As discussed in PR #336.
We have different types of resources like CPU, memory, network, etc. The
`slowlog` can only record commands eat lots of CPU during the processing
phase (doesn't include read/write network time), but can not record
commands eat too many memory and network. For example:
1. run "SET key value(10 megabytes)" command would not be recored in
slowlog, since when processing it the SET command only insert the
value's pointer into db dict. But that command eats huge memory in query
buffer and bandwidth from network. In this case, just 1000 tps can cause
10GB/s network flow.
2. run "GET key" command and the key's value length is 10 megabytes. The
get command can eat huge memory in output buffer and bandwidth to
network.
This PR introduces a new command `COMMANDLOG`, to log commands that
consume significant network bandwidth, including both input and output.
Users can retrieve the results using `COMMANDLOG get <count>
large-request` and `COMMANDLOG get <count> large-reply`, all subcommands
for `COMMANDLOG` are:
* `COMMANDLOG HELP`
* `COMMANDLOG GET <count> <slow|large-request|large-reply>`
* `COMMANDLOG LEN <slow|large-request|large-reply>`
* `COMMANDLOG RESET <slow|large-request|large-reply>`
And the slowlog is also incorporated into the commandlog.
For each of these three types, additional configs have been added for
control:
* `commandlog-request-larger-than` and
`commandlog-large-request-max-len` represent the threshold for large
requests(the unit is Bytes) and the maximum number of commands that can
be recorded.
* `commandlog-reply-larger-than` and `commandlog-large-reply-max-len`
represent the threshold for large replies(the unit is Bytes) and the
maximum number of commands that can be recorded.
* `commandlog-execution-slower-than` and
`commandlog-slow-execution-max-len` represent the threshold for slow
executions(the unit is microseconds) and the maximum number of commands
that can be recorded.
* Additionally, `slowlog-log-slower-than` and `slowlog-max-len` are now
set as aliases for these two new configs.
---------
Signed-off-by: zhaozhao.zz <zhaozhao.zz@alibaba-inc.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: Ping Xie <pingxie@outlook.com>
This commit creates a new compilation unit for the scripting engine code
by extracting the existing code from the functions unit.
We're doing this refactor to prepare the code for running the `EVAL`
command using different scripting engines.
This PR has a module API change: we changed the type of error messages
returned by the callback
`ValkeyModuleScriptingEngineCreateFunctionsLibraryFunc` to be a
`ValkeyModuleString` (aka `robj`);
This PR also fixes#1470.
---------
Signed-off-by: Ricardo Dias <ricardo.dias@percona.com>
Introduce compile time option to force activedefrag to run even when
jemalloc is not used as the allocator.
This is in order to be able to run tests with defrag enabled
while using memory instrumentation tools.
fixes: https://github.com/valkey-io/valkey/issues/1241
---------
Signed-off-by: ranshid <ranshid@amazon.com>
Signed-off-by: Ran Shidlansik <ranshid@amazon.com>
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Signed-off-by: ranshid <88133677+ranshid@users.noreply.github.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
A cache-line aware hash table with a user-defined key-value entry type,
supporting incremental rehashing, scan, iterator, random sampling,
incremental lookup and more...
Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
There are several patches in this PR:
* Abstract set/rewrite config bind option: `bind` option is a special
config, `socket` and `tls` are using the same one. However RDMA uses the
similar style but different one. Use a bit abstract work to make it
flexible for both `socket` and `RDMA`. (Even for QUIC in the future.)
* Introduce closeListener for connection type: closing socket by a
simple syscall would be fine, RDMA has complex logic. Introduce
connection type specific close listener method.
* RDMA: Use valkey.conf style instead of module parameters: use
`--rdma-bind` and `--rdma-port` style instead of module parameters. The
module style config `rdma.bind` and `rdma.port` are removed.
* RDMA: Support builtin: support `make BUILD_RDMA=yes`. module style is
still kept for now.
Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
Fast_float is a C++ header-only library to parse doubles using SIMD
instructions. The purpose is to speed up sorted sets and other commands
that use doubles. A single-file copy of fast_float is included in this
repo. This introduces an optional dependency on a C++ compiler.
The use of fast_float is enabled at compile time using the make variable
`USE_FAST_FLOAT=yes`. It is disabled by default.
Fixes#1069.
---------
Signed-off-by: Parth Patel <661497+parthpatel@users.noreply.github.com>
Signed-off-by: Parth <661497+parthpatel@users.noreply.github.com>
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
Co-authored-by: Roshan Swain <swainroshan001@gmail.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
### Summary of the change
This is a base PR for refactoring defrag. It moves the defrag logic to
rely on jemalloc [native
api](https://github.com/jemalloc/jemalloc/pull/1463#issuecomment-479706489)
instead of relying on custom code changes made by valkey in the jemalloc
([je_defrag_hint](9f8185f5c8/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_c.h (L382)))
library. This enables valkey to use latest vanila jemalloc without the
need to maintain code changes cross jemalloc versions.
This change requires some modifications because the new api is providing
only the information, not a yes\no defrag. The logic needs to be
implemented at valkey code. Additionally, the api does not provide,
within single call, all the information needed to make a decision, this
information is available through additional api call. To reduce the
calls to jemalloc, in this PR the required information is collected
during the `computeDefragCycles` and not for every single ptr, this way
we are avoiding the additional api call.
Followup work will utilize the new options that are now open and will
further improve the defrag decision and process.
### Added files:
`allocator_defrag.c` / `allocator_defrag.h` - This files implement the
allocator specific knowledge for making defrag decision. The knowledge
about slabs and allocation logic and so on, all goes into this file.
This improves the separation between jemalloc specific code and other
possible implementation.
### Moved functions:
[`zmalloc_no_tcache` , `zfree_no_tcache`
](4593dc2f05/src/zmalloc.c (L215))
- these are very jemalloc specific logic assumptions, and are very
specific to how we defrag with jemalloc. This is also with the vision
that from performance perspective we should consider using tcache, we
only need to make sure we don't recycle entries without going through
the arena [for example: we can use private tcache, one for free and one
for alloc].
`frag_smallbins_bytes` - the logic and implementation moved to the new
file
### Existing API:
* [once a second + when completed full cycle]
[`computeDefragCycles`](4593dc2f05/src/defrag.c (L916))
* `zmalloc_get_allocator_info` : gets from jemalloc _allocated, active,
resident, retained, muzzy_, `frag_smallbins_bytes`
*
[`frag_smallbins_bytes`](4593dc2f05/src/zmalloc.c (L690))
: for each bin; gets from jemalloc bin_info, `curr_regs`, `cur_slabs`
* [during defrag, for each pointer]
* `je_defrag_hint` is getting a memory pointer and returns {0,1} .
[Internally it
uses](4593dc2f05/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_c.h (L368))
this information points:
* #`nonfull_slabs`
* #`total_slabs`
* #free regs in the ptr slab
## Jemalloc API (via ctl interface)
[BATCH][`experimental_utilization_batch_query_ctl`](4593dc2f05/deps/jemalloc/src/ctl.c (L4114))
: gets an array of pointers, returns for each pointer 3 values,
* number of free regions in the extent
* number of regions in the extent
* size of the extent in terms of bytes
[EXTENDED][`experimental_utilization_query_ctl`](4593dc2f05/deps/jemalloc/src/ctl.c (L3989))
:
* memory address of the extent a potential reallocation would go into
* number of free regions in the extent
* number of regions in the extent
* size of the extent in terms of bytes
* [stats-enabled]total number of free regions in the bin the extent
belongs to
* [stats-enabled]total number of regions in the bin the extent belongs
to
### `experimental_utilization_batch_query_ctl` vs valkey
`je_defrag_hint`?
[good]
- We can query pointers in a batch, reduce the overall overhead
- The per ptr decision algorithm is not within jemalloc api, jemalloc
only provides information, valkey can tune\configure\optimize easily
[bad]
- In the batch API we only know the utilization of the slab (of that
memory ptr), we don’t get the data about #`nonfull_slabs` and total
allocated regs.
## New functions:
1. `defrag_jemalloc_init`: Reducing the cost of call to je_ctl: use the
[MIB interface](https://jemalloc.net/jemalloc.3.html) to get a faster
calls. See this quote from the jemalloc documentation:
The mallctlnametomib() function provides a way to avoid repeated name
lookups for
applications that repeatedly query the same portion of the namespace,by
translating
a name to a “Management Information Base” (MIB) that can be passed
repeatedly to
mallctlbymib().
6. `jemalloc_sz2binind_lgq*` : this api is to support reverse map
between bin size and it’s info without lookup. This mapping depends on
the number of size classes we have that are derived from
[`lg_quantum`](4593dc2f05/deps/Makefile (L115))
7. `defrag_jemalloc_get_frag_smallbins` : This function replaces
`frag_smallbins_bytes` the logic moved to the new file allocator_defrag
`defrag_jemalloc_should_defrag_multi` → `handle_results` - unpacks the
results
8. `should_defrag` : implements the same logic as the existing
implementation
[inside](9f8185f5c8/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_c.h (L382))
je_defrag_hint
9. `defrag_jemalloc_should_defrag_multi` : implements the hint for an
array of pointers, utilizing the new batch api. currently only 1 pointer
is passed.
### Logical differences:
In order to get the information about #`nonfull_slabs` and #`regs`, we
use the query cycle to collect the information per size class. In order
to find the index of bin information given bin size, in o(1), we use
`jemalloc_sz2binind_lgq*` .
## Testing
This is the first draft. I did some initial testing that basically
fragmentation by reducing max memory and than waiting for defrag to
reach desired level. The test only serves as sanity that defrag is
succeeding eventually, no data provided here regarding efficiency and
performance.
### Test:
1. disable `activedefrag`
2. run valkey benchmark on overlapping address ranges with different
block sizes
3. wait untill `used_memory` reaches 10GB
4. set `maxmemory` to 5GB and `maxmemory-policy` to `allkeys-lru`
5. stop load
6. wait for `mem_fragmentation_ratio` to reach 2
7. enable `activedefrag` - start test timer
8. wait until reach `mem_fragmentation_ratio` = 1.1
#### Results*:
(With this PR)Test results: ` 56 sec`
(Without this PR)Test results: `67 sec`
*both runs perform same "work" number of buffers moved to reach
fragmentation target
Next benchmarking is to compare to:
- DONE // existing `je_get_defrag_hint`
- compare with naive defrag all: `int defrag_hint() {return 1;}`
---------
Signed-off-by: Zvi Schneider <ezvisch@amazon.com>
Signed-off-by: Zvi Schneider <zvi.schneider22@gmail.com>
Signed-off-by: zvi-code <54795925+zvi-code@users.noreply.github.com>
Co-authored-by: Zvi Schneider <ezvisch@amazon.com>
Co-authored-by: Zvi Schneider <zvi.schneider22@gmail.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
* We compile various c files into object and package them into library
(.a file) using ar to feed to unit tests. With new GCC versions, the
objects inside such library don't participate in LTO process without
additional flags.
* Here is a direct quote from gcc documentation explaining this issue:
"If you are not using a linker with plugin support and/or do not enable
the linker plugin, then the objects inside libfoo.a are extracted and
linked as usual, but they do not participate in the LTO optimization
process. In order to make a static library suitable for both LTO
optimization and usual linkage, compile its object files with
-flto-ffat-lto-objects."
* Read full documentation about -flto at
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
* Without this additional flag, I get following errors while executing
"make test-unit". With this change, those errors go away.
```
ARCHIVE libvalkey.a
ar: threads_mngr.o: plugin needed to handle lto object
...
..
.
/tmp/ccDYbMXL.ltrans0.ltrans.o: In function `dictClear':
/local/workplace/elasticache/valkey/src/unit/../dict.c:776: undefined
reference to `valkey_free'
/local/workplace/elasticache/valkey/src/unit/../dict.c:770: undefined
reference to `valkey_free'
/tmp/ccDYbMXL.ltrans0.ltrans.o: In function `dictGetVal':
```
Fixes#1290
---------
Signed-off-by: Parth Patel <661497+parthpatel@users.noreply.github.com>
Migrate quicklist unit test to new unit test framework, and cleanup
remaining references of SERVER_TEST, parent ticket #428.
Closes#428.
Signed-off-by: artikell <739609084@qq.com>
Signed-off-by: Binbin <binloveplay1314@qq.com>
Co-authored-by: Binbin <binloveplay1314@qq.com>
At some point unit tests stopped building on MacOS because of duplicate
symbols. I had originally solved this problem by using a flag that
overrides symbols, but the much better solution is to mark the duplicate
symbols as weak and they can be overridden during linking. (Symbols by
default are strong, strong symbols override weak symbols)
I also added macos unit build to the CI, so that this doesn't silently
break in the future again.
---------
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
This PR utilizes the IO threads to execute commands in batches, allowing
us to prefetch the dictionary data in advance.
After making the IO threads asynchronous and offloading more work to
them in the first 2 PRs, the `lookupKey` function becomes a main
bottle-neck and it takes about 50% of the main-thread time (Tested with
SET command). This is because the Valkey dictionary is a straightforward
but inefficient chained hash implementation. While traversing the hash
linked lists, every access to either a dictEntry structure, pointer to
key, or a value object requires, with high probability, an expensive
external memory access.
### Memory Access Amortization
Memory Access Amortization (MAA) is a technique designed to optimize the
performance of dynamic data structures by reducing the impact of memory
access latency. It is applicable when multiple operations need to be
executed concurrently. The principle behind it is that for certain
dynamic data structures, executing operations in a batch is more
efficient than executing each one separately.
Rather than executing operations sequentially, this approach interleaves
the execution of all operations. This is done in such a way that
whenever a memory access is required during an operation, the program
prefetches the necessary memory and transitions to another operation.
This ensures that when one operation is blocked awaiting memory access,
other memory accesses are executed in parallel, thereby reducing the
average access latency.
We applied this method in the development of `dictPrefetch`, which takes
as parameters a vector of keys and dictionaries. It ensures that all
memory addresses required to execute dictionary operations for these
keys are loaded into the L1-L3 caches when executing commands.
Essentially, `dictPrefetch` is an interleaved execution of dictFind for
all the keys.
**Implementation details**
When the main thread iterates over the `clients-pending-io-read`, for
clients with ready-to-execute commands (i.e., clients for which the IO
thread has parsed the commands), a batch of up to 16 commands is
created. Initially, the command's argv, which were allocated by the IO
thread, is prefetched to the main thread's L1 cache. Subsequently, all
the dict entries and values required for the commands are prefetched
from the dictionary before the command execution. Only then will the
commands be executed.
---------
Signed-off-by: Uri Yagelnik <uriy@amazon.com>
Update references of copyright being assigned to Salvatore when it was
transferred to Redis Ltd. as per
https://github.com/valkey-io/valkey/issues/544.
---------
Signed-off-by: Pieter Cailliau <pieter@redis.com>
Adds an option to build RDMA support as a module:
make BUILD_RDMA=module
To start valkey-server with RDMA, use a command line like the following:
./src/valkey-server --loadmodule src/valkey-rdma.so \
port=6379 bind=xx.xx.xx.xx
* Implement server side of connection module only, this means we can
*NOT*
compile RDMA support as built-in.
* Add necessary information in README.md
* Support 'CONFIG SET/GET', for example, 'CONFIG Set rdma.port 6380',
then
check this by 'rdma res show cm_id' and valkey-cli (with RDMA support,
but not implemented in this patch).
* The full listeners show like:
listener0:name=tcp,bind=*,bind=-::*,port=6379
listener1:name=unix,bind=/var/run/valkey.sock
listener2:name=rdma,bind=xx.xx.xx.xx,bind=yy.yy.yy.yy,port=6379
listener3:name=tls,bind=*,bind=-::*,port=16379
Because the lack of RDMA support from TCL, use a simple C program to
test
Valkey Over RDMA (under tests/rdma/). This is a quite raw version with
basic
library dependence: libpthread, libibverbs, librdmacm. Run using the
script:
./runtest-rdma [ OPTIONS ]
To run RDMA in GitHub actions, a kernel module RXE for emulated soft
RDMA, needs
to be installed. The kernel module source code is fetched a repo
containing only
the RXE kernel driver from the Linux kernel, but stored in an separate
repo to
avoid cloning the whole Linux kernel repo.
----
Since 2021/06, I created a
[PR](https://github.com/redis/redis/pull/9161) for *Redis Over RDMA*
proposal. Then I did some work to [fully abstract connection and make
TLS dynamically loadable](https://github.com/redis/redis/pull/9320), a
new connection type could be built into Redis statically, or a separated
shared library(loaded by Redis on startup) since Redis 7.2.0.
Base on the new connection framework, I created a new
[PR](https://github.com/redis/redis/pull/11182), some
guys(@xiezhq-hermann @zhangyiming1201 @JSpewock @uvletter @FujiZ)
noticed, played and tested this PR. However, because of the lack of time
and knowledge from the maintainers, this PR has been pending about 2
years.
Related doc: [Introduce *Valkey Over RDMA*
specification](https://github.com/valkey-io/valkey-doc/pull/123). (same
as Redis, and this should be same)
Changes in this PR:
- implement *Valkey Over RDMA*. (compact the Valkey style)
Finally, if this feature is considered to merge, I volunteer to maintain
it.
---------
Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
This PR is 1 of 3 PRs intended to achieve the goal of 1 million requests
per second, as detailed by [dan touitou](https://github.com/touitou-dan)
in https://github.com/valkey-io/valkey/issues/22. This PR modifies the
IO threads to be fully asynchronous, which is a first and necessary step
to allow more work offloading and better utilization of the IO threads.
### Current IO threads state:
Valkey IO threads were introduced in Redis 6.0 to allow better
utilization of multi-core machines. Before this, Redis was
single-threaded and could only use one CPU core for network and command
processing. The introduction of IO threads helps in offloading the IO
operations to multiple threads.
**Current IO Threads flow:**
1. Initialization: When Redis starts, it initializes a specified number
of IO threads. These threads are in addition to the main thread, each
thread starts with an empty list, the main thread will populate that
list in each event-loop with pending-read-clients or
pending-write-clients.
2. Read Phase: The main thread accepts incoming connections and reads
requests from clients. The reading of requests are offloaded to IO
threads. The main thread puts the clients ready-to-read in a list and
set the global io_threads_op to IO_THREADS_OP_READ, the IO threads pick
the clients up, perform the read operation and parse the first incoming
command.
3. Command Processing: After reading the requests, command processing is
still single-threaded and handled by the main thread.
4. Write Phase: Similar to the read phase, the write phase is also be
offloaded to IO threads. The main thread prepares the response in the
clients’ output buffer then the main thread puts the client in the list,
and sets the global io_threads_op to the IO_THREADS_OP_WRITE. The IO
threads then pick the clients up and perform the write operation to send
the responses back to clients.
5. Synchronization: The main-thread communicate with the threads on how
many jobs left per each thread with atomic counter. The main-thread
doesn’t access the clients while being handled by the IO threads.
**Issues with current implementation:**
* Underutilized Cores: The current implementation of IO-threads leads to
the underutilization of CPU cores.
* The main thread remains responsible for a significant portion of
IO-related tasks that could be offloaded to IO-threads.
* When the main-thread is processing client’s commands, the IO threads
are idle for a considerable amount of time.
* Notably, the main thread's performance during the IO-related tasks is
constrained by the speed of the slowest IO-thread.
* Limited Offloading: Currently, Since the Main-threads waits
synchronously for the IO threads, the Threads perform only read-parse,
and write operations, with parsing done only for the first command. If
the threads can do work asynchronously we may offload more work to the
threads reducing the load from the main-thread.
* TLS: Currently, we don't support IO threads with TLS (where offloading
IO would be more beneficial) since TLS read/write operations are not
thread-safe with the current implementation.
### Suggested change
Non-blocking main thread - The main thread and IO threads will operate
in parallel to maximize efficiency. The main thread will not be blocked
by IO operations. It will continue to process commands independently of
the IO thread's activities.
**Implementation details**
**Inter-thread communication.**
* We use a static, lock-free ring buffer of fixed size (2048 jobs) for
the main thread to send jobs and for the IO to receive them. If the ring
buffer fills up, the main thread will handle the task itself, acting as
back pressure (in case IO operations are more expensive than command
processing). A static ring buffer is a better candidate than a dynamic
job queue as it eliminates the need for allocation/freeing per job.
* An IO job will be in the format: ` [void* function-call-back | void
*data] `where data is either a client to read/write from and the
function-ptr is the function to be called with the data for example
readQueryFromClient using this format we can use it later to offload
other types of works to the IO threads.
* The Ring buffer is one way from the main-thread to the IO thread, Upon
read/write event the main thread will send a read/write job then in
before sleep it will iterate over the pending read/write clients to
checking for each client if the IO threads has already finished handling
it. The IO thread signals it has finished handling a client read/write
by toggling an atomic flag read_state / write_state on the client
struct.
**Thread Safety**
As suggested in this solution, the IO threads are reading from and
writing to the clients' buffers while the main thread may access those
clients.
We must ensure no race conditions or unsafe access occurs while keeping
the Valkey code simple and lock free.
Minimal Action in the IO Threads
The main change is to limit the IO thread operations to the bare
minimum. The IO thread will access only the client's struct and only the
necessary fields in this struct.
The IO threads will be responsible for the following:
* Read Operation: The IO thread will only read and parse a single
command. It will not update the server stats, handle read errors, or
parsing errors. These tasks will be taken care of by the main thread.
* Write Operation: The IO thread will only write the available data. It
will not free the client's replies, handle write errors, or update the
server statistics.
To achieve this without code duplication, the read/write code has been
refactored into smaller, independent components:
* Functions that perform only the read/parse/write calls.
* Functions that handle the read/parse/write results.
This refactor accounts for the majority of the modifications in this PR.
**Client Struct Safe Access**
As we ensure that the IO threads access memory only within the client
struct, we need to ensure thread safety only for the client's struct's
shared fields.
* Query Buffer
* Command parsing - The main thread will not try to parse a command from
the query buffer when a client is offloaded to the IO thread.
* Client's memory checks in client-cron - The main thread will not
access the client query buffer if it is offloaded and will handle the
querybuf grow/shrink when the client is back.
* CLIENT LIST command - The main thread will busy-wait for the IO thread
to finish handling the client, falling back to the current behavior
where the main thread waits for the IO thread to finish their
processing.
* Output Buffer
* The IO thread will not change the client's bufpos and won't free the
client's reply lists. These actions will be done by the main thread on
the client's return from the IO thread.
* bufpos / block→used: As the main thread may change the bufpos, the
reply-block→used, or add/delete blocks to the reply list while the IO
thread writes, we add two fields to the client struct: io_last_bufpos
and io_last_reply_block. The IO thread will write until the
io_last_bufpos, which was set by the main-thread before sending the
client to the IO thread. If more data has been added to the cob in
between, it will be written in the next write-job. In addition, the main
thread will not trim or merge reply blocks while the client is
offloaded.
* Parsing Fields
* Client's cmd, argc, argv, reqtype, etc., are set during parsing.
* The main thread will indicate to the IO thread not to parse a cmd if
the client is not reset. In this case, the IO thread will only read from
the network and won't attempt to parse a new command.
* The main thread won't access the c→cmd/c→argv in the CLIENT LIST
command as stated before it will busy wait for the IO threads.
* Client Flags
* c→flags, which may be changed by the main thread in multiple places,
won't be accessed by the IO thread. Instead, the main thread will set
the c→io_flags with the information necessary for the IO thread to know
the client's state.
* Client Close
* On freeClient, the main thread will busy wait for the IO thread to
finish processing the client's read/write before proceeding to free the
client.
* Client's Memory Limits
* The IO thread won't handle the qb/cob limits. In case a client crosses
the qb limit, the IO thread will stop reading for it, letting the main
thread know that the client crossed the limit.
**TLS**
TLS is currently not supported with IO threads for the following
reasons:
1. Pending reads - If SSL has pending data that has already been read
from the socket, there is a risk of not calling the read handler again.
To handle this, a list is used to hold the pending clients. With IO
threads, multiple threads can access the list concurrently.
2. Event loop modification - Currently, the TLS code
registers/unregisters the file descriptor from the event loop depending
on the read/write results. With IO threads, multiple threads can modify
the event loop struct simultaneously.
3. The same client can be sent to 2 different threads concurrently
(https://github.com/redis/redis/issues/12540).
Those issues were handled in the current PR:
1. The IO thread only performs the read operation. The main thread will
check for pending reads after the client returns from the IO thread and
will be the only one to access the pending list.
2. The registering/unregistering of events will be similarly postponed
and handled by the main thread only.
3. Each client is being sent to the same dedicated thread (c→id %
num_of_threads).
**Sending Replies Immediately with IO threads.**
Currently, after processing a command, we add the client to the
pending_writes_list. Only after processing all the clients do we send
all the replies. Since the IO threads are now working asynchronously, we
can send the reply immediately after processing the client’s requests,
reducing the command latency. However, if we are using AOF=always, we
must wait for the AOF buffer to be written, in which case we revert to
the current behavior.
**IO threads dynamic adjustment**
Currently, we use an all-or-nothing approach when activating the IO
threads. The current logic is as follows: if the number of pending write
clients is greater than twice the number of threads (including the main
thread), we enable all threads; otherwise, we enable none. For example,
if 8 IO threads are defined, we enable all 8 threads if there are 16
pending clients; else, we enable none.
It makes more sense to enable partial activation of the IO threads. If
we have 10 pending clients, we will enable 5 threads, and so on. This
approach allows for a more granular and efficient allocation of
resources based on the current workload.
In addition, the user will now be able to change the number of I/O
threads at runtime. For example, when decreasing the number of threads
from 4 to 2, threads 3 and 4 will be closed after flushing their job
queues.
**Tests**
Currently, we run the io-threads tests with 4 IO threads
(443d80f168/.github/workflows/daily.yml (L353)).
This means that we will not activate the IO threads unless there are 8
(threads * 2) pending write clients per single loop, which is unlikely
to happened in most of tests, meaning the IO threads are not currently
being tested.
To enforce the main thread to always offload work to the IO threads,
regardless of the number of pending events, we add an
events-per-io-thread configuration with a default value of 2. When set
to 0, this configuration will force the main thread to always offload
work to the IO threads.
When we offload every single read/write operation to the IO threads, the
IO-threads are running with 100% CPU when running multiple tests
concurrently some tests fail as a result of larger than expected command
latencies. To address this issue, we have to add some after or wait_for
calls to some of the tests to ensure they pass with IO threads as well.
Signed-off-by: Uri Yagelnik <uriy@amazon.com>
The command provides detailed slot usage statistics upon invocation,
with initial support for key-count metric. cpu-usec (approved) and
memory-bytes (pending-approval) metrics will soon follow after the
merger of this PR.
---------
Signed-off-by: Kyle Kim <kimkyle@amazon.com>
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
As discussed, we want to remove the old `REDIS_STATIC` flag which is no
longer relevant.
When moving from Redis to Valkey we renamed all REDIS flags in Makefile.
The REDIS_STATIC flag was renamed to SERVER_STATIC, but this change was
not updated in some of the files.
After discussing it with @madolson and @ranshid, we decided that since
this was introduced 10 years ago, and in many places in the code base we
simply use `static`, we should simplify and remove the flag entirely.
---------
Signed-off-by: Ouri Half <ourih@amazon.com>
Fix the compile error with the following command:
`make all-with-unit-tests SERVER_CFLAGS='-Werror -DSERVER_TEST'
`
```
/usr/bin/ld: /home/ubuntu/valkey-shiv-repo/valkey/src/eval.c:1172: undefined reference to `lua_next'
/usr/bin/ld: /home/ubuntu/valkey-shiv-repo/valkey/src/eval.c:1154: undefined reference to `lua_toboolean'
/usr/bin/ld: /home/ubuntu/valkey-shiv-repo/valkey/src/eval.c:1175: undefined reference to `lua_type'
/usr/bin/ld: /home/ubuntu/valkey-shiv-repo/valkey/src/eval.c:1176: undefined reference to `lua_tonumber'
collect2: error: ld returned 1 exit status
make[1]: *** [Makefile:469: valkey-unit-tests] Error 1
make[1]: Leaving directory '/home/ubuntu/valkey-shiv-repo/valkey/src'
make: *** [Makefile:6: all-with-unit-tests] Error 2
```
Issue is happened as all deps libraries not linked for
valkey-unit-tests, so linked all libraries to the binary.
Signed-off-by: Shivshankar-Reddy <shiva.sheri.github@gmail.com>
The core idea was to take a lot of the stuff from the C unity framework
and adapt it a bit here. Each file in the `unit` directory that starts
with `test_` is automatically assumed to be a test suite. Within each
file, all functions that start with `test_` are assumed to be a test.
See unit/README.md for details about the implementation.
Instead of compiling basically a net new binary, the way the tests are
compiled is that the main valkey server is compiled as a static archive,
which we then compile the individual test files against to create a new
test executable. This is not all that important now, other than it makes
the compilation simpler, but what it will allow us to do is overwrite
functions in the archive to enable mocking for cross compilation unit
functions. There are also ways to enable mocking from within the same
compilation unit, but I don't know how important this is.
Tests are also written in one of two styles:
1. Including the header file and directly calling functions from the
archive.
2. Importing the original file, and then calling the functions. This
second approach is cool because we can call static functions. It won't
mess up the archive either.
---------
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Improve the performance of crc64 for large batches by processing large
number of bytes in parallel and combining the results.
## Performance
* 53-73% faster on Xeon 2670 v0 @ 2.6ghz
* 2-2.5x faster on Core i3 8130U @ 2.2 ghz
* 1.6-2.46 bytes/cycle on i3 8130U
* likely >2x faster than crcspeed on newer CPUs with more resources than
a 2012-era Xeon 2670
* crc64 combine function runs in <50 nanoseconds typical with vector +
cache optimizations (~8 *microseconds* without vector optimizations, ~80
*microseconds without cache, the combination is extra effective)
* still single-threaded
* valkey-server test crc64 --help (requires `make distclean && make
SERVER_TEST=yes`)
---------
Signed-off-by: Josiah Carlson <josiah.carlson@gmail.com>
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
Don't let the Make valiable `USE_REDIS_SYMLINKS` affect the build.
If it does, it causes the second line in the example below (`make
install`) to recompile what was already compiled on the line above, and
this time it's built without BUILD_TLS=yes USE_SYSTEMD=yes.
make BUILD_TLS=yes USE_SYSTEMD=yes
make PREFIX=custom/usr USE_REDIS_SYMLINKS=no install
Fixes#377
Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
This PR introduces Codecov to automate code coverage tracking for our
project's tests.
For more information about the Codecov platform, please refer to
https://docs.codecov.com/docs/quick-start
---------
Signed-off-by: Vitah Lin <vitahlin@gmail.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
These were flagged on the 7.2 build system, which is using the old spell
check. I think we should consider re-adding it as it missed some typos.
Relevant: https://github.com/valkey-io/valkey/pull/72
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Adds a new make variable called `USE_REDIS_SYMLINKS`, with default value
`yes`. If yes, then `make install` creates additional symlinks to the
installed binaries:
* `valkey-server`
* `valkey-cli`
* `valkey-benchmark`
* `valkey-check-rdb`
* `valkey-check-aof`
* `valkey-sentinel`
The names of the symlinks are the legacy redis binary names
(`redis-server`, etc.). The purpose is to provide backward compatibility
for scripts expecting the these filenames. The symlinks are installed in
the same directory as the binaries (typically `/usr/local/bin/` or
similar).
Similarly, `make uninstall` removes these symlinks if
`USE_REDIS_SYMLINKS` is `yes`.
This is described in a note in README.md.
Fixes#147
---------
Signed-off-by: Vitah Lin <vitahlin@gmail.com>
Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
As part of earlier PRs binary names and some file names renamed to
valkey, but still cli and benchmark and other source files still with redis
name. So changed the file names and makefile accordingly.
Signed-off-by: hwware <wen.hui.ware@gmail.com>
Co-authored-by: hwware <wen.hui.ware@gmail.com>
This resolves (1.viii) from
https://github.com/valkey-io/valkey/issues/43
> REDIS_FLAGS will be updated to SERVER_FLAGS. Maybe we should also
allow REDIS_FLAGS -> SERVER_FLAGS as well, for an extra layer of
compatibility.
---------
Signed-off-by: Roshan Khatri <rvkhatri@amazon.com>
Documentation references should use `Valkey` while server and cli
references are all under `valkey`.
---------
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
This change to the Makefile makes it possible to opt out of
`-fno-omit-frame-pointer` added in #12973 and `-flto` (#11350). Those
features were implemented by conditionally modifying the `REDIS_CFLAGS`
and `REDIS_LDFLAGS` variables. Historically, those variables provided a
way for users to pass options to the compiler and linker unchanged.
Instead of conditionally appending optimization flags to REDIS_CFLAGS
and REDIS_LDFLAGS, I want to append them to the OPTIMIZATION variable.
Later in the Makefile, we have `OPT=$(OPTIMIZATION)` (meaning
OPTIMIZATION is only a default for OPT, but OPT can be overridden by the
user), and later the flags are combined like this:
FINAL_CFLAGS=$(STD) $(WARN) $(OPT) $(DEBUG) $(CFLAGS) $(REDIS_CFLAGS)
FINAL_LDFLAGS=$(LDFLAGS) $(OPT) $(REDIS_LDFLAGS) $(DEBUG)
This makes it possible for the the user to override all optimization
flags with e.g. `make OPT=-O1` or just `make OPT=`.
For some reason `-O3` was also already added to REDIS_LDFLAGS by default
in #12339, so I added OPT to FINAL_LDFLAGS to avoid more complex logic
(such as introducing a separate LD_OPT variable).
Currently redis uses O3 level optimization would remove the frame pointer
in the target bin.
In the very old past, when gcc optimized at O1 and above levels, the
frame pointer is deleted by default to improve performance. This saves
the RBP registers and reduces the pop/push instructions. But it makes it
difficult for us to observe the running status of the program. For
example, the perf tool cannot be used effectively, especially the modern
eBPF tools such as bcc/memleak.
# Description
Gather most of the scattered `redisDb`-related code from the per-slot
dict PR (#11695) and turn it to a new data structure, `kvstore`. i.e.
it's a class that represents an array of dictionaries.
# Motivation
The main motivation is code cleanliness, the idea of using an array of
dictionaries is very well-suited to becoming a self-contained data
structure.
This allowed cleaning some ugly code, among others: loops that run twice
on the main dict and expires dict, and duplicate code for allocating and
releasing this data structure.
# Notes
1. This PR reverts the part of https://github.com/redis/redis/pull/12848
where the `rehashing` list is global (handling rehashing `dict`s is
under the responsibility of `kvstore`, and should not be managed by the
server)
2. This PR also replaces the type of `server.pubsubshard_channels` from
`dict**` to `kvstore` (original PR:
https://github.com/redis/redis/pull/12804). After that was done,
server.pubsub_channels was also chosen to be a `kvstore` (with only one
`dict`, which seems odd) just to make the code cleaner by making it the
same type as `server.pubsubshard_channels`, see
`pubsubtype.serverPubSubChannels`
3. the keys and expires kvstores are currenlty configured to allocate
the individual dicts only when the first key is added (unlike before, in
which they allocated them in advance), but they won't release them when
the last key is deleted.
Worth mentioning that due to the recent change the reply of DEBUG
HTSTATS changed, in case no keys were ever added to the db.
before:
```
127.0.0.1:6379> DEBUG htstats 9
[Dictionary HT]
Hash table 0 stats (main hash table):
No stats available for empty dictionaries
[Expires HT]
Hash table 0 stats (main hash table):
No stats available for empty dictionaries
```
after:
```
127.0.0.1:6379> DEBUG htstats 9
[Dictionary HT]
[Expires HT]
```
In a long printf call with many placeholders, it's hard to see which argument
belongs to which placeholder.
The long printf-like calls in the INFO and CLIENT commands are rewritten into
pairs of (format, argument). These pairs are then rewritten to a single call with
a long format string and a long list of arguments, using a macro called FMTARGS.
The file `fmtargs.h` is added to the repo.
Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
In this PR we are adding the functionality to collect all the process's threads' backtraces.
## Changes made in this PR
### **introduce threads mngr API**
The **threads mngr API** which has 2 abilities:
* `ThreadsManager_init() `- register to SIGUSR2. called on the server start-up.
* ` ThreadsManager_runOnThreads()` - receives a list of a pid_t and a callback, tells every
thread in the list to invoke the callback, and returns the output collected by each invocation.
**Elaborating atomicvar API**
* `atomicIncrGet(var,newvalue_var,count) `-- Increment and get the atomic counter new value
* `atomicFlagGetSet` -- Get and set the atomic counter value to 1
### **Always set SIGALRM handler**
SIGALRM handler prints the process's stacktrace to the log file. Up until now, it was set only if the
`server.watchdog_period` > 0. This can be also useful if debugging is needed. However, in situations
where the server can't get requests, (a deadlock, for example) we weren't able to change the signal handler.
To make it available at run time we set SIGALRM handler on server startup. The signal handler name was
changed to a more general `sigalrmSignalHandler`.
### **Print all the process' threads' stacktraces**
`logStackTrace()` now calls `writeStacktraces()`, instead of logging the current thread stacktrace.
`writeStacktraces()`:
* On Linux systems we use the threads manager API to collect the backtraces of all the process' threads.
To get the `tids` list (threads ids) we read the `/proc/<redis-server-pid>/tasks` file which includes a list of directories.
Each directory name corresponds to one tid (including the main thread). For each thread, we also need to check if it
can get the signal from the threads manager (meaning it is not blocking/ignoring that signal). We send the threads
manager this tids list and `collect_stacktrace_data()` callback, which collects the thread's backtrace addresses,
its name, and tid.
* On other systems, the behavior remained as it was (writing only the current thread stacktrace to the log file).
## compatibility notes
1. **The threads mngr API is only supported in linux.**
2. glibc earlier than 2.3 We use `syscall(SYS_gettid)` and `syscall(SYS_tgkill...)` because their dedicated
alternatives (`gettid()` and `tgkill`) were added in glibc 2.3.
## Output example
Each thread backtrace will have the following format:
`<tid> <thread_name> [additional_info]`
* **tid**: as read from the `/proc/<redis-server-pid>/tasks` file
* **thread_name**: the tread name as it is registered in the os/
* **additional_info**: Sometimes we want to add specific information about one of the threads. currently.
it is only used to mark the thread that handles the backtraces collection by adding "*".
In case of crash - this also indicates which thread caused the crash. The handling thread in won't
necessarily appear first.
```
------ STACK TRACE ------
EIP:
/lib/aarch64-linux-gnu/libc.so.6(epoll_pwait+0x9c)[0xffffb9295ebc]
67089 redis-server *
linux-vdso.so.1(__kernel_rt_sigreturn+0x0)[0xffffb9437790]
/lib/aarch64-linux-gnu/libc.so.6(epoll_pwait+0x9c)[0xffffb9295ebc]
redis-server *:6379(+0x75e0c)[0xaaaac2fe5e0c]
redis-server *:6379(aeProcessEvents+0x18c)[0xaaaac2fe6c00]
redis-server *:6379(aeMain+0x24)[0xaaaac2fe7038]
redis-server *:6379(main+0xe0c)[0xaaaac3001afc]
/lib/aarch64-linux-gnu/libc.so.6(+0x273fc)[0xffffb91d73fc]
/lib/aarch64-linux-gnu/libc.so.6(__libc_start_main+0x98)[0xffffb91d74cc]
redis-server *:6379(_start+0x30)[0xaaaac2fe0370]
67093 bio_lazy_free
/lib/aarch64-linux-gnu/libc.so.6(+0x79dfc)[0xffffb9229dfc]
/lib/aarch64-linux-gnu/libc.so.6(pthread_cond_wait+0x208)[0xffffb922c8fc]
redis-server *:6379(bioProcessBackgroundJobs+0x174)[0xaaaac30976e8]
/lib/aarch64-linux-gnu/libc.so.6(+0x7d5c8)[0xffffb922d5c8]
/lib/aarch64-linux-gnu/libc.so.6(+0xe5d1c)[0xffffb9295d1c]
67091 bio_close_file
/lib/aarch64-linux-gnu/libc.so.6(+0x79dfc)[0xffffb9229dfc]
/lib/aarch64-linux-gnu/libc.so.6(pthread_cond_wait+0x208)[0xffffb922c8fc]
redis-server *:6379(bioProcessBackgroundJobs+0x174)[0xaaaac30976e8]
/lib/aarch64-linux-gnu/libc.so.6(+0x7d5c8)[0xffffb922d5c8]
/lib/aarch64-linux-gnu/libc.so.6(+0xe5d1c)[0xffffb9295d1c]
67092 bio_aof
/lib/aarch64-linux-gnu/libc.so.6(+0x79dfc)[0xffffb9229dfc]
/lib/aarch64-linux-gnu/libc.so.6(pthread_cond_wait+0x208)[0xffffb922c8fc]
redis-server *:6379(bioProcessBackgroundJobs+0x174)[0xaaaac30976e8]
/lib/aarch64-linux-gnu/libc.so.6(+0x7d5c8)[0xffffb922d5c8]
/lib/aarch64-linux-gnu/libc.so.6(+0xe5d1c)[0xffffb9295d1c]
67089:signal-handler (1693824528) --------
```
Added missing O3 flag to linking stage in default option "-O3 -flto".
Flags doesn't lead to significant changes in performance:
- +0.21% in geomean for all benchmarks on ICX bare-metal (256 cpus)
- +0.33% in geomean for all benchmarks on m6i.2xlarge (16 cpus)
Checked on redis from Mar'30 (commit 1f76bb17ddcb2adc484bf82f1b839c45e264524f ). Comparison file is attached.
Technically declaring a prototype with an empty declaration has been deprecated since the early days of C, but we never got a warning for it. C2x will apparently be introducing a breaking change if you are using this type of declarator, so Clang 15 has started issuing a warning with -pedantic. Although not apparently a problem for any of the compiler we build on, if feels like the right thing is to properly adhere to the C standard and use (void).
Now that the command argument specs are available at runtime (#9656), this PR addresses
#8084 by implementing a complete solution for command-line hinting in `redis-cli`.
It correctly handles nearly every case in Redis's complex command argument definitions, including
`BLOCK` and `ONEOF` arguments, reordering of optional arguments, and repeated arguments
(even when followed by mandatory arguments). It also validates numerically-typed arguments.
It may not correctly handle all possible combinations of those, but overall it is quite robust.
Arguments are only matched after the space bar is typed, so partial word matching is not
supported - that proved to be more confusing than helpful. When the user's current input
cannot be matched against the argument specs, hinting is disabled.
Partial support has been implemented for legacy (pre-7.0) servers that do not support
`COMMAND DOCS`, by falling back to a statically-compiled command argument table.
On startup, if the server does not support `COMMAND DOCS`, `redis-cli` will now issue
an `INFO SERVER` command to retrieve the server version (unless `HELLO` has already
been sent, in which case the server version will be extracted from the reply to `HELLO`).
The server version will be used to filter the commands and arguments in the command table,
removing those not supported by that version of the server. However, the static table only
includes core Redis commands, so with a legacy server hinting will not be supported for
module commands. The auto generated help.h and the scripts that generates it are gone.
Command and argument tables for the server and CLI use different structs, due primarily
to the need to support different runtime data. In order to generate code for both, macros
have been added to `commands.def` (previously `commands.c`) to make it possible to
configure the code generation differently for different use cases (one linked with redis-server,
and one with redis-cli).
Also adding a basic testing framework for the command hints based on new (undocumented)
command line options to `redis-cli`: `--test_hint 'INPUT'` prints out the command-line hint for
a given input string, and `--test_hint_file <filename>` runs a suite of test cases for the hinting
mechanism. The test suite is in `tests/assets/test_cli_hint_suite.txt`, and it is run from
`tests/integration/redis-cli.tcl`.
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
Starting with the recent #11926 Makefile specifies `-flto=auto` which is unsupported on clang.
Additionally, detecting clang correctly requires actually running it, since on MacOS gcc can be an alias for clang.
Use -flto=auto to use GNU make's job server, if available, or otherwise fall
back to autodetection of the number of CPU threads present in your system.
Warnings:
lto-wrapper: warning: using serial compilation of 2 LTRANS jobs
lto-wrapper: note: see the ‘-flto’ option documentation for more information
lto-wrapper: warning: using serial compilation of 4 LTRANS jobs
lto-wrapper: note: see the ‘-flto’ option documentation for more information
lto-wrapper: warning: using serial compilation of 31 LTRANS jobs
lto-wrapper: note: see the ‘-flto’ option documentation for more information
Signed-off-by: Rong Tao <rongtao@cestc.cn>
Work in progress towards implementing a reply schema as part of COMMAND DOCS, see #9845
Since ironing the details of the reply schema of each and every command can take a long time, we
would like to merge this PR when the infrastructure is ready, and let this mature in the unstable branch.
Meanwhile the changes of this PR are internal, they are part of the repo, but do not affect the produced build.
### Background
In #9656 we add a lot of information about Redis commands, but we are missing information about the replies
### Motivation
1. Documentation. This is the primary goal.
2. It should be possible, based on the output of COMMAND, to be able to generate client code in typed
languages. In order to do that, we need Redis to tell us, in detail, what each reply looks like.
3. We would like to build a fuzzer that verifies the reply structure (for now we use the existing
testsuite, see the "Testing" section)
### Schema
The idea is to supply some sort of schema for the various replies of each command.
The schema will describe the conceptual structure of the reply (for generated clients), as defined in RESP3.
Note that the reply structure itself may change, depending on the arguments (e.g. `XINFO STREAM`, with
and without the `FULL` modifier)
We decided to use the standard json-schema (see https://json-schema.org/) as the reply-schema.
Example for `BZPOPMIN`:
```
"reply_schema": {
"oneOf": [
{
"description": "Timeout reached and no elements were popped.",
"type": "null"
},
{
"description": "The keyname, popped member, and its score.",
"type": "array",
"minItems": 3,
"maxItems": 3,
"items": [
{
"description": "Keyname",
"type": "string"
},
{
"description": "Member",
"type": "string"
},
{
"description": "Score",
"type": "number"
}
]
}
]
}
```
#### Notes
1. It is ok that some commands' reply structure depends on the arguments and it's the caller's responsibility
to know which is the relevant one. this comes after looking at other request-reply systems like OpenAPI,
where the reply schema can also be oneOf and the caller is responsible to know which schema is the relevant one.
2. The reply schemas will describe RESP3 replies only. even though RESP3 is structured, we want to use reply
schema for documentation (and possibly to create a fuzzer that validates the replies)
3. For documentation, the description field will include an explanation of the scenario in which the reply is sent,
including any relation to arguments. for example, for `ZRANGE`'s two schemas we will need to state that one
is with `WITHSCORES` and the other is without.
4. For documentation, there will be another optional field "notes" in which we will add a short description of
the representation in RESP2, in case it's not trivial (RESP3's `ZRANGE`'s nested array vs. RESP2's flat
array, for example)
Given the above:
1. We can generate the "return" section of all commands in [redis-doc](https://redis.io/commands/)
(given that "description" and "notes" are comprehensive enough)
2. We can generate a client in a strongly typed language (but the return type could be a conceptual
`union` and the caller needs to know which schema is relevant). see the section below for RESP2 support.
3. We can create a fuzzer for RESP3.
### Limitations (because we are using the standard json-schema)
The problem is that Redis' replies are more diverse than what the json format allows. This means that,
when we convert the reply to a json (in order to validate the schema against it), we lose information (see
the "Testing" section below).
The other option would have been to extend the standard json-schema (and json format) to include stuff
like sets, bulk-strings, error-string, etc. but that would mean also extending the schema-validator - and that
seemed like too much work, so we decided to compromise.
Examples:
1. We cannot tell the difference between an "array" and a "set"
2. We cannot tell the difference between simple-string and bulk-string
3. we cannot verify true uniqueness of items in commands like ZRANGE: json-schema doesn't cover the
case of two identical members with different scores (e.g. `[["m1",6],["m1",7]]`) because `uniqueItems`
compares (member,score) tuples and not just the member name.
### Testing
This commit includes some changes inside Redis in order to verify the schemas (existing and future ones)
are indeed correct (i.e. describe the actual response of Redis).
To do that, we added a debugging feature to Redis that causes it to produce a log of all the commands
it executed and their replies.
For that, Redis needs to be compiled with `-DLOG_REQ_RES` and run with
`--reg-res-logfile <file> --client-default-resp 3` (the testsuite already does that if you run it with
`--log-req-res --force-resp3`)
You should run the testsuite with the above args (and `--dont-clean`) in order to make Redis generate
`.reqres` files (same dir as the `stdout` files) which contain request-response pairs.
These files are later on processed by `./utils/req-res-log-validator.py` which does:
1. Goes over req-res files, generated by redis-servers, spawned by the testsuite (see logreqres.c)
2. For each request-response pair, it validates the response against the request's reply_schema
(obtained from the extended COMMAND DOCS)
5. In order to get good coverage of the Redis commands, and all their different replies, we chose to use
the existing redis test suite, rather than attempt to write a fuzzer.
#### Notes about RESP2
1. We will not be able to use the testing tool to verify RESP2 replies (we are ok with that, it's time to
accept RESP3 as the future RESP)
2. Since the majority of the test suite is using RESP2, and we want the server to reply with RESP3
so that we can validate it, we will need to know how to convert the actual reply to the one expected.
- number and boolean are always strings in RESP2 so the conversion is easy
- objects (maps) are always a flat array in RESP2
- others (nested array in RESP3's `ZRANGE` and others) will need some special per-command
handling (so the client will not be totally auto-generated)
Example for ZRANGE:
```
"reply_schema": {
"anyOf": [
{
"description": "A list of member elements",
"type": "array",
"uniqueItems": true,
"items": {
"type": "string"
}
},
{
"description": "Members and their scores. Returned in case `WITHSCORES` was used.",
"notes": "In RESP2 this is returned as a flat array",
"type": "array",
"uniqueItems": true,
"items": {
"type": "array",
"minItems": 2,
"maxItems": 2,
"items": [
{
"description": "Member",
"type": "string"
},
{
"description": "Score",
"type": "number"
}
]
}
}
]
}
```
### Other changes
1. Some tests that behave differently depending on the RESP are now being tested for both RESP,
regardless of the special log-req-res mode ("Pub/Sub PING" for example)
2. Update the history field of CLIENT LIST
3. Added basic tests for commands that were not covered at all by the testsuite
### TODO
- [x] (maybe a different PR) add a "condition" field to anyOf/oneOf schemas that refers to args. e.g.
when `SET` return NULL, the condition is `arguments.get||arguments.condition`, for `OK` the condition
is `!arguments.get`, and for `string` the condition is `arguments.get` - https://github.com/redis/redis/issues/11896
- [x] (maybe a different PR) also run `runtest-cluster` in the req-res logging mode
- [x] add the new tests to GH actions (i.e. compile with `-DLOG_REQ_RES`, run the tests, and run the validator)
- [x] (maybe a different PR) figure out a way to warn about (sub)schemas that are uncovered by the output
of the tests - https://github.com/redis/redis/issues/11897
- [x] (probably a separate PR) add all missing schemas
- [x] check why "SDOWN is triggered by misconfigured instance replying with errors" fails with --log-req-res
- [x] move the response transformers to their own file (run both regular, cluster, and sentinel tests - need to
fight with the tcl including mechanism a bit)
- [x] issue: module API - https://github.com/redis/redis/issues/11898
- [x] (probably a separate PR): improve schemas: add `required` to `object`s - https://github.com/redis/redis/issues/11899
Co-authored-by: Ozan Tezcan <ozantezcan@gmail.com>
Co-authored-by: Hanna Fadida <hanna.fadida@redislabs.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Shaya Potter <shaya@redislabs.com>
Till now Redis attempted to avoid using jemalloc on ARM, but didn't do that properly (missing armv8l and aarch64), so in fact we did you jemalloc on these without a problem.
Side notes:
Some ARM platforms, which share instruction set and can share binaries (docker images), may have different page size, and apparently jemalloc uses the page size of the build machine as the maximum page size to be supported by the build.
see https://github.com/redis-stack/redis-stack/issues/187
To work around that, when building for ARM, one can change the maximum page size to 64k (or greater if present on the build machine) In recent versions of jemalloc, this should not have any severe side effects (like VM map fragmentation), see:
https://github.com/jemalloc/jemalloc/issues/467https://github.com/redis/redis/pull/11170#issuecomment-1236265230
To do that, one can use:
```
JEMALLOC_CONFIGURE_OPTS="--with-lg-page=16" make
```
Besides that, this PR fixes a messy makefile condition that was created
here: f30b18f4de