With such information will be able to use a private localtime()
implementation serverLog(), which does not use any locking and is both
thread and fork() safe.
With such information will be able to use a private localtime()
implementation serverLog(), which does not use any locking and is both
thread and fork() safe.
RESTORE now supports:
1. Setting LRU/LFU
2. Absolute-time TTL
Other related changes:
1. RDB loading will not override LRU bits when RDB file
does not contain the LRU opcode.
2. RDB loading will not set LRU/LFU bits if the server's
maxmemory-policy does not match.
RESTORE now supports:
1. Setting LRU/LFU
2. Absolute-time TTL
Other related changes:
1. RDB loading will not override LRU bits when RDB file
does not contain the LRU opcode.
2. RDB loading will not set LRU/LFU bits if the server's
maxmemory-policy does not match.
this reduces the extra 8 bytes we save before each pointer.
but more importantly maybe, it makes the valgrind runs to be more similiar
to our normal runs.
note: the change in malloc_stats struct in server.h is to eliminate an name conflict.
structs that are not typedefed are resolved from a separate name space.
this reduces the extra 8 bytes we save before each pointer.
but more importantly maybe, it makes the valgrind runs to be more similiar
to our normal runs.
note: the change in malloc_stats struct in server.h is to eliminate an name conflict.
structs that are not typedefed are resolved from a separate name space.
Usually blocking operations make a lot of sense with multiple keys so
that we can listen to multiple queues (or whatever the app models) with
a single connection. However in the synchronous case it is more useful
to be able to ask for N elements. This is a change that I also wanted to
perform soon or later in the blocking list variant, but here it is more
natural since there is no reply type difference.
Usually blocking operations make a lot of sense with multiple keys so
that we can listen to multiple queues (or whatever the app models) with
a single connection. However in the synchronous case it is more useful
to be able to ask for N elements. This is a change that I also wanted to
perform soon or later in the blocking list variant, but here it is more
natural since there is no reply type difference.
Implementation notes: as INFO is "already broken", I didn't want to break it further. Instead of computing the server.lua_script dict size on every call, I'm keeping a running sum of the body's length and dict overheads.
This implementation is naive as it **does not** take into consideration dict rehashing, but that inaccuracy pays off in speed ;)
Demo time:
```bash
$ redis-cli info memory | grep "script"
used_memory_scripts:96
used_memory_scripts_human:96B
number_of_cached_scripts:0
$ redis-cli eval "" 0 ; redis-cli info memory | grep "script"
(nil)
used_memory_scripts:120
used_memory_scripts_human:120B
number_of_cached_scripts:1
$ redis-cli script flush ; redis-cli info memory | grep "script"
OK
used_memory_scripts:96
used_memory_scripts_human:96B
number_of_cached_scripts:0
$ redis-cli eval "return('Hello, Script Cache :)')" 0 ; redis-cli info memory | grep "script"
"Hello, Script Cache :)"
used_memory_scripts:152
used_memory_scripts_human:152B
number_of_cached_scripts:1
$ redis-cli eval "return redis.sha1hex(\"return('Hello, Script Cache :)')\")" 0 ; redis-cli info memory | grep "script"
"1be72729d43da5114929c1260a749073732dc822"
used_memory_scripts:232
used_memory_scripts_human:232B
number_of_cached_scripts:2
✔ 19:03:54 redis [lua_scripts-in-info-memory L ✚…⚑] $ redis-cli evalsha 1be72729d43da5114929c1260a749073732dc822 0
"Hello, Script Cache :)"
```
Implementation notes: as INFO is "already broken", I didn't want to break it further. Instead of computing the server.lua_script dict size on every call, I'm keeping a running sum of the body's length and dict overheads.
This implementation is naive as it **does not** take into consideration dict rehashing, but that inaccuracy pays off in speed ;)
Demo time:
```bash
$ redis-cli info memory | grep "script"
used_memory_scripts:96
used_memory_scripts_human:96B
number_of_cached_scripts:0
$ redis-cli eval "" 0 ; redis-cli info memory | grep "script"
(nil)
used_memory_scripts:120
used_memory_scripts_human:120B
number_of_cached_scripts:1
$ redis-cli script flush ; redis-cli info memory | grep "script"
OK
used_memory_scripts:96
used_memory_scripts_human:96B
number_of_cached_scripts:0
$ redis-cli eval "return('Hello, Script Cache :)')" 0 ; redis-cli info memory | grep "script"
"Hello, Script Cache :)"
used_memory_scripts:152
used_memory_scripts_human:152B
number_of_cached_scripts:1
$ redis-cli eval "return redis.sha1hex(\"return('Hello, Script Cache :)')\")" 0 ; redis-cli info memory | grep "script"
"1be72729d43da5114929c1260a749073732dc822"
used_memory_scripts:232
used_memory_scripts_human:232B
number_of_cached_scripts:2
✔ 19:03:54 redis [lua_scripts-in-info-memory L ✚…⚑] $ redis-cli evalsha 1be72729d43da5114929c1260a749073732dc822 0
"Hello, Script Cache :)"
```