If a thread unblocks a client blocked in a module command, by using the
RedisMdoule_UnblockClient() API, the event loop may not be awaken until
the next timeout of the multiplexing API or the next unrelated I/O
operation on other clients. We actually want the client to be served
ASAP, so a mechanism is needed in order for the unblocking API to inform
Redis that there is a client to serve ASAP.
This commit fixes the issue using the old trick of the pipe: when a
client needs to be unblocked, a byte is written in a pipe. When we run
the list of clients blocked in modules, we consume all the bytes
written in the pipe. Writes and reads are performed inside the context
of the mutex, so no race is possible in which we consume the bytes that
are actually related to an awake request for a client that should still
be put into the list of clients to unblock.
It was verified that after the fix the server handles the blocked
clients with the expected short delay.
Thanks to @dvirsky for understanding there was such a problem and
reporting it.
If a thread unblocks a client blocked in a module command, by using the
RedisMdoule_UnblockClient() API, the event loop may not be awaken until
the next timeout of the multiplexing API or the next unrelated I/O
operation on other clients. We actually want the client to be served
ASAP, so a mechanism is needed in order for the unblocking API to inform
Redis that there is a client to serve ASAP.
This commit fixes the issue using the old trick of the pipe: when a
client needs to be unblocked, a byte is written in a pipe. When we run
the list of clients blocked in modules, we consume all the bytes
written in the pipe. Writes and reads are performed inside the context
of the mutex, so no race is possible in which we consume the bytes that
are actually related to an awake request for a client that should still
be put into the list of clients to unblock.
It was verified that after the fix the server handles the blocked
clients with the expected short delay.
Thanks to @dvirsky for understanding there was such a problem and
reporting it.
since slave isn't replying to it's master, these errors go unnoticed.
since we don't expect the master to send garbadge to the slave, this should be safe.
(as long as we don't log OOM errors there)
since slave isn't replying to it's master, these errors go unnoticed.
since we don't expect the master to send garbadge to the slave, this should be safe.
(as long as we don't log OOM errors there)
Testing with Solaris C compiler (SunOS 5.11 11.2 sun4v sparc sun4v)
there were issues compiling due to atomicvar.h and running the
tests also failed because of "tail" usage not conform with Solaris
tail implementation. This commit fixes both the issues.
Testing with Solaris C compiler (SunOS 5.11 11.2 sun4v sparc sun4v)
there were issues compiling due to atomicvar.h and running the
tests also failed because of "tail" usage not conform with Solaris
tail implementation. This commit fixes both the issues.
For performance reasons we use a reduced rounds variant of
SipHash. This should still provide enough protection and the
effects in the hash table distribution are non existing.
If some real world attack on SipHash 1-2 will be found we can
trivially switch to something more secure. Anyway it is a
big step forward from Murmurhash, for which it is trivial to
generate *seed independent* colliding keys... The speed
penatly introduced by SipHash 2-4, around 4%, was a too big
price to pay compared to the effectiveness of the HashDoS
attack against SipHash 1-2, and considering so far in the
Redis history, no such an incident ever happened even while
using trivially to collide hash functions.
For performance reasons we use a reduced rounds variant of
SipHash. This should still provide enough protection and the
effects in the hash table distribution are non existing.
If some real world attack on SipHash 1-2 will be found we can
trivially switch to something more secure. Anyway it is a
big step forward from Murmurhash, for which it is trivial to
generate *seed independent* colliding keys... The speed
penatly introduced by SipHash 2-4, around 4%, was a too big
price to pay compared to the effectiveness of the HashDoS
attack against SipHash 1-2, and considering so far in the
Redis history, no such an incident ever happened even while
using trivially to collide hash functions.
1. Refactor memory overhead computation into a function.
2. Every 10 keys evicted, check if memory usage already reached
the target value directly, since we otherwise don't count all
the memory reclaimed by the background thread right now.
1. Refactor memory overhead computation into a function.
2. Every 10 keys evicted, check if memory usage already reached
the target value directly, since we otherwise don't count all
the memory reclaimed by the background thread right now.