256 Commits

Author SHA1 Message Date
Binbin
70624ea63d
Change all the lazyfree configurations to yes by default (#913)
## Set replica-lazy-flush and lazyfree-lazy-user-flush to yes by
default.
There are many problems with running flush synchronously. Even in
single CPU environments, the thread managers should balance between
the freeing and serving incoming requests.

## Set lazy eviction, expire, server-del, user-del to yes by default
We now have a del and a lazyfree del, we also have these configuration
items to control: lazyfree-lazy-eviction, lazyfree-lazy-expire,
lazyfree-lazy-server-del, lazyfree-lazy-user-del. In most cases lazyfree
is better since it reduces the risk of blocking the main thread, and
because we have lazyfreeGetFreeEffort, on those with high effor
(currently
64) will use lazyfree.

Part of #653.

---------

Signed-off-by: Binbin <binloveplay1314@qq.com>
2024-09-02 07:07:17 -07:00
uriyage
bbfd041895
Async IO threads (#758)
This PR is 1 of 3 PRs intended to achieve the goal of 1 million requests
per second, as detailed by [dan touitou](https://github.com/touitou-dan)
in https://github.com/valkey-io/valkey/issues/22. This PR modifies the
IO threads to be fully asynchronous, which is a first and necessary step
to allow more work offloading and better utilization of the IO threads.

### Current IO threads state:

Valkey IO threads were introduced in Redis 6.0 to allow better
utilization of multi-core machines. Before this, Redis was
single-threaded and could only use one CPU core for network and command
processing. The introduction of IO threads helps in offloading the IO
operations to multiple threads.

**Current IO Threads flow:**

1. Initialization: When Redis starts, it initializes a specified number
of IO threads. These threads are in addition to the main thread, each
thread starts with an empty list, the main thread will populate that
list in each event-loop with pending-read-clients or
pending-write-clients.
2. Read Phase: The main thread accepts incoming connections and reads
requests from clients. The reading of requests are offloaded to IO
threads. The main thread puts the clients ready-to-read in a list and
set the global io_threads_op to IO_THREADS_OP_READ, the IO threads pick
the clients up, perform the read operation and parse the first incoming
command.
3. Command Processing: After reading the requests, command processing is
still single-threaded and handled by the main thread.
4. Write Phase: Similar to the read phase, the write phase is also be
offloaded to IO threads. The main thread prepares the response in the
clients’ output buffer then the main thread puts the client in the list,
and sets the global io_threads_op to the IO_THREADS_OP_WRITE. The IO
threads then pick the clients up and perform the write operation to send
the responses back to clients.
5. Synchronization: The main-thread communicate with the threads on how
many jobs left per each thread with atomic counter. The main-thread
doesn’t access the clients while being handled by the IO threads.

**Issues with current implementation:**

* Underutilized Cores: The current implementation of IO-threads leads to
the underutilization of CPU cores.
* The main thread remains responsible for a significant portion of
IO-related tasks that could be offloaded to IO-threads.
* When the main-thread is processing client’s commands, the IO threads
are idle for a considerable amount of time.
* Notably, the main thread's performance during the IO-related tasks is
constrained by the speed of the slowest IO-thread.
* Limited Offloading: Currently, Since the Main-threads waits
synchronously for the IO threads, the Threads perform only read-parse,
and write operations, with parsing done only for the first command. If
the threads can do work asynchronously we may offload more work to the
threads reducing the load from the main-thread.
* TLS: Currently, we don't support IO threads with TLS (where offloading
IO would be more beneficial) since TLS read/write operations are not
thread-safe with the current implementation.

### Suggested change

Non-blocking main thread - The main thread and IO threads will operate
in parallel to maximize efficiency. The main thread will not be blocked
by IO operations. It will continue to process commands independently of
the IO thread's activities.

**Implementation details**

**Inter-thread communication.**

* We use a static, lock-free ring buffer of fixed size (2048 jobs) for
the main thread to send jobs and for the IO to receive them. If the ring
buffer fills up, the main thread will handle the task itself, acting as
back pressure (in case IO operations are more expensive than command
processing). A static ring buffer is a better candidate than a dynamic
job queue as it eliminates the need for allocation/freeing per job.
* An IO job will be in the format: ` [void* function-call-back | void
*data] `where data is either a client to read/write from and the
function-ptr is the function to be called with the data for example
readQueryFromClient using this format we can use it later to offload
other types of works to the IO threads.
* The Ring buffer is one way from the main-thread to the IO thread, Upon
read/write event the main thread will send a read/write job then in
before sleep it will iterate over the pending read/write clients to
checking for each client if the IO threads has already finished handling
it. The IO thread signals it has finished handling a client read/write
by toggling an atomic flag read_state / write_state on the client
struct.

**Thread Safety**

As suggested in this solution, the IO threads are reading from and
writing to the clients' buffers while the main thread may access those
clients.
We must ensure no race conditions or unsafe access occurs while keeping
the Valkey code simple and lock free.

Minimal Action in the IO Threads
The main change is to limit the IO thread operations to the bare
minimum. The IO thread will access only the client's struct and only the
necessary fields in this struct.
The IO threads will be responsible for the following:

* Read Operation: The IO thread will only read and parse a single
command. It will not update the server stats, handle read errors, or
parsing errors. These tasks will be taken care of by the main thread.
* Write Operation: The IO thread will only write the available data. It
will not free the client's replies, handle write errors, or update the
server statistics.


To achieve this without code duplication, the read/write code has been
refactored into smaller, independent components:

* Functions that perform only the read/parse/write calls.
* Functions that handle the read/parse/write results.

This refactor accounts for the majority of the modifications in this PR.

**Client Struct Safe Access**

As we ensure that the IO threads access memory only within the client
struct, we need to ensure thread safety only for the client's struct's
shared fields.

* Query Buffer 
* Command parsing - The main thread will not try to parse a command from
the query buffer when a client is offloaded to the IO thread.
* Client's memory checks in client-cron - The main thread will not
access the client query buffer if it is offloaded and will handle the
querybuf grow/shrink when the client is back.
* CLIENT LIST command - The main thread will busy-wait for the IO thread
to finish handling the client, falling back to the current behavior
where the main thread waits for the IO thread to finish their
processing.
* Output Buffer 
* The IO thread will not change the client's bufpos and won't free the
client's reply lists. These actions will be done by the main thread on
the client's return from the IO thread.
* bufpos / block→used: As the main thread may change the bufpos, the
reply-block→used, or add/delete blocks to the reply list while the IO
thread writes, we add two fields to the client struct: io_last_bufpos
and io_last_reply_block. The IO thread will write until the
io_last_bufpos, which was set by the main-thread before sending the
client to the IO thread. If more data has been added to the cob in
between, it will be written in the next write-job. In addition, the main
thread will not trim or merge reply blocks while the client is
offloaded.
* Parsing Fields 
    * Client's cmd, argc, argv, reqtype, etc., are set during parsing.
* The main thread will indicate to the IO thread not to parse a cmd if
the client is not reset. In this case, the IO thread will only read from
the network and won't attempt to parse a new command.
* The main thread won't access the c→cmd/c→argv in the CLIENT LIST
command as stated before it will busy wait for the IO threads.
* Client Flags 
* c→flags, which may be changed by the main thread in multiple places,
won't be accessed by the IO thread. Instead, the main thread will set
the c→io_flags with the information necessary for the IO thread to know
the client's state.
* Client Close 
* On freeClient, the main thread will busy wait for the IO thread to
finish processing the client's read/write before proceeding to free the
client.
* Client's Memory Limits 
* The IO thread won't handle the qb/cob limits. In case a client crosses
the qb limit, the IO thread will stop reading for it, letting the main
thread know that the client crossed the limit.

**TLS**

TLS is currently not supported with IO threads for the following
reasons:

1. Pending reads - If SSL has pending data that has already been read
from the socket, there is a risk of not calling the read handler again.
To handle this, a list is used to hold the pending clients. With IO
threads, multiple threads can access the list concurrently.
2. Event loop modification - Currently, the TLS code
registers/unregisters the file descriptor from the event loop depending
on the read/write results. With IO threads, multiple threads can modify
the event loop struct simultaneously.
3. The same client can be sent to 2 different threads concurrently
(https://github.com/redis/redis/issues/12540).

Those issues were handled in the current PR:

1. The IO thread only performs the read operation. The main thread will
check for pending reads after the client returns from the IO thread and
will be the only one to access the pending list.
2. The registering/unregistering of events will be similarly postponed
and handled by the main thread only.
3. Each client is being sent to the same dedicated thread (c→id %
num_of_threads).


**Sending Replies Immediately with IO threads.**

Currently, after processing a command, we add the client to the
pending_writes_list. Only after processing all the clients do we send
all the replies. Since the IO threads are now working asynchronously, we
can send the reply immediately after processing the client’s requests,
reducing the command latency. However, if we are using AOF=always, we
must wait for the AOF buffer to be written, in which case we revert to
the current behavior.

**IO threads dynamic adjustment**

Currently, we use an all-or-nothing approach when activating the IO
threads. The current logic is as follows: if the number of pending write
clients is greater than twice the number of threads (including the main
thread), we enable all threads; otherwise, we enable none. For example,
if 8 IO threads are defined, we enable all 8 threads if there are 16
pending clients; else, we enable none.
It makes more sense to enable partial activation of the IO threads. If
we have 10 pending clients, we will enable 5 threads, and so on. This
approach allows for a more granular and efficient allocation of
resources based on the current workload.

In addition, the user will now be able to change the number of I/O
threads at runtime. For example, when decreasing the number of threads
from 4 to 2, threads 3 and 4 will be closed after flushing their job
queues.

**Tests**

Currently, we run the io-threads tests with 4 IO threads
(443d80f168/.github/workflows/daily.yml (L353)).
This means that we will not activate the IO threads unless there are 8
(threads * 2) pending write clients per single loop, which is unlikely
to happened in most of tests, meaning the IO threads are not currently
being tested.

To enforce the main thread to always offload work to the IO threads,
regardless of the number of pending events, we add an
events-per-io-thread configuration with a default value of 2. When set
to 0, this configuration will force the main thread to always offload
work to the IO threads.

When we offload every single read/write operation to the IO threads, the
IO-threads are running with 100% CPU when running multiple tests
concurrently some tests fail as a result of larger than expected command
latencies. To address this issue, we have to add some after or wait_for
calls to some of the tests to ensure they pass with IO threads as well.

Signed-off-by: Uri Yagelnik <uriy@amazon.com>
2024-07-08 20:01:39 -07:00
KarthikSubbarao
fa01a29365
Allow Module authentication to succeed when cluster is down (#693)
Module Authentication using a blocking implementation currently gets
rejected when the "cluster is down" from the client timeout cron job
(`clientsCronHandleTimeout`).

This PR exempts clients blocked on Module Authentication from being
rejected here.

---------

Signed-off-by: KarthikSubbarao <karthikrs2021@gmail.com>
2024-07-01 13:59:06 -07:00
Viktor Söderqvist
ad5fd5b95c
More rebranding (#606)
More rebranding of

* Log messages (#252)
* The DENIED error reply
* Internal function names and comments, mainly Lua API

---------

Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
2024-06-07 01:40:55 +02:00
Shivshankar
52f9291f79
Rename redis to valkey in test suite logs and test names. (#366)
This PR covers below cases.
1. test suite's prints(i.e., puts statement logs).
2. Links refering to redis issues.
3. test names contains redis.

Signed-off-by: Shivshankar-Reddy <shiva.sheri.github@gmail.com>
2024-04-25 15:13:21 +08:00
Shivshankar
34413e0862
Replace "redis" with "valkey" test code (#287)
Occurrences of "redis" in TCL test suites and helpers, such as TCL
client used in tests, are replaced with "valkey".

Occurrences of uppercase "Redis" are not changed in this PR.

No files are renamed in this PR.

---------

Signed-off-by: Shivshankar-Reddy <shiva.sheri.github@gmail.com>
2024-04-18 15:57:17 +02:00
Viktor Söderqvist
9e2b7838ea
Add 'extended-redis-compatibility' config (#306)
New config 'extended-redis-compatibility' (yes/no) default no

* When yes:
  * Use "Redis" in the following error replies:
    - `-LOADING Redis is loading the dataset in memory`
    - `-BUSY Redis is busy`...
    - `-MISCONF Redis is configured to`...
* Use `=== REDIS BUG REPORT` in the crash log delimiters (START and
END).
* The HELLO command returns `"server" => "redis"` and `"version" =>
"7.2.4"` (our Redis OSS compatibility version).
  * The INFO field for mode is called `"redis_mode"`.
* When no:
* Use "Valkey" instead of "Redis" in the mentioned errors and crash log
delimiters.
* The HELLO command returns `"server" => "valkey"` and the Valkey
version for `"version"`.
  * The INFO field for mode is called `"server_mode"`.

* Documentation added in valkey.conf:

> Valkey is largely compatible with Redis OSS, apart from a few cases
where
> Redis OSS compatibility mode makes Valkey pretend to be Redis. Enable
this
  > only if you have problems with tools or clients. This is a temporary
> configuration added in Valkey 8.0 and is scheduled to have no effect
in Valkey
  > 9.0 and be completely removed in Valkey 10.0.

* A test case for the config is added. It is designed to fail if the
config is not deprecated (has no effect) in Valkey 9 and deleted in
Valkey 10.

* Other test cases are adjusted to work regardless of this config.

Fixes #274
Fixes #61

---------

Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
2024-04-18 14:10:24 +02:00
Shivshankar
a054862b72
Rename redis_client* procedure to valkey_client* in test environment (#276)
Renamed redis-client* procedure to valkey_client*

Signed-off-by: Shivshankar-Reddy <shiva.sheri.github@gmail.com>
2024-04-10 10:18:47 -04:00
Shivshankar
da831c0d22
rename procedure redis_deferring_client to valkey_deferring_client (#270)
Updated procedure redis_deferring_client in test environent to
valkey_deferring_client.

Signed-off-by: Shivshankar-Reddy <shiva.sheri.github@gmail.com>
2024-04-09 10:38:09 -04:00
Jacob Murphy
df5db0627f
Remove trademarked language in code comments (#223)
This includes comments used for module API documentation.

* Strategy for replacement: Regex search: `(//|/\*| \*|#).* ("|\()?(r|R)edis( |\.
  |'|\n|,|-|\)|")(?!nor the names of its contributors)(?!Ltd.)(?!Labs)(?!Contributors.)`
* Don't edit copyright comments
* Replace "Redis version X.X" -> "Redis OSS version X.X" to distinguish
from newly licensed repository
* Replace "Redis Object" -> "Object"
* Exclude markdown for now
* Don't edit Lua scripting comments referring to redis.X API
* Replace "Redis Protocol" -> "RESP"
* Replace redis-benchmark, -cli, -server, -check-aof/rdb with "valkey-"
prefix
* Most other places, I use best judgement to either remove "Redis", or
replace with "the server" or "server"

Fixes #148

---------

Signed-off-by: Jacob Murphy <jkmurphy@google.com>
Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
2024-04-09 10:24:03 +02:00
Madelyn Olson
bc28fb4ac0
Update Server version to valkey version (#232)
This commit updates the following fields:
1. server_version -> valkey_version in server info. Since we would like
to advertise specific compatibility, we are making the version specific
to valkey. servername will remain as an optional indicator, and other
valkey compatible stores might choose to advertise something else.
1. We dropped redis-ver from the API. This isn't related to API
compatibility, but we didn't want to "fake" that valkey was creating an
rdb from a Redis version.
1. Renamed server-ver -> valkey_version in rdb info. Same as point one,
we want to explicitly indicate this was created by a valkey server.

---------

Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
2024-04-05 21:15:57 -07:00
Madelyn Olson
39d0f457a2
Update versioning fields for compatibility (#47)
New info information to be used to determine the valkey versioning info.

Internally, introduce new define values for "SERVER_VERSION" which is
different from the Redis compatibility version, "REDIS_VERSION".

Add two new info fields:
`server_version`: The Valkey server version
`server_name`: Indicates that the server is valkey.

Add one new RDB field: `server_ver`, which indicates the valkey version
that produced the server.

Add 3 new LUA globals: `SERVER_VERSION_NUM`, `SERVER_VERSION`, and
`SERVER_NAME`. Which reflect the valkey version instead of the Redis
compatibility version.

Also clean up various places where Redis and configuration was being
used that is no longer necessary.

---------

Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
2024-04-03 14:52:36 -07:00
John Vandenberg
253fe9dced
Fix typos and replace 'codespell' with 'typos' (#72)
Uses https://github.com/taiki-e/install-action to install
https://github.com/crate-ci/typos in CI

This finds many more/different typos than
https://github.com/codespell-project/codespell , while having very few
false positives.

Signed-off-by: John Vandenberg <jayvdb@gmail.com>
2024-03-31 12:38:22 -07:00
Madelyn Olson
57789d4d08
Update naming to to Valkey (#62)
Documentation references should use `Valkey` while server and cli
references are all under `valkey`.

---------

Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
2024-03-28 09:58:28 -07:00
Madelyn Olson
3586485355 Moved to correct cli and benchmark 2024-03-21 19:16:03 -07:00
Madelyn Olson
ee107481e5 Refactor some tests to reference new executable 2024-03-21 19:11:08 -07:00
Viktor Söderqvist
9efc6ad6a6
Add API RedisModule_ClusterKeySlot and RedisModule_ClusterCanonicalKeyNameInSlot (#13069)
Sometimes it's useful to compute a key's cluster slot in a module.

This API function is just like the command CLUSTER KEYSLOT (but faster).

A "reverse" API is also added:
`RedisModule_ClusterCanonicalKeyNameInSlot`. Given a slot, it returns a
short string that we can call a canonical key for the slot.
2024-03-12 09:26:12 -07:00
Binbin
4e3be944fc
Fix timing issue in blockedclient test (#13071)
We can see that the past time here happens to be busy_time_limit,
causing the test to fail:
```
[err]: RM_Call from blocked client in tests/unit/moduleapi/blockedclient.tcl
Expected '50' to be more than '50' (context: type eval line 26 cmd {assert_morethan [expr [clock clicks -milliseconds]-$start] $busy_time_limit} proc ::test)
```

It is reasonable for them to be equal, so equal is added here.
It should be noted that in the previous `Busy module command` test,
we also used assert_morethan_equal, so this should have been missed
at the time.
2024-02-20 08:43:13 +02:00
Binbin
6016973ac0
Fix module assertion crash when timer and timeout are unlocked in the same event loop (#13015)
When we use a timer to unblock a client in module, if the timer
period and the block timeout are very close, they will unblock the
client in the same event loop, and it will trigger the assertion.
The reason is that in moduleBlockedClientTimedOut we will protect
against re-processing, so we don't actually call updateStatsOnUnblock
(see #12817), so we are not able to reset the c->duration. 

The reason is unblockClientOnTimeout() didn't realize that bc had
been unblocked. We add a function to the module to determine if bc
is blocked, and then use it in unblockClientOnTimeout() to exit.

There is the stack:
```
beforeSleep
blockedBeforeSleep
handleBlockedClientsTimeout
checkBlockedClientTimeout
unblockClientOnTimeout
unblockClient
resetClient
-- assertion, crash the server
'c->duration == 0' is not true
```
2024-01-31 13:10:19 +02:00
Binbin
74a6e48a3d
Fix module unblock crash due to no timeout_callback (#13017)
The block timeout is passed in the test case, but we do not pass
in the timeout_callback, and it will crash when unlocking. In this
case, in moduleBlockedClientTimedOut we will check timeout_callback.
There is the stack:
```
beforeSleep
blockedBeforeSleep
handleBlockedClientsTimeout
checkBlockedClientTimeout
unblockClientOnTimeout
replyToBlockedClientTimedOut
moduleBlockedClientTimedOut
-- timeout_callback is NULL, invalidFunctionWasCalled
bc->timeout_callback(&ctx,(void**)c->argv,c->argc);
```
2024-01-31 09:28:50 +02:00
Ozan Tezcan
c5273cae18
Add RM_TryCalloc() and RM_TryRealloc() (#12985)
Modules may want to handle allocation failures gracefully. Adding
RM_TryCalloc() and RM_TryRealloc() for it.
RM_TryAlloc() was added before:
https://github.com/redis/redis/pull/10541
2024-01-29 20:56:03 +02:00
Madelyn Olson
8bb9a2895e
Address some failures with new tests for improving debug report (#12915)
Fix a daily test failure because alpine doesn't support stack traces and
add in an extra assertion related to making sure the stack trace was
printed twice.
2024-01-08 17:56:06 -08:00
Madelyn Olson
068051e378
Handle recursive serverAsserts and provide more information for recursive segfaults (#12857)
This change is trying to make two failure modes a bit easier to deep dive:
1. If a serverPanic or serverAssert occurs during the info (or module)
printing, it will recursively panic, which is a lot of fun as it will
just keep recursively printing. It will eventually stack overflow, but
will generate a lot of text in the process.
2. When a segfault happens during the segfault handler, no information
is communicated other than it happened. This can be problematic because
`info` may help diagnose the real issue, but without fixing the
recursive crash it might be hard to get at that info.
2024-01-02 18:20:22 -08:00
Binbin
c85a9b7896
Fix delKeysInSlot server events are not executed inside an execution unit (#12745)
This is a follow-up fix to #12733. We need to apply the same changes to
delKeysInSlot. Refer to #12733 for more details.

This PR contains some other minor cleanups / improvements to the test
suite and docs.
It uses the postnotifications test module in a cluster mode test which
revealed a leak in the test module (fixed).
2023-12-11 20:15:19 +02:00
Binbin
d6f19539d2
Un-register notification and server event when RedisModule_OnLoad fails (#12809)
When we register notification or server event in RedisModule_OnLoad, but
RedisModule_OnLoad eventually fails, triggering notification or server
event
will cause the server to crash.

If the loading fails on a later stage of moduleLoad, we do call
moduleUnload
which handles all un-registration, but when it fails on the
RedisModule_OnLoad
call, we only un-register several specific things and these were
missing:

- moduleUnsubscribeNotifications
- moduleUnregisterFilters
- moduleUnsubscribeAllServerEvents

Refactored the code to reuse the code from moduleUnload.

Fixes #12808.
2023-11-27 17:26:33 +02:00
meiravgri
2e854bccc6
Fix async safety in signal handlers (#12658)
see discussion from after https://github.com/redis/redis/pull/12453 was
merged
----
This PR replaces signals that are not considered async-signal-safe
(AS-safe) with safe calls.

#### **1. serverLog() and serverLogFromHandler()**
`serverLog` uses unsafe calls. It was decided that we will **avoid**
`serverLog` calls by the signal handlers when:
* The signal is not fatal, such as SIGALRM. In these cases, we prefer
using `serverLogFromHandler` which is the safe version of `serverLog`.
Note they have different prompts:
`serverLog`: `62220:M 26 Oct 2023 14:39:04.526 # <msg>`
`serverLogFromHandler`: `62220:signal-handler (1698331136) <msg>`
* The code was added recently. Calls to `serverLog` by the signal
handler have been there ever since Redis exists and it hasn't caused
problems so far. To avoid regression, from now we should use
`serverLogFromHandler`

#### **2. `snprintf` `fgets` and `strtoul`(base = 16) -------->
`_safe_snprintf`, `fgets_async_signal_safe`, `string_to_hex`**
The safe version of `snprintf` was taken from
[here](8cfc4ca5e7/src/mc_util.c (L754))

#### **3. fopen(), fgets(), fclose() --------> open(), read(), close()**

#### **4. opendir(), readdir(), closedir() --------> open(),
syscall(SYS_getdents64), close()**

#### **5. Threads_mngr sync mechanisms**
* waiting for the thread to generate stack trace: semaphore -------->
busy-wait
* `globals_rw_lock` was removed: as we are not using malloc and the
semaphore anymore we don't need to protect `ThreadsManager_cleanups`.

#### **6. Stacktraces buffer**
The initial problem was that we were not able to safely call malloc
within the signal handler.
To solve that we created a buffer on the stack of `writeStacktraces` and
saved it in a global pointer, assuming that under normal circumstances,
the function `writeStacktraces` would complete before any thread
attempted to write to it. However, **if threads lag behind, they might
access this global pointer after it no longer belongs to the
`writeStacktraces` stack, potentially corrupting memory.**
To address this, various solutions were discussed
[here](https://github.com/redis/redis/pull/12658#discussion_r1390442896)
Eventually, we decided to **create a pipe** at server startup that will
remain valid as long as the process is alive.
We chose this solution due to its minimal memory usage, and since
`write()` and `read()` are atomic operations. It ensures that stack
traces from different threads won't mix.

**The stacktraces collection process is now as  follows:**
* Cleaning the pipe to eliminate writes of late threads from previous
runs.
* Each thread writes to the pipe its stacktrace
* Waiting for all the threads to mark completion or until a timeout (2
sec) is reached
* Reading from the pipe to print the stacktraces.

#### **7. Changes that were considered and eventually were dropped**
* replace watchdog timer with a POSIX timer: 
according to [settimer man](https://linux.die.net/man/2/setitimer)

> POSIX.1-2008 marks getitimer() and setitimer() obsolete, recommending
the use of the POSIX timers API
([timer_gettime](https://linux.die.net/man/2/timer_gettime)(2),
[timer_settime](https://linux.die.net/man/2/timer_settime)(2), etc.)
instead.

However, although it is supposed to conform to POSIX std, POSIX timers
API is not supported on Mac.
You can take a look here at the Linux implementation:

[here](c7562ee135)
To avoid messing up the code, and uncertainty regarding compatibility,
it was decided to drop it for now.

* avoid using sds (uses malloc) in logConfigDebugInfo
It was considered to print config info instead of using sds, however
apparently, `logConfigDebugInfo` does more than just print the sds, so
it was decided this fix is out of this issue scope.

#### **8. fix Signal mask check**
The check `signum & sig_mask` intended to indicate whether the signal is
blocked by the thread was incorrect. Actually, the bit position in the
signal mask corresponds to the signal number. We fixed this by changing
the condition to: `sig_mask & (1L << (sig_num - 1))`

#### **9. Unrelated changes**
both `fork.tcl `and `util.tcl` implemented a function called
`count_log_message` expecting different parameters. This caused
confusion when trying to run daily tests with additional test parameters
to run a specific test.
The `count_log_message` in `fork.tcl` was removed and the calls were
replaced with calls to `count_log_message` located in `util.tcl`

---------

Co-authored-by: Ozan Tezcan <ozantezcan@gmail.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
2023-11-23 13:22:20 +02:00
Meir Shpilraien (Spielrein)
0ffb9d2ea9
Before evicted and before expired server events are not executed inside an execution unit. (#12733)
Redis 7.2 (#9406) introduced a new modules event, `RedisModuleEvent_Key`.
This new event allows the module to read the key data just before it is removed
from the database (either deleted, expired, evicted, or overwritten).

When the key is removed from the database, either by active expire or eviction.
The new event was not called as part of an execution unit. This can cause an
issue if the module registers a post notification job inside the event. This job will
not be executed atomically with the expiration/eviction operation and will not
replicated inside a Multi/Exec. Moreover, the post notification job will be executed
right after the event where it is still not safe to perform any write operation, this will
violate the promise that post notification job will be called atomically with the
operation that triggered it and **only when it is safe to write**.

This PR fixes the issue by wrapping each expiration/eviction of a key with an execution
unit. This makes sure the entire operation will run atomically and all the post notification
jobs will be executed at the end where it is safe to write.

Tests were modified to verify the fix.
2023-11-08 09:28:22 +02:00
guybe7
c2a4b78491
WAITAOF: Update fsynced_reploff_pending even if there's nothing to fsync (#12622)
The problem is that WAITAOF could have hang in case commands were
propagated only to replicas.
This can happen if a module uses RM_Call with the REDISMODULE_ARGV_NO_AOF flag.
In that case, master_repl_offset would increase, but there would be nothing to fsync, so
in the absence of other traffic, fsynced_reploff_pending would stay the static, and WAITAOF can hang.

This commit updates fsynced_reploff_pending to the latest offset in flushAppendOnlyFile in case
there's nothing to fsync. i.e. in case it's behind because of the above mentions case it'll be refreshed
and release the WAITAOF.

Other changes:
Fix a race in wait.tcl (client getting blocked vs. the fsync thread)
2023-09-28 17:19:20 +03:00
Roshan Khatri
7519960527
Allows modules to declare new ACL categories. (#12486)
This PR adds a new Module API int RM_AddACLCategory(RedisModuleCtx *ctx, const char *category_name) to add a new ACL command category.

Here, we initialize the ACLCommandCategories array by allocating space for 64 categories and duplicate the 21 default categories from the predefined array 'ACLDefaultCommandCategories' into the ACLCommandCategories array while ACL initialization. Valid ACL category names can only contain alphanumeric characters, underscores, and dashes.

The API when called, checks for the onload flag, category name validity, and for duplicate category name if present. If the conditions are satisfied, the API adds the new category to the trailing end of the ACLCommandCategories array and assigns the acl_categories flag bit according to the index at which the category is added.

If any error is encountered the errno is set accordingly by the API.

---------

Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-08-30 13:01:24 -07:00
judeng
07ed0eafa9
improve performance for scan command when matching pattern or data type (#12209)
Optimized the performance of the SCAN command in a few ways:
1. Move the key filtering (by MATCH pattern) in the scan callback,
  so as to avoid collecting them for later filtering.
2. Reduce a many memory allocations and copying (use a reference
  to the original sds, instead of creating an robj, an excessive 2 mallocs
  and one string duplication)
3. Compare TYPE filter directly (as integers), instead of inefficient string
  compare per key.
4. fixed a small bug: when scan zset and hash types, maxiterations uses
  a more accurate number to avoid wrong double maxiterations.

Changes **postponed** for a later version (8.0):
1. Prepare to move the TYPE filtering to the scan callback as well. this was
  put on hold since it has side effects that can be considered a breaking
  change, which is that we will not attempt to do lazy expire (delete) a key
  that was filtered by not matching the TYPE (changing it would mean TYPE filter
  starts behaving the same as MATCH filter already does in that respect). 
2. when the specified key TYPE filter is an unknown type, server will reply a error
  immediately instead of doing a full scan that comes back empty handed. 

Benchmark result:
For different scenarios, we obtained about 30% or more performance improvement.

Co-authored-by: Oran Agra <oran@redislabs.com>
2023-06-27 16:43:46 +03:00
Meir Shpilraien (Spielrein)
153f8f082e
Fix use after free on blocking RM_Call. (#12342)
blocking RM_Call was introduced on: #11568, It allows a module to perform
blocking commands and get the reply asynchronously.If the command gets
block, a special promise CallReply is returned that allow to set the unblock
handler. The unblock handler will be called when the command invocation
finish and it gets, as input, the command real reply.

The issue was that the real CallReply was created using a stack allocated
RedisModuleCtx which is no longer available after the unblock handler finishes.
So if the module keeps the CallReply after the unblock handler finished, the
CallReply holds a pointer to invalid memory and will try to access it when the
CallReply will be released.

The solution is to create the CallReply with a NULL context to make it totally
detached and can be freed freely when the module wants.

Test was added to cover this case, running the test with valgrind before the
fix shows the use after free error. With the fix, there are no valgrind errors.

unrelated: adding a missing `$rd close` in many tests in that file.
2023-06-25 14:12:27 +03:00
guybe7
3230199920
Modules: Unblock from within a timer coverage (#12337)
Apart from adding the missing coverage, this PR also adds `blockedBeforeSleep`
that gathers all block-related functions from `beforeSleep`

The order inside `blockedBeforeSleep` is different: now `handleClientsBlockedOnKeys`
(which may unblock clients) is called before `processUnblockedClients` (which handles
unblocked clients).
It makes sense to have this order.

There are no visible effects of the wrong ordering, except some cleanups of the now-unblocked
client would have  happen in the next `beforeSleep` (will now happen in the current one)

The reason we even got into it is because i triggers an assertion in logresreq.c (breaking
the assumption that `unblockClient` is called **before** actually flushing the reply to the socket):
`handleClientsBlockedOnKeys` is called, then it calls `moduleUnblockClientOnKey`, which calls
`moduleUnblockClient`, which adds the client to `moduleUnblockedClients` back to `beforeSleep`,
we call `handleClientsWithPendingWritesUsingThreads`, it writes the data of buf to the client, so
`client->bufpos` became 0
On the next `beforeSleep`, we call `moduleHandleBlockedClients`, which calls `unblockClient`,
which calls `reqresAppendResponse`, triggering the assert. (because the `bufpos` is 0) - see https://github.com/redis/redis/pull/12301#discussion_r1226386716
2023-06-22 23:15:16 +03:00
guybe7
20fa156067
Align RM_ReplyWithErrorFormat with RM_ReplyWithError (#12321)
Introduced by https://github.com/redis/redis/pull/11923 (Redis 7.2 RC2)

It's very weird and counterintuitive that `RM_ReplyWithError` requires the error-code
**without** a hyphen while `RM_ReplyWithErrorFormat` requires either the error-code
**with** a hyphen or no error-code at all
```
RedisModule_ReplyWithError(ctx, "BLA bla bla");
```
vs.
```
RedisModule_ReplyWithErrorFormat(ctx, "-BLA %s", "bla bla");
```

This commit aligns RM_ReplyWithErrorFormat to behvae like RM_ReplyWithError.
it's a breaking changes but it's done before 7.2 goes GA.
2023-06-20 20:44:43 +03:00
Oran Agra
8ad8f0f9d8
Fix broken protocol when PUBLISH emits local push inside MULTI (#12326)
When a connection that's subscribe to a channel emits PUBLISH inside MULTI-EXEC,
the push notification messes up the EXEC response.

e.g. MULTI, PING, PUSH foo bar, PING, EXEC
the EXEC's response will contain: PONG, {message foo bar}, 1. and the second PONG
will be delivered outside the EXEC's response.

Additionally, this PR changes the order of responses in case of a plain PUBLISH (when
the current client also subscribed to it), by delivering the push after the command's
response instead of before it.
This also affects modules calling RM_PublishMessage in a similar way, so that we don't
run the risk of getting that push mixed together with the module command's response.
2023-06-20 20:41:41 +03:00
Shaya Potter
07316f16f0
Add ability for modules to know which client is being cmd filtered (#12219)
Adds API
- RedisModule_CommandFilterGetClientId()

Includes addition to commandfilter test module to validate that it works
by performing the same command from 2 different clients
2023-06-20 09:03:52 +03:00
Oran Agra
6117f28822
Fix WAIT for clients being blocked in a module command (#12220)
So far clients being blocked and unblocked by a module command would
update the c->woff variable and so WAIT was ineffective and got released
without waiting for the command actions to propagate.

This seems to have existed since forever, but not for RM_BlockClientOnKeys.

It is problematic though to know if the module did or didn't propagate
anything in that command, so for now, instead of adding an API, we'll
just update the woff to the latest offset when unblocking, this will
cause the client to possibly wait excessively, but that's not that bad.
2023-05-28 10:10:52 +03:00
sundb
ce5f4ea3a9
Delete empty key if fails after moduleCreateEmptyKey() in module (#12129)
When `RM_ZsetAdd()`/`RM_ZsetIncrby()`/`RM_StreamAdd()` fails, if a new key happens to 
be created using `moduleCreateEmptyKey()`, we should clean up the empty key.

## Test
1) Add new module commands(`zset.add` and `zset.incrby`) to cover  `RM_ZsetAdd()`/`RM_ZsetIncrby()`.
2) Add a large-memory test to cover `RM_StreamAdd()`.
2023-05-07 10:13:19 +03:00
Binbin
20533cc1d7
Tests: Do not save an RDB by default and add a SIGTERM default AOFRW test (#12064)
In order to speed up tests, avoid saving an RDB (mostly notable on shutdown),
except for tests that explicitly test the RDB mechanism

In addition, use `shutdown-on-sigterm force` to prevetn shutdown from failing
in case the server is in the middle of the initial AOFRW

Also a a test that checks that the `shutdown-on-sigterm default` is to refuse
shutdown if there's an initial AOFRW

Co-authored-by: Guy Benoish <guy.benoish@redislabs.com>
2023-04-18 16:14:26 +03:00
Binbin
bfec2d700b
Add RM_ReplyWithErrorFormat that can support format (#11923)
* Add RM_ReplyWithErrorFormat that can support format

Reply with the error create from a printf format and arguments.

If the error code is already passed in the string 'fmt', the error
code provided is used, otherwise the string "-ERR " for the generic
error code is automatically added.

The usage is, for example:
    RedisModule_ReplyWithErrorFormat(ctx, "An error: %s", "foo");
    RedisModule_ReplyWithErrorFormat(ctx, "-WRONGTYPE Wrong Type: %s", "foo");

The function always returns REDISMODULE_OK.
2023-04-12 10:11:29 +03:00
Oran Agra
997fa41e99
Attempt to solve MacOS CI issues in GH Actions (#12013)
The MacOS CI in github actions often hangs without any logs. GH argues that
it's due to resource utilization, either running out of disk space, memory, or CPU
starvation, and thus the runner is terminated.

This PR contains multiple attempts to resolve this:
1. introducing pause_process instead of SIGSTOP, which waits for the process
  to stop before resuming the test, possibly resolving race conditions in some tests,
  this was a suspect since there was one test that could result in an infinite loop in that
 case, in practice this didn't help, but still a good idea to keep.
2. disable the `save` config in many tests that don't need it, specifically ones that use
  heavy writes and could create large files.
3. change the `populate` proc to use short pipeline rather than an infinite one.
4. use `--clients 1` in the macos CI so that we don't risk running multiple resource
  demanding tests in parallel.
5. enable `--verbose` to be repeated to elevate verbosity and print more info to stdout
  when a test or a server starts.
2023-04-12 09:19:21 +03:00
Ozan Tezcan
e55568edb5
Add RM_RdbLoad and RM_RdbSave module API functions (#11852)
Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. 

In our use case, we have our clustering implementation as a module. As part of this
implementation, the module needs to trigger RDB save operation at specific points.
Also, this module delivers RDB files to other nodes (not using Redis' replication).
When a node receives an RDB file, it should be able to load the RDB. Currently,
there is no module API to save/load RDB files. 


This PR adds four new APIs:
```c
RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename);
void RM_RdbStreamFree(RedisModuleRdbStream *stream);

int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags);
int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags);
```

The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to
create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename).
In the future, this API can be extended if needed: 
e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load
RDB from an `fd` or a `socket`. 


Usage:
```c
/* Save RDB */
RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb");
RedisModule_RdbSave(ctx, stream, 0);
RedisModule_RdbStreamFree(stream);

/* Load RDB */
RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb");
RedisModule_RdbLoad(ctx, stream, 0);
RedisModule_RdbStreamFree(stream);
```
2023-04-09 12:07:32 +03:00
Roshan Khatri
6948dacaf6
Module commands to have ACL categories. (#11708)
This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function.

For allowing modules to register commands to existing ACL categories,
This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories.
Example, 'write slow' marks the command as part of the write and slow ACL categories.

The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly.

If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime.

## Breaking change
This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function.

Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
Shaya Potter
6cf8fc08f5
Don't run command filter on blocked command reprocessing (#11895)
Previously we would run the module command filters even upon blocked
command reprocessing.  This could modify the command, and it's args.
This is irrelevant in the context of a command being reprocessed (it already
went through the filters), as well as breaks the crashed command lookup
that exists in the case of a reprocessed command.

fixes #11894.

Co-authored-by: Oran Agra <oran@redislabs.com>
2023-03-20 08:04:13 +02:00
Meir Shpilraien (Spielrein)
d0da0a6a3f
Support for RM_Call on blocking commands (#11568)
Allow running blocking commands from within a module using `RM_Call`.

Today, when `RM_Call` is used, the fake client that is used to run command
is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command
that it is not allowed to block the client and in case it needs to block, it must
fallback to some alternative (either return error or perform some default behavior).
For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block.

All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including
module commands). When the command invocation finished, Redis asserts that
the client was not blocked.

This PR introduces the ability to call blocking command using `RM_Call` by
passing a callback that will be called when the client will get unblocked.
In order to do that, the user must explicitly say that he allow to perform blocking
command by passing a new format specifier argument, `K`, to the `RM_Call`
function. This new flag will tell Redis that it is allow to run blocking command
and block the client. In case the command got blocked, Redis will return a new
type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates
that the command got blocked and the user can set the on_unblocked handler using
`RM_CallReplyPromiseSetUnblockHandler`.

When clients gets unblocked, it eventually reaches `processUnblockedClients` function.
This is where we check if the client is a fake module client and if it is, we call the unblock
callback instead of performing the usual unblock operations.

**Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically
along side the command invocation (without releasing the Redis lock in between).
In addition, unlike other CallReply types, the promise call reply must be released
by the module when the Redis GIL is acquired.

The module can abort the execution on the blocking command (if it was not yet
executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK`
on success and `REDISMODULE_ERR` if the operation is already executed.
**Notice** that in case of misbehave module, Abort might finished successfully but the
operation will not really be aborted. This can only happened if the module do not respect
the disconnect callback of the blocked client. 
For pure Redis commands this can not happened.

### Atomicity Guarantees

The API promise that the unblock handler will run atomically as an execution unit.
This means that all the operation performed on the unblock handler will be wrapped
with a multi exec transaction when replicated to the replica and AOF.
The API **do not** grantee any other atomicity properties such as when the unblock
handler will be called. This gives us the flexibility to strengthen the grantees (or not)
in the future if we will decide that we need a better guarantees.

That said, the implementation **does** provide a better guarantees when performing
pure Redis blocking command like `BLPOP`. In this case the unblock handler will run
atomically with the operation that got unblocked (for example, in case of `BLPOP`, the
unblock handler will run atomically with the `LPOP` operation that run when the command
got unblocked). This is an implementation detail that might be change in the future and the
module writer should not count on that.

### Calling blocking commands while running on script mode (`S`)

`RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the
command that was invoked on `RM_Call` comes from a user input and we want to make
sure the user will not run dangerous commands like `shutdown`. Some command, such
as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on
script mode. Those commands are marked with  `NO_SCRIPT` just because they are
blocking commands and not because they are dangerous. Now that we can run blocking
commands on RM_Call, there is no real reason not to allow such commands on script mode.

The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the
blocking commands (notice that those commands know not to block the client if it is not
allowed to do so, and have a fallback logic to such cases. So even if those commands
were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can
already run those commands within multi exec).

In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example
`blmpop` are not marked and can run from within a script.

Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT`
flag, and its not fully clear where it should be use.

The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag,
those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when
it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT`
flag from the following commands:
* `blmove`
* `blpop`
* `brpop`
* `brpoplpush`
* `bzpopmax`
* `bzpopmin`
* `wait`

This might be considered a breaking change as now, on scripts, instead of getting
`command is not allowed from script` error, the user will get some fallback behavior
base on the command implementation. That said, the change matches the behavior
of scripts and multi exec with respect to those commands and allow running them on
`RM_Call` even when script mode is used.

### Additional RedisModule API and changes

* `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the
  need to unblock the client. This allows up to set the promise CallReply as the private
  data of the blocked client and abort it if the client gets disconnected.
* `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client.
  We need it so we will have access to this private data on the disconnect callback.
* On RM_Call, the returned reply will be added to the auto memory context only if auto
  memory is enabled, this allows us to keep the call reply for longer time then the context
  lifetime and does not force an unneeded borrow relationship between the CallReply and
  the RedisModuleContext.
2023-03-16 14:04:31 +02:00
KarthikSubbarao
f8a5a4f70c
Custom authentication for Modules (#11659)
This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed.
The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `.

Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback.

For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided.


### RedisModule_RegisterCustomAuthCallback
```
void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) {
```
This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions:

 (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply.
(2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication.
(3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply.
(4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback.

If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly.

### RedisModule_BlockClientOnAuth
```
RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback,
                                               void (*free_privdata)(RedisModuleCtx*,void*))
```
This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API.

### RedisModule_ACLAddLogEntryByUserName
```
int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason)
```
Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API.


### Breaking changes
- HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments.

### Notable behaviors
- Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`).

---------

Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
guybe7
4ba47d2d21
Add reply_schema to command json files (internal for now) (#10273)
Work in progress towards implementing a reply schema as part of COMMAND DOCS, see #9845
Since ironing the details of the reply schema of each and every command can take a long time, we
would like to merge this PR when the infrastructure is ready, and let this mature in the unstable branch.
Meanwhile the changes of this PR are internal, they are part of the repo, but do not affect the produced build.

### Background
In #9656 we add a lot of information about Redis commands, but we are missing information about the replies

### Motivation
1. Documentation. This is the primary goal.
2. It should be possible, based on the output of COMMAND, to be able to generate client code in typed
  languages. In order to do that, we need Redis to tell us, in detail, what each reply looks like.
3. We would like to build a fuzzer that verifies the reply structure (for now we use the existing
  testsuite, see the "Testing" section)

### Schema
The idea is to supply some sort of schema for the various replies of each command.
The schema will describe the conceptual structure of the reply (for generated clients), as defined in RESP3.
Note that the reply structure itself may change, depending on the arguments (e.g. `XINFO STREAM`, with
and without the `FULL` modifier)
We decided to use the standard json-schema (see https://json-schema.org/) as the reply-schema.

Example for `BZPOPMIN`:
```
"reply_schema": {
    "oneOf": [
        {
            "description": "Timeout reached and no elements were popped.",
            "type": "null"
        },
        {
            "description": "The keyname, popped member, and its score.",
            "type": "array",
            "minItems": 3,
            "maxItems": 3,
            "items": [
                {
                    "description": "Keyname",
                    "type": "string"
                },
                {
                    "description": "Member",
                    "type": "string"
                },
                {
                    "description": "Score",
                    "type": "number"
                }
            ]
        }
    ]
}
```

#### Notes
1.  It is ok that some commands' reply structure depends on the arguments and it's the caller's responsibility
  to know which is the relevant one. this comes after looking at other request-reply systems like OpenAPI,
  where the reply schema can also be oneOf and the caller is responsible to know which schema is the relevant one.
2. The reply schemas will describe RESP3 replies only. even though RESP3 is structured, we want to use reply
  schema for documentation (and possibly to create a fuzzer that validates the replies)
3. For documentation, the description field will include an explanation of the scenario in which the reply is sent,
  including any relation to arguments. for example, for `ZRANGE`'s two schemas we will need to state that one
  is with `WITHSCORES` and the other is without.
4. For documentation, there will be another optional field "notes" in which we will add a short description of
  the representation in RESP2, in case it's not trivial (RESP3's `ZRANGE`'s nested array vs. RESP2's flat
  array, for example)

Given the above:
1. We can generate the "return" section of all commands in [redis-doc](https://redis.io/commands/)
  (given that "description" and "notes" are comprehensive enough)
2. We can generate a client in a strongly typed language (but the return type could be a conceptual
  `union` and the caller needs to know which schema is relevant). see the section below for RESP2 support.
3. We can create a fuzzer for RESP3.

### Limitations (because we are using the standard json-schema)
The problem is that Redis' replies are more diverse than what the json format allows. This means that,
when we convert the reply to a json (in order to validate the schema against it), we lose information (see
the "Testing" section below).
The other option would have been to extend the standard json-schema (and json format) to include stuff
like sets, bulk-strings, error-string, etc. but that would mean also extending the schema-validator - and that
seemed like too much work, so we decided to compromise.

Examples:
1. We cannot tell the difference between an "array" and a "set"
2. We cannot tell the difference between simple-string and bulk-string
3. we cannot verify true uniqueness of items in commands like ZRANGE: json-schema doesn't cover the
  case of two identical members with different scores (e.g. `[["m1",6],["m1",7]]`) because `uniqueItems`
  compares (member,score) tuples and not just the member name. 

### Testing
This commit includes some changes inside Redis in order to verify the schemas (existing and future ones)
are indeed correct (i.e. describe the actual response of Redis).
To do that, we added a debugging feature to Redis that causes it to produce a log of all the commands
it executed and their replies.
For that, Redis needs to be compiled with `-DLOG_REQ_RES` and run with
`--reg-res-logfile <file> --client-default-resp 3` (the testsuite already does that if you run it with
`--log-req-res --force-resp3`)
You should run the testsuite with the above args (and `--dont-clean`) in order to make Redis generate
`.reqres` files (same dir as the `stdout` files) which contain request-response pairs.
These files are later on processed by `./utils/req-res-log-validator.py` which does:
1. Goes over req-res files, generated by redis-servers, spawned by the testsuite (see logreqres.c)
2. For each request-response pair, it validates the response against the request's reply_schema
  (obtained from the extended COMMAND DOCS)
5. In order to get good coverage of the Redis commands, and all their different replies, we chose to use
  the existing redis test suite, rather than attempt to write a fuzzer.

#### Notes about RESP2
1. We will not be able to use the testing tool to verify RESP2 replies (we are ok with that, it's time to
  accept RESP3 as the future RESP)
2. Since the majority of the test suite is using RESP2, and we want the server to reply with RESP3
  so that we can validate it, we will need to know how to convert the actual reply to the one expected.
   - number and boolean are always strings in RESP2 so the conversion is easy
   - objects (maps) are always a flat array in RESP2
   - others (nested array in RESP3's `ZRANGE` and others) will need some special per-command
     handling (so the client will not be totally auto-generated)

Example for ZRANGE:
```
"reply_schema": {
    "anyOf": [
        {
            "description": "A list of member elements",
            "type": "array",
            "uniqueItems": true,
            "items": {
                "type": "string"
            }
        },
        {
            "description": "Members and their scores. Returned in case `WITHSCORES` was used.",
            "notes": "In RESP2 this is returned as a flat array",
            "type": "array",
            "uniqueItems": true,
            "items": {
                "type": "array",
                "minItems": 2,
                "maxItems": 2,
                "items": [
                    {
                        "description": "Member",
                        "type": "string"
                    },
                    {
                        "description": "Score",
                        "type": "number"
                    }
                ]
            }
        }
    ]
}
```

### Other changes
1. Some tests that behave differently depending on the RESP are now being tested for both RESP,
  regardless of the special log-req-res mode ("Pub/Sub PING" for example)
2. Update the history field of CLIENT LIST
3. Added basic tests for commands that were not covered at all by the testsuite

### TODO

- [x] (maybe a different PR) add a "condition" field to anyOf/oneOf schemas that refers to args. e.g.
  when `SET` return NULL, the condition is `arguments.get||arguments.condition`, for `OK` the condition
  is `!arguments.get`, and for `string` the condition is `arguments.get` - https://github.com/redis/redis/issues/11896
- [x] (maybe a different PR) also run `runtest-cluster` in the req-res logging mode
- [x] add the new tests to GH actions (i.e. compile with `-DLOG_REQ_RES`, run the tests, and run the validator)
- [x] (maybe a different PR) figure out a way to warn about (sub)schemas that are uncovered by the output
  of the tests - https://github.com/redis/redis/issues/11897
- [x] (probably a separate PR) add all missing schemas
- [x] check why "SDOWN is triggered by misconfigured instance replying with errors" fails with --log-req-res
- [x] move the response transformers to their own file (run both regular, cluster, and sentinel tests - need to
  fight with the tcl including mechanism a bit)
- [x] issue: module API - https://github.com/redis/redis/issues/11898
- [x] (probably a separate PR): improve schemas: add `required` to `object`s - https://github.com/redis/redis/issues/11899

Co-authored-by: Ozan Tezcan <ozantezcan@gmail.com>
Co-authored-by: Hanna Fadida <hanna.fadida@redislabs.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Shaya Potter <shaya@redislabs.com>
2023-03-11 10:14:16 +02:00
ranshid
4988b92850
Fix an issue when module decides to unblock a client which is blocked on keys (#11832)
Currently (starting at #11012) When a module is blocked on keys it sets the
CLIENT_PENDING_COMMAND flag.
However in case the module decides to unblock the client not via the regular flow
(eg timeout, key signal or CLIENT UNBLOCK command) it will attempt to reprocess the
module command and potentially blocked again.

This fix remove the CLIENT_PENDING_COMMAND flag in case blockedForKeys is
issued from module context.
2023-03-08 10:08:54 +02:00
sundb
3fba3ccd96
Skip test for sdsRemoveFreeSpace when mem_allocator is not jemalloc (#11878)
Test `trim on SET with big value` (introduced from #11817) fails under mac m1 with libc mem_allocator.
The reason is that malloc(33000) will allocate 65536 bytes(>42000).
This test still passes under ubuntu with libc mem_allocator.

```
*** [err]: trim on SET with big value in tests/unit/type/string.tcl
Expected [r memory usage key] < 42000 (context: type source line 471 file /Users/iospack/data/redis_fork/tests/unit/type/string.tcl cmd {assert {[r memory usage key] < 42000}} proc ::test)
```

simple test under mac m1 with libc mem_allocator:
```c
void *p = zmalloc(33000);
printf("malloc size: %zu\n", zmalloc_size(p));

# output
malloc size: 65536
```
2023-03-07 09:06:58 +02:00
uriyage
9d336ac398
Try to trim strings only when applicable (#11817)
As `sdsRemoveFreeSpace` have an impact on performance even if it is a no-op (see details at #11508). 
Only call the function when there is a possibility that the string contains free space.
* For strings coming from the network, it's only if they're bigger than PROTO_MBULK_BIG_ARG
* For strings coming from scripts, it's only if they're smaller than LUA_CMD_OBJCACHE_MAX_LEN
* For strings coming from modules, it could be anything.

Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: sundb <sundbcn@gmail.com>
2023-02-28 19:38:58 +02:00
Oran Agra
233abbbe03
Cleanup around script_caller, fix tracking of scripts and ACL logging for RM_Call (#11770)
* Make it clear that current_client is the root client that was called by
  external connection
* add executing_client which is the client that runs the current command
  (can be a module or a script)
* Remove script_caller that was used for commands that have CLIENT_SCRIPT
  to get the client that called the script. in most cases, that's the current_client,
  and in others (when being called from a module), it could be an intermediate
  client when we actually want the original one used by the external connection.

bugfixes:
* RM_Call with C flag should log ACL errors with the requested user rather than
  the one used by the original client, this also solves a crash when RM_Call is used
  with C flag from a detached thread safe context.
* addACLLogEntry would have logged info about the script_caller, but in case the
  script was issued by a module command we actually want the current_client. the
  exception is when RM_Call is called from a timer event, in which case we don't
  have a current_client.

behavior changes:
* client side tracking for scripts now tracks the keys that are read by the script
  instead of the keys that are declared by the caller for EVAL

other changes:
* Log both current_client and executing_client in the crash log.
* remove prepareLuaClient and resetLuaClient, being dead code that was forgotten.
* remove scriptTimeSnapshot and snapshot_time and instead add cmd_time_snapshot
  that serves all commands and is reset only when execution nesting starts.
* remove code to propagate CLIENT_FORCE_REPL from the executed command
  to the script caller since scripts aren't propagated anyway these days and anyway
  this flag wouldn't have had an effect since CLIENT_PREVENT_PROP is added by scriptResetRun.
* fix a module GIL violation issue in afterSleep that was introduced in #10300 (unreleased)
2023-02-16 08:07:35 +02:00