Multiple missing calls to lua_pop prevented the error handler function
pushed on the stack for lua_pcall() to be popped before returning,
causing a memory leak in almost all the code paths of EVAL (both
successful calls and calls returning errors).
This caused two issues: Lua leaking memory (and this was very visible
from INFO memory output, as the 'used_memory_lua' field reported an
always increasing amount of memory used), and as a result slower and
slower GC cycles resulting in all the CPU being used.
Thanks to Tanguy Le Barzic for noticing something was wrong with his 2.8
slave, and for creating a testing EC2 environment where I was able to
investigate the issue.
Multiple missing calls to lua_pop prevented the error handler function
pushed on the stack for lua_pcall() to be popped before returning,
causing a memory leak in almost all the code paths of EVAL (both
successful calls and calls returning errors).
This caused two issues: Lua leaking memory (and this was very visible
from INFO memory output, as the 'used_memory_lua' field reported an
always increasing amount of memory used), and as a result slower and
slower GC cycles resulting in all the CPU being used.
Thanks to Tanguy Le Barzic for noticing something was wrong with his 2.8
slave, and for creating a testing EC2 environment where I was able to
investigate the issue.
We are sure the string is large, since when the sds optimization branch
is entered it means that it was not possible to encode it as EMBSTR for
size concerns.
We are sure the string is large, since when the sds optimization branch
is entered it means that it was not possible to encode it as EMBSTR for
size concerns.
When no encoding is possible, at least try to reallocate the sds string
with one that does not waste memory (with free space at the end of the
buffer) when the string is large enough.
When no encoding is possible, at least try to reallocate the sds string
with one that does not waste memory (with free space at the end of the
buffer) when the string is large enough.
We are sure that a string that is longer than 21 chars cannot be
represented by a 64 bit signed integer, as -(2^64) is 21 chars:
strlen(-18446744073709551616) => 21
We are sure that a string that is longer than 21 chars cannot be
represented by a 64 bit signed integer, as -(2^64) is 21 chars:
strlen(-18446744073709551616) => 21
This feature was implemented in the initial days of the Redis Cluster
implementaiton but is not a good idea at all.
1) It depends on clocks to be synchronized, that is already very bad.
2) Moreover it adds a bug where the pong time is updated via gossip so
no new PING is ever sent by the current node, with the effect of no PONG
received, no update of tables, no clearing of PFAIL flag.
In general to trust other nodes about the reachability of other nodes is
a broken distributed programming model.
This feature was implemented in the initial days of the Redis Cluster
implementaiton but is not a good idea at all.
1) It depends on clocks to be synchronized, that is already very bad.
2) Moreover it adds a bug where the pong time is updated via gossip so
no new PING is ever sent by the current node, with the effect of no PONG
received, no update of tables, no clearing of PFAIL flag.
In general to trust other nodes about the reachability of other nodes is
a broken distributed programming model.