EVALSHA used to crash if the SHA1 was not lowercase (Issue #783).
Fixed using a case insensitive dictionary type for the sha -> script
map used for replication of scripts.
EVALSHA used to crash if the SHA1 was not lowercase (Issue #783).
Fixed using a case insensitive dictionary type for the sha -> script
map used for replication of scripts.
After the transcation starts with a MULIT, the previous behavior was to
return an error on problems such as maxmemory limit reached. But still
to execute the transaction with the subset of queued commands on EXEC.
While it is true that the client was able to check for errors
distinguish QUEUED by an error reply, MULTI/EXEC in most client
implementations uses pipelining for speed, so all the commands and EXEC
are sent without caring about replies.
With this change:
1) EXEC fails if at least one command was not queued because of an
error. The EXECABORT error is used.
2) A generic error is always reported on EXEC.
3) The client DISCARDs the MULTI state after a failed EXEC, otherwise
pipelining multiple transactions would be basically impossible:
After a failed EXEC the next transaction would be simply queued as
the tail of the previous transaction.
After the transcation starts with a MULIT, the previous behavior was to
return an error on problems such as maxmemory limit reached. But still
to execute the transaction with the subset of queued commands on EXEC.
While it is true that the client was able to check for errors
distinguish QUEUED by an error reply, MULTI/EXEC in most client
implementations uses pipelining for speed, so all the commands and EXEC
are sent without caring about replies.
With this change:
1) EXEC fails if at least one command was not queued because of an
error. The EXECABORT error is used.
2) A generic error is always reported on EXEC.
3) The client DISCARDs the MULTI state after a failed EXEC, otherwise
pipelining multiple transactions would be basically impossible:
After a failed EXEC the next transaction would be simply queued as
the tail of the previous transaction.
We use this new bio.c feature in order to stop our I/O threads if there
is a memory test to do on crash. In this case we don't want anything
else than the main thread to run, otherwise the other threads may mess
with the heap and the memory test will report a false positive.
We use this new bio.c feature in order to stop our I/O threads if there
is a memory test to do on crash. In this case we don't want anything
else than the main thread to run, otherwise the other threads may mess
with the heap and the memory test will report a false positive.
Finally Redis is able to report the amount of memory used by
copy-on-write while saving an RDB or writing an AOF file in background.
Note that this information is currently only logged (at NOTICE level)
and not shown in INFO because this is less trivial (but surely doable
with some minor form of interprocess communication).
The reason we can't capture this information on the parent before we
call wait3() is that the Linux kernel will release the child memory
ASAP, and only retain the minimal state for the process that is useful
to report the child termination to the parent.
The COW size is obtained by summing all the Private_Dirty fields found
in the "smap" file inside the proc filesystem for the process.
All this is Linux specific and is not available on other systems.
Finally Redis is able to report the amount of memory used by
copy-on-write while saving an RDB or writing an AOF file in background.
Note that this information is currently only logged (at NOTICE level)
and not shown in INFO because this is less trivial (but surely doable
with some minor form of interprocess communication).
The reason we can't capture this information on the parent before we
call wait3() is that the Linux kernel will release the child memory
ASAP, and only retain the minimal state for the process that is useful
to report the child termination to the parent.
The COW size is obtained by summing all the Private_Dirty fields found
in the "smap" file inside the proc filesystem for the process.
All this is Linux specific and is not available on other systems.
Now that we cache connections, a retry attempt makes sure that the
operation don't fail just because there is an existing connection error
on the socket, like the other end closing the connection.
Unfortunately this condition is not detectable using
getsockopt(SO_ERROR), so the only option left is to retry.
We don't retry on timeouts.
Now that we cache connections, a retry attempt makes sure that the
operation don't fail just because there is an existing connection error
on the socket, like the other end closing the connection.
Unfortunately this condition is not detectable using
getsockopt(SO_ERROR), so the only option left is to retry.
We don't retry on timeouts.
The previous behavior was to return -1 if:
1) Existing key but without an expire set.
2) Non existing key.
Now the second case is handled in a different, and TTL will return -2
if the key does not exist at all.
PTTL follows the same behavior as well.
The previous behavior was to return -1 if:
1) Existing key but without an expire set.
2) Non existing key.
Now the second case is handled in a different, and TTL will return -2
if the key does not exist at all.
PTTL follows the same behavior as well.
By caching TCP connections used by MIGRATE to chat with other Redis
instances a 5x performance improvement was measured with
redis-benchmark against small keys.
This can dramatically speedup cluster resharding and other processes
where an high load of MIGRATE commands are used.
By caching TCP connections used by MIGRATE to chat with other Redis
instances a 5x performance improvement was measured with
redis-benchmark against small keys.
This can dramatically speedup cluster resharding and other processes
where an high load of MIGRATE commands are used.