uint128_t r = ((__uint128_t)a) * b;
  answer.low = uint64_t(r);
  answer.high = uint64_t(r >> 64);
#else
  answer.low = umul128_generic(a, b, &answer.high);
#endif
  return answer;
}

struct adjusted_mantissa {
  uint64_t mantissa{0};
  int32_t power2{0}; // a negative value indicates an invalid result
  adjusted_mantissa() = default;
  constexpr bool operator==(const adjusted_mantissa &o) const {
    return mantissa == o.mantissa && power2 == o.power2;
  }
  constexpr bool operator!=(const adjusted_mantissa &o) const {
    return mantissa != o.mantissa || power2 != o.power2;
  }
};

// Bias so we can get the real exponent with an invalid adjusted_mantissa.
constexpr static int32_t invalid_am_bias = -0x8000;

// used for binary_format_lookup_tables<T>::max_mantissa
constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5;

template <typename T, typename U = void> struct binary_format_lookup_tables;

template <typename T> struct binary_format : binary_format_lookup_tables<T> {
  using equiv_uint =
      typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type;

  static inline constexpr int mantissa_explicit_bits();
  static inline constexpr int minimum_exponent();
  static inline constexpr int infinite_power();
  static inline constexpr int sign_index();
  static inline constexpr int
  min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST
  static inline constexpr int max_exponent_fast_path();
  static inline constexpr int max_exponent_round_to_even();
  static inline constexpr int min_exponent_round_to_even();
  static inline constexpr uint64_t max_mantissa_fast_path(int64_t power);
  static inline constexpr uint64_t
  max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST
  static inline constexpr int largest_power_of_ten();
  static inline constexpr int smallest_power_of_ten();
  static inline constexpr T exact_power_of_ten(int64_t power);
  static inline constexpr size_t max_digits();
  static inline constexpr equiv_uint exponent_mask();
  static inline constexpr equiv_uint mantissa_mask();
  static inline constexpr equiv_uint hidden_bit_mask();
};

template <typename U> struct binary_format_lookup_tables<double, U> {
  static constexpr double powers_of_ten[] = {
      1e0,  1e1,  1e2,  1e3,  1e4,  1e5,  1e6,  1e7,  1e8,  1e9,  1e10, 1e11,
      1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};

  // Largest integer value v so that (5**index * v) <= 1<<53.
  // 0x20000000000000 == 1 << 53
  static constexpr uint64_t max_mantissa[] = {
      0x20000000000000,
      0x20000000000000 / 5,
      0x20000000000000 / (5 * 5),
      0x20000000000000 / (5 * 5 * 5),
      0x20000000000000 / (5 * 5 * 5 * 5),
      0x20000000000000 / (constant_55555),
      0x20000000000000 / (constant_55555 * 5),
      0x20000000000000 / (constant_55555 * 5 * 5),
      0x20000000000000 / (constant_55555 * 5 * 5 * 5),
      0x20000000000000 / (constant_55555 * 5 * 5 * 5 * 5),
      0x20000000000000 / (constant_55555 * constant_55555),
      0x20000000000000 / (constant_55555 * constant_55555 * 5),
      0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5),
      0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5),
      0x20000000000000 / (constant_55555 * constant_55555 * constant_55555),
      0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5),
      0x20000000000000 /
          (constant_55555 * constant_55555 * constant_55555 * 5 * 5),
      0x20000000000000 /
          (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5),
      0x20000000000000 /
          (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5),
      0x20000000000000 /
          (constant_55555 * constant_55555 * constant_55555 * constant_55555),
      0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
                          constant_55555 * 5),
      0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
                          constant_55555 * 5 * 5),
      0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
                          constant_55555 * 5 * 5 * 5),
      0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
                          constant_55555 * 5 * 5 * 5 * 5)};
};

#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE

template <typename U>
constexpr double binary_format_lookup_tables<double, U>::powers_of_ten[];

template <typename U>
constexpr uint64_t binary_format_lookup_tables<double, U>::max_mantissa[];

#endif

template <typename U> struct binary_format_lookup_tables<float, U> {
  static constexpr float powers_of_ten[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f,
                                            1e6f, 1e7f, 1e8f, 1e9f, 1e10f};

  // Largest integer value v so that (5**index * v) <= 1<<24.
  // 0x1000000 == 1<<24
  static constexpr uint64_t max_mantissa[] = {
      0x1000000,
      0x1000000 / 5,
      0x1000000 / (5 * 5),
      0x1000000 / (5 * 5 * 5),
      0x1000000 / (5 * 5 * 5 * 5),
      0x1000000 / (constant_55555),
      0x1000000 / (constant_55555 * 5),
      0x1000000 / (constant_55555 * 5 * 5),
      0x1000000 / (constant_55555 * 5 * 5 * 5),
      0x1000000 / (constant_55555 * 5 * 5 * 5 * 5),
      0x1000000 / (constant_55555 * constant_55555),
      0x1000000 / (constant_55555 * constant_55555 * 5)};
};

#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE

template <typename U>
constexpr float binary_format_lookup_tables<float, U>::powers_of_ten[];

template <typename U>
constexpr uint64_t binary_format_lookup_tables<float, U>::max_mantissa[];

#endif

template <>
inline constexpr int binary_format<double>::min_exponent_fast_path() {
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
  return 0;
#else
  return -22;
#endif
}

template <>
inline constexpr int binary_format<float>::min_exponent_fast_path() {
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
  return 0;
#else
  return -10;
#endif
}

template <>
inline constexpr int binary_format<double>::mantissa_explicit_bits() {
  return 52;
}
template <>
inline constexpr int binary_format<float>::mantissa_explicit_bits() {
  return 23;
}

template <>
inline constexpr int binary_format<double>::max_exponent_round_to_even() {
  return 23;
}

template <>
inline constexpr int binary_format<float>::max_exponent_round_to_even() {
  return 10;
}

template <>
inline constexpr int binary_format<double>::min_exponent_round_to_even() {
  return -4;
}

template <>
inline constexpr int binary_format<float>::min_exponent_round_to_even() {
  return -17;
}

template <> inline constexpr int binary_format<double>::minimum_exponent() {
  return -1023;
}
template <> inline constexpr int binary_format<float>::minimum_exponent() {
  return -127;
}

template <> inline constexpr int binary_format<double>::infinite_power() {
  return 0x7FF;
}
template <> inline constexpr int binary_format<float>::infinite_power() {
  return 0xFF;
}

template <> inline constexpr int binary_format<double>::sign_index() {
  return 63;
}
template <> inline constexpr int binary_format<float>::sign_index() {
  return 31;
}

template <>
inline constexpr int binary_format<double>::max_exponent_fast_path() {
  return 22;
}
template <>
inline constexpr int binary_format<float>::max_exponent_fast_path() {
  return 10;
}

template <>
inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() {
  return uint64_t(2) << mantissa_explicit_bits();
}
template <>
inline constexpr uint64_t
binary_format<double>::max_mantissa_fast_path(int64_t power) {
  // caller is responsible to ensure that
  // power >= 0 && power <= 22
  //
  // Work around clang bug https://godbolt.org/z/zedh7rrhc
  return (void)max_mantissa[0], max_mantissa[power];
}
template <>
inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() {
  return uint64_t(2) << mantissa_explicit_bits();
}
template <>
inline constexpr uint64_t
binary_format<float>::max_mantissa_fast_path(int64_t power) {
  // caller is responsible to ensure that
  // power >= 0 && power <= 10
  //
  // Work around clang bug https://godbolt.org/z/zedh7rrhc
  return (void)max_mantissa[0], max_mantissa[power];
}

template <>
inline constexpr double
binary_format<double>::exact_power_of_ten(int64_t power) {
  // Work around clang bug https://godbolt.org/z/zedh7rrhc
  return (void)powers_of_ten[0], powers_of_ten[power];
}
template <>
inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) {
  // Work around clang bug https://godbolt.org/z/zedh7rrhc
  return (void)powers_of_ten[0], powers_of_ten[power];
}

template <> inline constexpr int binary_format<double>::largest_power_of_ten() {
  return 308;
}
template <> inline constexpr int binary_format<float>::largest_power_of_ten() {
  return 38;
}

template <>
inline constexpr int binary_format<double>::smallest_power_of_ten() {
  return -342;
}
template <> inline constexpr int binary_format<float>::smallest_power_of_ten() {
  return -64;
}

template <> inline constexpr size_t binary_format<double>::max_digits() {
  return 769;
}
template <> inline constexpr size_t binary_format<float>::max_digits() {
  return 114;
}

template <>
inline constexpr binary_format<float>::equiv_uint
binary_format<float>::exponent_mask() {
  return 0x7F800000;
}
template <>
inline constexpr binary_format<double>::equiv_uint
binary_format<double>::exponent_mask() {
  return 0x7FF0000000000000;
}

template <>
inline constexpr binary_format<float>::equiv_uint
binary_format<float>::mantissa_mask() {
  return 0x007FFFFF;
}
template <>
inline constexpr binary_format<double>::equiv_uint
binary_format<double>::mantissa_mask() {
  return 0x000FFFFFFFFFFFFF;
}

template <>
inline constexpr binary_format<float>::equiv_uint
binary_format<float>::hidden_bit_mask() {
  return 0x00800000;
}
template <>
inline constexpr binary_format<double>::equiv_uint
binary_format<double>::hidden_bit_mask() {
  return 0x0010000000000000;
}

template <typename T>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
to_float(bool negative, adjusted_mantissa am, T &value) {
  using fastfloat_uint = typename binary_format<T>::equiv_uint;
  fastfloat_uint word = (fastfloat_uint)am.mantissa;
  word |= fastfloat_uint(am.power2)
          << binary_format<T>::mantissa_explicit_bits();
  word |= fastfloat_uint(negative) << binary_format<T>::sign_index();
#if FASTFLOAT_HAS_BIT_CAST
  value = std::bit_cast<T>(word);
#else
  ::memcpy(&value, &word, sizeof(T));
#endif
}

#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
template <typename = void> struct space_lut {
  static constexpr bool value[] = {
      0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
};

#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE

template <typename T> constexpr bool space_lut<T>::value[];

#endif

inline constexpr bool is_space(uint8_t c) { return space_lut<>::value[c]; }
#endif

template <typename UC> static constexpr uint64_t int_cmp_zeros() {
  static_assert((sizeof(UC) == 1) || (sizeof(UC) == 2) || (sizeof(UC) == 4),
                "Unsupported character size");
  return (sizeof(UC) == 1) ? 0x3030303030303030
         : (sizeof(UC) == 2)
             ? (uint64_t(UC('0')) << 48 | uint64_t(UC('0')) << 32 |
                uint64_t(UC('0')) << 16 | UC('0'))
             : (uint64_t(UC('0')) << 32 | UC('0'));
}
template <typename UC> static constexpr int int_cmp_len() {
  return sizeof(uint64_t) / sizeof(UC);
}
template <typename UC> static constexpr UC const *str_const_nan() {
  return nullptr;
}
template <> constexpr char const *str_const_nan<char>() { return "nan"; }
template <> constexpr wchar_t const *str_const_nan<wchar_t>() { return L"nan"; }
template <> constexpr char16_t const *str_const_nan<char16_t>() {
  return u"nan";
}
template <> constexpr char32_t const *str_const_nan<char32_t>() {
  return U"nan";
}
template <typename UC> static constexpr UC const *str_const_inf() {
  return nullptr;
}
template <> constexpr char const *str_const_inf<char>() { return "infinity"; }
template <> constexpr wchar_t const *str_const_inf<wchar_t>() {
  return L"infinity";
}
template <> constexpr char16_t const *str_const_inf<char16_t>() {
  return u"infinity";
}
template <> constexpr char32_t const *str_const_inf<char32_t>() {
  return U"infinity";
}

template <typename = void> struct int_luts {
  static constexpr uint8_t chdigit[] = {
      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
      255, 255, 255, 0,   1,   2,   3,   4,   5,   6,   7,   8,   9,   255, 255,
      255, 255, 255, 255, 255, 10,  11,  12,  13,  14,  15,  16,  17,  18,  19,
      20,  21,  22,  23,  24,  25,  26,  27,  28,  29,  30,  31,  32,  33,  34,
      35,  255, 255, 255, 255, 255, 255, 10,  11,  12,  13,  14,  15,  16,  17,
      18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,  29,  30,  31,  32,
      33,  34,  35,  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
      255};

  static constexpr size_t maxdigits_u64[] = {
      64, 41, 32, 28, 25, 23, 22, 21, 20, 19, 18, 18, 17, 17, 16, 16, 16, 16,
      15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13};

  static constexpr uint64_t min_safe_u64[] = {
      9223372036854775808ull,  12157665459056928801ull, 4611686018427387904,
      7450580596923828125,     4738381338321616896,     3909821048582988049,
      9223372036854775808ull,  12157665459056928801ull, 10000000000000000000ull,
      5559917313492231481,     2218611106740436992,     8650415919381337933,
      2177953337809371136,     6568408355712890625,     1152921504606846976,
      2862423051509815793,     6746640616477458432,     15181127029874798299ull,
      1638400000000000000,     3243919932521508681,     6221821273427820544,
      11592836324538749809ull, 876488338465357824,      1490116119384765625,
      2481152873203736576,     4052555153018976267,     6502111422497947648,
      10260628712958602189ull, 15943230000000000000ull, 787662783788549761,
      1152921504606846976,     1667889514952984961,     2386420683693101056,
      3379220508056640625,     4738381338321616896};
};

#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE

template <typename T> constexpr uint8_t int_luts<T>::chdigit[];

template <typename T> constexpr size_t int_luts<T>::maxdigits_u64[];

template <typename T> constexpr uint64_t int_luts<T>::min_safe_u64[];

#endif

template <typename UC>
fastfloat_really_inline constexpr uint8_t ch_to_digit(UC c) {
  return int_luts<>::chdigit[static_cast<unsigned char>(c)];
}

fastfloat_really_inline constexpr size_t max_digits_u64(int base) {
  return int_luts<>::maxdigits_u64[base - 2];
}

// If a u64 is exactly max_digits_u64() in length, this is
// the value below which it has definitely overflowed.
fastfloat_really_inline constexpr uint64_t min_safe_u64(int base) {
  return int_luts<>::min_safe_u64[base - 2];
}

} // namespace fast_float

#endif


#ifndef FASTFLOAT_FAST_FLOAT_H
#define FASTFLOAT_FAST_FLOAT_H


namespace fast_float {
/**
 * This function parses the character sequence [first,last) for a number. It
 * parses floating-point numbers expecting a locale-indepent format equivalent
 * to what is used by std::strtod in the default ("C") locale. The resulting
 * floating-point value is the closest floating-point values (using either float
 * or double), using the "round to even" convention for values that would
 * otherwise fall right in-between two values. That is, we provide exact parsing
 * according to the IEEE standard.
 *
 * Given a successful parse, the pointer (`ptr`) in the returned value is set to
 * point right after the parsed number, and the `value` referenced is set to the
 * parsed value. In case of error, the returned `ec` contains a representative
 * error, otherwise the default (`std::errc()`) value is stored.
 *
 * The implementation does not throw and does not allocate memory (e.g., with
 * `new` or `malloc`).
 *
 * Like the C++17 standard, the `fast_float::from_chars` functions take an
 * optional last argument of the type `fast_float::chars_format`. It is a bitset
 * value: we check whether `fmt & fast_float::chars_format::fixed` and `fmt &
 * fast_float::chars_format::scientific` are set to determine whether we allow
 * the fixed point and scientific notation respectively. The default is
 * `fast_float::chars_format::general` which allows both `fixed` and
 * `scientific`.
 */
template <typename T, typename UC = char,
          typename = FASTFLOAT_ENABLE_IF(is_supported_float_type<T>())>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars(UC const *first, UC const *last, T &value,
           chars_format fmt = chars_format::general) noexcept;

/**
 * Like from_chars, but accepts an `options` argument to govern number parsing.
 */
template <typename T, typename UC = char>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars_advanced(UC const *first, UC const *last, T &value,
                    parse_options_t<UC> options) noexcept;
/**
 * from_chars for integer types.
 */
template <typename T, typename UC = char,
          typename = FASTFLOAT_ENABLE_IF(!is_supported_float_type<T>())>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars(UC const *first, UC const *last, T &value, int base = 10) noexcept;

} // namespace fast_float
#endif // FASTFLOAT_FAST_FLOAT_H

#ifndef FASTFLOAT_ASCII_NUMBER_H
#define FASTFLOAT_ASCII_NUMBER_H

#include <cctype>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <limits>
#include <type_traits>


#ifdef FASTFLOAT_SSE2
#include <emmintrin.h>
#endif

#ifdef FASTFLOAT_NEON
#include <arm_neon.h>
#endif

namespace fast_float {

template <typename UC> fastfloat_really_inline constexpr bool has_simd_opt() {
#ifdef FASTFLOAT_HAS_SIMD
  return std::is_same<UC, char16_t>::value;
#else
  return false;
#endif
}

// Next function can be micro-optimized, but compilers are entirely
// able to optimize it well.
template <typename UC>
fastfloat_really_inline constexpr bool is_integer(UC c) noexcept {
  return !(c > UC('9') || c < UC('0'));
}

fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) {
  return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 |
         (val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 |
         (val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 |
         (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56;
}

// Read 8 UC into a u64. Truncates UC if not char.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
read8_to_u64(const UC *chars) {
  if (cpp20_and_in_constexpr() || !std::is_same<UC, char>::value) {
    uint64_t val = 0;
    for (int i = 0; i < 8; ++i) {
      val |= uint64_t(uint8_t(*chars)) << (i * 8);
      ++chars;
    }
    return val;
  }
  uint64_t val;
  ::memcpy(&val, chars, sizeof(uint64_t));
#if FASTFLOAT_IS_BIG_ENDIAN == 1
  // Need to read as-if the number was in little-endian order.
  val = byteswap(val);
#endif
  return val;
}

#ifdef FASTFLOAT_SSE2

fastfloat_really_inline uint64_t simd_read8_to_u64(const __m128i data) {
  FASTFLOAT_SIMD_DISABLE_WARNINGS
  const __m128i packed = _mm_packus_epi16(data, data);
#ifdef FASTFLOAT_64BIT
  return uint64_t(_mm_cvtsi128_si64(packed));
#else
  uint64_t value;
  // Visual Studio + older versions of GCC don't support _mm_storeu_si64
  _mm_storel_epi64(reinterpret_cast<__m128i *>(&value), packed);
  return value;
#endif
  FASTFLOAT_SIMD_RESTORE_WARNINGS
}

fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) {
  FASTFLOAT_SIMD_DISABLE_WARNINGS
  return simd_read8_to_u64(
      _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars)));
  FASTFLOAT_SIMD_RESTORE_WARNINGS
}

#elif defined(FASTFLOAT_NEON)

fastfloat_really_inline uint64_t simd_read8_to_u64(const uint16x8_t data) {
  FASTFLOAT_SIMD_DISABLE_WARNINGS
  uint8x8_t utf8_packed = vmovn_u16(data);
  return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0);
  FASTFLOAT_SIMD_RESTORE_WARNINGS
}

fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) {
  FASTFLOAT_SIMD_DISABLE_WARNINGS
  return simd_read8_to_u64(
      vld1q_u16(reinterpret_cast<const uint16_t *>(chars)));
  FASTFLOAT_SIMD_RESTORE_WARNINGS
}

#endif // FASTFLOAT_SSE2

// MSVC SFINAE is broken pre-VS2017
#if defined(_MSC_VER) && _MSC_VER <= 1900
template <typename UC>
#else
template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
#endif
// dummy for compile
uint64_t simd_read8_to_u64(UC const *) {
  return 0;
}

// credit  @aqrit
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t
parse_eight_digits_unrolled(uint64_t val) {
  const uint64_t mask = 0x000000FF000000FF;
  const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
  const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
  val -= 0x3030303030303030;
  val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
  val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
  return uint32_t(val);
}

// Call this if chars are definitely 8 digits.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint32_t
parse_eight_digits_unrolled(UC const *chars) noexcept {
  if (cpp20_and_in_constexpr() || !has_simd_opt<UC>()) {
    return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay
  }
  return parse_eight_digits_unrolled(simd_read8_to_u64(chars));
}

// credit @aqrit
fastfloat_really_inline constexpr bool
is_made_of_eight_digits_fast(uint64_t val) noexcept {
  return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
            0x8080808080808080));
}

#ifdef FASTFLOAT_HAS_SIMD

// Call this if chars might not be 8 digits.
// Using this style (instead of is_made_of_eight_digits_fast() then
// parse_eight_digits_unrolled()) ensures we don't load SIMD registers twice.
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
simd_parse_if_eight_digits_unrolled(const char16_t *chars,
                                    uint64_t &i) noexcept {
  if (cpp20_and_in_constexpr()) {
    return false;
  }
#ifdef FASTFLOAT_SSE2
  FASTFLOAT_SIMD_DISABLE_WARNINGS
  const __m128i data =
      _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars));

  // (x - '0') <= 9
  // http://0x80.pl/articles/simd-parsing-int-sequences.html
  const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720));
  const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759));

  if (_mm_movemask_epi8(t1) == 0) {
    i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
    return true;
  } else
    return false;
  FASTFLOAT_SIMD_RESTORE_WARNINGS
#elif defined(FASTFLOAT_NEON)
  FASTFLOAT_SIMD_DISABLE_WARNINGS
  const uint16x8_t data = vld1q_u16(reinterpret_cast<const uint16_t *>(chars));

  // (x - '0') <= 9
  // http://0x80.pl/articles/simd-parsing-int-sequences.html
  const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0'));
  const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1));

  if (vminvq_u16(mask) == 0xFFFF) {
    i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
    return true;
  } else
    return false;
  FASTFLOAT_SIMD_RESTORE_WARNINGS
#else
  (void)chars;
  (void)i;
  return false;
#endif // FASTFLOAT_SSE2
}

#endif // FASTFLOAT_HAS_SIMD

// MSVC SFINAE is broken pre-VS2017
#if defined(_MSC_VER) && _MSC_VER <= 1900
template <typename UC>
#else
template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
#endif
// dummy for compile
bool simd_parse_if_eight_digits_unrolled(UC const *, uint64_t &) {
  return 0;
}

template <typename UC, FASTFLOAT_ENABLE_IF(!std::is_same<UC, char>::value) = 0>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
loop_parse_if_eight_digits(const UC *&p, const UC *const pend, uint64_t &i) {
  if (!has_simd_opt<UC>()) {
    return;
  }
  while ((std::distance(p, pend) >= 8) &&
         simd_parse_if_eight_digits_unrolled(
             p, i)) { // in rare cases, this will overflow, but that's ok
    p += 8;
  }
}

fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
loop_parse_if_eight_digits(const char *&p, const char *const pend,
                           uint64_t &i) {
  // optimizes better than parse_if_eight_digits_unrolled() for UC = char.
  while ((std::distance(p, pend) >= 8) &&
         is_made_of_eight_digits_fast(read8_to_u64(p))) {
    i = i * 100000000 +
        parse_eight_digits_unrolled(read8_to_u64(
            p)); // in rare cases, this will overflow, but that's ok
    p += 8;
  }
}

enum class parse_error {
  no_error,
  // [JSON-only] The minus sign must be followed by an integer.
  missing_integer_after_sign,
  // A sign must be followed by an integer or dot.
  missing_integer_or_dot_after_sign,
  // [JSON-only] The integer part must not have leading zeros.
  leading_zeros_in_integer_part,
  // [JSON-only] The integer part must have at least one digit.
  no_digits_in_integer_part,
  // [JSON-only] If there is a decimal point, there must be digits in the
  // fractional part.
  no_digits_in_fractional_part,
  // The mantissa must have at least one digit.
  no_digits_in_mantissa,
  // Scientific notation requires an exponential part.
  missing_exponential_part,
};

template <typename UC> struct parsed_number_string_t {
  int64_t exponent{0};
  uint64_t mantissa{0};
  UC const *lastmatch{nullptr};
  bool negative{false};
  bool valid{false};
  bool too_many_digits{false};
  // contains the range of the significant digits
  span<const UC> integer{};  // non-nullable
  span<const UC> fraction{}; // nullable
  parse_error error{parse_error::no_error};
};

using byte_span = span<const char>;
using parsed_number_string = parsed_number_string_t<char>;

template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC>
report_parse_error(UC const *p, parse_error error) {
  parsed_number_string_t<UC> answer;
  answer.valid = false;
  answer.lastmatch = p;
  answer.error = error;
  return answer;
}

// Assuming that you use no more than 19 digits, this will
// parse an ASCII string.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC>
parse_number_string(UC const *p, UC const *pend,
                    parse_options_t<UC> options) noexcept {
  chars_format const fmt = options.format;
  UC const decimal_point = options.decimal_point;

  parsed_number_string_t<UC> answer;
  answer.valid = false;
  answer.too_many_digits = false;
  answer.negative = (*p == UC('-'));
#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
  if ((*p == UC('-')) || (!(fmt & FASTFLOAT_JSONFMT) && *p == UC('+'))) {
#else
  if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
#endif
    ++p;
    if (p == pend) {
      return report_parse_error<UC>(
          p, parse_error::missing_integer_or_dot_after_sign);
    }
    if (fmt & FASTFLOAT_JSONFMT) {
      if (!is_integer(*p)) { // a sign must be followed by an integer
        return report_parse_error<UC>(p,
                                      parse_error::missing_integer_after_sign);
      }
    } else {
      if (!is_integer(*p) &&
          (*p !=
           decimal_point)) { // a sign must be followed by an integer or the dot
        return report_parse_error<UC>(
            p, parse_error::missing_integer_or_dot_after_sign);
      }
    }
  }
  UC const *const start_digits = p;

  uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)

  while ((p != pend) && is_integer(*p)) {
    // a multiplication by 10 is cheaper than an arbitrary integer
    // multiplication
    i = 10 * i +
        uint64_t(*p -
                 UC('0')); // might overflow, we will handle the overflow later
    ++p;
  }
  UC const *const end_of_integer_part = p;
  int64_t digit_count = int64_t(end_of_integer_part - start_digits);
  answer.integer = span<const UC>(start_digits, size_t(digit_count));
  if (fmt & FASTFLOAT_JSONFMT) {
    // at least 1 digit in integer part, without leading zeros
    if (digit_count == 0) {
      return report_parse_error<UC>(p, parse_error::no_digits_in_integer_part);
    }
    if ((start_digits[0] == UC('0') && digit_count > 1)) {
      return report_parse_error<UC>(start_digits,
                                    parse_error::leading_zeros_in_integer_part);
    }
  }

  int64_t exponent = 0;
  const bool has_decimal_point = (p != pend) && (*p == decimal_point);
  if (has_decimal_point) {
    ++p;
    UC const *before = p;
    // can occur at most twice without overflowing, but let it occur more, since
    // for integers with many digits, digit parsing is the primary bottleneck.
    loop_parse_if_eight_digits(p, pend, i);

    while ((p != pend) && is_integer(*p)) {
      uint8_t digit = uint8_t(*p - UC('0'));
      ++p;
      i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
    }
    exponent = before - p;
    answer.fraction = span<const UC>(before, size_t(p - before));
    digit_count -= exponent;
  }
  if (fmt & FASTFLOAT_JSONFMT) {
    // at least 1 digit in fractional part
    if (has_decimal_point && exponent == 0) {
      return report_parse_error<UC>(p,
                                    parse_error::no_digits_in_fractional_part);
    }
  } else if (digit_count ==
             0) { // we must have encountered at least one integer!
    return report_parse_error<UC>(p, parse_error::no_digits_in_mantissa);
  }
  int64_t exp_number = 0; // explicit exponential part
  if (((fmt & chars_format::scientific) && (p != pend) &&
       ((UC('e') == *p) || (UC('E') == *p))) ||
      ((fmt & FASTFLOAT_FORTRANFMT) && (p != pend) &&
       ((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) ||
        (UC('D') == *p)))) {
    UC const *location_of_e = p;
    if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) ||
        (UC('D') == *p)) {
      ++p;
    }
    bool neg_exp = false;
    if ((p != pend) && (UC('-') == *p)) {
      neg_exp = true;
      ++p;
    } else if ((p != pend) &&
               (UC('+') ==
                *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
      ++p;
    }
    if ((p == pend) || !is_integer(*p)) {
      if (!(fmt & chars_format::fixed)) {
        // The exponential part is invalid for scientific notation, so it must
        // be a trailing token for fixed notation. However, fixed notation is
        // disabled, so report a scientific notation error.
        return report_parse_error<UC>(p, parse_error::missing_exponential_part);
      }
      // Otherwise, we will be ignoring the 'e'.
      p = location_of_e;
    } else {
      while ((p != pend) && is_integer(*p)) {
        uint8_t digit = uint8_t(*p - UC('0'));
        if (exp_number < 0x10000000) {
          exp_number = 10 * exp_number + digit;
        }
        ++p;
      }
      if (neg_exp) {
        exp_number = -exp_number;
      }
      exponent += exp_number;
    }
  } else {
    // If it scientific and not fixed, we have to bail out.
    if ((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) {
      return report_parse_error<UC>(p, parse_error::missing_exponential_part);
    }
  }
  answer.lastmatch = p;
  answer.valid = true;

  // If we frequently had to deal with long strings of digits,
  // we could extend our code by using a 128-bit integer instead
  // of a 64-bit integer. However, this is uncommon.
  //
  // We can deal with up to 19 digits.
  if (digit_count > 19) { // this is uncommon
    // It is possible that the integer had an overflow.
    // We have to handle the case where we have 0.0000somenumber.
    // We need to be mindful of the case where we only have zeroes...
    // E.g., 0.000000000...000.
    UC const *start = start_digits;
    while ((start != pend) && (*start == UC('0') || *start == decimal_point)) {
      if (*start == UC('0')) {
        digit_count--;
      }
      start++;
    }

    if (digit_count > 19) {
      answer.too_many_digits = true;
      // Let us start again, this time, avoiding overflows.
      // We don't need to check if is_integer, since we use the
      // pre-tokenized spans from above.
      i = 0;
      p = answer.integer.ptr;
      UC const *int_end = p + answer.integer.len();
      const uint64_t minimal_nineteen_digit_integer{1000000000000000000};
      while ((i < minimal_nineteen_digit_integer) && (p != int_end)) {
        i = i * 10 + uint64_t(*p - UC('0'));
        ++p;
      }
      if (i >= minimal_nineteen_digit_integer) { // We have a big integers
        exponent = end_of_integer_part - p + exp_number;
      } else { // We have a value with a fractional component.
        p = answer.fraction.ptr;
        UC const *frac_end = p + answer.fraction.len();
        while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
          i = i * 10 + uint64_t(*p - UC('0'));
          ++p;
        }
        exponent = answer.fraction.ptr - p + exp_number;
      }
      // We have now corrected both exponent and i, to a truncated value
    }
  }
  answer.exponent = exponent;
  answer.mantissa = i;
  return answer;
}

template <typename T, typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
parse_int_string(UC const *p, UC const *pend, T &value, int base) {
  from_chars_result_t<UC> answer;

  UC const *const first = p;

  bool negative = (*p == UC('-'));
  if (!std::is_signed<T>::value && negative) {
    answer.ec = std::errc::invalid_argument;
    answer.ptr = first;
    return answer;
  }
#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
  if ((*p == UC('-')) || (*p == UC('+'))) {
#else
  if (*p == UC('-')) {
#endif
    ++p;
  }

  UC const *const start_num = p;

  while (p != pend && *p == UC('0')) {
    ++p;
  }

  const bool has_leading_zeros = p > start_num;

  UC const *const start_digits = p;

  uint64_t i = 0;
  if (base == 10) {
    loop_parse_if_eight_digits(p, pend, i); // use SIMD if possible
  }
  while (p != pend) {
    uint8_t digit = ch_to_digit(*p);
    if (digit >= base) {
      break;
    }
    i = uint64_t(base) * i + digit; // might overflow, check this later
    p++;
  }

  size_t digit_count = size_t(p - start_digits);

  if (digit_count == 0) {
    if (has_leading_zeros) {
      value = 0;
      answer.ec = std::errc();
      answer.ptr = p;
    } else {
      answer.ec = std::errc::invalid_argument;
      answer.ptr = first;
    }
    return answer;
  }

  answer.ptr = p;

  // check u64 overflow
  size_t max_digits = max_digits_u64(base);
  if (digit_count > max_digits) {
    answer.ec = std::errc::result_out_of_range;
    return answer;
  }
  // this check can be eliminated for all other types, but they will all require
  // a max_digits(base) equivalent
  if (digit_count == max_digits && i < min_safe_u64(base)) {
    answer.ec = std::errc::result_out_of_range;
    return answer;
  }

  // check other types overflow
  if (!std::is_same<T, uint64_t>::value) {
    if (i > uint64_t(std::numeric_limits<T>::max()) + uint64_t(negative)) {
      answer.ec = std::errc::result_out_of_range;
      return answer;
    }
  }

  if (negative) {
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(push)
#pragma warning(disable : 4146)
#endif
    // this weird workaround is required because:
    // - converting unsigned to signed when its value is greater than signed max
    // is UB pre-C++23.
    // - reinterpret_casting (~i + 1) would work, but it is not constexpr
    // this is always optimized into a neg instruction (note: T is an integer
    // type)
    value = T(-std::numeric_limits<T>::max() -
              T(i - uint64_t(std::numeric_limits<T>::max())));
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(pop)
#endif
  } else {
    value = T(i);
  }

  answer.ec = std::errc();
  return answer;
}

} // namespace fast_float

#endif

#ifndef FASTFLOAT_FAST_TABLE_H
#define FASTFLOAT_FAST_TABLE_H

#include <cstdint>

namespace fast_float {

/**
 * When mapping numbers from decimal to binary,
 * we go from w * 10^q to m * 2^p but we have
 * 10^q = 5^q * 2^q, so effectively
 * we are trying to match
 * w * 2^q * 5^q to m * 2^p. Thus the powers of two
 * are not a concern since they can be represented
 * exactly using the binary notation, only the powers of five
 * affect the binary significand.
 */

/**
 * The smallest non-zero float (binary64) is 2^-1074.
 * We take as input numbers of the form w x 10^q where w < 2^64.
 * We have that w * 10^-343  <  2^(64-344) 5^-343 < 2^-1076.
 * However, we have that
 * (2^64-1) * 10^-342 =  (2^64-1) * 2^-342 * 5^-342 > 2^-1074.
 * Thus it is possible for a number of the form w * 10^-342 where
 * w is a 64-bit value to be a non-zero floating-point number.
 *********
 * Any number of form w * 10^309 where w>= 1 is going to be
 * infinite in binary64 so we never need to worry about powers
 * of 5 greater than 308.
 */
template <class unused = void> struct powers_template {

  constexpr static int smallest_power_of_five =
      binary_format<double>::smallest_power_of_ten();
  constexpr static int largest_power_of_five =
      binary_format<double>::largest_power_of_ten();
  constexpr static int number_of_entries =
      2 * (largest_power_of_five - smallest_power_of_five + 1);
  // Powers of five from 5^-342 all the way to 5^308 rounded toward one.
  constexpr static uint64_t power_of_five_128[number_of_entries] = {
      0xeef453d6923bd65a, 0x113faa2906a13b3f,
      0x9558b4661b6565f8, 0x4ac7ca59a424c507,
      0xbaaee17fa23ebf76, 0x5d79bcf00d2df649,
      0xe95a99df8ace6f53, 0xf4d82c2c107973dc,
      0x91d8a02bb6c10594, 0x79071b9b8a4be869,
      0xb64ec836a47146f9, 0x9748e2826cdee284,
      0xe3e27a444d8d98b7, 0xfd1b1b2308169b25,
      0x8e6d8c6ab0787f72, 0xfe30f0f5e50e20f7,
      0xb208ef855c969f4f, 0xbdbd2d335e51a935,
      0xde8b2b66b3bc4723, 0xad2c788035e61382,
      0x8b16fb203055ac76, 0x4c3bcb5021afcc31,
      0xaddcb9e83c6b1793, 0xdf4abe242a1bbf3d,
      0xd953e8624b85dd78, 0xd71d6dad34a2af0d,
      0x87d4713d6f33aa6b, 0x8672648c40e5ad68,
      0xa9c98d8ccb009506, 0x680efdaf511f18c2,
      0xd43bf0effdc0ba48, 0x212bd1b2566def2,
      0x84a57695fe98746d, 0x14bb630f7604b57,
      0xa5ced43b7e3e9188, 0x419ea3bd35385e2d,
      0xcf42894a5dce35ea, 0x52064cac828675b9,
      0x818995ce7aa0e1b2, 0x7343efebd1940993,
      0xa1ebfb4219491a1f, 0x1014ebe6c5f90bf8,
      0xca66fa129f9b60a6, 0xd41a26e077774ef6,
      0xfd00b897478238d0, 0x8920b098955522b4,
      0x9e20735e8cb16382, 0x55b46e5f5d5535b0,
      0xc5a890362fddbc62, 0xeb2189f734aa831d,
      0xf712b443bbd52b7b, 0xa5e9ec7501d523e4,
      0x9a6bb0aa55653b2d, 0x47b233c92125366e,
      0xc1069cd4eabe89f8, 0x999ec0bb696e840a,
      0xf148440a256e2c76, 0xc00670ea43ca250d,
      0x96cd2a865764dbca, 0x380406926a5e5728,
      0xbc807527ed3e12bc, 0xc605083704f5ecf2,
      0xeba09271e88d976b, 0xf7864a44c633682e,
      0x93445b8731587ea3, 0x7ab3ee6afbe0211d,
      0xb8157268fdae9e4c, 0x5960ea05bad82964,
      0xe61acf033d1a45df, 0x6fb92487298e33bd,
      0x8fd0c16206306bab, 0xa5d3b6d479f8e056,
      0xb3c4f1ba87bc8696, 0x8f48a4899877186c,
      0xe0b62e2929aba83c, 0x331acdabfe94de87,
      0x8c71dcd9ba0b4925, 0x9ff0c08b7f1d0b14,
      0xaf8e5410288e1b6f, 0x7ecf0ae5ee44dd9,
      0xdb71e91432b1a24a, 0xc9e82cd9f69d6150,
      0x892731ac9faf056e, 0xbe311c083a225cd2,
      0xab70fe17c79ac6ca, 0x6dbd630a48aaf406,
      0xd64d3d9db981787d, 0x92cbbccdad5b108,
      0x85f0468293f0eb4e, 0x25bbf56008c58ea5,
      0xa76c582338ed2621, 0xaf2af2b80af6f24e,
      0xd1476e2c07286faa, 0x1af5af660db4aee1,
      0x82cca4db847945ca, 0x50d98d9fc890ed4d,
      0xa37fce126597973c, 0xe50ff107bab528a0,
      0xcc5fc196fefd7d0c, 0x1e53ed49a96272c8,
      0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7a,
      0x9faacf3df73609b1, 0x77b191618c54e9ac,
      0xc795830d75038c1d, 0xd59df5b9ef6a2417,
      0xf97ae3d0d2446f25, 0x4b0573286b44ad1d,
      0x9becce62836ac577, 0x4ee367f9430aec32,
      0xc2e801fb244576d5, 0x229c41f793cda73f,
      0xf3a20279ed56d48a, 0x6b43527578c1110f,
      0x9845418c345644d6, 0x830a13896b78aaa9,
      0xbe5691ef416bd60c, 0x23cc986bc656d553,
      0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa8,
      0x94b3a202eb1c3f39, 0x7bf7d71432f3d6a9,
      0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc53,
      0xe858ad248f5c22c9, 0xd1b3400f8f9cff68,
      0x91376c36d99995be, 0x23100809b9c21fa1,
      0xb58547448ffffb2d, 0xabd40a0c2832a78a,
      0xe2e69915b3fff9f9, 0x16c90c8f323f516c,
      0x8dd01fad907ffc3b, 0xae3da7d97f6792e3,
      0xb1442798f49ffb4a, 0x99cd11cfdf41779c,
      0xdd95317f31c7fa1d, 0x40405643d711d583,
      0x8a7d3eef7f1cfc52, 0x482835ea666b2572,
      0xad1c8eab5ee43b66, 0xda3243650005eecf,
      0xd863b256369d4a40, 0x90bed43e40076a82,
      0x873e4f75e2224e68, 0x5a7744a6e804a291,
      0xa90de3535aaae202, 0x711515d0a205cb36,
      0xd3515c2831559a83, 0xd5a5b44ca873e03,
      0x8412d9991ed58091, 0xe858790afe9486c2,
      0xa5178fff668ae0b6, 0x626e974dbe39a872,
      0xce5d73ff402d98e3, 0xfb0a3d212dc8128f,
      0x80fa687f881c7f8e, 0x7ce66634bc9d0b99,
      0xa139029f6a239f72, 0x1c1fffc1ebc44e80,
      0xc987434744ac874e, 0xa327ffb266b56220,
      0xfbe9141915d7a922, 0x4bf1ff9f0062baa8,
      0x9d71ac8fada6c9b5, 0x6f773fc3603db4a9,
      0xc4ce17b399107c22, 0xcb550fb4384d21d3,
      0xf6019da07f549b2b, 0x7e2a53a146606a48,
      0x99c102844f94e0fb, 0x2eda7444cbfc426d,
      0xc0314325637a1939, 0xfa911155fefb5308,
      0xf03d93eebc589f88, 0x793555ab7eba27ca,
      0x96267c7535b763b5, 0x4bc1558b2f3458de,
      0xbbb01b9283253ca2, 0x9eb1aaedfb016f16,
      0xea9c227723ee8bcb, 0x465e15a979c1cadc,
      0x92a1958a7675175f, 0xbfacd89ec191ec9,
      0xb749faed14125d36, 0xcef980ec671f667b,
      0xe51c79a85916f484, 0x82b7e12780e7401a,
      0x8f31cc0937ae58d2, 0xd1b2ecb8b0908810,
      0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa15,
      0xdfbdcece67006ac9, 0x67a791e093e1d49a,
      0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e0,
      0xaecc49914078536d, 0x58fae9f773886e18,
      0xda7f5bf590966848, 0xaf39a475506a899e,
      0x888f99797a5e012d, 0x6d8406c952429603,
      0xaab37fd7d8f58178, 0xc8e5087ba6d33b83,
      0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a64,
      0x855c3be0a17fcd26, 0x5cf2eea09a55067f,
      0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481e,
      0xd0601d8efc57b08b, 0xf13b94daf124da26,
      0x823c12795db6ce57, 0x76c53d08d6b70858,
      0xa2cb1717b52481ed, 0x54768c4b0c64ca6e,
      0xcb7ddcdda26da268, 0xa9942f5dcf7dfd09,
      0xfe5d54150b090b02, 0xd3f93b35435d7c4c,
      0x9efa548d26e5a6e1, 0xc47bc5014a1a6daf,
      0xc6b8e9b0709f109a, 0x359ab6419ca1091b,
      0xf867241c8cc6d4c0, 0xc30163d203c94b62,
      0x9b407691d7fc44f8, 0x79e0de63425dcf1d,
      0xc21094364dfb5636, 0x985915fc12f542e4,
      0xf294b943e17a2bc4, 0x3e6f5b7b17b2939d,
      0x979cf3ca6cec5b5a, 0xa705992ceecf9c42,
      0xbd8430bd08277231, 0x50c6ff782a838353,
      0xece53cec4a314ebd, 0xa4f8bf5635246428,
      0x940f4613ae5ed136, 0x871b7795e136be99,
      0xb913179899f68584, 0x28e2557b59846e3f,
      0xe757dd7ec07426e5, 0x331aeada2fe589cf,
      0x9096ea6f3848984f, 0x3ff0d2c85def7621,
      0xb4bca50b065abe63, 0xfed077a756b53a9,
      0xe1ebce4dc7f16dfb, 0xd3e8495912c62894,
      0x8d3360f09cf6e4bd, 0x64712dd7abbbd95c,
      0xb080392cc4349dec, 0xbd8d794d96aacfb3,
      0xdca04777f541c567, 0xecf0d7a0fc5583a0,
      0x89e42caaf9491b60, 0xf41686c49db57244,
      0xac5d37d5b79b6239, 0x311c2875c522ced5,
      0xd77485cb25823ac7, 0x7d633293366b828b,
      0x86a8d39ef77164bc, 0xae5dff9c02033197,
      0xa8530886b54dbdeb, 0xd9f57f830283fdfc,
      0xd267caa862a12d66, 0xd072df63c324fd7b,
      0x8380dea93da4bc60, 0x4247cb9e59f71e6d,
      0xa46116538d0deb78, 0x52d9be85f074e608,
      0xcd795be870516656, 0x67902e276c921f8b,
      0x806bd9714632dff6, 0xba1cd8a3db53b6,
      0xa086cfcd97bf97f3, 0x80e8a40eccd228a4,
      0xc8a883c0fdaf7df0, 0x6122cd128006b2cd,
      0xfad2a4b13d1b5d6c, 0x796b805720085f81,
      0x9cc3a6eec6311a63, 0xcbe3303674053bb0,
      0xc3f490aa77bd60fc, 0xbedbfc4411068a9c,
      0xf4f1b4d515acb93b, 0xee92fb5515482d44,
      0x991711052d8bf3c5, 0x751bdd152d4d1c4a,
      0xbf5cd54678eef0b6, 0xd262d45a78a0635d,
      0xef340a98172aace4, 0x86fb897116c87c34,
      0x9580869f0e7aac0e, 0xd45d35e6ae3d4da0,
      0xbae0a846d2195712, 0x8974836059cca109,
      0xe998d258869facd7, 0x2bd1a438703fc94b,
      0x91ff83775423cc06, 0x7b6306a34627ddcf,
      0xb67f6455292cbf08, 0x1a3bc84c17b1d542,
      0xe41f3d6a7377eeca, 0x20caba5f1d9e4a93,
      0x8e938662882af53e, 0x547eb47b7282ee9c,
      0xb23867fb2a35b28d, 0xe99e619a4f23aa43,
      0xdec681f9f4c31f31, 0x6405fa00e2ec94d4,
      0x8b3c113c38f9f37e, 0xde83bc408dd3dd04,
      0xae0b158b4738705e, 0x9624ab50b148d445,
      0xd98ddaee19068c76, 0x3badd624dd9b0957,
      0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d6,
      0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4c,
      0xd47487cc8470652b, 0x7647c3200069671f,
      0x84c8d4dfd2c63f3b, 0x29ecd9f40041e073,
      0xa5fb0a17c777cf09, 0xf468107100525890,
      0xcf79cc9db955c2cc, 0x7182148d4066eeb4,
      0x81ac1fe293d599bf, 0xc6f14cd848405530,
      0xa21727db38cb002f, 0xb8ada00e5a506a7c,
      0xca9cf1d206fdc03b, 0xa6d90811f0e4851c,
      0xfd442e4688bd304a, 0x908f4a166d1da663,
      0x9e4a9cec15763e2e, 0x9a598e4e043287fe,
      0xc5dd44271ad3cdba, 0x40eff1e1853f29fd,
      0xf7549530e188c128, 0xd12bee59e68ef47c,
      0x9a94dd3e8cf578b9, 0x82bb74f8301958ce,
      0xc13a148e3032d6e7, 0xe36a52363c1faf01,
      0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac1,
      0x96f5600f15a7b7e5, 0x29ab103a5ef8c0b9,
      0xbcb2b812db11a5de, 0x7415d448f6b6f0e7,
      0xebdf661791d60f56, 0x111b495b3464ad21,
      0x936b9fcebb25c995, 0xcab10dd900beec34,
      0xb84687c269ef3bfb, 0x3d5d514f40eea742,
      0xe65829b3046b0afa, 0xcb4a5a3112a5112,
      0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ab,
      0xb3f4e093db73a093, 0x59ed216765690f56,
      0xe0f218b8d25088b8, 0x306869c13ec3532c,
      0x8c974f7383725573, 0x1e414218c73a13fb,
      0xafbd2350644eeacf, 0xe5d1929ef90898fa,
      0xdbac6c247d62a583, 0xdf45f746b74abf39,
      0x894bc396ce5da772, 0x6b8bba8c328eb783,
      0xab9eb47c81f5114f, 0x66ea92f3f326564,
      0xd686619ba27255a2, 0xc80a537b0efefebd,
      0x8613fd0145877585, 0xbd06742ce95f5f36,
      0xa798fc4196e952e7, 0x2c48113823b73704,
      0xd17f3b51fca3a7a0, 0xf75a15862ca504c5,
      0x82ef85133de648c4, 0x9a984d73dbe722fb,
      0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebba,
      0xcc963fee10b7d1b3, 0x318df905079926a8,
      0xffbbcfe994e5c61f, 0xfdf17746497f7052,
      0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa633,
      0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc0,
      0xf9bd690a1b68637b, 0x3dfdce7aa3c673b0,
      0x9c1661a651213e2d, 0x6bea10ca65c084e,
      0xc31bfa0fe5698db8, 0x486e494fcff30a62,
      0xf3e2f893dec3f126, 0x5a89dba3c3efccfa,
      0x986ddb5c6b3a76b7, 0xf89629465a75e01c,
      0xbe89523386091465, 0xf6bbb397f1135823,
      0xee2ba6c0678b597f, 0x746aa07ded582e2c,
      0x94db483840b717ef, 0xa8c2a44eb4571cdc,
      0xba121a4650e4ddeb, 0x92f34d62616ce413,
      0xe896a0d7e51e1566, 0x77b020baf9c81d17,
      0x915e2486ef32cd60, 0xace1474dc1d122e,
      0xb5b5ada8aaff80b8, 0xd819992132456ba,
      0xe3231912d5bf60e6, 0x10e1fff697ed6c69,
      0x8df5efabc5979c8f, 0xca8d3ffa1ef463c1,
      0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb2,
      0xddd0467c64bce4a0, 0xac7cb3f6d05ddbde,
      0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96b,
      0xad4ab7112eb3929d, 0x86c16c98d2c953c6,
      0xd89d64d57a607744, 0xe871c7bf077ba8b7,
      0x87625f056c7c4a8b, 0x11471cd764ad4972,
      0xa93af6c6c79b5d2d, 0xd598e40d3dd89bcf,
      0xd389b47879823479, 0x4aff1d108d4ec2c3,
      0x843610cb4bf160cb, 0xcedf722a585139ba,
      0xa54394fe1eedb8fe, 0xc2974eb4ee658828,
      0xce947a3da6a9273e, 0x733d226229feea32,
      0x811ccc668829b887, 0x806357d5a3f525f,
      0xa163ff802a3426a8, 0xca07c2dcb0cf26f7,
      0xc9bcff6034c13052, 0xfc89b393dd02f0b5,
      0xfc2c3f3841f17c67, 0xbbac2078d443ace2,
      0x9d9ba7832936edc0, 0xd54b944b84aa4c0d,
      0xc5029163f384a931, 0xa9e795e65d4df11,
      0xf64335bcf065d37d, 0x4d4617b5ff4a16d5,
      0x99ea0196163fa42e, 0x504bced1bf8e4e45,
      0xc06481fb9bcf8d39, 0xe45ec2862f71e1d6,
      0xf07da27a82c37088, 0x5d767327bb4e5a4c,
      0x964e858c91ba2655, 0x3a6a07f8d510f86f,
      0xbbe226efb628afea, 0x890489f70a55368b,
      0xeadab0aba3b2dbe5, 0x2b45ac74ccea842e,
      0x92c8ae6b464fc96f, 0x3b0b8bc90012929d,
      0xb77ada0617e3bbcb, 0x9ce6ebb40173744,
      0xe55990879ddcaabd, 0xcc420a6a101d0515,
      0x8f57fa54c2a9eab6, 0x9fa946824a12232d,
      0xb32df8e9f3546564, 0x47939822dc96abf9,
      0xdff9772470297ebd, 0x59787e2b93bc56f7,
      0x8bfbea76c619ef36, 0x57eb4edb3c55b65a,
      0xaefae51477a06b03, 0xede622920b6b23f1,
      0xdab99e59958885c4, 0xe95fab368e45eced,
      0x88b402f7fd75539b, 0x11dbcb0218ebb414,
      0xaae103b5fcd2a881, 0xd652bdc29f26a119,
      0xd59944a37c0752a2, 0x4be76d3346f0495f,
      0x857fcae62d8493a5, 0x6f70a4400c562ddb,
      0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb952,
      0xd097ad07a71f26b2, 0x7e2000a41346a7a7,
      0x825ecc24c873782f, 0x8ed400668c0c28c8,
      0xa2f67f2dfa90563b, 0x728900802f0f32fa,
      0xcbb41ef979346bca, 0x4f2b40a03ad2ffb9,
      0xfea126b7d78186bc, 0xe2f610c84987bfa8,
      0x9f24b832e6b0f436, 0xdd9ca7d2df4d7c9,
      0xc6ede63fa05d3143, 0x91503d1c79720dbb,
      0xf8a95fcf88747d94, 0x75a44c6397ce912a,
      0x9b69dbe1b548ce7c, 0xc986afbe3ee11aba,
      0xc24452da229b021b, 0xfbe85badce996168,
      0xf2d56790ab41c2a2, 0xfae27299423fb9c3,
      0x97c560ba6b0919a5, 0xdccd879fc967d41a,
      0xbdb6b8e905cb600f, 0x5400e987bbc1c920,
      0xed246723473e3813, 0x290123e9aab23b68,
      0x9436c0760c86e30b, 0xf9a0b6720aaf6521,
      0xb94470938fa89bce, 0xf808e40e8d5b3e69,
      0xe7958cb87392c2c2, 0xb60b1d1230b20e04,
      0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c2,
      0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af3,
      0xe2280b6c20dd5232, 0x25c6da63c38de1b0,
      0x8d590723948a535f, 0x579c487e5a38ad0e,
      0xb0af48ec79ace837, 0x2d835a9df0c6d851,
      0xdcdb1b2798182244, 0xf8e431456cf88e65,
      0x8a08f0f8bf0f156b, 0x1b8e9ecb641b58ff,
      0xac8b2d36eed2dac5, 0xe272467e3d222f3f,
      0xd7adf884aa879177, 0x5b0ed81dcc6abb0f,
      0x86ccbb52ea94baea, 0x98e947129fc2b4e9,
      0xa87fea27a539e9a5, 0x3f2398d747b36224,
      0xd29fe4b18e88640e, 0x8eec7f0d19a03aad,
      0x83a3eeeef9153e89, 0x1953cf68300424ac,
      0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd7,
      0xcdb02555653131b6, 0x3792f412cb06794d,
      0x808e17555f3ebf11, 0xe2bbd88bbee40bd0,
      0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec4,
      0xc8de047564d20a8b, 0xf245825a5a445275,
      0xfb158592be068d2e, 0xeed6e2f0f0d56712,
      0x9ced737bb6c4183d, 0x55464dd69685606b,
      0xc428d05aa4751e4c, 0xaa97e14c3c26b886,
      0xf53304714d9265df, 0xd53dd99f4b3066a8,
      0x993fe2c6d07b7fab, 0xe546a8038efe4029,
      0xbf8fdb78849a5f96, 0xde98520472bdd033,
      0xef73d256a5c0f77c, 0x963e66858f6d4440,
      0x95a8637627989aad, 0xdde7001379a44aa8,
      0xbb127c53b17ec159, 0x5560c018580d5d52,
      0xe9d71b689dde71af, 0xaab8f01e6e10b4a6,
      0x9226712162ab070d, 0xcab3961304ca70e8,
      0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d22,
      0xe45c10c42a2b3b05, 0x8cb89a7db77c506a,
      0x8eb98a7a9a5b04e3, 0x77f3608e92adb242,
      0xb267ed1940f1c61c, 0x55f038b237591ed3,
      0xdf01e85f912e37a3, 0x6b6c46dec52f6688,
      0x8b61313bbabce2c6, 0x2323ac4b3b3da015,
      0xae397d8aa96c1b77, 0xabec975e0a0d081a,
      0xd9c7dced53c72255, 0x96e7bd358c904a21,
      0x881cea14545c7575, 0x7e50d64177da2e54,
      0xaa242499697392d2, 0xdde50bd1d5d0b9e9,
      0xd4ad2dbfc3d07787, 0x955e4ec64b44e864,
      0x84ec3c97da624ab4, 0xbd5af13bef0b113e,
      0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58e,
      0xcfb11ead453994ba, 0x67de18eda5814af2,
      0x81ceb32c4b43fcf4, 0x80eacf948770ced7,
      0xa2425ff75e14fc31, 0xa1258379a94d028d,
      0xcad2f7f5359a3b3e, 0x96ee45813a04330,
      0xfd87b5f28300ca0d, 0x8bca9d6e188853fc,
      0x9e74d1b791e07e48, 0x775ea264cf55347e,
      0xc612062576589dda, 0x95364afe032a819e,
      0xf79687aed3eec551, 0x3a83ddbd83f52205,
      0x9abe14cd44753b52, 0xc4926a9672793543,
      0xc16d9a0095928a27, 0x75b7053c0f178294,
      0xf1c90080baf72cb1, 0x5324c68b12dd6339,
      0x971da05074da7bee, 0xd3f6fc16ebca5e04,
      0xbce5086492111aea, 0x88f4bb1ca6bcf585,
      0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6,
      0x9392ee8e921d5d07, 0x3aff322e62439fd0,
      0xb877aa3236a4b449, 0x9befeb9fad487c3,
      0xe69594bec44de15b, 0x4c2ebe687989a9b4,
      0x901d7cf73ab0acd9, 0xf9d37014bf60a11,
      0xb424dc35095cd80f, 0x538484c19ef38c95,
      0xe12e13424bb40e13, 0x2865a5f206b06fba,
      0x8cbccc096f5088cb, 0xf93f87b7442e45d4,
      0xafebff0bcb24aafe, 0xf78f69a51539d749,
      0xdbe6fecebdedd5be, 0xb573440e5a884d1c,
      0x89705f4136b4a597, 0x31680a88f8953031,
      0xabcc77118461cefc, 0xfdc20d2b36ba7c3e,
      0xd6bf94d5e57a42bc, 0x3d32907604691b4d,
      0x8637bd05af6c69b5, 0xa63f9a49c2c1b110,
      0xa7c5ac471b478423, 0xfcf80dc33721d54,
      0xd1b71758e219652b, 0xd3c36113404ea4a9,
      0x83126e978d4fdf3b, 0x645a1cac083126ea,
      0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4,
      0xcccccccccccccccc, 0xcccccccccccccccd,
      0x8000000000000000, 0x0,
      0xa000000000000000, 0x0,
      0xc800000000000000, 0x0,
      0xfa00000000000000, 0x0,
      0x9c40000000000000, 0x0,
      0xc350000000000000, 0x0,
      0xf424000000000000, 0x0,
      0x9896800000000000, 0x0,
      0xbebc200000000000, 0x0,
      0xee6b280000000000, 0x0,
      0x9502f90000000000, 0x0,
      0xba43b74000000000, 0x0,
      0xe8d4a51000000000, 0x0,
      0x9184e72a00000000, 0x0,
      0xb5e620f480000000, 0x0,
      0xe35fa931a0000000, 0x0,
      0x8e1bc9bf04000000, 0x0,
      0xb1a2bc2ec5000000, 0x0,
      0xde0b6b3a76400000, 0x0,
      0x8ac7230489e80000, 0x0,
      0xad78ebc5ac620000, 0x0,
      0xd8d726b7177a8000, 0x0,
      0x878678326eac9000, 0x0,
      0xa968163f0a57b400, 0x0,
      0xd3c21bcecceda100, 0x0,
      0x84595161401484a0, 0x0,
      0xa56fa5b99019a5c8, 0x0,
      0xcecb8f27f4200f3a, 0x0,
      0x813f3978f8940984, 0x4000000000000000,
      0xa18f07d736b90be5, 0x5000000000000000,
      0xc9f2c9cd04674ede, 0xa400000000000000,
      0xfc6f7c4045812296, 0x4d00000000000000,
      0x9dc5ada82b70b59d, 0xf020000000000000,
      0xc5371912364ce305, 0x6c28000000000000,
      0xf684df56c3e01bc6, 0xc732000000000000,
      0x9a130b963a6c115c, 0x3c7f400000000000,
      0xc097ce7bc90715b3, 0x4b9f100000000000,
      0xf0bdc21abb48db20, 0x1e86d40000000000,
      0x96769950b50d88f4, 0x1314448000000000,
      0xbc143fa4e250eb31, 0x17d955a000000000,
      0xeb194f8e1ae525fd, 0x5dcfab0800000000,
      0x92efd1b8d0cf37be, 0x5aa1cae500000000,
      0xb7abc627050305ad, 0xf14a3d9e40000000,
      0xe596b7b0c643c719, 0x6d9ccd05d0000000,
      0x8f7e32ce7bea5c6f, 0xe4820023a2000000,
      0xb35dbf821ae4f38b, 0xdda2802c8a800000,
      0xe0352f62a19e306e, 0xd50b2037ad200000,
      0x8c213d9da502de45, 0x4526f422cc340000,
      0xaf298d050e4395d6, 0x9670b12b7f410000,
      0xdaf3f04651d47b4c, 0x3c0cdd765f114000,
      0x88d8762bf324cd0f, 0xa5880a69fb6ac800,
      0xab0e93b6efee0053, 0x8eea0d047a457a00,
      0xd5d238a4abe98068, 0x72a4904598d6d880,
      0x85a36366eb71f041, 0x47a6da2b7f864750,
      0xa70c3c40a64e6c51, 0x999090b65f67d924,
      0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d,
      0x82818f1281ed449f, 0xbff8f10e7a8921a4,
      0xa321f2d7226895c7, 0xaff72d52192b6a0d,
      0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490,
      0xfee50b7025c36a08, 0x2f236d04753d5b4,
      0x9f4f2726179a2245, 0x1d762422c946590,
      0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5,
      0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2,
      0x9b934c3b330c8577, 0x63cc55f49f88eb2f,
      0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb,
      0xf316271c7fc3908a, 0x8bef464e3945ef7a,
      0x97edd871cfda3a56, 0x97758bf0e3cbb5ac,
      0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317,
      0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd,
      0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a,
      0xb975d6b6ee39e436, 0xb3e2fd538e122b44,
      0xe7d34c64a9c85d44, 0x60dbbca87196b616,
      0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd,
      0xb51d13aea4a488dd, 0x6babab6398bdbe41,
      0xe264589a4dcdab14, 0xc696963c7eed2dd1,
      0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2,
      0xb0de65388cc8ada8, 0x3b25a55f43294bcb,
      0xdd15fe86affad912, 0x49ef0eb713f39ebe,
      0x8a2dbf142dfcc7ab, 0x6e3569326c784337,
      0xacb92ed9397bf996, 0x49c2c37f07965404,
      0xd7e77a8f87daf7fb, 0xdc33745ec97be906,
      0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3,
      0xa8acd7c0222311bc, 0xc40832ea0d68ce0c,
      0xd2d80db02aabd62b, 0xf50a3fa490c30190,
      0x83c7088e1aab65db, 0x792667c6da79e0fa,
      0xa4b8cab1a1563f52, 0x577001b891185938,
      0xcde6fd5e09abcf26, 0xed4c0226b55e6f86,
      0x80b05e5ac60b6178, 0x544f8158315b05b4,
      0xa0dc75f1778e39d6, 0x696361ae3db1c721,
      0xc913936dd571c84c, 0x3bc3a19cd1e38e9,
      0xfb5878494ace3a5f, 0x4ab48a04065c723,
      0x9d174b2dcec0e47b, 0x62eb0d64283f9c76,
      0xc45d1df942711d9a, 0x3ba5d0bd324f8394,
      0xf5746577930d6500, 0xca8f44ec7ee36479,
      0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb,
      0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e,
      0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e,
      0x95d04aee3b80ece5, 0xbba1f1d158724a12,
      0xbb445da9ca61281f, 0x2a8a6e45ae8edc97,
      0xea1575143cf97226, 0xf52d09d71a3293bd,
      0x924d692ca61be758, 0x593c2626705f9c56,
      0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c,
      0xe498f455c38b997a, 0xb6dfb9c0f956447,
      0x8edf98b59a373fec, 0x4724bd4189bd5eac,
      0xb2977ee300c50fe7, 0x58edec91ec2cb657,
      0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed,
      0x8b865b215899f46c, 0xbd79e0d20082ee74,
      0xae67f1e9aec07187, 0xecd8590680a3aa11,
      0xda01ee641a708de9, 0xe80e6f4820cc9495,
      0x884134fe908658b2, 0x3109058d147fdcdd,
      0xaa51823e34a7eede, 0xbd4b46f0599fd415,
      0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a,
      0x850fadc09923329e, 0x3e2cf6bc604ddb0,
      0xa6539930bf6bff45, 0x84db8346b786151c,
      0xcfe87f7cef46ff16, 0xe612641865679a63,
      0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e,
      0xa26da3999aef7749, 0xe3be5e330f38f09d,
      0xcb090c8001ab551c, 0x5cadf5bfd3072cc5,
      0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6,
      0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa,
      0xc646d63501a1511d, 0xb281e1fd541501b8,
      0xf7d88bc24209a565, 0x1f225a7ca91a4226,
      0x9ae757596946075f, 0x3375788de9b06958,
      0xc1a12d2fc3978937, 0x52d6b1641c83ae,
      0xf209787bb47d6b84, 0xc0678c5dbd23a49a,
      0x9745eb4d50ce6332, 0xf840b7ba963646e0,
      0xbd176620a501fbff, 0xb650e5a93bc3d898,
      0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe,
      0x93ba47c980e98cdf, 0xc66f336c36b10137,
      0xb8a8d9bbe123f017, 0xb80b0047445d4184,
      0xe6d3102ad96cec1d, 0xa60dc059157491e5,
      0x9043ea1ac7e41392, 0x87c89837ad68db2f,
      0xb454e4a179dd1877, 0x29babe4598c311fb,
      0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a,
      0x8ce2529e2734bb1d, 0x1899e4a65f58660c,
      0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f,
      0xdc21a1171d42645d, 0x76707543f4fa1f73,
      0x899504ae72497eba, 0x6a06494a791c53a8,
      0xabfa45da0edbde69, 0x487db9d17636892,
      0xd6f8d7509292d603, 0x45a9d2845d3c42b6,
      0x865b86925b9bc5c2, 0xb8a2392ba45a9b2,
      0xa7f26836f282b732, 0x8e6cac7768d7141e,
      0xd1ef0244af2364ff, 0x3207d795430cd926,
      0x8335616aed761f1f, 0x7f44e6bd49e807b8,
      0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6,
      0xcd036837130890a1, 0x36dba887c37a8c0f,
      0x802221226be55a64, 0xc2494954da2c9789,
      0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c,
      0xc83553c5c8965d3d, 0x6f92829494e5acc7,
      0xfa42a8b73abbf48c, 0xcb772339ba1f17f9,
      0x9c69a97284b578d7, 0xff2a760414536efb,
      0xc38413cf25e2d70d, 0xfef5138519684aba,
      0xf46518c2ef5b8cd1, 0x7eb258665fc25d69,
      0x98bf2f79d5993802, 0xef2f773ffbd97a61,
      0xbeeefb584aff8603, 0xaafb550ffacfd8fa,
      0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38,
      0x952ab45cfa97a0b2, 0xdd945a747bf26183,
      0xba756174393d88df, 0x94f971119aeef9e4,
      0xe912b9d1478ceb17, 0x7a37cd5601aab85d,
      0x91abb422ccb812ee, 0xac62e055c10ab33a,
      0xb616a12b7fe617aa, 0x577b986b314d6009,
      0xe39c49765fdf9d94, 0xed5a7e85fda0b80b,
      0x8e41ade9fbebc27d, 0x14588f13be847307,
      0xb1d219647ae6b31c, 0x596eb2d8ae258fc8,
      0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb,
      0x8aec23d680043bee, 0x25de7bb9480d5854,
      0xada72ccc20054ae9, 0xaf561aa79a10ae6a,
      0xd910f7ff28069da4, 0x1b2ba1518094da04,
      0x87aa9aff79042286, 0x90fb44d2f05d0842,
      0xa99541bf57452b28, 0x353a1607ac744a53,
      0xd3fa922f2d1675f2, 0x42889b8997915ce8,
      0x847c9b5d7c2e09b7, 0x69956135febada11,
      0xa59bc234db398c25, 0x43fab9837e699095,
      0xcf02b2c21207ef2e, 0x94f967e45e03f4bb,
      0x8161afb94b44f57d, 0x1d1be0eebac278f5,
      0xa1ba1ba79e1632dc, 0x6462d92a69731732,
      0xca28a291859bbf93, 0x7d7b8f7503cfdcfe,
      0xfcb2cb35e702af78, 0x5cda735244c3d43e,
      0x9defbf01b061adab, 0x3a0888136afa64a7,
      0xc56baec21c7a1916, 0x88aaa1845b8fdd0,
      0xf6c69a72a3989f5b, 0x8aad549e57273d45,
      0x9a3c2087a63f6399, 0x36ac54e2f678864b,
      0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd,
      0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5,
      0x969eb7c47859e743, 0x9f644ae5a4b1b325,
      0xbc4665b596706114, 0x873d5d9f0dde1fee,
      0xeb57ff22fc0c7959, 0xa90cb506d155a7ea,
      0x9316ff75dd87cbd8, 0x9a7f12442d588f2,
      0xb7dcbf5354e9bece, 0xc11ed6d538aeb2f,
      0xe5d3ef282a242e81, 0x8f1668c8a86da5fa,
      0x8fa475791a569d10, 0xf96e017d694487bc,
      0xb38d92d760ec4455, 0x37c981dcc395a9ac,
      0xe070f78d3927556a, 0x85bbe253f47b1417,
      0x8c469ab843b89562, 0x93956d7478ccec8e,
      0xaf58416654a6babb, 0x387ac8d1970027b2,
      0xdb2e51bfe9d0696a, 0x6997b05fcc0319e,
      0x88fcf317f22241e2, 0x441fece3bdf81f03,
      0xab3c2fddeeaad25a, 0xd527e81cad7626c3,
      0xd60b3bd56a5586f1, 0x8a71e223d8d3b074,
      0x85c7056562757456, 0xf6872d5667844e49,
      0xa738c6bebb12d16c, 0xb428f8ac016561db,
      0xd106f86e69d785c7, 0xe13336d701beba52,
      0x82a45b450226b39c, 0xecc0024661173473,
      0xa34d721642b06084, 0x27f002d7f95d0190,
      0xcc20ce9bd35c78a5, 0x31ec038df7b441f4,
      0xff290242c83396ce, 0x7e67047175a15271,
      0x9f79a169bd203e41, 0xf0062c6e984d386,
      0xc75809c42c684dd1, 0x52c07b78a3e60868,
      0xf92e0c3537826145, 0xa7709a56ccdf8a82,
      0x9bbcc7a142b17ccb, 0x88a66076400bb691,
      0xc2abf989935ddbfe, 0x6acff893d00ea435,
      0xf356f7ebf83552fe, 0x583f6b8c4124d43,
      0x98165af37b2153de, 0xc3727a337a8b704a,
      0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c,
      0xeda2ee1c7064130c, 0x1162def06f79df73,
      0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8,
      0xb9a74a0637ce2ee1, 0x6d953e2bd7173692,
      0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437,
      0x910ab1d4db9914a0, 0x1d9c9892400a22a2,
      0xb54d5e4a127f59c8, 0x2503beb6d00cab4b,
      0xe2a0b5dc971f303a, 0x2e44ae64840fd61d,
      0x8da471a9de737e24, 0x5ceaecfed289e5d2,
      0xb10d8e1456105dad, 0x7425a83e872c5f47,
      0xdd50f1996b947518, 0xd12f124e28f77719,
      0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f,
      0xace73cbfdc0bfb7b, 0x636cc64d1001550b,
      0xd8210befd30efa5a, 0x3c47f7e05401aa4e,
      0x8714a775e3e95c78, 0x65acfaec34810a71,
      0xa8d9d1535ce3b396, 0x7f1839a741a14d0d,
      0xd31045a8341ca07c, 0x1ede48111209a050,
      0x83ea2b892091e44d, 0x934aed0aab460432,
      0xa4e4b66b68b65d60, 0xf81da84d5617853f,
      0xce1de40642e3f4b9, 0x36251260ab9d668e,
      0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019,
      0xa1075a24e4421730, 0xb24cf65b8612f81f,
      0xc94930ae1d529cfc, 0xdee033f26797b627,
      0xfb9b7cd9a4a7443c, 0x169840ef017da3b1,
      0x9d412e0806e88aa5, 0x8e1f289560ee864e,
      0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2,
      0xf5b5d7ec8acb58a2, 0xae10af696774b1db,
      0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29,
      0xbff610b0cc6edd3f, 0x17fd090a58d32af3,
      0xeff394dcff8a948e, 0xddfc4b4cef07f5b0,
      0x95f83d0a1fb69cd9, 0x4abdaf101564f98e,
      0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1,
      0xea53df5fd18d5513, 0x84c86189216dc5ed,
      0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4,
      0xb7118682dbb66a77, 0x3fbc8c33221dc2a1,
      0xe4d5e82392a40515, 0xfabaf3feaa5334a,
      0x8f05b1163ba6832d, 0x29cb4d87f2a7400e,
      0xb2c71d5bca9023f8, 0x743e20e9ef511012,
      0xdf78e4b2bd342cf6, 0x914da9246b255416,
      0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e,
      0xae9672aba3d0c320, 0xa184ac2473b529b1,
      0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e,
      0x8865899617fb1871, 0x7e2fa67c7a658892,
      0xaa7eebfb9df9de8d, 0xddbb901b98feeab7,
      0xd51ea6fa85785631, 0x552a74227f3ea565,
      0x8533285c936b35de, 0xd53a88958f87275f,
      0xa67ff273b8460356, 0x8a892abaf368f137,
      0xd01fef10a657842c, 0x2d2b7569b0432d85,
      0x8213f56a67f6b29b, 0x9c3b29620e29fc73,
      0xa298f2c501f45f42, 0x8349f3ba91b47b8f,
      0xcb3f2f7642717713, 0x241c70a936219a73,
      0xfe0efb53d30dd4d7, 0xed238cd383aa0110,
      0x9ec95d1463e8a506, 0xf4363804324a40aa,
      0xc67bb4597ce2ce48, 0xb143c6053edcd0d5,
      0xf81aa16fdc1b81da, 0xdd94b7868e94050a,
      0x9b10a4e5e9913128, 0xca7cf2b4191c8326,
      0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0,
      0xf24a01a73cf2dccf, 0xbc633b39673c8cec,
      0x976e41088617ca01, 0xd5be0503e085d813,
      0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18,
      0xec9c459d51852ba2, 0xddf8e7d60ed1219e,
      0x93e1ab8252f33b45, 0xcabb90e5c942b503,
      0xb8da1662e7b00a17, 0x3d6a751f3b936243,
      0xe7109bfba19c0c9d, 0xcc512670a783ad4,
      0x906a617d450187e2, 0x27fb2b80668b24c5,
      0xb484f9dc9641e9da, 0xb1f9f660802dedf6,
      0xe1a63853bbd26451, 0x5e7873f8a0396973,
      0x8d07e33455637eb2, 0xdb0b487b6423e1e8,
      0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62,
      0xdc5c5301c56b75f7, 0x7641a140cc7810fb,
      0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d,
      0xac2820d9623bf429, 0x546345fa9fbdcd44,
      0xd732290fbacaf133, 0xa97c177947ad4095,
      0x867f59a9d4bed6c0, 0x49ed8eabcccc485d,
      0xa81f301449ee8c70, 0x5c68f256bfff5a74,
      0xd226fc195c6a2f8c, 0x73832eec6fff3111,
      0x83585d8fd9c25db7, 0xc831fd53c5ff7eab,
      0xa42e74f3d032f525, 0xba3e7ca8b77f5e55,
      0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb,
      0x80444b5e7aa7cf85, 0x7980d163cf5b81b3,
      0xa0555e361951c366, 0xd7e105bcc332621f,
      0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7,
      0xfa856334878fc150, 0xb14f98f6f0feb951,
      0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3,
      0xc3b8358109e84f07, 0xa862f80ec4700c8,
      0xf4a642e14c6262c8, 0xcd27bb612758c0fa,
      0x98e7e9cccfbd7dbd, 0x8038d51cb897789c,
      0xbf21e44003acdd2c, 0xe0470a63e6bd56c3,
      0xeeea5d5004981478, 0x1858ccfce06cac74,
      0x95527a5202df0ccb, 0xf37801e0c43ebc8,
      0xbaa718e68396cffd, 0xd30560258f54e6ba,
      0xe950df20247c83fd, 0x47c6b82ef32a2069,
      0x91d28b7416cdd27e, 0x4cdc331d57fa5441,
      0xb6472e511c81471d, 0xe0133fe4adf8e952,
      0xe3d8f9e563a198e5, 0x58180fddd97723a6,
      0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648,
  };
};

#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE

template <class unused>
constexpr uint64_t
    powers_template<unused>::power_of_five_128[number_of_entries];

#endif

using powers = powers_template<>;

} // namespace fast_float

#endif

#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H
#define FASTFLOAT_DECIMAL_TO_BINARY_H

#include <cfloat>
#include <cinttypes>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <cstring>

namespace fast_float {

// This will compute or rather approximate w * 5**q and return a pair of 64-bit
// words approximating the result, with the "high" part corresponding to the
// most significant bits and the low part corresponding to the least significant
// bits.
//
template <int bit_precision>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128
compute_product_approximation(int64_t q, uint64_t w) {
  const int index = 2 * int(q - powers::smallest_power_of_five);
  // For small values of q, e.g., q in [0,27], the answer is always exact
  // because The line value128 firstproduct = full_multiplication(w,
  // power_of_five_128[index]); gives the exact answer.
  value128 firstproduct =
      full_multiplication(w, powers::power_of_five_128[index]);
  static_assert((bit_precision >= 0) && (bit_precision <= 64),
                " precision should  be in (0,64]");
  constexpr uint64_t precision_mask =
      (bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision)
                           : uint64_t(0xFFFFFFFFFFFFFFFF);
  if ((firstproduct.high & precision_mask) ==
      precision_mask) { // could further guard with  (lower + w < lower)
    // regarding the second product, we only need secondproduct.high, but our
    // expectation is that the compiler will optimize this extra work away if
    // needed.
    value128 secondproduct =
        full_multiplication(w, powers::power_of_five_128[index + 1]);
    firstproduct.low += secondproduct.high;
    if (secondproduct.high > firstproduct.low) {
      firstproduct.high++;
    }
  }
  return firstproduct;
}

namespace detail {
/**
 * For q in (0,350), we have that
 *  f = (((152170 + 65536) * q ) >> 16);
 * is equal to
 *   floor(p) + q
 * where
 *   p = log(5**q)/log(2) = q * log(5)/log(2)
 *
 * For negative values of q in (-400,0), we have that
 *  f = (((152170 + 65536) * q ) >> 16);
 * is equal to
 *   -ceil(p) + q
 * where
 *   p = log(5**-q)/log(2) = -q * log(5)/log(2)
 */
constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept {
  return (((152170 + 65536) * q) >> 16) + 63;
}
} // namespace detail

// create an adjusted mantissa, biased by the invalid power2
// for significant digits already multiplied by 10 ** q.
template <typename binary>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa
compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept {
  int hilz = int(w >> 63) ^ 1;
  adjusted_mantissa answer;
  answer.mantissa = w << hilz;
  int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent();
  answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 +
                          invalid_am_bias);
  return answer;
}

// w * 10 ** q, without rounding the representation up.
// the power2 in the exponent will be adjusted by invalid_am_bias.
template <typename binary>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
compute_error(int64_t q, uint64_t w) noexcept {
  int lz = leading_zeroes(w);
  w <<= lz;
  value128 product =
      compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
  return compute_error_scaled<binary>(q, product.high, lz);
}

// w * 10 ** q
// The returned value should be a valid ieee64 number that simply need to be
// packed. However, in some very rare cases, the computation will fail. In such
// cases, we return an adjusted_mantissa with a negative power of 2: the caller
// should recompute in such cases.
template <typename binary>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
compute_float(int64_t q, uint64_t w) noexcept {
  adjusted_mantissa answer;
  if ((w == 0) || (q < binary::smallest_power_of_ten())) {
    answer.power2 = 0;
    answer.mantissa = 0;
    // result should be zero
    return answer;
  }
  if (q > binary::largest_power_of_ten()) {
    // we want to get infinity:
    answer.power2 = binary::infinite_power();
    answer.mantissa = 0;
    return answer;
  }
  // At this point in time q is in [powers::smallest_power_of_five,
  // powers::largest_power_of_five].

  // We want the most significant bit of i to be 1. Shift if needed.
  int lz = leading_zeroes(w);
  w <<= lz;

  // The required precision is binary::mantissa_explicit_bits() + 3 because
  // 1. We need the implicit bit
  // 2. We need an extra bit for rounding purposes
  // 3. We might lose a bit due to the "upperbit" routine (result too small,
  // requiring a shift)

  value128 product =
      compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
  // The computed 'product' is always sufficient.
  // Mathematical proof:
  // Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to
  // appear) See script/mushtak_lemire.py

  // The "compute_product_approximation" function can be slightly slower than a
  // branchless approach: value128 product = compute_product(q, w); but in
  // practice, we can win big with the compute_product_approximation if its
  // additional branch is easily predicted. Which is best is data specific.
  int upperbit = int(product.high >> 63);
  int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3;

  answer.mantissa = product.high >> shift;

  answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz -
                          binary::minimum_exponent());
  if (answer.power2 <= 0) { // we have a subnormal?
    // Here have that answer.power2 <= 0 so -answer.power2 >= 0
    if (-answer.power2 + 1 >=
        64) { // if we have more than 64 bits below the minimum exponent, you
              // have a zero for sure.
      answer.power2 = 0;
      answer.mantissa = 0;
      // result should be zero
      return answer;
    }
    // next line is safe because -answer.power2 + 1 < 64
    answer.mantissa >>= -answer.power2 + 1;
    // Thankfully, we can't have both "round-to-even" and subnormals because
    // "round-to-even" only occurs for powers close to 0.
    answer.mantissa += (answer.mantissa & 1); // round up
    answer.mantissa >>= 1;
    // There is a weird scenario where we don't have a subnormal but just.
    // Suppose we start with 2.2250738585072013e-308, we end up
    // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal
    // whereas 0x40000000000000 x 2^-1023-53  is normal. Now, we need to round
    // up 0x3fffffffffffff x 2^-1023-53  and once we do, we are no longer
    // subnormal, but we can only know this after rounding.
    // So we only declare a subnormal if we are smaller than the threshold.
    answer.power2 =
        (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits()))
            ? 0
            : 1;
    return answer;
  }

  // usually, we round *up*, but if we fall right in between and and we have an
  // even basis, we need to round down
  // We are only concerned with the cases where 5**q fits in single 64-bit word.
  if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) &&
      (q <= binary::max_exponent_round_to_even()) &&
      ((answer.mantissa & 3) == 1)) { // we may fall between two floats!
    // To be in-between two floats we need that in doing
    //   answer.mantissa = product.high >> (upperbit + 64 -
    //   binary::mantissa_explicit_bits() - 3);
    // ... we dropped out only zeroes. But if this happened, then we can go
    // back!!!
    if ((answer.mantissa << shift) == product.high) {
      answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up
    }
  }

  answer.mantissa += (answer.mantissa & 1); // round up
  answer.mantissa >>= 1;
  if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) {
    answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits());
    answer.power2++; // undo previous addition
  }

  answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits());
  if (answer.power2 >= binary::infinite_power()) { // infinity
    answer.power2 = binary::infinite_power();
    answer.mantissa = 0;
  }
  return answer;
}

} // namespace fast_float

#endif

#ifndef FASTFLOAT_BIGINT_H
#define FASTFLOAT_BIGINT_H

#include <algorithm>
#include <cstdint>
#include <climits>
#include <cstring>


namespace fast_float {

// the limb width: we want efficient multiplication of double the bits in
// limb, or for 64-bit limbs, at least 64-bit multiplication where we can
// extract the high and low parts efficiently. this is every 64-bit
// architecture except for sparc, which emulates 128-bit multiplication.
// we might have platforms where `CHAR_BIT` is not 8, so let's avoid
// doing `8 * sizeof(limb)`.
#if defined(FASTFLOAT_64BIT) && !defined(__sparc)
#define FASTFLOAT_64BIT_LIMB 1
typedef uint64_t limb;
constexpr size_t limb_bits = 64;
#else
#define FASTFLOAT_32BIT_LIMB
typedef uint32_t limb;
constexpr size_t limb_bits = 32;
#endif

typedef span<limb> limb_span;

// number of bits in a bigint. this needs to be at least the number
// of bits required to store the largest bigint, which is
// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or
// ~3600 bits, so we round to 4000.
constexpr size_t bigint_bits = 4000;
constexpr size_t bigint_limbs = bigint_bits / limb_bits;

// vector-like type that is allocated on the stack. the entire
// buffer is pre-allocated, and only the length changes.
template <uint16_t size> struct stackvec {
  limb data[size];
  // we never need more than 150 limbs
  uint16_t length{0};

  stackvec() = default;
  stackvec(const stackvec &) = delete;
  stackvec &operator=(const stackvec &) = delete;
  stackvec(stackvec &&) = delete;
  stackvec &operator=(stackvec &&other) = delete;

  // create stack vector from existing limb span.
  FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) {
    FASTFLOAT_ASSERT(try_extend(s));
  }

  FASTFLOAT_CONSTEXPR14 limb &operator[](size_t index) noexcept {
    FASTFLOAT_DEBUG_ASSERT(index < length);
    return data[index];
  }
  FASTFLOAT_CONSTEXPR14 const limb &operator[](size_t index) const noexcept {
    FASTFLOAT_DEBUG_ASSERT(index < length);
    return data[index];
  }
  // index from the end of the container
  FASTFLOAT_CONSTEXPR14 const limb &rindex(size_t index) const noexcept {
    FASTFLOAT_DEBUG_ASSERT(index < length);
    size_t rindex = length - index - 1;
    return data[rindex];
  }

  // set the length, without bounds checking.
  FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept {
    length = uint16_t(len);
  }
  constexpr size_t len() const noexcept { return length; }
  constexpr bool is_empty() const noexcept { return length == 0; }
  constexpr size_t capacity() const noexcept { return size; }
  // append item to vector, without bounds checking
  FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept {
    data[length] = value;
    length++;
  }
  // append item to vector, returning if item was added
  FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept {
    if (len() < capacity()) {
      push_unchecked(value);
      return true;
    } else {
      return false;
    }
  }
  // add items to the vector, from a span, without bounds checking
  FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept {
    limb *ptr = data + length;
    std::copy_n(s.ptr, s.len(), ptr);
    set_len(len() + s.len());
  }
  // try to add items to the vector, returning if items were added
  FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept {
    if (len() + s.len() <= capacity()) {
      extend_unchecked(s);
      return true;
    } else {
      return false;
    }
  }
  // resize the vector, without bounds checking
  // if the new size is longer than the vector, assign value to each
  // appended item.
  FASTFLOAT_CONSTEXPR20
  void resize_unchecked(size_t new_len, limb value) noexcept {
    if (new_len > len()) {
      size_t count = new_len - len();
      limb *first = data + len();
      limb *last = first + count;
      ::std::fill(first, last, value);
      set_len(new_len);
    } else {
      set_len(new_len);
    }
  }
  // try to resize the vector, returning if the vector was resized.
  FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept {
    if (new_len > capacity()) {
      return false;
    } else {
      resize_unchecked(new_len, value);
      return true;
    }
  }
  // check if any limbs are non-zero after the given index.
  // this needs to be done in reverse order, since the index
  // is relative to the most significant limbs.
  FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept {
    while (index < len()) {
      if (rindex(index) != 0) {
        return true;
      }
      index++;
    }
    return false;
  }
  // normalize the big integer, so most-significant zero limbs are removed.
  FASTFLOAT_CONSTEXPR14 void normalize() noexcept {
    while (len() > 0 && rindex(0) == 0) {
      length--;
    }
  }
};

fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t
empty_hi64(bool &truncated) noexcept {
  truncated = false;
  return 0;
}

fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
uint64_hi64(uint64_t r0, bool &truncated) noexcept {
  truncated = false;
  int shl = leading_zeroes(r0);
  return r0 << shl;
}

fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
uint64_hi64(uint64_t r0, uint64_t r1, bool &truncated) noexcept {
  int shl = leading_zeroes(r0);
  if (shl == 0) {
    truncated = r1 != 0;
    return r0;
  } else {
    int shr = 64 - shl;
    truncated = (r1 << shl) != 0;
    return (r0 << shl) | (r1 >> shr);
  }
}

fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
uint32_hi64(uint32_t r0, bool &truncated) noexcept {
  return uint64_hi64(r0, truncated);
}

fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
uint32_hi64(uint32_t r0, uint32_t r1, bool &truncated) noexcept {
  uint64_t x0 = r0;
  uint64_t x1 = r1;
  return uint64_hi64((x0 << 32) | x1, truncated);
}

fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool &truncated) noexcept {
  uint64_t x0 = r0;
  uint64_t x1 = r1;
  uint64_t x2 = r2;
  return uint64_hi64(x0, (x1 << 32) | x2, truncated);
}

// add two small integers, checking for overflow.
// we want an efficient operation. for msvc, where
// we don't have built-in intrinsics, this is still
// pretty fast.
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb
scalar_add(limb x, limb y, bool &overflow) noexcept {
  limb z;
// gcc and clang
#if defined(__has_builtin)
#if __has_builtin(__builtin_add_overflow)
  if (!cpp20_and_in_constexpr()) {
    overflow = __builtin_add_overflow(x, y, &z);
    return z;
  }
#endif
#endif

  // generic, this still optimizes correctly on MSVC.
  z = x + y;
  overflow = z < x;
  return z;
}

// multiply two small integers, getting both the high and low bits.
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb
scalar_mul(limb x, limb y, limb &carry) noexcept {
#ifdef FASTFLOAT_64BIT_LIMB
#if defined(__SIZEOF_INT128__)
  // GCC and clang both define it as an extension.
  __uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry);
  carry = limb(z >> limb_bits);
  return limb(z);
#else
  // fallback, no native 128-bit integer multiplication with carry.
  // on msvc, this optimizes identically, somehow.
  value128 z = full_multiplication(x, y);
  bool overflow;
  z.low = scalar_add(z.low, carry, overflow);
  z.high += uint64_t(overflow); // cannot overflow
  carry = z.high;
  return z.low;
#endif
#else
  uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry);
  carry = limb(z >> limb_bits);
  return limb(z);
#endif
}

// add scalar value to bigint starting from offset.
// used in grade school multiplication
template <uint16_t size>
inline FASTFLOAT_CONSTEXPR20 bool small_add_from(stackvec<size> &vec, limb y,
                                                 size_t start) noexcept {
  size_t index = start;
  limb carry = y;
  bool overflow;
  while (carry != 0 && index < vec.len()) {
    vec[index] = scalar_add(vec[index], carry, overflow);
    carry = limb(overflow);
    index += 1;
  }
  if (carry != 0) {
    FASTFLOAT_TRY(vec.try_push(carry));
  }
  return true;
}

// add scalar value to bigint.
template <uint16_t size>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
small_add(stackvec<size> &vec, limb y) noexcept {
  return small_add_from(vec, y, 0);
}

// multiply bigint by scalar value.
template <uint16_t size>
inline FASTFLOAT_CONSTEXPR20 bool small_mul(stackvec<size> &vec,
                                            limb y) noexcept {
  limb carry = 0;
  for (size_t index = 0; index < vec.len(); index++) {
    vec[index] = scalar_mul(vec[index], y, carry);
  }
  if (carry != 0) {
    FASTFLOAT_TRY(vec.try_push(carry));
  }
  return true;
}

// add bigint to bigint starting from index.
// used in grade school multiplication
template <uint16_t size>
FASTFLOAT_CONSTEXPR20 bool large_add_from(stackvec<size> &x, limb_span y,
                                          size_t start) noexcept {
  // the effective x buffer is from `xstart..x.len()`, so exit early
  // if we can't get that current range.
  if (x.len() < start || y.len() > x.len() - start) {
    FASTFLOAT_TRY(x.try_resize(y.len() + start, 0));
  }

  bool carry = false;
  for (size_t index = 0; index < y.len(); index++) {
    limb xi = x[index + start];
    limb yi = y[index];
    bool c1 = false;
    bool c2 = false;
    xi = scalar_add(xi, yi, c1);
    if (carry) {
      xi = scalar_add(xi, 1, c2);
    }
    x[index + start] = xi;
    carry = c1 | c2;
  }

  // handle overflow
  if (carry) {
    FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start));
  }
  return true;
}

// add bigint to bigint.
template <uint16_t size>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
large_add_from(stackvec<size> &x, limb_span y) noexcept {
  return large_add_from(x, y, 0);
}

// grade-school multiplication algorithm
template <uint16_t size>
FASTFLOAT_CONSTEXPR20 bool long_mul(stackvec<size> &x, limb_span y) noexcept {
  limb_span xs = limb_span(x.data, x.len());
  stackvec<size> z(xs);
  limb_span zs = limb_span(z.data, z.len());

  if (y.len() != 0) {
    limb y0 = y[0];
    FASTFLOAT_TRY(small_mul(x, y0));
    for (size_t index = 1; index < y.len(); index++) {
      limb yi = y[index];
      stackvec<size> zi;
      if (yi != 0) {
        // re-use the same buffer throughout
        zi.set_len(0);
        FASTFLOAT_TRY(zi.try_extend(zs));
        FASTFLOAT_TRY(small_mul(zi, yi));
        limb_span zis = limb_span(zi.data, zi.len());
        FASTFLOAT_TRY(large_add_from(x, zis, index));
      }
    }
  }

  x.normalize();
  return true;
}

// grade-school multiplication algorithm
template <uint16_t size>
FASTFLOAT_CONSTEXPR20 bool large_mul(stackvec<size> &x, limb_span y) noexcept {
  if (y.len() == 1) {
    FASTFLOAT_TRY(small_mul(x, y[0]));
  } else {
    FASTFLOAT_TRY(long_mul(x, y));
  }
  return true;
}

template <typename = void> struct pow5_tables {
  static constexpr uint32_t large_step = 135;
  static constexpr uint64_t small_power_of_5[] = {
      1UL,
      5UL,
      25UL,
      125UL,
      625UL,
      3125UL,
      15625UL,
      78125UL,
      390625UL,
      1953125UL,
      9765625UL,
      48828125UL,
      244140625UL,
      1220703125UL,
      6103515625UL,
      30517578125UL,
      152587890625UL,
      762939453125UL,
      3814697265625UL,
      19073486328125UL,
      95367431640625UL,
      476837158203125UL,
      2384185791015625UL,
      11920928955078125UL,
      59604644775390625UL,
      298023223876953125UL,
      1490116119384765625UL,
      7450580596923828125UL,
  };
#ifdef FASTFLOAT_64BIT_LIMB
  constexpr static limb large_power_of_5[] = {
      1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL,
      10482974169319127550UL, 198276706040285095UL};
#else
  constexpr static limb large_power_of_5[] = {
      4279965485U, 329373468U,  4020270615U, 2137533757U, 4287402176U,
      1057042919U, 1071430142U, 2440757623U, 381945767U,  46164893U};
#endif
};

#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE

template <typename T> constexpr uint32_t pow5_tables<T>::large_step;

template <typename T> constexpr uint64_t pow5_tables<T>::small_power_of_5[];

template <typename T> constexpr limb pow5_tables<T>::large_power_of_5[];

#endif

// big integer type. implements a small subset of big integer
// arithmetic, using simple algorithms since asymptotically
// faster algorithms are slower for a small number of limbs.
// all operations assume the big-integer is normalized.
struct bigint : pow5_tables<> {
  // storage of the limbs, in little-endian order.
  stackvec<bigint_limbs> vec;

  FASTFLOAT_CONSTEXPR20 bigint() : vec() {}
  bigint(const bigint &) = delete;
  bigint &operator=(const bigint &) = delete;
  bigint(bigint &&) = delete;
  bigint &operator=(bigint &&other) = delete;

  FASTFLOAT_CONSTEXPR20 bigint(uint64_t value) : vec() {
#ifdef FASTFLOAT_64BIT_LIMB
    vec.push_unchecked(value);
#else
    vec.push_unchecked(uint32_t(value));
    vec.push_unchecked(uint32_t(value >> 32));
#endif
    vec.normalize();
  }

  // get the high 64 bits from the vector, and if bits were truncated.
  // this is to get the significant digits for the float.
  FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool &truncated) const noexcept {
#ifdef FASTFLOAT_64BIT_LIMB
    if (vec.len() == 0) {
      return empty_hi64(truncated);
    } else if (vec.len() == 1) {
      return uint64_hi64(vec.rindex(0), truncated);
    } else {
      uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated);
      truncated |= vec.nonzero(2);
      return result;
    }
#else
    if (vec.len() == 0) {
      return empty_hi64(truncated);
    } else if (vec.len() == 1) {
      return uint32_hi64(vec.rindex(0), truncated);
    } else if (vec.len() == 2) {
      return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated);
    } else {
      uint64_t result =
          uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated);
      truncated |= vec.nonzero(3);
      return result;
    }
#endif
  }

  // compare two big integers, returning the large value.
  // assumes both are normalized. if the return value is
  // negative, other is larger, if the return value is
  // positive, this is larger, otherwise they are equal.
  // the limbs are stored in little-endian order, so we
  // must compare the limbs in ever order.
  FASTFLOAT_CONSTEXPR20 int compare(const bigint &other) const noexcept {
    if (vec.len() > other.vec.len()) {
      return 1;
    } else if (vec.len() < other.vec.len()) {
      return -1;
    } else {
      for (size_t index = vec.len(); index > 0; index--) {
        limb xi = vec[index - 1];
        limb yi = other.vec[index - 1];
        if (xi > yi) {
          return 1;
        } else if (xi < yi) {
          return -1;
        }
      }
      return 0;
    }
  }

  // shift left each limb n bits, carrying over to the new limb
  // returns true if we were able to shift all the digits.
  FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept {
    // Internally, for each item, we shift left by n, and add the previous
    // right shifted limb-bits.
    // For example, we transform (for u8) shifted left 2, to:
    //      b10100100 b01000010
    //      b10 b10010001 b00001000
    FASTFLOAT_DEBUG_ASSERT(n != 0);
    FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8);

    size_t shl = n;
    size_t shr = limb_bits - shl;
    limb prev = 0;
    for (size_t index = 0; index < vec.len(); index++) {
      limb xi = vec[index];
      vec[index] = (xi << shl) | (prev >> shr);
      prev = xi;
    }

    limb carry = prev >> shr;
    if (carry != 0) {
      return vec.try_push(carry);
    }
    return true;
  }

  // move the limbs left by `n` limbs.
  FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept {
    FASTFLOAT_DEBUG_ASSERT(n != 0);
    if (n + vec.len() > vec.capacity()) {
      return false;
    } else if (!vec.is_empty()) {
      // move limbs
      limb *dst = vec.data + n;
      const limb *src = vec.data;
      std::copy_backward(src, src + vec.len(), dst + vec.len());
      // fill in empty limbs
      limb *first = vec.data;
      limb *last = first + n;
      ::std::fill(first, last, 0);
      vec.set_len(n + vec.len());
      return true;
    } else {
      return true;
    }
  }

  // move the limbs left by `n` bits.
  FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept {
    size_t rem = n % limb_bits;
    size_t div = n / limb_bits;
    if (rem != 0) {
      FASTFLOAT_TRY(shl_bits(rem));
    }
    if (div != 0) {
      FASTFLOAT_TRY(shl_limbs(div));
    }
    return true;
  }

  // get the number of leading zeros in the bigint.
  FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept {
    if (vec.is_empty()) {
      return 0;
    } else {
#ifdef FASTFLOAT_64BIT_LIMB
      return leading_zeroes(vec.rindex(0));
#else
      // no use defining a specialized leading_zeroes for a 32-bit type.
      uint64_t r0 = vec.rindex(0);
      return leading_zeroes(r0 << 32);
#endif
    }
  }

  // get the number of bits in the bigint.
  FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept {
    int lz = ctlz();
    return int(limb_bits * vec.len()) - lz;
  }

  FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept { return small_mul(vec, y); }

  FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept { return small_add(vec, y); }

  // multiply as if by 2 raised to a power.
  FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept { return shl(exp); }

  // multiply as if by 5 raised to a power.
  FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept {
    // multiply by a power of 5
    size_t large_length = sizeof(large_power_of_5) / sizeof(limb);
    limb_span large = limb_span(large_power_of_5, large_length);
    while (exp >= large_step) {
      FASTFLOAT_TRY(large_mul(vec, large));
      exp -= large_step;
    }
#ifdef FASTFLOAT_64BIT_LIMB
    uint32_t small_step = 27;
    limb max_native = 7450580596923828125UL;
#else
    uint32_t small_step = 13;
    limb max_native = 1220703125U;
#endif
    while (exp >= small_step) {
      FASTFLOAT_TRY(small_mul(vec, max_native));
      exp -= small_step;
    }
    if (exp != 0) {
      // Work around clang bug https://godbolt.org/z/zedh7rrhc
      // This is similar to https://github.com/llvm/llvm-project/issues/47746,
      // except the workaround described there don't work here
      FASTFLOAT_TRY(small_mul(
          vec, limb(((void)small_power_of_5[0], small_power_of_5[exp]))));
    }

    return true;
  }

  // multiply as if by 10 raised to a power.
  FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept {
    FASTFLOAT_TRY(pow5(exp));
    return pow2(exp);
  }
};

} // namespace fast_float

#endif

#ifndef FASTFLOAT_DIGIT_COMPARISON_H
#define FASTFLOAT_DIGIT_COMPARISON_H

#include <algorithm>
#include <cstdint>
#include <cstring>
#include <iterator>


namespace fast_float {

// 1e0 to 1e19
constexpr static uint64_t powers_of_ten_uint64[] = {1UL,
                                                    10UL,
                                                    100UL,
                                                    1000UL,
                                                    10000UL,
                                                    100000UL,
                                                    1000000UL,
                                                    10000000UL,
                                                    100000000UL,
                                                    1000000000UL,
                                                    10000000000UL,
                                                    100000000000UL,
                                                    1000000000000UL,
                                                    10000000000000UL,
                                                    100000000000000UL,
                                                    1000000000000000UL,
                                                    10000000000000000UL,
                                                    100000000000000000UL,
                                                    1000000000000000000UL,
                                                    10000000000000000000UL};

// calculate the exponent, in scientific notation, of the number.
// this algorithm is not even close to optimized, but it has no practical
// effect on performance: in order to have a faster algorithm, we'd need
// to slow down performance for faster algorithms, and this is still fast.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t
scientific_exponent(parsed_number_string_t<UC> &num) noexcept {
  uint64_t mantissa = num.mantissa;
  int32_t exponent = int32_t(num.exponent);
  while (mantissa >= 10000) {
    mantissa /= 10000;
    exponent += 4;
  }
  while (mantissa >= 100) {
    mantissa /= 100;
    exponent += 2;
  }
  while (mantissa >= 10) {
    mantissa /= 10;
    exponent += 1;
  }
  return exponent;
}

// this converts a native floating-point number to an extended-precision float.
template <typename T>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
to_extended(T value) noexcept {
  using equiv_uint = typename binary_format<T>::equiv_uint;
  constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
  constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
  constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();

  adjusted_mantissa am;
  int32_t bias = binary_format<T>::mantissa_explicit_bits() -
                 binary_format<T>::minimum_exponent();
  equiv_uint bits;
#if FASTFLOAT_HAS_BIT_CAST
  bits = std::bit_cast<equiv_uint>(value);
#else
  ::memcpy(&bits, &value, sizeof(T));
#endif
  if ((bits & exponent_mask) == 0) {
    // denormal
    am.power2 = 1 - bias;
    am.mantissa = bits & mantissa_mask;
  } else {
    // normal
    am.power2 = int32_t((bits & exponent_mask) >>
                        binary_format<T>::mantissa_explicit_bits());
    am.power2 -= bias;
    am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
  }

  return am;
}

// get the extended precision value of the halfway point between b and b+u.
// we are given a native float that represents b, so we need to adjust it
// halfway between b and b+u.
template <typename T>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
to_extended_halfway(T value) noexcept {
  adjusted_mantissa am = to_extended(value);
  am.mantissa <<= 1;
  am.mantissa += 1;
  am.power2 -= 1;
  return am;
}

// round an extended-precision float to the nearest machine float.
template <typename T, typename callback>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa &am,
                                                         callback cb) noexcept {
  int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
  if (-am.power2 >= mantissa_shift) {
    // have a denormal float
    int32_t shift = -am.power2 + 1;
    cb(am, std::min<int32_t>(shift, 64));
    // check for round-up: if rounding-nearest carried us to the hidden bit.
    am.power2 = (am.mantissa <
                 (uint64_t(1) << binary_format<T>::mantissa_explicit_bits()))
                    ? 0
                    : 1;
    return;
  }

  // have a normal float, use the default shift.
  cb(am, mantissa_shift);

  // check for carry
  if (am.mantissa >=
      (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
    am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
    am.power2++;
  }

  // check for infinite: we could have carried to an infinite power
  am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
  if (am.power2 >= binary_format<T>::infinite_power()) {
    am.power2 = binary_format<T>::infinite_power();
    am.mantissa = 0;
  }
}

template <typename callback>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
round_nearest_tie_even(adjusted_mantissa &am, int32_t shift,
                       callback cb) noexcept {
  const uint64_t mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << shift) - 1;
  const uint64_t halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1);
  uint64_t truncated_bits = am.mantissa & mask;
  bool is_above = truncated_bits > halfway;
  bool is_halfway = truncated_bits == halfway;

  // shift digits into position
  if (shift == 64) {
    am.mantissa = 0;
  } else {
    am.mantissa >>= shift;
  }
  am.power2 += shift;

  bool is_odd = (am.mantissa & 1) == 1;
  am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
}

fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
round_down(adjusted_mantissa &am, int32_t shift) noexcept {
  if (shift == 64) {
    am.mantissa = 0;
  } else {
    am.mantissa >>= shift;
  }
  am.power2 += shift;
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
skip_zeros(UC const *&first, UC const *last) noexcept {
  uint64_t val;
  while (!cpp20_and_in_constexpr() &&
         std::distance(first, last) >= int_cmp_len<UC>()) {
    ::memcpy(&val, first, sizeof(uint64_t));
    if (val != int_cmp_zeros<UC>()) {
      break;
    }
    first += int_cmp_len<UC>();
  }
  while (first != last) {
    if (*first != UC('0')) {
      break;
    }
    first++;
  }
}

// determine if any non-zero digits were truncated.
// all characters must be valid digits.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
is_truncated(UC const *first, UC const *last) noexcept {
  // do 8-bit optimizations, can just compare to 8 literal 0s.
  uint64_t val;
  while (!cpp20_and_in_constexpr() &&
         std::distance(first, last) >= int_cmp_len<UC>()) {
    ::memcpy(&val, first, sizeof(uint64_t));
    if (val != int_cmp_zeros<UC>()) {
      return true;
    }
    first += int_cmp_len<UC>();
  }
  while (first != last) {
    if (*first != UC('0')) {
      return true;
    }
    ++first;
  }
  return false;
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
is_truncated(span<const UC> s) noexcept {
  return is_truncated(s.ptr, s.ptr + s.len());
}

template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
parse_eight_digits(const UC *&p, limb &value, size_t &counter,
                   size_t &count) noexcept {
  value = value * 100000000 + parse_eight_digits_unrolled(p);
  p += 8;
  counter += 8;
  count += 8;
}

template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
parse_one_digit(UC const *&p, limb &value, size_t &counter,
                size_t &count) noexcept {
  value = value * 10 + limb(*p - UC('0'));
  p++;
  counter++;
  count++;
}

fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
add_native(bigint &big, limb power, limb value) noexcept {
  big.mul(power);
  big.add(value);
}

fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
round_up_bigint(bigint &big, size_t &count) noexcept {
  // need to round-up the digits, but need to avoid rounding
  // ....9999 to ...10000, which could cause a false halfway point.
  add_native(big, 10, 1);
  count++;
}

// parse the significant digits into a big integer
template <typename UC>
inline FASTFLOAT_CONSTEXPR20 void
parse_mantissa(bigint &result, parsed_number_string_t<UC> &num,
               size_t max_digits, size_t &digits) noexcept {
  // try to minimize the number of big integer and scalar multiplication.
  // therefore, try to parse 8 digits at a time, and multiply by the largest
  // scalar value (9 or 19 digits) for each step.
  size_t counter = 0;
  digits = 0;
  limb value = 0;
#ifdef FASTFLOAT_64BIT_LIMB
  size_t step = 19;
#else
  size_t step = 9;
#endif

  // process all integer digits.
  UC const *p = num.integer.ptr;
  UC const *pend = p + num.integer.len();
  skip_zeros(p, pend);
  // process all digits, in increments of step per loop
  while (p != pend) {
    while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
           (max_digits - digits >= 8)) {
      parse_eight_digits(p, value, counter, digits);
    }
    while (counter < step && p != pend && digits < max_digits) {
      parse_one_digit(p, value, counter, digits);
    }
    if (digits == max_digits) {
      // add the temporary value, then check if we've truncated any digits
      add_native(result, limb(powers_of_ten_uint64[counter]), value);
      bool truncated = is_truncated(p, pend);
      if (num.fraction.ptr != nullptr) {
        truncated |= is_truncated(num.fraction);
      }
      if (truncated) {
        round_up_bigint(result, digits);
      }
      return;
    } else {
      add_native(result, limb(powers_of_ten_uint64[counter]), value);
      counter = 0;
      value = 0;
    }
  }

  // add our fraction digits, if they're available.
  if (num.fraction.ptr != nullptr) {
    p = num.fraction.ptr;
    pend = p + num.fraction.len();
    if (digits == 0) {
      skip_zeros(p, pend);
    }
    // process all digits, in increments of step per loop
    while (p != pend) {
      while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
             (max_digits - digits >= 8)) {
        parse_eight_digits(p, value, counter, digits);
      }
      while (counter < step && p != pend && digits < max_digits) {
        parse_one_digit(p, value, counter, digits);
      }
      if (digits == max_digits) {
        // add the temporary value, then check if we've truncated any digits
        add_native(result, limb(powers_of_ten_uint64[counter]), value);
        bool truncated = is_truncated(p, pend);
        if (truncated) {
          round_up_bigint(result, digits);
        }
        return;
      } else {
        add_native(result, limb(powers_of_ten_uint64[counter]), value);
        counter = 0;
        value = 0;
      }
    }
  }

  if (counter != 0) {
    add_native(result, limb(powers_of_ten_uint64[counter]), value);
  }
}

template <typename T>
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
positive_digit_comp(bigint &bigmant, int32_t exponent) noexcept {
  FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent)));
  adjusted_mantissa answer;
  bool truncated;
  answer.mantissa = bigmant.hi64(truncated);
  int bias = binary_format<T>::mantissa_explicit_bits() -
             binary_format<T>::minimum_exponent();
  answer.power2 = bigmant.bit_length() - 64 + bias;

  round<T>(answer, [truncated](adjusted_mantissa &a, int32_t shift) {
    round_nearest_tie_even(
        a, shift,
        [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
          return is_above || (is_halfway && truncated) ||
                 (is_odd && is_halfway);
        });
  });

  return answer;
}

// the scaling here is quite simple: we have, for the real digits `m * 10^e`,
// and for the theoretical digits `n * 2^f`. Since `e` is always negative,
// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
// we then need to scale by `2^(f- e)`, and then the two significant digits
// are of the same magnitude.
template <typename T>
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp(
    bigint &bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
  bigint &real_digits = bigmant;
  int32_t real_exp = exponent;

  // get the value of `b`, rounded down, and get a bigint representation of b+h
  adjusted_mantissa am_b = am;
  // gcc7 buf: use a lambda to remove the noexcept qualifier bug with
  // -Wnoexcept-type.
  round<T>(am_b,
           [](adjusted_mantissa &a, int32_t shift) { round_down(a, shift); });
  T b;
  to_float(false, am_b, b);
  adjusted_mantissa theor = to_extended_halfway(b);
  bigint theor_digits(theor.mantissa);
  int32_t theor_exp = theor.power2;

  // scale real digits and theor digits to be same power.
  int32_t pow2_exp = theor_exp - real_exp;
  uint32_t pow5_exp = uint32_t(-real_exp);
  if (pow5_exp != 0) {
    FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp));
  }
  if (pow2_exp > 0) {
    FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp)));
  } else if (pow2_exp < 0) {
    FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp)));
  }

  // compare digits, and use it to director rounding
  int ord = real_digits.compare(theor_digits);
  adjusted_mantissa answer = am;
  round<T>(answer, [ord](adjusted_mantissa &a, int32_t shift) {
    round_nearest_tie_even(
        a, shift, [ord](bool is_odd, bool _, bool __) -> bool {
          (void)_;  // not needed, since we've done our comparison
          (void)__; // not needed, since we've done our comparison
          if (ord > 0) {
            return true;
          } else if (ord < 0) {
            return false;
          } else {
            return is_odd;
          }
        });
  });

  return answer;
}

// parse the significant digits as a big integer to unambiguously round the
// the significant digits. here, we are trying to determine how to round
// an extended float representation close to `b+h`, halfway between `b`
// (the float rounded-down) and `b+u`, the next positive float. this
// algorithm is always correct, and uses one of two approaches. when
// the exponent is positive relative to the significant digits (such as
// 1234), we create a big-integer representation, get the high 64-bits,
// determine if any lower bits are truncated, and use that to direct
// rounding. in case of a negative exponent relative to the significant
// digits (such as 1.2345), we create a theoretical representation of
// `b` as a big-integer type, scaled to the same binary exponent as
// the actual digits. we then compare the big integer representations
// of both, and use that to direct rounding.
template <typename T, typename UC>
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
digit_comp(parsed_number_string_t<UC> &num, adjusted_mantissa am) noexcept {
  // remove the invalid exponent bias
  am.power2 -= invalid_am_bias;

  int32_t sci_exp = scientific_exponent(num);
  size_t max_digits = binary_format<T>::max_digits();
  size_t digits = 0;
  bigint bigmant;
  parse_mantissa(bigmant, num, max_digits, digits);
  // can't underflow, since digits is at most max_digits.
  int32_t exponent = sci_exp + 1 - int32_t(digits);
  if (exponent >= 0) {
    return positive_digit_comp<T>(bigmant, exponent);
  } else {
    return negative_digit_comp<T>(bigmant, am, exponent);
  }
}

} // namespace fast_float

#endif

#ifndef FASTFLOAT_PARSE_NUMBER_H
#define FASTFLOAT_PARSE_NUMBER_H


#include <cmath>
#include <cstring>
#include <limits>
#include <system_error>
namespace fast_float {

namespace detail {
/**
 * Special case +inf, -inf, nan, infinity, -infinity.
 * The case comparisons could be made much faster given that we know that the
 * strings a null-free and fixed.
 **/
template <typename T, typename UC>
from_chars_result_t<UC> FASTFLOAT_CONSTEXPR14 parse_infnan(UC const *first,
                                                           UC const *last,
                                                           T &value) noexcept {
  from_chars_result_t<UC> answer{};
  answer.ptr = first;
  answer.ec = std::errc(); // be optimistic
  bool minusSign = false;
  if (*first ==
      UC('-')) { // assume first < last, so dereference without checks;
                 // C++17 20.19.3.(7.1) explicitly forbids '+' here
    minusSign = true;
    ++first;
  }
#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
  if (*first == UC('+')) {
    ++first;
  }
#endif
  if (last - first >= 3) {
    if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) {
      answer.ptr = (first += 3);
      value = minusSign ? -std::numeric_limits<T>::quiet_NaN()
                        : std::numeric_limits<T>::quiet_NaN();
      // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7,
      // C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
      if (first != last && *first == UC('(')) {
        for (UC const *ptr = first + 1; ptr != last; ++ptr) {
          if (*ptr == UC(')')) {
            answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
            break;
          } else if (!((UC('a') <= *ptr && *ptr <= UC('z')) ||
                       (UC('A') <= *ptr && *ptr <= UC('Z')) ||
                       (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_')))
            break; // forbidden char, not nan(n-char-seq-opt)
        }
      }
      return answer;
    }
    if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) {
      if ((last - first >= 8) &&
          fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) {
        answer.ptr = first + 8;
      } else {
        answer.ptr = first + 3;
      }
      value = minusSign ? -std::numeric_limits<T>::infinity()
                        : std::numeric_limits<T>::infinity();
      return answer;
    }
  }
  answer.ec = std::errc::invalid_argument;
  return answer;
}

/**
 * Returns true if the floating-pointing rounding mode is to 'nearest'.
 * It is the default on most system. This function is meant to be inexpensive.
 * Credit : @mwalcott3
 */
fastfloat_really_inline bool rounds_to_nearest() noexcept {
  // https://lemire.me/blog/2020/06/26/gcc-not-nearest/
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
  return false;
#endif
  // See
  // A fast function to check your floating-point rounding mode
  // https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/
  //
  // This function is meant to be equivalent to :
  // prior: #include <cfenv>
  //  return fegetround() == FE_TONEAREST;
  // However, it is expected to be much faster than the fegetround()
  // function call.
  //
  // The volatile keywoard prevents the compiler from computing the function
  // at compile-time.
  // There might be other ways to prevent compile-time optimizations (e.g.,
  // asm). The value does not need to be std::numeric_limits<float>::min(), any
  // small value so that 1 + x should round to 1 would do (after accounting for
  // excess precision, as in 387 instructions).
  static volatile float fmin = std::numeric_limits<float>::min();
  float fmini = fmin; // we copy it so that it gets loaded at most once.
//
// Explanation:
// Only when fegetround() == FE_TONEAREST do we have that
// fmin + 1.0f == 1.0f - fmin.
//
// FE_UPWARD:
//  fmin + 1.0f > 1
//  1.0f - fmin == 1
//
// FE_DOWNWARD or  FE_TOWARDZERO:
//  fmin + 1.0f == 1
//  1.0f - fmin < 1
//
// Note: This may fail to be accurate if fast-math has been
// enabled, as rounding conventions may not apply.
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(push)
//  todo: is there a VS warning?
//  see
//  https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013
#elif defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wfloat-equal"
#elif defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
  return (fmini + 1.0f == 1.0f - fmini);
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(pop)
#elif defined(__clang__)
#pragma clang diagnostic pop
#elif defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
}

} // namespace detail

template <typename T> struct from_chars_caller {
  template <typename UC>
  FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
  call(UC const *first, UC const *last, T &value,
       parse_options_t<UC> options) noexcept {
    return from_chars_advanced(first, last, value, options);
  }
};

#if __STDCPP_FLOAT32_T__ == 1
template <> struct from_chars_caller<std::float32_t> {
  template <typename UC>
  FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
  call(UC const *first, UC const *last, std::float32_t &value,
       parse_options_t<UC> options) noexcept {
    // if std::float32_t is defined, and we are in C++23 mode; macro set for
    // float32; set value to float due to equivalence between float and
    // float32_t
    float val;
    auto ret = from_chars_advanced(first, last, val, options);
    value = val;
    return ret;
  }
};
#endif

#if __STDCPP_FLOAT64_T__ == 1
template <> struct from_chars_caller<std::float64_t> {
  template <typename UC>
  FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
  call(UC const *first, UC const *last, std::float64_t &value,
       parse_options_t<UC> options) noexcept {
    // if std::float64_t is defined, and we are in C++23 mode; macro set for
    // float64; set value as double due to equivalence between double and
    // float64_t
    double val;
    auto ret = from_chars_advanced(first, last, val, options);
    value = val;
    return ret;
  }
};
#endif

template <typename T, typename UC, typename>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars(UC const *first, UC const *last, T &value,
           chars_format fmt /*= chars_format::general*/) noexcept {
  return from_chars_caller<T>::call(first, last, value,
                                    parse_options_t<UC>(fmt));
}

/**
 * This function overload takes parsed_number_string_t structure that is created
 * and populated either by from_chars_advanced function taking chars range and
 * parsing options or other parsing custom function implemented by user.
 */
template <typename T, typename UC>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept {

  static_assert(is_supported_float_type<T>(),
                "only some floating-point types are supported");
  static_assert(is_supported_char_type<UC>(),
                "only char, wchar_t, char16_t and char32_t are supported");

  from_chars_result_t<UC> answer;

  answer.ec = std::errc(); // be optimistic
  answer.ptr = pns.lastmatch;
  // The implementation of the Clinger's fast path is convoluted because
  // we want round-to-nearest in all cases, irrespective of the rounding mode
  // selected on the thread.
  // We proceed optimistically, assuming that detail::rounds_to_nearest()
  // returns true.
  if (binary_format<T>::min_exponent_fast_path() <= pns.exponent &&
      pns.exponent <= binary_format<T>::max_exponent_fast_path() &&
      !pns.too_many_digits) {
    // Unfortunately, the conventional Clinger's fast path is only possible
    // when the system rounds to the nearest float.
    //
    // We expect the next branch to almost always be selected.
    // We could check it first (before the previous branch), but
    // there might be performance advantages at having the check
    // be last.
    if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) {
      // We have that fegetround() == FE_TONEAREST.
      // Next is Clinger's fast path.
      if (pns.mantissa <= binary_format<T>::max_mantissa_fast_path()) {
        value = T(pns.mantissa);
        if (pns.exponent < 0) {
          value = value / binary_format<T>::exact_power_of_ten(-pns.exponent);
        } else {
          value = value * binary_format<T>::exact_power_of_ten(pns.exponent);
        }
        if (pns.negative) {
          value = -value;
        }
        return answer;
      }
    } else {
      // We do not have that fegetround() == FE_TONEAREST.
      // Next is a modified Clinger's fast path, inspired by Jakub Jelínek's
      // proposal
      if (pns.exponent >= 0 &&
          pns.mantissa <=
              binary_format<T>::max_mantissa_fast_path(pns.exponent)) {
#if defined(__clang__) || defined(FASTFLOAT_32BIT)
        // Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD
        if (pns.mantissa == 0) {
          value = pns.negative ? T(-0.) : T(0.);
          return answer;
        }
#endif
        value = T(pns.mantissa) *
                binary_format<T>::exact_power_of_ten(pns.exponent);
        if (pns.negative) {
          value = -value;
        }
        return answer;
      }
    }
  }
  adjusted_mantissa am =
      compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
  if (pns.too_many_digits && am.power2 >= 0) {
    if (am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
      am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa);
    }
  }
  // If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa)
  // and we have an invalid power (am.power2 < 0), then we need to go the long
  // way around again. This is very uncommon.
  if (am.power2 < 0) {
    am = digit_comp<T>(pns, am);
  }
  to_float(pns.negative, am, value);
  // Test for over/underflow.
  if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) ||
      am.power2 == binary_format<T>::infinite_power()) {
    answer.ec = std::errc::result_out_of_range;
  }
  return answer;
}

template <typename T, typename UC>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars_advanced(UC const *first, UC const *last, T &value,
                    parse_options_t<UC> options) noexcept {

  static_assert(is_supported_float_type<T>(),
                "only some floating-point types are supported");
  static_assert(is_supported_char_type<UC>(),
                "only char, wchar_t, char16_t and char32_t are supported");

  from_chars_result_t<UC> answer;
#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
  while ((first != last) && fast_float::is_space(uint8_t(*first))) {
    first++;
  }
#endif
  if (first == last) {
    answer.ec = std::errc::invalid_argument;
    answer.ptr = first;
    return answer;
  }
  parsed_number_string_t<UC> pns =
      parse_number_string<UC>(first, last, options);
  if (!pns.valid) {
    if (options.format & chars_format::no_infnan) {
      answer.ec = std::errc::invalid_argument;
      answer.ptr = first;
      return answer;
    } else {
      return detail::parse_infnan(first, last, value);
    }
  }

  // call overload that takes parsed_number_string_t directly.
  return from_chars_advanced(pns, value);
}

template <typename T, typename UC, typename>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars(UC const *first, UC const *last, T &value, int base) noexcept {
  static_assert(is_supported_char_type<UC>(),
                "only char, wchar_t, char16_t and char32_t are supported");

  from_chars_result_t<UC> answer;
#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
  while ((first != last) && fast_float::is_space(uint8_t(*first))) {
    first++;
  }
#endif
  if (first == last || base < 2 || base > 36) {
    answer.ec = std::errc::invalid_argument;
    answer.ptr = first;
    return answer;
  }
  return parse_int_string(first, last, value, base);
}

} // namespace fast_float

#endif