When a SIGTERM is received Redis schedules a shutdown. However if it
fails to perform the shutdown it must be clear the shutdown_asap flag
otehrwise it will try again and again possibly making the server
unusable.
The Redis Slow Log always used to log the slow commands executed inside
a MULTI/EXEC block. However also EXEC was logged at the end, which is
perfectly useless.
Now EXEC is no longer logged and a test was added to test this behavior.
This fixes issue #759.
The Redis Slow Log always used to log the slow commands executed inside
a MULTI/EXEC block. However also EXEC was logged at the end, which is
perfectly useless.
Now EXEC is no longer logged and a test was added to test this behavior.
This fixes issue #759.
Redis pings slaves in "pre-synchronization stage" with newlines. (See
https://github.com/antirez/redis/blob/2.6.9/src/replication.c#L814)
However, redis-cli does not expect this - it sees the newline as the end
of the bulk length line, and ends up returning 0 as bulk the length.
This manifests as the following when running redis-cli:
$ ./src/redis-cli --rdb some_file
SYNC sent to master, writing 0 bytes to 'some_file'
Transfer finished with success.
With this commit, we just ignore leading newlines while reading the bulk
length line.
To reproduce the problem, load enough data into Redis so that the
preparation of the RDB snapshot takes long enough for a ping to occur
while redis-cli is waiting for the data.
Redis pings slaves in "pre-synchronization stage" with newlines. (See
https://github.com/antirez/redis/blob/2.6.9/src/replication.c#L814)
However, redis-cli does not expect this - it sees the newline as the end
of the bulk length line, and ends up returning 0 as bulk the length.
This manifests as the following when running redis-cli:
$ ./src/redis-cli --rdb some_file
SYNC sent to master, writing 0 bytes to 'some_file'
Transfer finished with success.
With this commit, we just ignore leading newlines while reading the bulk
length line.
To reproduce the problem, load enough data into Redis so that the
preparation of the RDB snapshot takes long enough for a ping to occur
while redis-cli is waiting for the data.
Sometimes it is much simpler to debug complex Redis installations if it
is possible to assign clients a name that is displayed in the CLIENT
LIST output.
This is the case, for example, for "leaked" connections. The ability to
provide a name to the client makes it quite trivial to understand what
is the part of the code implementing the client not releasing the
resources appropriately.
Behavior:
CLIENT SETNAME: set a name for the client, or remove the current
name if an empty name is set.
CLIENT GETNAME: get the current name, or a nil.
CLIENT LIST: now displays the client name if any.
Thanks to Mark Gravell for pushing this idea forward.
Sometimes it is much simpler to debug complex Redis installations if it
is possible to assign clients a name that is displayed in the CLIENT
LIST output.
This is the case, for example, for "leaked" connections. The ability to
provide a name to the client makes it quite trivial to understand what
is the part of the code implementing the client not releasing the
resources appropriately.
Behavior:
CLIENT SETNAME: set a name for the client, or remove the current
name if an empty name is set.
CLIENT GETNAME: get the current name, or a nil.
CLIENT LIST: now displays the client name if any.
Thanks to Mark Gravell for pushing this idea forward.
Issue #828 shows how Redis was not correctly undoing a non-blocking
connection attempt with the previous master when the master was set to a
new address using the SLAVEOF command.
This was also a result of lack of refactoring, so now there is a
function to cancel the non blocking handshake with the master.
The new function is now used when SLAVEOF NO ONE is called or when
SLAVEOF is used to set the master to a different address.
Issue #828 shows how Redis was not correctly undoing a non-blocking
connection attempt with the previous master when the master was set to a
new address using the SLAVEOF command.
This was also a result of lack of refactoring, so now there is a
function to cancel the non blocking handshake with the master.
The new function is now used when SLAVEOF NO ONE is called or when
SLAVEOF is used to set the master to a different address.
1) The event handler was no restored after a timeout condition if the
command was eventually executed with success.
2) The command was not converted to EVAL in case of errors in the middle
of the execution.
3) Terrible duplication of code without any apparent reason.
1) The event handler was no restored after a timeout condition if the
command was eventually executed with success.
2) The command was not converted to EVAL in case of errors in the middle
of the execution.
3) Terrible duplication of code without any apparent reason.
REDIS_HZ is the frequency our serverCron() function is called with.
A more frequent call to this function results into less latency when the
server is trying to handle very expansive background operations like
mass expires of a lot of keys at the same time.
Redis 2.4 used to have an HZ of 10. This was good enough with almost
every setup, but the incremental key expiration algorithm was working a
bit better under *extreme* pressure when HZ was set to 100 for Redis
2.6.
However for most users a latency spike of 30 milliseconds when million
of keys are expiring at the same time is acceptable, on the other hand a
default HZ of 100 in Redis 2.6 was causing idle instances to use some
CPU time compared to Redis 2.4. The CPU usage was in the order of 0.3%
for an idle instance, however this is a shame as more energy is consumed
by the server, if not important resources.
This commit introduces HZ as a runtime parameter, that can be queried by
INFO or CONFIG GET, and can be modified with CONFIG SET. At the same
time the default frequency is set back to 10.
In this way we default to a sane value of 10, but allows users to
easily switch to values up to 500 for near real-time applications if
needed and if they are willing to pay this small CPU usage penalty.
REDIS_HZ is the frequency our serverCron() function is called with.
A more frequent call to this function results into less latency when the
server is trying to handle very expansive background operations like
mass expires of a lot of keys at the same time.
Redis 2.4 used to have an HZ of 10. This was good enough with almost
every setup, but the incremental key expiration algorithm was working a
bit better under *extreme* pressure when HZ was set to 100 for Redis
2.6.
However for most users a latency spike of 30 milliseconds when million
of keys are expiring at the same time is acceptable, on the other hand a
default HZ of 100 in Redis 2.6 was causing idle instances to use some
CPU time compared to Redis 2.4. The CPU usage was in the order of 0.3%
for an idle instance, however this is a shame as more energy is consumed
by the server, if not important resources.
This commit introduces HZ as a runtime parameter, that can be queried by
INFO or CONFIG GET, and can be modified with CONFIG SET. At the same
time the default frequency is set back to 10.
In this way we default to a sane value of 10, but allows users to
easily switch to values up to 500 for near real-time applications if
needed and if they are willing to pay this small CPU usage penalty.
Config.h performs endianess detection including OS-specific headers to
define the endianess macros, or when this is not possible, checking the
processor type via ifdefs.
Sometimes when the OS-specific macro is included, only __BYTE_ORDER is
defined, while BYTE_ORDER remains undefined. There is code at the end of
config.h endianess detection in order to define the macros without the
underscore, but it was not working correctly.
This commit fixes endianess detection fixing Redis on Linux / PPC64 and
possibly other systems.
Config.h performs endianess detection including OS-specific headers to
define the endianess macros, or when this is not possible, checking the
processor type via ifdefs.
Sometimes when the OS-specific macro is included, only __BYTE_ORDER is
defined, while BYTE_ORDER remains undefined. There is code at the end of
config.h endianess detection in order to define the macros without the
underscore, but it was not working correctly.
This commit fixes endianess detection fixing Redis on Linux / PPC64 and
possibly other systems.
Refactoring performed after issue #801 resolution (see commit
b775d5c3e9b4184c931fe2250a08ff1c3fb3b080) introduced a memory leak that
is fixed by this commit.
I simply forgot to free the new allocated dictionary in the client
structure trusting the output of "make test" on OSX.
However due to changes in the "leaks" utility the test was no longer
testing memory leaks. This problem was also fixed.
Fortunately the CI test running at ci.redis.io spotted the bug in the
valgrind run.
The leak never ended into a stable release.
Refactoring performed after issue #801 resolution (see commit
2f87cf8b0162bd9d78c3a89860c0971cd71d39db) introduced a memory leak that
is fixed by this commit.
I simply forgot to free the new allocated dictionary in the client
structure trusting the output of "make test" on OSX.
However due to changes in the "leaks" utility the test was no longer
testing memory leaks. This problem was also fixed.
Fortunately the CI test running at ci.redis.io spotted the bug in the
valgrind run.
The leak never ended into a stable release.
To store the keys we block for during a blocking pop operation, in the
case the client is blocked for more data to arrive, we used a simple
linear array of redis objects, in the blockingState structure:
robj **keys;
int count;
However in order to fix issue #801 we also use a dictionary in order to
avoid to end in the blocked clients queue for the same key multiple
times with the same client.
The dictionary was only temporary, just to avoid duplicates, but since
we create / destroy it there is no point in doing this duplicated work,
so this commit simply use a dictionary as the main structure to store
the keys we are blocked for. So instead of the previous fields we now
just have:
dict *keys;
This simplifies the code and reduces the work done by the server during
a blocking POP operation.