The `LRANK` command returns the index (position) of a given element
within a list. Using the `direction` argument it is possible to specify
going from head to tail (acending, 1) or from tail to head (decending,
-1). Only the first found index is returend. The complexity is O(N).
When using lists as a queue it can be of interest at what position a
given element is, for instance to monitor a job processing through a
work queue. This came up within the Python `rq` project which is based
on Redis[0].
[0]: https://github.com/rq/rq/issues/1197
Signed-off-by: Paul Spooren <mail@aparcar.org>
The `LRANK` command returns the index (position) of a given element
within a list. Using the `direction` argument it is possible to specify
going from head to tail (acending, 1) or from tail to head (decending,
-1). Only the first found index is returend. The complexity is O(N).
When using lists as a queue it can be of interest at what position a
given element is, for instance to monitor a job processing through a
work queue. This came up within the Python `rq` project which is based
on Redis[0].
[0]: https://github.com/rq/rq/issues/1197
Signed-off-by: Paul Spooren <mail@aparcar.org>
After a closer look, the Redis core devleopers all believe that this was
too fragile, caused many bugs that we didn't expect and that were very
hard to track. Better to find an alternative solution that is simpler.
After a closer look, the Redis core devleopers all believe that this was
too fragile, caused many bugs that we didn't expect and that were very
hard to track. Better to find an alternative solution that is simpler.
Otherwise we run into that:
Backtrace:
src/redis-server 127.0.0.1:21322(logStackTrace+0x45)[0x479035]
src/redis-server 127.0.0.1:21322(sigsegvHandler+0xb9)[0x4797f9]
/lib/x86_64-linux-gnu/libpthread.so.0(+0x11390)[0x7fd373c5e390]
src/redis-server 127.0.0.1:21322(_serverAssert+0x6a)[0x47660a]
src/redis-server 127.0.0.1:21322(freeReplicationBacklog+0x42)[0x451282]
src/redis-server 127.0.0.1:21322[0x4552d4]
src/redis-server 127.0.0.1:21322[0x4c5593]
src/redis-server 127.0.0.1:21322(aeProcessEvents+0x2e6)[0x42e786]
src/redis-server 127.0.0.1:21322(aeMain+0x1d)[0x42eb0d]
src/redis-server 127.0.0.1:21322(main+0x4c5)[0x42b145]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf0)[0x7fd3738a3830]
src/redis-server 127.0.0.1:21322(_start+0x29)[0x42b409]
Since we disconnect all the replicas and free the replication backlog in
certain replication paths, and the code that will free the replication
backlog expects that no replica is connected.
However we still need to free the replicas asynchronously in certain
cases, as documented in the top comment of disconnectSlaves().
Otherwise we run into that:
Backtrace:
src/redis-server 127.0.0.1:21322(logStackTrace+0x45)[0x479035]
src/redis-server 127.0.0.1:21322(sigsegvHandler+0xb9)[0x4797f9]
/lib/x86_64-linux-gnu/libpthread.so.0(+0x11390)[0x7fd373c5e390]
src/redis-server 127.0.0.1:21322(_serverAssert+0x6a)[0x47660a]
src/redis-server 127.0.0.1:21322(freeReplicationBacklog+0x42)[0x451282]
src/redis-server 127.0.0.1:21322[0x4552d4]
src/redis-server 127.0.0.1:21322[0x4c5593]
src/redis-server 127.0.0.1:21322(aeProcessEvents+0x2e6)[0x42e786]
src/redis-server 127.0.0.1:21322(aeMain+0x1d)[0x42eb0d]
src/redis-server 127.0.0.1:21322(main+0x4c5)[0x42b145]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf0)[0x7fd3738a3830]
src/redis-server 127.0.0.1:21322(_start+0x29)[0x42b409]
Since we disconnect all the replicas and free the replication backlog in
certain replication paths, and the code that will free the replication
backlog expects that no replica is connected.
However we still need to free the replicas asynchronously in certain
cases, as documented in the top comment of disconnectSlaves().
The context is issue #7205: since the introduction of threaded I/O we close
clients asynchronously by default from readQueryFromClient(). So we
should no longer prevent the caching of the master client, to later
PSYNC incrementally, if such flags are set. However we also don't want
the master client to be cached with such flags (would be closed
immediately after being restored). And yet we want a way to understand
if a master was closed because of a protocol error, and in that case
prevent the caching.
The context is issue #7205: since the introduction of threaded I/O we close
clients asynchronously by default from readQueryFromClient(). So we
should no longer prevent the caching of the master client, to later
PSYNC incrementally, if such flags are set. However we also don't want
the master client to be cached with such flags (would be closed
immediately after being restored). And yet we want a way to understand
if a master was closed because of a protocol error, and in that case
prevent the caching.
This works because this struct is never referenced by its name,
but always by its type.
This prevents a conflict with struct user from <sys/user.h>
when compiling against uclibc.
Signed-off-by: Titouan Christophe <titouan.christophe@railnova.eu>
Currently, there are several types of threads/child processes of a
redis server. Sometimes we need deeply optimise the performance of
redis, so we would like to isolate threads/processes.
There were some discussion about cpu affinity cases in the issue:
https://github.com/antirez/redis/issues/2863
So implement cpu affinity setting by redis.conf in this patch, then
we can config server_cpulist/bio_cpulist/aof_rewrite_cpulist/
bgsave_cpulist by cpu list.
Examples of cpulist in redis.conf:
server_cpulist 0-7:2 means cpu affinity 0,2,4,6
bio_cpulist 1,3 means cpu affinity 1,3
aof_rewrite_cpulist 8-11 means cpu affinity 8,9,10,11
bgsave_cpulist 1,10-11 means cpu affinity 1,10,11
Test on linux/freebsd, both work fine.
Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
This works because this struct is never referenced by its name,
but always by its type.
This prevents a conflict with struct user from <sys/user.h>
when compiling against uclibc.
Signed-off-by: Titouan Christophe <titouan.christophe@railnova.eu>
Currently, there are several types of threads/child processes of a
redis server. Sometimes we need deeply optimise the performance of
redis, so we would like to isolate threads/processes.
There were some discussion about cpu affinity cases in the issue:
https://github.com/antirez/redis/issues/2863
So implement cpu affinity setting by redis.conf in this patch, then
we can config server_cpulist/bio_cpulist/aof_rewrite_cpulist/
bgsave_cpulist by cpu list.
Examples of cpulist in redis.conf:
server_cpulist 0-7:2 means cpu affinity 0,2,4,6
bio_cpulist 1,3 means cpu affinity 1,3
aof_rewrite_cpulist 8-11 means cpu affinity 8,9,10,11
bgsave_cpulist 1,10-11 means cpu affinity 1,10,11
Test on linux/freebsd, both work fine.
Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>