Reset GC state before closing the lua VM to prevent user data to be
wrongly freed while still might be used on destructor callbacks.
Created and publish by Redis in their OSS branch.
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: YaacovHazan <yaacov.hazan@redis.com>
### Problem
Valkey stores scripts in a dictionary (lua_scripts) keyed by their SHA1
hashes, but it needs a way to know which scripts are least recently
used. It uses an LRU list (lua_scripts_lru_list) to keep track of
scripts in usage order. When the list reaches a maximum length, Valkey
evicts the oldest scripts to free memory in both the list and
dictionary. The problem here is that the sds from the LRU list can be
pointing to already freed/moved memory by active defrag that the sds in
the dictionary used to point to. It results in assertion error at [this
line](https://github.com/valkey-io/valkey/blob/unstable/src/eval.c#L519)
### Solution
If we duplicate the sds when adding it to the LRU list, we can create an
independent copy of the script identifier (sha). This duplication
ensures that the sha string in the LRU list remains stable and
unaffected by any defragmentation that could alter or free the original
sds. In addition, dictUnlink doesn't require exact pointer
match([ref](https://github.com/valkey-io/valkey/blob/unstable/src/eval.c#L71-L78))
so this change makes sense to unlink the right dictEntry with the copy
of the sds.
### Reproduce
To reproduce it with tcl test:
1. Disable je_get_defrag_hint in defrag.c to trigger defrag often
2. Execute test script
```
start_server {tags {"auth external:skip"}} {
test {Regression for script LRU crash} {
r config set activedefrag yes
r config set active-defrag-ignore-bytes 1
r config set active-defrag-threshold-lower 0
r config set active-defrag-threshold-upper 1
r config set active-defrag-cycle-min 99
r config set active-defrag-cycle-max 99
for {set i 0} {$i < 100000} {incr i} {
r eval "return $i" 0
}
after 5000;
}
}
```
### Crash info
Crash report:
```
=== REDIS BUG REPORT START: Cut & paste starting from here ===
14044:M 12 Nov 2024 14:51:27.054 # === ASSERTION FAILED ===
14044:M 12 Nov 2024 14:51:27.054 # ==> eval.c:556 'de' is not true
------ STACK TRACE ------
Backtrace:
/usr/bin/redis-server 127.0.0.1:6379 [cluster](luaDeleteFunction+0x148)[0x723708]
/usr/bin/redis-server 127.0.0.1:6379 [cluster](luaCreateFunction+0x26c)[0x724450]
/usr/bin/redis-server 127.0.0.1:6379 [cluster](evalCommand+0x2bc)[0x7254dc]
/usr/bin/redis-server 127.0.0.1:6379 [cluster](call+0x574)[0x5b8d14]
/usr/bin/redis-server 127.0.0.1:6379 [cluster](processCommand+0xc84)[0x5b9b10]
/usr/bin/redis-server 127.0.0.1:6379 [cluster](processCommandAndResetClient+0x11c)[0x6db63c]
/usr/bin/redis-server 127.0.0.1:6379 [cluster](processInputBuffer+0x1b0)[0x6dffd4]
/usr/bin/redis-server 127.0.0.1:6379 [cluster][0x6bd968]
/usr/bin/redis-server 127.0.0.1:6379 [cluster][0x659634]
/usr/bin/redis-server 127.0.0.1:6379 [cluster](amzTLSEventHandler+0x194)[0x6588d8]
/usr/bin/redis-server 127.0.0.1:6379 [cluster][0x750c88]
/usr/bin/redis-server 127.0.0.1:6379 [cluster](aeProcessEvents+0x228)[0x757fa8]
/usr/bin/redis-server 127.0.0.1:6379 [cluster](redisMain+0x478)[0x7786b8]
/lib64/libc.so.6(__libc_start_main+0xe4)[0xffffa7763da4]
/usr/bin/redis-server 127.0.0.1:6379 [cluster][0x5ad3b0]
```
Defrag info:
```
mem_fragmentation_ratio:1.18
mem_fragmentation_bytes:47229992
active_defrag_hits:20561
active_defrag_misses:5878518
active_defrag_key_hits:77
active_defrag_key_misses:212
total_active_defrag_time:29009
```
### Test:
Run the test script to push 100,000 scripts to ensure the LRU list keeps
500 maximum length without any crash.
```
27489:M 14 Nov 2024 20:56:41.583 * LRU List length: 500
27489:M 14 Nov 2024 20:56:41.583 * LRU List length: 500
27489:M 14 Nov 2024 20:56:41.584 * LRU List length: 500
27489:M 14 Nov 2024 20:56:41.584 * LRU List length: 500
27489:M 14 Nov 2024 20:56:41.584 * LRU List length: 500
27489:M 14 Nov 2024 20:56:41.584 * LRU List length: 500
27489:M 14 Nov 2024 20:56:41.584 * LRU List length: 500
27489:M 14 Nov 2024 20:56:41.584 * LRU List length: 500
27489:M 14 Nov 2024 20:56:41.584 * LRU List length: 500
27489:M 14 Nov 2024 20:56:41.584 * LRU List length: 500
27489:M 14 Nov 2024 20:56:41.584 * LRU List length: 500
27489:M 14 Nov 2024 20:56:41.584 * LRU List length: 500
27489:M 14 Nov 2024 20:56:41.584 * LRU List length: 500
[ok]: Regression for script LRU crash (6811 ms)
[1/1 done]: unit/test (7 seconds)
```
---------
Signed-off-by: Seungmin Lee <sungming@amazon.com>
Signed-off-by: Seungmin Lee <155032684+sungming2@users.noreply.github.com>
Co-authored-by: Seungmin Lee <sungming@amazon.com>
Co-authored-by: Binbin <binloveplay1314@qq.com>
The reason is VM_Call will use a fake client without connection,
so we also need to check if c->conn is NULL.
This also affects scripts. If they are called in the script, the
server will crash. Injecting commands into AOF will also cause
startup failure.
Fixes#1054.
Signed-off-by: Binbin <binloveplay1314@qq.com>
sdsAllocSize returns the correct size without consulting the
allocator. Which is much faster than consulting the allocator.
The only exception is SDS_TYPE_5, for which it has to
consult the allocator.
This PR also sets alloc field correctly for embedded string objects.
It assumes that no allocator would allocate a buffer larger
than `259 + sizeof(robj)` for embedded string. We use embedded strings
for strings up to 44 bytes. If this assumption is wrong, the whole
function would require a rewrite. In general case sds type adjustment
might be needed. Such logic should go to sds.c.
---------
Signed-off-by: Vadym Khoptynets <vadymkh@amazon.com>
Update references of copyright being assigned to Salvatore when it was
transferred to Redis Ltd. as per
https://github.com/valkey-io/valkey/issues/544.
---------
Signed-off-by: Pieter Cailliau <pieter@redis.com>
This PR is 1 of 3 PRs intended to achieve the goal of 1 million requests
per second, as detailed by [dan touitou](https://github.com/touitou-dan)
in https://github.com/valkey-io/valkey/issues/22. This PR modifies the
IO threads to be fully asynchronous, which is a first and necessary step
to allow more work offloading and better utilization of the IO threads.
### Current IO threads state:
Valkey IO threads were introduced in Redis 6.0 to allow better
utilization of multi-core machines. Before this, Redis was
single-threaded and could only use one CPU core for network and command
processing. The introduction of IO threads helps in offloading the IO
operations to multiple threads.
**Current IO Threads flow:**
1. Initialization: When Redis starts, it initializes a specified number
of IO threads. These threads are in addition to the main thread, each
thread starts with an empty list, the main thread will populate that
list in each event-loop with pending-read-clients or
pending-write-clients.
2. Read Phase: The main thread accepts incoming connections and reads
requests from clients. The reading of requests are offloaded to IO
threads. The main thread puts the clients ready-to-read in a list and
set the global io_threads_op to IO_THREADS_OP_READ, the IO threads pick
the clients up, perform the read operation and parse the first incoming
command.
3. Command Processing: After reading the requests, command processing is
still single-threaded and handled by the main thread.
4. Write Phase: Similar to the read phase, the write phase is also be
offloaded to IO threads. The main thread prepares the response in the
clients’ output buffer then the main thread puts the client in the list,
and sets the global io_threads_op to the IO_THREADS_OP_WRITE. The IO
threads then pick the clients up and perform the write operation to send
the responses back to clients.
5. Synchronization: The main-thread communicate with the threads on how
many jobs left per each thread with atomic counter. The main-thread
doesn’t access the clients while being handled by the IO threads.
**Issues with current implementation:**
* Underutilized Cores: The current implementation of IO-threads leads to
the underutilization of CPU cores.
* The main thread remains responsible for a significant portion of
IO-related tasks that could be offloaded to IO-threads.
* When the main-thread is processing client’s commands, the IO threads
are idle for a considerable amount of time.
* Notably, the main thread's performance during the IO-related tasks is
constrained by the speed of the slowest IO-thread.
* Limited Offloading: Currently, Since the Main-threads waits
synchronously for the IO threads, the Threads perform only read-parse,
and write operations, with parsing done only for the first command. If
the threads can do work asynchronously we may offload more work to the
threads reducing the load from the main-thread.
* TLS: Currently, we don't support IO threads with TLS (where offloading
IO would be more beneficial) since TLS read/write operations are not
thread-safe with the current implementation.
### Suggested change
Non-blocking main thread - The main thread and IO threads will operate
in parallel to maximize efficiency. The main thread will not be blocked
by IO operations. It will continue to process commands independently of
the IO thread's activities.
**Implementation details**
**Inter-thread communication.**
* We use a static, lock-free ring buffer of fixed size (2048 jobs) for
the main thread to send jobs and for the IO to receive them. If the ring
buffer fills up, the main thread will handle the task itself, acting as
back pressure (in case IO operations are more expensive than command
processing). A static ring buffer is a better candidate than a dynamic
job queue as it eliminates the need for allocation/freeing per job.
* An IO job will be in the format: ` [void* function-call-back | void
*data] `where data is either a client to read/write from and the
function-ptr is the function to be called with the data for example
readQueryFromClient using this format we can use it later to offload
other types of works to the IO threads.
* The Ring buffer is one way from the main-thread to the IO thread, Upon
read/write event the main thread will send a read/write job then in
before sleep it will iterate over the pending read/write clients to
checking for each client if the IO threads has already finished handling
it. The IO thread signals it has finished handling a client read/write
by toggling an atomic flag read_state / write_state on the client
struct.
**Thread Safety**
As suggested in this solution, the IO threads are reading from and
writing to the clients' buffers while the main thread may access those
clients.
We must ensure no race conditions or unsafe access occurs while keeping
the Valkey code simple and lock free.
Minimal Action in the IO Threads
The main change is to limit the IO thread operations to the bare
minimum. The IO thread will access only the client's struct and only the
necessary fields in this struct.
The IO threads will be responsible for the following:
* Read Operation: The IO thread will only read and parse a single
command. It will not update the server stats, handle read errors, or
parsing errors. These tasks will be taken care of by the main thread.
* Write Operation: The IO thread will only write the available data. It
will not free the client's replies, handle write errors, or update the
server statistics.
To achieve this without code duplication, the read/write code has been
refactored into smaller, independent components:
* Functions that perform only the read/parse/write calls.
* Functions that handle the read/parse/write results.
This refactor accounts for the majority of the modifications in this PR.
**Client Struct Safe Access**
As we ensure that the IO threads access memory only within the client
struct, we need to ensure thread safety only for the client's struct's
shared fields.
* Query Buffer
* Command parsing - The main thread will not try to parse a command from
the query buffer when a client is offloaded to the IO thread.
* Client's memory checks in client-cron - The main thread will not
access the client query buffer if it is offloaded and will handle the
querybuf grow/shrink when the client is back.
* CLIENT LIST command - The main thread will busy-wait for the IO thread
to finish handling the client, falling back to the current behavior
where the main thread waits for the IO thread to finish their
processing.
* Output Buffer
* The IO thread will not change the client's bufpos and won't free the
client's reply lists. These actions will be done by the main thread on
the client's return from the IO thread.
* bufpos / block→used: As the main thread may change the bufpos, the
reply-block→used, or add/delete blocks to the reply list while the IO
thread writes, we add two fields to the client struct: io_last_bufpos
and io_last_reply_block. The IO thread will write until the
io_last_bufpos, which was set by the main-thread before sending the
client to the IO thread. If more data has been added to the cob in
between, it will be written in the next write-job. In addition, the main
thread will not trim or merge reply blocks while the client is
offloaded.
* Parsing Fields
* Client's cmd, argc, argv, reqtype, etc., are set during parsing.
* The main thread will indicate to the IO thread not to parse a cmd if
the client is not reset. In this case, the IO thread will only read from
the network and won't attempt to parse a new command.
* The main thread won't access the c→cmd/c→argv in the CLIENT LIST
command as stated before it will busy wait for the IO threads.
* Client Flags
* c→flags, which may be changed by the main thread in multiple places,
won't be accessed by the IO thread. Instead, the main thread will set
the c→io_flags with the information necessary for the IO thread to know
the client's state.
* Client Close
* On freeClient, the main thread will busy wait for the IO thread to
finish processing the client's read/write before proceeding to free the
client.
* Client's Memory Limits
* The IO thread won't handle the qb/cob limits. In case a client crosses
the qb limit, the IO thread will stop reading for it, letting the main
thread know that the client crossed the limit.
**TLS**
TLS is currently not supported with IO threads for the following
reasons:
1. Pending reads - If SSL has pending data that has already been read
from the socket, there is a risk of not calling the read handler again.
To handle this, a list is used to hold the pending clients. With IO
threads, multiple threads can access the list concurrently.
2. Event loop modification - Currently, the TLS code
registers/unregisters the file descriptor from the event loop depending
on the read/write results. With IO threads, multiple threads can modify
the event loop struct simultaneously.
3. The same client can be sent to 2 different threads concurrently
(https://github.com/redis/redis/issues/12540).
Those issues were handled in the current PR:
1. The IO thread only performs the read operation. The main thread will
check for pending reads after the client returns from the IO thread and
will be the only one to access the pending list.
2. The registering/unregistering of events will be similarly postponed
and handled by the main thread only.
3. Each client is being sent to the same dedicated thread (c→id %
num_of_threads).
**Sending Replies Immediately with IO threads.**
Currently, after processing a command, we add the client to the
pending_writes_list. Only after processing all the clients do we send
all the replies. Since the IO threads are now working asynchronously, we
can send the reply immediately after processing the client’s requests,
reducing the command latency. However, if we are using AOF=always, we
must wait for the AOF buffer to be written, in which case we revert to
the current behavior.
**IO threads dynamic adjustment**
Currently, we use an all-or-nothing approach when activating the IO
threads. The current logic is as follows: if the number of pending write
clients is greater than twice the number of threads (including the main
thread), we enable all threads; otherwise, we enable none. For example,
if 8 IO threads are defined, we enable all 8 threads if there are 16
pending clients; else, we enable none.
It makes more sense to enable partial activation of the IO threads. If
we have 10 pending clients, we will enable 5 threads, and so on. This
approach allows for a more granular and efficient allocation of
resources based on the current workload.
In addition, the user will now be able to change the number of I/O
threads at runtime. For example, when decreasing the number of threads
from 4 to 2, threads 3 and 4 will be closed after flushing their job
queues.
**Tests**
Currently, we run the io-threads tests with 4 IO threads
(443d80f168/.github/workflows/daily.yml (L353)).
This means that we will not activate the IO threads unless there are 8
(threads * 2) pending write clients per single loop, which is unlikely
to happened in most of tests, meaning the IO threads are not currently
being tested.
To enforce the main thread to always offload work to the IO threads,
regardless of the number of pending events, we add an
events-per-io-thread configuration with a default value of 2. When set
to 0, this configuration will force the main thread to always offload
work to the IO threads.
When we offload every single read/write operation to the IO threads, the
IO-threads are running with 100% CPU when running multiple tests
concurrently some tests fail as a result of larger than expected command
latencies. To address this issue, we have to add some after or wait_for
calls to some of the tests to ensure they pass with IO threads as well.
Signed-off-by: Uri Yagelnik <uriy@amazon.com>
In some scenarios, the business may not be able to find the
previously used Lua script and only have a SHA signature.
Or there are multiple identical evalsha's args in monitor/slowlog,
and admin is not able to distinguish the script body.
Add a new script subcommmand to show the contents of script
given the scripts sha1. Returns a NOSCRIPT error if the script
is not present in the cache.
Usage: `SCRIPT SHOW sha1`
Complexity: `O(1)`
Closes#604.
Doc PR: https://github.com/valkey-io/valkey-doc/pull/143
---------
Signed-off-by: wei.kukey <wei.kukey@gmail.com>
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: Binbin <binloveplay1314@qq.com>
Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
In ad28d222edcef9d4496fd7a94656013f07dd08e5, we added a Lua eval
scripts eviction. If the script was previously added via EVAL, we
promote it to SCRIPT LOAD, prevent it from being evicted later.
Signed-off-by: Binbin <binloveplay1314@qq.com>
We added some clang-format off comments before we had decided on the
format configuration. Now, it turns out that turning formatting off is
often not necessary.
---------
Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
More rebranding of
* Log messages (#252)
* The DENIED error reply
* Internal function names and comments, mainly Lua API
---------
Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
Remove the unused value duplicate API from dict. It's unused in the codebase and introduces unnecessary overhead.
---------
Signed-off-by: Eran Liberty <eran.liberty@gmail.com>
I have validated that these settings closely match the existing coding
style with one major exception on `BreakBeforeBraces`, which will be
`Attach` going forward. The mixed `BreakBeforeBraces` styles in the
current codebase are hard to imitate and also very odd IMHO - see below
```
if (a == 1) { /*Attach */
}
```
```
if (a == 1 ||
b == 2)
{ /* Why? */
}
```
Please do NOT merge just yet. Will add the github action next once the
style is reviewed/approved.
---------
Signed-off-by: Ping Xie <pingxie@google.com>
This is a preparation for adding clang-format.
These comments prevent automatic formatting in some places. With these
exceptions, we will be able to run clang-format on the rest of the code.
This is a preparation for #323.
---------
Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
Log messages containing "Redis" in some files are changed.
Add macro SERVER_TITLE defined to "Valkey" (uppercase V) is introduced
and used in log messages, so at least it will be easy to patch this
definition to get Redis or any other name in the logs instead of Valkey.
Change "Redis" in some log messages to use %s and SERVER_TITLE.
This is a partial implementation of
https://github.com/valkey-io/valkey/issues/207
---------
Signed-off-by: 0del <bany.y0599@gmail.com>
* Tested it on local instance. This was originally part of
https://github.com/valkey-io/valkey/pull/288 but I am pushing this
separately, so that we can easily merge it into the upcoming release.
```
lua debugger> server ping
<redis> ping
<reply> "+PONG"
lua debugger> redis ping
<redis> ping
<reply> "+PONG"
```
* I also searched for lua debugger related unit tests to add coverage
for this but did not find any relevant test to modify. Leaving it at
that for now.
---------
Signed-off-by: Parth Patel <661497+parthpatel@users.noreply.github.com>
This includes comments used for module API documentation.
* Strategy for replacement: Regex search: `(//|/\*| \*|#).* ("|\()?(r|R)edis( |\.
|'|\n|,|-|\)|")(?!nor the names of its contributors)(?!Ltd.)(?!Labs)(?!Contributors.)`
* Don't edit copyright comments
* Replace "Redis version X.X" -> "Redis OSS version X.X" to distinguish
from newly licensed repository
* Replace "Redis Object" -> "Object"
* Exclude markdown for now
* Don't edit Lua scripting comments referring to redis.X API
* Replace "Redis Protocol" -> "RESP"
* Replace redis-benchmark, -cli, -server, -check-aof/rdb with "valkey-"
prefix
* Most other places, I use best judgement to either remove "Redis", or
replace with "the server" or "server"
Fixes#148
---------
Signed-off-by: Jacob Murphy <jkmurphy@google.com>
Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
These were flagged on the 7.2 build system, which is using the old spell
check. I think we should consider re-adding it as it missed some typos.
Relevant: https://github.com/valkey-io/valkey/pull/72
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
This commit does not remove redis.call/pcall just yet. It also does not
rename Redis in error messages such as "Please specify at least one
argument for this redis lib call". This allows users to maintain full
backwards compatibility while introducing an option to use server.call
for new code.
I verified that the unit tests pass. Also manually verified that the
redis-server responds to server.call invocations within lua scripting.
Also verified that function registration works as expected.
```
[ok]: EVAL - is Lua able to call Redis API? (0 ms)
[ok]: EVAL - is Lua able to call Server API? (1 ms)
[ok]: EVAL - No arguments to redis.call/pcall is considered an error (0 ms)
[ok]: EVAL - No arguments to server.call/pcall is considered an error (1 ms)
```
---------
Signed-off-by: Parth Patel <661497+parthpatel@users.noreply.github.com>
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
In some cases, users will abuse lua eval. Each EVAL call generates
a new lua script, which is added to the lua interpreter and cached
to redis-server, consuming a large amount of memory over time.
Since EVAL is mostly the one that abuses the lua cache, and these
won't have pipeline issues (i.e. the script won't disappear
unexpectedly,
and cause errors like it would with SCRIPT LOAD and EVALSHA),
we implement a plain FIFO LRU eviction only for these (not for
scripts loaded with SCRIPT LOAD).
### Implementation notes:
When not abused we'll probably have less than 100 scripts, and when
abused we'll have many thousands. So we use a hard coded value of 500
scripts. And considering that we don't have many scripts, then unlike
keys, we don't need to worry about the memory usage of keeping a true
sorted LRU linked list. We compute the SHA of each script anyway,
and put the script in a dict, we can store a listNode there, and use
it for quick removal and re-insertion into an LRU list each time the
script is used.
### New interfaces:
At the same time, a new `evicted_scripts` field is added to
INFO, which represents the number of evicted eval scripts. Users
can check it to see if they are abusing EVAL.
### benchmark:
`./src/redis-benchmark -P 10 -n 1000000 -r 10000000000 eval "return
__rand_int__" 0`
The simple abuse of eval benchmark test that will create 1 million EVAL
scripts. The performance has been improved by 50%, and the max latency
has dropped from 500ms to 13ms (this may be caused by table expansion
inside Lua when the number of scripts is large). And in the INFO memory,
it used to consume 120MB (server cache) + 310MB (lua engine), but now
it only consumes 70KB (server cache) + 210KB (lua_engine) because of
the scripts eviction.
For non-abusive case of about 100 EVAL scripts, there's no noticeable
change in performance or memory usage.
### unlikely potentially breaking change:
in theory, a user can maybe load a
script with EVAL and then use EVALSHA to call it (by calculating the
SHA1 value on the client side), it could be that if we read the docs
carefully we'll realized it's a valid scenario, but we suppose it's
extremely rare. So it may happen that EVALSHA acts on a script created
by EVAL, and the script is evicted and EVALSHA returns a NOSCRIPT error.
that is if you have more than 500 scripts being used in the same
transaction / pipeline.
This solves the second point in #13102.
Even if we have SCRIPT FLUSH ASYNC now, when there are a lot of
lua scripts, SCRIPT FLUSH ASYNC will still block the main thread.
This is because lua_close is executed in the main thread, and lua
heap needs to release a lot of memory.
In this PR, we take the current lua instance on lctx.lua and call
lua_close on it in a background thread, to close it in async way.
This is MeirShpilraien's idea.
It was first added to load lua from RDB, see 28dfdca7. After #9812,
we no longer save lua in RDB. luaCreateFunction will only be called
in script load and eval*, both of which are available in the client.
It could be that that some day we'll still want to load scripts from
somewhere that's not a client. This fix is in dead code.
Technically declaring a prototype with an empty declaration has been deprecated since the early days of C, but we never got a warning for it. C2x will apparently be introducing a breaking change if you are using this type of declarator, so Clang 15 has started issuing a warning with -pedantic. Although not apparently a problem for any of the compiler we build on, if feels like the right thing is to properly adhere to the C standard and use (void).
We have cases where we print information (might be important but by
no means an error indicator) with the LL_WARNING level.
Demoting these to LL_NOTICE:
- oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo
- User requested shutdown...
This is also true for cases that we encounter a rare but normal situation.
Demoting to LL_NOTICE. Examples:
- AOF was enabled but there is already another background operation. An AOF background was scheduled to start when possible.
- Connection with master lost.
base on yoav-steinberg's https://github.com/redis/redis/pull/10650#issuecomment-1112280554
and yossigo's https://github.com/redis/redis/pull/10650#pullrequestreview-967677676
* Make it clear that current_client is the root client that was called by
external connection
* add executing_client which is the client that runs the current command
(can be a module or a script)
* Remove script_caller that was used for commands that have CLIENT_SCRIPT
to get the client that called the script. in most cases, that's the current_client,
and in others (when being called from a module), it could be an intermediate
client when we actually want the original one used by the external connection.
bugfixes:
* RM_Call with C flag should log ACL errors with the requested user rather than
the one used by the original client, this also solves a crash when RM_Call is used
with C flag from a detached thread safe context.
* addACLLogEntry would have logged info about the script_caller, but in case the
script was issued by a module command we actually want the current_client. the
exception is when RM_Call is called from a timer event, in which case we don't
have a current_client.
behavior changes:
* client side tracking for scripts now tracks the keys that are read by the script
instead of the keys that are declared by the caller for EVAL
other changes:
* Log both current_client and executing_client in the crash log.
* remove prepareLuaClient and resetLuaClient, being dead code that was forgotten.
* remove scriptTimeSnapshot and snapshot_time and instead add cmd_time_snapshot
that serves all commands and is reset only when execution nesting starts.
* remove code to propagate CLIENT_FORCE_REPL from the executed command
to the script caller since scripts aren't propagated anyway these days and anyway
this flag wouldn't have had an effect since CLIENT_PREVENT_PROP is added by scriptResetRun.
* fix a module GIL violation issue in afterSleep that was introduced in #10300 (unreleased)
As being discussed in #10981 we see a degradation in performance
between v6.2 and v7.0 of Redis on the EVAL command.
After profiling the current unstable branch we can see that we call the
expensive function evalCalcFunctionName twice.
The current "fix" is to basically avoid calling evalCalcFunctionName and
even dictFind(lua_scripts) twice for the same command.
Instead we cache the current script's dictEntry (for both Eval and Functions)
in the current client so we don't have to repeat these calls.
The exception would be when doing an EVAL on a new script that's not yet
in the script cache. in that case we will call evalCalcFunctionName (and even
evalExtractShebangFlags) twice.
Co-authored-by: Oran Agra <oran@redislabs.com>
This pr mainly has the following four changes:
1. Add missing lua_pop in `luaGetFromRegistry`.
This bug affects `redis.register_function`, where `luaGetFromRegistry` in
`luaRegisterFunction` will return null when we call `redis.register_function` nested.
.e.g
```
FUNCTION LOAD "#!lua name=mylib \n local lib=redis \n lib.register_function('f2', function(keys, args) lib.register_function('f1', function () end) end)"
fcall f2 0
````
But since we exit when luaGetFromRegistry returns null, it does not cause the stack to grow indefinitely.
3. When getting `REGISTRY_RUN_CTX_NAME` from the registry, use `serverAssert`
instead of error return. Since none of these lua functions are registered at the time
of function load, scriptRunCtx will never be NULL.
4. Add `serverAssert` for `luaLdbLineHook`, `luaEngineLoadHook`.
5. Remove `luaGetFromRegistry` from `redis_math_random` and
`redis_math_randomseed`, it looks like they are redundant.
The important part is that read-only scripts (not just EVAL_RO
and FCALL_RO, but also ones with `no-writes` executed by normal EVAL or
FCALL), will now be permitted to run during CLIENT PAUSE WRITE (unlike
before where only the _RO commands would be processed).
Other than that, some errors like OOM, READONLY, MASTERDOWN are now
handled by processCommand, rather than the command itself affects the
error string (and even error code in some cases), and command stats.
Besides that, now the `may-replicate` commands, PFCOUNT and PUBLISH, will
be considered `write` commands in scripts and will be blocked in all
read-only scripts just like other write commands.
They'll also be blocked in EVAL_RO (i.e. even for scripts without the
`no-writes` shebang flag.
This commit also hides the `may_replicate` flag from the COMMAND command
output. this is a **breaking change**.
background about may_replicate:
We don't want to expose a no-may-replicate flag or alike to scripts, since we
consider the may-replicate thing an internal concern of redis, that we may
some day get rid of.
In fact, the may-replicate flag was initially introduced to flag EVAL: since
we didn't know what it's gonna do ahead of execution, before function-flags
existed). PUBLISH and PFCOUNT, both of which because they have side effects
which may some day be fixed differently.
code changes:
The changes in eval.c are mostly code re-ordering:
- evalCalcFunctionName is extracted out of evalGenericCommand
- evalExtractShebangFlags is extracted luaCreateFunction
- evalGetCommandFlags is new code
The white list is done by setting a metatable on the global table before initializing
any library. The metatable set the `__newindex` field to a function that check
the white list before adding the field to the table. Fields which is not on the
white list are simply ignored.
After initialization phase is done we protect the global table and each table
that might be reachable from the global table. For each table we also protect
the table metatable if exists.
Use the new `lua_enablereadonlytable` Lua API to protect the global tables of
both evals scripts and functions. For eval scripts, the implemetation is easy,
We simply call `lua_enablereadonlytable` on the global table to turn it into
a readonly table.
On functions its more complecated, we want to be able to switch globals between
load run and function run. To achieve this, we create a new empty table that
acts as the globals table for function, we control the actual globals using metatable
manipulation. Notice that even if the user gets a pointer to the original tables, all
the tables are set to be readonly (using `lua_enablereadonlytable` Lua API) so he can
not change them. The following inlustration better explain the solution:
```
Global table {} <- global table metatable {.__index = __real_globals__}
```
The `__real_globals__` is set depends on the run context (function load or function call).
Why this solution is needed and its not enough to simply switch globals?
When we run in the context of function load and create our functions, our function gets
the current globals that was set when they were created. Replacing the globals after
the creation will not effect them. This is why this trick it mandatory.
Today, Redis wrap the user Lua code with a Lua function.
For example, assuming the user code is:
```
return redis.call('ping')
```
The actual code that would have sent to the Lua interpreter was:
```
f_b3a02c833904802db9c34a3cf1292eee3246df3c() return redis.call('ping') end
```
The wraped code would have been saved on the global dictionary with the
following name: `f_<script sha>` (in our example `f_b3a02c833904802db9c34a3cf1292eee3246df3c`).
This approach allows one user to easily override the implementation a another user code, example:
```
f_b3a02c833904802db9c34a3cf1292eee3246df3c = function() return 'hacked' end
```
Running the above code will cause `evalsha b3a02c833904802db9c34a3cf1292eee3246df3c 0` to return
hacked although it should have returned `pong`.
Another disadventage is that Redis basically runs code on the loading (compiling) phase without been
aware of it. User can do code injection like this:
```
return 1 end <run code on compling phase> function() return 1
```
The wraped code will look like this and the entire `<run code on compling phase>` block will run outside
of eval or evalsha context:
```
f_<sha>() return 1 end <run code on compling phase> function() return 1 end
```
By the convention of errors, there is supposed to be a space between the code and the name.
While looking at some lua stuff I noticed that interpreter errors were not adding the space,
so some clients will try to map the detailed error message into the error.
We have tests that hit this condition, but they were just checking that the string "starts" with ERR.
I updated some other tests with similar incorrect string checking. This isn't complete though, as
there are other ways we check for ERR I didn't fix.
Produces some fun output like:
```
# Errorstats
errorstat_ERR:count=1
errorstat_ERRuser_script_1_:count=1
```
If, for some reason, Redis decides not to execute the script, we need
to pop the function and error handler from Lua stack. Otherwise, eventually
the Lua stack will explode.
Relevant only for 7.0-rc1 and 7.0-rc2.
This PR fix 2 issues on Lua scripting:
* Server error reply statistics (some errors were counted twice).
* Error code and error strings returning from scripts (error code was missing / misplaced).
## Statistics
a Lua script user is considered part of the user application, a sophisticated transaction,
so we want to count an error even if handled silently by the script, but when it is
propagated outwards from the script we don't wanna count it twice. on the other hand,
if the script decides to throw an error on its own (using `redis.error_reply`), we wanna
count that too.
Besides, we do count the `calls` in command statistics for the commands the script calls,
we we should certainly also count `failed_calls`.
So when a simple `eval "return redis.call('set','x','y')" 0` fails, it should count the failed call
to both SET and EVAL, but the `errorstats` and `total_error_replies` should be counted only once.
The PR changes the error object that is raised on errors. Instead of raising a simple Lua
string, Redis will raise a Lua table in the following format:
```
{
err='<error message (including error code)>',
source='<User source file name>',
line='<line where the error happned>',
ignore_error_stats_update=true/false,
}
```
The `luaPushError` function was modified to construct the new error table as describe above.
The `luaRaiseError` was renamed to `luaError` and is now simply called `lua_error` to raise
the table on the top of the Lua stack as the error object.
The reason is that since its functionality is changed, in case some Redis branch / fork uses it,
it's better to have a compilation error than a bug.
The `source` and `line` fields are enriched by the error handler (if possible) and the
`ignore_error_stats_update` is optional and if its not present then the default value is `false`.
If `ignore_error_stats_update` is true, the error will not be counted on the error stats.
When parsing Redis call reply, each error is translated to a Lua table on the format describe
above and the `ignore_error_stats_update` field is set to `true` so we will not count errors
twice (we counted this error when we invoke the command).
The changes in this PR might have been considered as a breaking change for users that used
Lua `pcall` function. Before, the error was a string and now its a table. To keep backward
comparability the PR override the `pcall` implementation and extract the error message from
the error table and return it.
Example of the error stats update:
```
127.0.0.1:6379> lpush l 1
(integer) 2
127.0.0.1:6379> eval "return redis.call('get', 'l')" 0
(error) WRONGTYPE Operation against a key holding the wrong kind of value. script: e471b73f1ef44774987ab00bdf51f21fd9f7974a, on @user_script:1.
127.0.0.1:6379> info Errorstats
# Errorstats
errorstat_WRONGTYPE:count=1
127.0.0.1:6379> info commandstats
# Commandstats
cmdstat_eval:calls=1,usec=341,usec_per_call=341.00,rejected_calls=0,failed_calls=1
cmdstat_info:calls=1,usec=35,usec_per_call=35.00,rejected_calls=0,failed_calls=0
cmdstat_lpush:calls=1,usec=14,usec_per_call=14.00,rejected_calls=0,failed_calls=0
cmdstat_get:calls=1,usec=10,usec_per_call=10.00,rejected_calls=0,failed_calls=1
```
## error message
We can now construct the error message (sent as a reply to the user) from the error table,
so this solves issues where the error message was malformed and the error code appeared
in the middle of the error message:
```diff
127.0.0.1:6379> eval "return redis.call('set','x','y')" 0
-(error) ERR Error running script (call to 71e6319f97b0fe8bdfa1c5df3ce4489946dda479): @user_script:1: OOM command not allowed when used memory > 'maxmemory'.
+(error) OOM command not allowed when used memory > 'maxmemory' @user_script:1. Error running script (call to 71e6319f97b0fe8bdfa1c5df3ce4489946dda479)
```
```diff
127.0.0.1:6379> eval "redis.call('get', 'l')" 0
-(error) ERR Error running script (call to f_8a705cfb9fb09515bfe57ca2bd84a5caee2cbbd1): @user_script:1: WRONGTYPE Operation against a key holding the wrong kind of value
+(error) WRONGTYPE Operation against a key holding the wrong kind of value script: 8a705cfb9fb09515bfe57ca2bd84a5caee2cbbd1, on @user_script:1.
```
Notica that `redis.pcall` was not change:
```
127.0.0.1:6379> eval "return redis.pcall('get', 'l')" 0
(error) WRONGTYPE Operation against a key holding the wrong kind of value
```
## other notes
Notice that Some commands (like GEOADD) changes the cmd variable on the client stats so we
can not count on it to update the command stats. In order to be able to update those stats correctly
we needed to promote `realcmd` variable to be located on the client struct.
Tests was added and modified to verify the changes.
Related PR's: #10279, #10218, #10278, #10309
Co-authored-by: Oran Agra <oran@redislabs.com>
Remove scripts defragger since it was broken since #10126 (released in 7.0 RC1).
would crash the server if defragger starts in a server that contains eval scripts.
In #10126 the global `lua_script` dict became a dict to a custom `luaScript` struct with an internal `robj`
in it instead of a generic `sds` -> `robj` dict. This means we need custom code to defrag it and since scripts
should never really cause much fragmentation it makes more sense to simply remove the defrag code for scripts.
In #10025 we added a mechanism for flagging certain properties for Redis Functions.
This lead us to think we'd like to "port" this mechanism to Redis Scripts (`EVAL`) as well.
One good reason for this, other than the added functionality is because it addresses the
poor behavior we currently have in `EVAL` in case the script performs a (non DENY_OOM) write operation
during OOM state. See #8478 (And a previous attempt to handle it via #10093) for details.
Note that in Redis Functions **all** write operations (including DEL) will return an error during OOM state
unless the function is flagged as `allow-oom` in which case no OOM checking is performed at all.
This PR:
- Enables setting `EVAL` (and `SCRIPT LOAD`) script flags as defined in #10025.
- Provides a syntactical framework via [shebang](https://en.wikipedia.org/wiki/Shebang_(Unix)) for
additional script annotations and even engine selection (instead of just lua) for scripts.
- Provides backwards compatibility so scripts without the new annotations will behave as they did before.
- Appropriate tests.
- Changes `EVAL[SHA]/_RO` to be flagged as `STALE` commands. This makes it possible to flag individual
scripts as `allow-stale` or not flag them as such. In backwards compatibility mode these commands will
return the `MASTERDOWN` error as before.
- Changes `SCRIPT LOAD` to be flagged as a `STALE` command. This is mainly to make it logically
compatible with the change to `EVAL` in the previous point. It enables loading a script on a stale server
which is technically okay it doesn't relate directly to the server's dataset. Running the script does, but that
won't work unless the script is explicitly marked as `allow-stale`.
Note that even though the LUA syntax doesn't support hash tag comments `.lua` files do support a shebang
tag on the top so they can be executed on Unix systems like any shell script. LUA's `luaL_loadfile` handles
this as part of the LUA library. In the case of `luaL_loadbuffer`, which is what Redis uses, I needed to fix the
input script in case of a shebang manually. I did this the same way `luaL_loadfile` does, by replacing the
first line with a single line feed character.
Some modules might perform a long-running logic in different stages of Redis lifetime, for example:
* command execution
* RDB loading
* thread safe context
During this long-running logic Redis is not responsive.
This PR offers
1. An API to process events while a busy command is running (`RM_Yield`)
2. A new flag (`ALLOW_BUSY`) to mark the commands that should be handled during busy
jobs which can also be used by modules (`allow-busy`)
3. In slow commands and thread safe contexts, this flag will start rejecting commands with -BUSY only
after `busy-reply-threshold`
4. During loading (`rdb_load` callback), it'll process events right away (not wait for `busy-reply-threshold`),
but either way, the processing is throttled to the server hz rate.
5. Allow modules to Yield to redis background tasks, but not to client commands
* rename `script-time-limit` to `busy-reply-threshold` (an alias to the pre-7.0 `lua-time-limit`)
Co-authored-by: Oran Agra <oran@redislabs.com>
This commit adds some tests that the test cases will
access the keys with expiration time set in the script call.
There was no test case for this part before. See #10080
Also there is a test will cover #1525. we block the time so
that the key can not expire in the middle of the script execution.
Other changes:
1. Delete `evalTimeSnapshot` and just use `scriptTimeSnapshot` in it's place.
2. Some cleanups to scripting.tcl.
3. better names for tests that run in a loop to make them distinctable
# Background
The main goal of this PR is to remove relevant logics on Lua script verbatim replication,
only keeping effects replication logic, which has been set as default since Redis 5.0.
As a result, Lua in Redis 7.0 would be acting the same as Redis 6.0 with default
configuration from users' point of view.
There are lots of reasons to remove verbatim replication.
Antirez has listed some of the benefits in Issue #5292:
>1. No longer need to explain to users side effects into scripts.
They can do whatever they want.
>2. No need for a cache about scripts that we sent or not to the slaves.
>3. No need to sort the output of certain commands inside scripts
(SMEMBERS and others): this both simplifies and gains speed.
>4. No need to store scripts inside the RDB file in order to startup correctly.
>5. No problems about evicting keys during the script execution.
When looking back at Redis 5.0, antirez and core team decided to set the config
`lua-replicate-commands yes` by default instead of removing verbatim replication
directly, in case some bad situations happened. 3 years later now before Redis 7.0,
it's time to remove it formally.
# Changes
- configuration for lua-replicate-commands removed
- created config file stub for backward compatibility
- Replication script cache removed
- this is useless under script effects replication
- relevant statistics also removed
- script persistence in RDB files is also removed
- Propagation of SCRIPT LOAD and SCRIPT FLUSH to replica / AOF removed
- Deterministic execution logic in scripts removed (i.e. don't run write commands
after random ones, and sorting output of commands with random order)
- the flags indicating which commands have non-deterministic results are kept as hints to clients.
- `redis.replicate_commands()` & `redis.set_repl()` changed
- now `redis.replicate_commands()` does nothing and return an 1
- ...and then `redis.set_repl()` can be issued before `redis.replicate_commands()` now
- Relevant TCL cases adjusted
- DEBUG lua-always-replicate-commands removed
# Other changes
- Fix a recent bug comparing CLIENT_ID_AOF to original_client->flags instead of id. (introduced in #9780)
Co-authored-by: Oran Agra <oran@redislabs.com>
Redis function unit is located inside functions.c
and contains Redis Function implementation:
1. FUNCTION commands:
* FUNCTION CREATE
* FCALL
* FCALL_RO
* FUNCTION DELETE
* FUNCTION KILL
* FUNCTION INFO
2. Register engine
In addition, this commit introduce the first engine
that uses the Redis Function capabilities, the
Lua engine.
The functionality was moved to script_lua.c under
callFunction function. Its purpose is to call the Lua
function already located on the top of the Lua stack.
Used the new function on eval.c to invoke Lua code.
The function will also be used to invoke Lua
code on the Lua engine.
Script unit is a new unit located on script.c.
Its purpose is to provides an API for functions (and eval)
to interact with Redis. Interaction includes mostly
executing commands, but also functionalities like calling
Redis back on long scripts or check if the script was killed.
The interaction is done using a scriptRunCtx object that
need to be created by the user and initialized using scriptPrepareForRun.
Detailed list of functionalities expose by the unit:
1. Calling commands (including all the validation checks such as
acl, cluster, read only run, ...)
2. Set Resp
3. Set Replication method (AOF/REPLICATION/NONE)
4. Call Redis back to on long running scripts to allow Redis reply
to clients and perform script kill
The commit introduce the new unit and uses it on eval commands to
interact with Redis.
The following variable was renamed:
1. lua_caller -> script_caller
2. lua_time_limit -> script_time_limit
3. lua_timedout -> script_timedout
4. lua_oom -> script_oom
5. lua_disable_deny_script -> script_disable_deny_script
6. in_eval -> in_script
The following variables was moved to lctx under eval.c
1. lua
2. lua_client
3. lua_cur_script
4. lua_scripts
5. lua_scripts_mem
6. lua_replicate_commands
7. lua_write_dirty
8. lua_random_dirty
9. lua_multi_emitted
10. lua_repl
11. lua_kill
12. lua_time_start
13. lua_time_snapshot
This commit is in a low risk of introducing any issues and it
is just moving varibales around and not changing any logic.
This commit is only move code around without changing it.
The reason behind this is to make review process easier
by allowing the reviewer to simply ignore all code movements.
changes:
1. rename scripting.c to eval.c
2. introduce and new file, script_lua.c, and move parts of Lua
functionality to this new file. script_lua.c will eventually
contains the shared code between legacy lua and lua engine.
This commit does not compiled on purpose. Its only purpose is to move
code and rename files.