If a thread unblocks a client blocked in a module command, by using the
RedisMdoule_UnblockClient() API, the event loop may not be awaken until
the next timeout of the multiplexing API or the next unrelated I/O
operation on other clients. We actually want the client to be served
ASAP, so a mechanism is needed in order for the unblocking API to inform
Redis that there is a client to serve ASAP.
This commit fixes the issue using the old trick of the pipe: when a
client needs to be unblocked, a byte is written in a pipe. When we run
the list of clients blocked in modules, we consume all the bytes
written in the pipe. Writes and reads are performed inside the context
of the mutex, so no race is possible in which we consume the bytes that
are actually related to an awake request for a client that should still
be put into the list of clients to unblock.
It was verified that after the fix the server handles the blocked
clients with the expected short delay.
Thanks to @dvirsky for understanding there was such a problem and
reporting it.
If a thread unblocks a client blocked in a module command, by using the
RedisMdoule_UnblockClient() API, the event loop may not be awaken until
the next timeout of the multiplexing API or the next unrelated I/O
operation on other clients. We actually want the client to be served
ASAP, so a mechanism is needed in order for the unblocking API to inform
Redis that there is a client to serve ASAP.
This commit fixes the issue using the old trick of the pipe: when a
client needs to be unblocked, a byte is written in a pipe. When we run
the list of clients blocked in modules, we consume all the bytes
written in the pipe. Writes and reads are performed inside the context
of the mutex, so no race is possible in which we consume the bytes that
are actually related to an awake request for a client that should still
be put into the list of clients to unblock.
It was verified that after the fix the server handles the blocked
clients with the expected short delay.
Thanks to @dvirsky for understanding there was such a problem and
reporting it.
since slave isn't replying to it's master, these errors go unnoticed.
since we don't expect the master to send garbadge to the slave, this should be safe.
(as long as we don't log OOM errors there)
since slave isn't replying to it's master, these errors go unnoticed.
since we don't expect the master to send garbadge to the slave, this should be safe.
(as long as we don't log OOM errors there)
Testing with Solaris C compiler (SunOS 5.11 11.2 sun4v sparc sun4v)
there were issues compiling due to atomicvar.h and running the
tests also failed because of "tail" usage not conform with Solaris
tail implementation. This commit fixes both the issues.
Testing with Solaris C compiler (SunOS 5.11 11.2 sun4v sparc sun4v)
there were issues compiling due to atomicvar.h and running the
tests also failed because of "tail" usage not conform with Solaris
tail implementation. This commit fixes both the issues.
Slow systems like the original Raspberry PI need more time
than 5 seconds to start the script and detect writes.
After fixing the Raspberry PI can pass the unit without issues.