This commit creates a new compilation unit for the scripting engine code
by extracting the existing code from the functions unit.
We're doing this refactor to prepare the code for running the `EVAL`
command using different scripting engines.
This PR has a module API change: we changed the type of error messages
returned by the callback
`ValkeyModuleScriptingEngineCreateFunctionsLibraryFunc` to be a
`ValkeyModuleString` (aka `robj`);
This PR also fixes#1470.
---------
Signed-off-by: Ricardo Dias <ricardo.dias@percona.com>
When latency-monitor-threshold is set to 0, it means the latency monitor
is disabled, and in VM_LatencyAddSample, we wrote the condition
incorrectly, causing us to record latency when latency was turned off.
This bug was introduced in the very first day, see e3b1d6d, it was merged
in 2019.
Signed-off-by: Binbin <binloveplay1314@qq.com>
This PR extends the module API to support the addition of different
scripting engines to execute user defined functions.
The scripting engine can be implemented as a Valkey module, and can be
dynamically loaded with the `loadmodule` config directive, or with the
`MODULE LOAD` command.
This PR also adds an example of a dummy scripting engine module, to show
how to use the new module API. The dummy module is implemented in
`tests/modules/helloscripting.c`.
The current module API support, only allows to load scripting engines to
run functions using `FCALL` command.
The additions to the module API are the following:
```c
/* This struct represents a scripting engine function that results from the
* compilation of a script by the engine implementation. */
struct ValkeyModuleScriptingEngineCompiledFunction
typedef ValkeyModuleScriptingEngineCompiledFunction **(*ValkeyModuleScriptingEngineCreateFunctionsLibraryFunc)(
ValkeyModuleScriptingEngineCtx *engine_ctx,
const char *code,
size_t timeout,
size_t *out_num_compiled_functions,
char **err);
typedef void (*ValkeyModuleScriptingEngineCallFunctionFunc)(
ValkeyModuleCtx *module_ctx,
ValkeyModuleScriptingEngineCtx *engine_ctx,
ValkeyModuleScriptingEngineFunctionCtx *func_ctx,
void *compiled_function,
ValkeyModuleString **keys,
size_t nkeys,
ValkeyModuleString **args,
size_t nargs);
typedef size_t (*ValkeyModuleScriptingEngineGetUsedMemoryFunc)(
ValkeyModuleScriptingEngineCtx *engine_ctx);
typedef size_t (*ValkeyModuleScriptingEngineGetFunctionMemoryOverheadFunc)(
void *compiled_function);
typedef size_t (*ValkeyModuleScriptingEngineGetEngineMemoryOverheadFunc)(
ValkeyModuleScriptingEngineCtx *engine_ctx);
typedef void (*ValkeyModuleScriptingEngineFreeFunctionFunc)(
ValkeyModuleScriptingEngineCtx *engine_ctx,
void *compiled_function);
/* This struct stores the callback functions implemented by the scripting
* engine to provide the functionality for the `FUNCTION *` commands. */
typedef struct ValkeyModuleScriptingEngineMethodsV1 {
uint64_t version; /* Version of this structure for ABI compat. */
/* Library create function callback. When a new script is loaded, this
* callback will be called with the script code, and returns a list of
* ValkeyModuleScriptingEngineCompiledFunc objects. */
ValkeyModuleScriptingEngineCreateFunctionsLibraryFunc create_functions_library;
/* The callback function called when `FCALL` command is called on a function
* registered in this engine. */
ValkeyModuleScriptingEngineCallFunctionFunc call_function;
/* Function callback to get current used memory by the engine. */
ValkeyModuleScriptingEngineGetUsedMemoryFunc get_used_memory;
/* Function callback to return memory overhead for a given function. */
ValkeyModuleScriptingEngineGetFunctionMemoryOverheadFunc get_function_memory_overhead;
/* Function callback to return memory overhead of the engine. */
ValkeyModuleScriptingEngineGetEngineMemoryOverheadFunc get_engine_memory_overhead;
/* Function callback to free the memory of a registered engine function. */
ValkeyModuleScriptingEngineFreeFunctionFunc free_function;
} ValkeyModuleScriptingEngineMethodsV1;
/* Registers a new scripting engine in the server.
*
* - `engine_name`: the name of the scripting engine. This name will match
* against the engine name specified in the script header using a shebang.
*
* - `engine_ctx`: engine specific context pointer.
*
* - `engine_methods`: the struct with the scripting engine callback functions
* pointers.
*/
int ValkeyModule_RegisterScriptingEngine(ValkeyModuleCtx *ctx,
const char *engine_name,
void *engine_ctx,
ValkeyModuleScriptingEngineMethods engine_methods);
/* Removes the scripting engine from the server.
*
* `engine_name` is the name of the scripting engine.
*
*/
int ValkeyModule_UnregisterScriptingEngine(ValkeyModuleCtx *ctx, const char *engine_name);
```
---------
Signed-off-by: Ricardo Dias <ricardo.dias@percona.com>
Before Redis OSS 7, if we load a module with some arguments during
runtime,
and run the command "config rewrite", the module information will not be
saved into the
config file.
Since Redis OSS 7 and Valkey 7.2, if we load a module with some
arguments during runtime,
the module information (path, arguments number, and arguments value) can
be saved into the config file after config rewrite command is called.
Thus, the module will be loaded automatically when the server startup
next time.
Following is one example:
bind 172.25.0.58
port 7000
protected-mode no
enable-module-command yes
Generated by CONFIG REWRITE
latency-tracking-info-percentiles 50 99 99.9
dir "/home/ubuntu/valkey"
save 3600 1 300 100 60 10000
user default on nopass sanitize-payload ~* &* +https://github.com/ALL
loadmodule tests/modules/datatype.so 10 20
However, there is one problem.
If developers write a module, and update the running arguments by
someway, the updated arguments can not be saved into the config file
even "config rewrite" is called.
The reason comes from the following function
rewriteConfigLoadmoduleOption (src/config.c)
void rewriteConfigLoadmoduleOption(struct rewriteConfigState *state) {
..........
struct ValkeyModule *module = dictGetVal(de);
line = sdsnew("loadmodule ");
line = sdscatsds(line, module->loadmod->path);
for (int i = 0; i < module->loadmod->argc; i++) {
line = sdscatlen(line, " ", 1);
line = sdscatsds(line, module->loadmod->argv[i]->ptr);
}
rewriteConfigRewriteLine(state, "loadmodule", line, 1);
.......
}
The function only save the initial arguments information
(module->loadmod) into the configfile.
After core members discuss, ref
https://github.com/valkey-io/valkey/issues/1177
We decide add the following API to implement this feature:
Original proposal:
int VM_UpdateRunTimeArgs(ValkeyModuleCtx *ctx, int index, char *value);
Updated proposal:
ValkeyModuleString **values VM_GetRuntimeArgs(ValkeyModuleCtx *ctx);
**int VM_UpdateRuntimeArgs(ValkeyModuleCtx *ctx, int argc,
ValkeyModuleString **values);
Why we do not recommend the following way:
MODULE UNLOAD
Update module args in the conf file
MODULE LOAD
I think there are the following disadvantages:
1. Some modules can not be unloaded. Such as the example module
datatype.so, which is tests/modules/datatype.so
2. it is not atomic operation for MODULE UNLOAD + MODULE LOAD
3. sometimes, if we just run the module unload, the client business
could be interrupted
---------
Signed-off-by: hwware <wen.hui.ware@gmail.com>
Refer to: https://github.com/valkey-io/valkey/issues/1141
This update refactors the defrag code to:
* Make the overall code more readable and maintainable
* Reduce latencies incurred during defrag processing
With this update, the defrag cycle time is reduced to 500us, with more
frequent cycles. This results in much more predictable latencies, with a
dramatic reduction in tail latencies.
(See https://github.com/valkey-io/valkey/issues/1141 for more complete
details.)
This update is focused mostly on the high-level processing, and does NOT
address lower level functions which aren't currently timebound (e.g.
`activeDefragSdsDict()`, and `moduleDefragGlobals()`). These are out of
scope for this update and left for a future update.
I fixed `kvstoreDictLUTDefrag` because it was using up to 7ms on a CME
single shard. See original github issue for performance details.
---------
Signed-off-by: Jim Brunner <brunnerj@amazon.com>
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
We set this to EEXIST in 568c2e039bac388003068cd8debb2f93619dd462,
it prints "File exists" which is not quite accurate,
change it to EALREADY, it will print "Operation already in progress".
Signed-off-by: Binbin <binloveplay1314@qq.com>
The module commands which were added to acl categories were getting
skipped when `ACL CAT category` command was executed.
This PR fixes the bug.
Before:
```
127.0.0.1:6379> ACL CAT foocategory
(empty array)
```
After:
```
127.0.0.1:6379> ACL CAT foocategory
aclcheck.module.command.test.add.new.aclcategories
```
---------
Signed-off-by: Roshan Khatri <rvkhatri@amazon.com>
Co-authored-by: Harkrishn Patro <bunty.hari@gmail.com>
Currently when module loading fails due to busy name, we
don't have a clean way to assist to troubleshooting.
Case 1: when loading the same module multiple times, we can
not detemine the cause of its failure without referring to
the module list or the earliest module load log. The log
may not exist and sometimes it is difficult for people
to associate module list.
Case 2: when multiple modules use the same module name,
we can not quickly associate the busy name without referring
to the module list and the earliest module load log.
Different people wrote modules with the same module name,
they don't easily associate module name.
So in this PR, when doing module onload, we will try to
print a busy name log if this happen. Currently we check
ctx.module since if it is NULL it means the Init call
failed, and Init currently only fails with busy name.
It's kind of ugly. It would have been nice if we could have had a
better way for onload to signal why the load failed.
Signed-off-by: Binbin <binloveplay1314@qq.com>
The reason is VM_Call will use a fake client without connection,
so we also need to check if c->conn is NULL.
This also affects scripts. If they are called in the script, the
server will crash. Injecting commands into AOF will also cause
startup failure.
Fixes#1054.
Signed-off-by: Binbin <binloveplay1314@qq.com>
In RdbLoad, we disable AOF before emptyData and rdbLoad to prevent copy-on-write issues. After rdbLoad completes, AOF should be re-enabled, but the code incorrectly checks server.aof_state, which has been reset to AOF_OFF in stopAppendOnly. This leads to AOF not being re-enabled after being disabled.
---------
Signed-off-by: Binbin <binloveplay1314@qq.com>
## Set replica-lazy-flush and lazyfree-lazy-user-flush to yes by
default.
There are many problems with running flush synchronously. Even in
single CPU environments, the thread managers should balance between
the freeing and serving incoming requests.
## Set lazy eviction, expire, server-del, user-del to yes by default
We now have a del and a lazyfree del, we also have these configuration
items to control: lazyfree-lazy-eviction, lazyfree-lazy-expire,
lazyfree-lazy-server-del, lazyfree-lazy-user-del. In most cases lazyfree
is better since it reduces the risk of blocking the main thread, and
because we have lazyfreeGetFreeEffort, on those with high effor
(currently
64) will use lazyfree.
Part of #653.
---------
Signed-off-by: Binbin <binloveplay1314@qq.com>
This PR is 1 of 3 PRs intended to achieve the goal of 1 million requests
per second, as detailed by [dan touitou](https://github.com/touitou-dan)
in https://github.com/valkey-io/valkey/issues/22. This PR modifies the
IO threads to be fully asynchronous, which is a first and necessary step
to allow more work offloading and better utilization of the IO threads.
### Current IO threads state:
Valkey IO threads were introduced in Redis 6.0 to allow better
utilization of multi-core machines. Before this, Redis was
single-threaded and could only use one CPU core for network and command
processing. The introduction of IO threads helps in offloading the IO
operations to multiple threads.
**Current IO Threads flow:**
1. Initialization: When Redis starts, it initializes a specified number
of IO threads. These threads are in addition to the main thread, each
thread starts with an empty list, the main thread will populate that
list in each event-loop with pending-read-clients or
pending-write-clients.
2. Read Phase: The main thread accepts incoming connections and reads
requests from clients. The reading of requests are offloaded to IO
threads. The main thread puts the clients ready-to-read in a list and
set the global io_threads_op to IO_THREADS_OP_READ, the IO threads pick
the clients up, perform the read operation and parse the first incoming
command.
3. Command Processing: After reading the requests, command processing is
still single-threaded and handled by the main thread.
4. Write Phase: Similar to the read phase, the write phase is also be
offloaded to IO threads. The main thread prepares the response in the
clients’ output buffer then the main thread puts the client in the list,
and sets the global io_threads_op to the IO_THREADS_OP_WRITE. The IO
threads then pick the clients up and perform the write operation to send
the responses back to clients.
5. Synchronization: The main-thread communicate with the threads on how
many jobs left per each thread with atomic counter. The main-thread
doesn’t access the clients while being handled by the IO threads.
**Issues with current implementation:**
* Underutilized Cores: The current implementation of IO-threads leads to
the underutilization of CPU cores.
* The main thread remains responsible for a significant portion of
IO-related tasks that could be offloaded to IO-threads.
* When the main-thread is processing client’s commands, the IO threads
are idle for a considerable amount of time.
* Notably, the main thread's performance during the IO-related tasks is
constrained by the speed of the slowest IO-thread.
* Limited Offloading: Currently, Since the Main-threads waits
synchronously for the IO threads, the Threads perform only read-parse,
and write operations, with parsing done only for the first command. If
the threads can do work asynchronously we may offload more work to the
threads reducing the load from the main-thread.
* TLS: Currently, we don't support IO threads with TLS (where offloading
IO would be more beneficial) since TLS read/write operations are not
thread-safe with the current implementation.
### Suggested change
Non-blocking main thread - The main thread and IO threads will operate
in parallel to maximize efficiency. The main thread will not be blocked
by IO operations. It will continue to process commands independently of
the IO thread's activities.
**Implementation details**
**Inter-thread communication.**
* We use a static, lock-free ring buffer of fixed size (2048 jobs) for
the main thread to send jobs and for the IO to receive them. If the ring
buffer fills up, the main thread will handle the task itself, acting as
back pressure (in case IO operations are more expensive than command
processing). A static ring buffer is a better candidate than a dynamic
job queue as it eliminates the need for allocation/freeing per job.
* An IO job will be in the format: ` [void* function-call-back | void
*data] `where data is either a client to read/write from and the
function-ptr is the function to be called with the data for example
readQueryFromClient using this format we can use it later to offload
other types of works to the IO threads.
* The Ring buffer is one way from the main-thread to the IO thread, Upon
read/write event the main thread will send a read/write job then in
before sleep it will iterate over the pending read/write clients to
checking for each client if the IO threads has already finished handling
it. The IO thread signals it has finished handling a client read/write
by toggling an atomic flag read_state / write_state on the client
struct.
**Thread Safety**
As suggested in this solution, the IO threads are reading from and
writing to the clients' buffers while the main thread may access those
clients.
We must ensure no race conditions or unsafe access occurs while keeping
the Valkey code simple and lock free.
Minimal Action in the IO Threads
The main change is to limit the IO thread operations to the bare
minimum. The IO thread will access only the client's struct and only the
necessary fields in this struct.
The IO threads will be responsible for the following:
* Read Operation: The IO thread will only read and parse a single
command. It will not update the server stats, handle read errors, or
parsing errors. These tasks will be taken care of by the main thread.
* Write Operation: The IO thread will only write the available data. It
will not free the client's replies, handle write errors, or update the
server statistics.
To achieve this without code duplication, the read/write code has been
refactored into smaller, independent components:
* Functions that perform only the read/parse/write calls.
* Functions that handle the read/parse/write results.
This refactor accounts for the majority of the modifications in this PR.
**Client Struct Safe Access**
As we ensure that the IO threads access memory only within the client
struct, we need to ensure thread safety only for the client's struct's
shared fields.
* Query Buffer
* Command parsing - The main thread will not try to parse a command from
the query buffer when a client is offloaded to the IO thread.
* Client's memory checks in client-cron - The main thread will not
access the client query buffer if it is offloaded and will handle the
querybuf grow/shrink when the client is back.
* CLIENT LIST command - The main thread will busy-wait for the IO thread
to finish handling the client, falling back to the current behavior
where the main thread waits for the IO thread to finish their
processing.
* Output Buffer
* The IO thread will not change the client's bufpos and won't free the
client's reply lists. These actions will be done by the main thread on
the client's return from the IO thread.
* bufpos / block→used: As the main thread may change the bufpos, the
reply-block→used, or add/delete blocks to the reply list while the IO
thread writes, we add two fields to the client struct: io_last_bufpos
and io_last_reply_block. The IO thread will write until the
io_last_bufpos, which was set by the main-thread before sending the
client to the IO thread. If more data has been added to the cob in
between, it will be written in the next write-job. In addition, the main
thread will not trim or merge reply blocks while the client is
offloaded.
* Parsing Fields
* Client's cmd, argc, argv, reqtype, etc., are set during parsing.
* The main thread will indicate to the IO thread not to parse a cmd if
the client is not reset. In this case, the IO thread will only read from
the network and won't attempt to parse a new command.
* The main thread won't access the c→cmd/c→argv in the CLIENT LIST
command as stated before it will busy wait for the IO threads.
* Client Flags
* c→flags, which may be changed by the main thread in multiple places,
won't be accessed by the IO thread. Instead, the main thread will set
the c→io_flags with the information necessary for the IO thread to know
the client's state.
* Client Close
* On freeClient, the main thread will busy wait for the IO thread to
finish processing the client's read/write before proceeding to free the
client.
* Client's Memory Limits
* The IO thread won't handle the qb/cob limits. In case a client crosses
the qb limit, the IO thread will stop reading for it, letting the main
thread know that the client crossed the limit.
**TLS**
TLS is currently not supported with IO threads for the following
reasons:
1. Pending reads - If SSL has pending data that has already been read
from the socket, there is a risk of not calling the read handler again.
To handle this, a list is used to hold the pending clients. With IO
threads, multiple threads can access the list concurrently.
2. Event loop modification - Currently, the TLS code
registers/unregisters the file descriptor from the event loop depending
on the read/write results. With IO threads, multiple threads can modify
the event loop struct simultaneously.
3. The same client can be sent to 2 different threads concurrently
(https://github.com/redis/redis/issues/12540).
Those issues were handled in the current PR:
1. The IO thread only performs the read operation. The main thread will
check for pending reads after the client returns from the IO thread and
will be the only one to access the pending list.
2. The registering/unregistering of events will be similarly postponed
and handled by the main thread only.
3. Each client is being sent to the same dedicated thread (c→id %
num_of_threads).
**Sending Replies Immediately with IO threads.**
Currently, after processing a command, we add the client to the
pending_writes_list. Only after processing all the clients do we send
all the replies. Since the IO threads are now working asynchronously, we
can send the reply immediately after processing the client’s requests,
reducing the command latency. However, if we are using AOF=always, we
must wait for the AOF buffer to be written, in which case we revert to
the current behavior.
**IO threads dynamic adjustment**
Currently, we use an all-or-nothing approach when activating the IO
threads. The current logic is as follows: if the number of pending write
clients is greater than twice the number of threads (including the main
thread), we enable all threads; otherwise, we enable none. For example,
if 8 IO threads are defined, we enable all 8 threads if there are 16
pending clients; else, we enable none.
It makes more sense to enable partial activation of the IO threads. If
we have 10 pending clients, we will enable 5 threads, and so on. This
approach allows for a more granular and efficient allocation of
resources based on the current workload.
In addition, the user will now be able to change the number of I/O
threads at runtime. For example, when decreasing the number of threads
from 4 to 2, threads 3 and 4 will be closed after flushing their job
queues.
**Tests**
Currently, we run the io-threads tests with 4 IO threads
(443d80f168/.github/workflows/daily.yml (L353)).
This means that we will not activate the IO threads unless there are 8
(threads * 2) pending write clients per single loop, which is unlikely
to happened in most of tests, meaning the IO threads are not currently
being tested.
To enforce the main thread to always offload work to the IO threads,
regardless of the number of pending events, we add an
events-per-io-thread configuration with a default value of 2. When set
to 0, this configuration will force the main thread to always offload
work to the IO threads.
When we offload every single read/write operation to the IO threads, the
IO-threads are running with 100% CPU when running multiple tests
concurrently some tests fail as a result of larger than expected command
latencies. To address this issue, we have to add some after or wait_for
calls to some of the tests to ensure they pass with IO threads as well.
Signed-off-by: Uri Yagelnik <uriy@amazon.com>
Module Authentication using a blocking implementation currently gets
rejected when the "cluster is down" from the client timeout cron job
(`clientsCronHandleTimeout`).
This PR exempts clients blocked on Module Authentication from being
rejected here.
---------
Signed-off-by: KarthikSubbarao <karthikrs2021@gmail.com>
More rebranding of
* Log messages (#252)
* The DENIED error reply
* Internal function names and comments, mainly Lua API
---------
Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
Occurrences of "redis" in TCL test suites and helpers, such as TCL
client used in tests, are replaced with "valkey".
Occurrences of uppercase "Redis" are not changed in this PR.
No files are renamed in this PR.
---------
Signed-off-by: Shivshankar-Reddy <shiva.sheri.github@gmail.com>
New config 'extended-redis-compatibility' (yes/no) default no
* When yes:
* Use "Redis" in the following error replies:
- `-LOADING Redis is loading the dataset in memory`
- `-BUSY Redis is busy`...
- `-MISCONF Redis is configured to`...
* Use `=== REDIS BUG REPORT` in the crash log delimiters (START and
END).
* The HELLO command returns `"server" => "redis"` and `"version" =>
"7.2.4"` (our Redis OSS compatibility version).
* The INFO field for mode is called `"redis_mode"`.
* When no:
* Use "Valkey" instead of "Redis" in the mentioned errors and crash log
delimiters.
* The HELLO command returns `"server" => "valkey"` and the Valkey
version for `"version"`.
* The INFO field for mode is called `"server_mode"`.
* Documentation added in valkey.conf:
> Valkey is largely compatible with Redis OSS, apart from a few cases
where
> Redis OSS compatibility mode makes Valkey pretend to be Redis. Enable
this
> only if you have problems with tools or clients. This is a temporary
> configuration added in Valkey 8.0 and is scheduled to have no effect
in Valkey
> 9.0 and be completely removed in Valkey 10.0.
* A test case for the config is added. It is designed to fail if the
config is not deprecated (has no effect) in Valkey 9 and deleted in
Valkey 10.
* Other test cases are adjusted to work regardless of this config.
Fixes#274Fixes#61
---------
Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
Updated procedure redis_deferring_client in test environent to
valkey_deferring_client.
Signed-off-by: Shivshankar-Reddy <shiva.sheri.github@gmail.com>
This includes comments used for module API documentation.
* Strategy for replacement: Regex search: `(//|/\*| \*|#).* ("|\()?(r|R)edis( |\.
|'|\n|,|-|\)|")(?!nor the names of its contributors)(?!Ltd.)(?!Labs)(?!Contributors.)`
* Don't edit copyright comments
* Replace "Redis version X.X" -> "Redis OSS version X.X" to distinguish
from newly licensed repository
* Replace "Redis Object" -> "Object"
* Exclude markdown for now
* Don't edit Lua scripting comments referring to redis.X API
* Replace "Redis Protocol" -> "RESP"
* Replace redis-benchmark, -cli, -server, -check-aof/rdb with "valkey-"
prefix
* Most other places, I use best judgement to either remove "Redis", or
replace with "the server" or "server"
Fixes#148
---------
Signed-off-by: Jacob Murphy <jkmurphy@google.com>
Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
This commit updates the following fields:
1. server_version -> valkey_version in server info. Since we would like
to advertise specific compatibility, we are making the version specific
to valkey. servername will remain as an optional indicator, and other
valkey compatible stores might choose to advertise something else.
1. We dropped redis-ver from the API. This isn't related to API
compatibility, but we didn't want to "fake" that valkey was creating an
rdb from a Redis version.
1. Renamed server-ver -> valkey_version in rdb info. Same as point one,
we want to explicitly indicate this was created by a valkey server.
---------
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
New info information to be used to determine the valkey versioning info.
Internally, introduce new define values for "SERVER_VERSION" which is
different from the Redis compatibility version, "REDIS_VERSION".
Add two new info fields:
`server_version`: The Valkey server version
`server_name`: Indicates that the server is valkey.
Add one new RDB field: `server_ver`, which indicates the valkey version
that produced the server.
Add 3 new LUA globals: `SERVER_VERSION_NUM`, `SERVER_VERSION`, and
`SERVER_NAME`. Which reflect the valkey version instead of the Redis
compatibility version.
Also clean up various places where Redis and configuration was being
used that is no longer necessary.
---------
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Documentation references should use `Valkey` while server and cli
references are all under `valkey`.
---------
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Sometimes it's useful to compute a key's cluster slot in a module.
This API function is just like the command CLUSTER KEYSLOT (but faster).
A "reverse" API is also added:
`RedisModule_ClusterCanonicalKeyNameInSlot`. Given a slot, it returns a
short string that we can call a canonical key for the slot.
We can see that the past time here happens to be busy_time_limit,
causing the test to fail:
```
[err]: RM_Call from blocked client in tests/unit/moduleapi/blockedclient.tcl
Expected '50' to be more than '50' (context: type eval line 26 cmd {assert_morethan [expr [clock clicks -milliseconds]-$start] $busy_time_limit} proc ::test)
```
It is reasonable for them to be equal, so equal is added here.
It should be noted that in the previous `Busy module command` test,
we also used assert_morethan_equal, so this should have been missed
at the time.
When we use a timer to unblock a client in module, if the timer
period and the block timeout are very close, they will unblock the
client in the same event loop, and it will trigger the assertion.
The reason is that in moduleBlockedClientTimedOut we will protect
against re-processing, so we don't actually call updateStatsOnUnblock
(see #12817), so we are not able to reset the c->duration.
The reason is unblockClientOnTimeout() didn't realize that bc had
been unblocked. We add a function to the module to determine if bc
is blocked, and then use it in unblockClientOnTimeout() to exit.
There is the stack:
```
beforeSleep
blockedBeforeSleep
handleBlockedClientsTimeout
checkBlockedClientTimeout
unblockClientOnTimeout
unblockClient
resetClient
-- assertion, crash the server
'c->duration == 0' is not true
```
The block timeout is passed in the test case, but we do not pass
in the timeout_callback, and it will crash when unlocking. In this
case, in moduleBlockedClientTimedOut we will check timeout_callback.
There is the stack:
```
beforeSleep
blockedBeforeSleep
handleBlockedClientsTimeout
checkBlockedClientTimeout
unblockClientOnTimeout
replyToBlockedClientTimedOut
moduleBlockedClientTimedOut
-- timeout_callback is NULL, invalidFunctionWasCalled
bc->timeout_callback(&ctx,(void**)c->argv,c->argc);
```
Modules may want to handle allocation failures gracefully. Adding
RM_TryCalloc() and RM_TryRealloc() for it.
RM_TryAlloc() was added before:
https://github.com/redis/redis/pull/10541
Fix a daily test failure because alpine doesn't support stack traces and
add in an extra assertion related to making sure the stack trace was
printed twice.
This change is trying to make two failure modes a bit easier to deep dive:
1. If a serverPanic or serverAssert occurs during the info (or module)
printing, it will recursively panic, which is a lot of fun as it will
just keep recursively printing. It will eventually stack overflow, but
will generate a lot of text in the process.
2. When a segfault happens during the segfault handler, no information
is communicated other than it happened. This can be problematic because
`info` may help diagnose the real issue, but without fixing the
recursive crash it might be hard to get at that info.
This is a follow-up fix to #12733. We need to apply the same changes to
delKeysInSlot. Refer to #12733 for more details.
This PR contains some other minor cleanups / improvements to the test
suite and docs.
It uses the postnotifications test module in a cluster mode test which
revealed a leak in the test module (fixed).
When we register notification or server event in RedisModule_OnLoad, but
RedisModule_OnLoad eventually fails, triggering notification or server
event
will cause the server to crash.
If the loading fails on a later stage of moduleLoad, we do call
moduleUnload
which handles all un-registration, but when it fails on the
RedisModule_OnLoad
call, we only un-register several specific things and these were
missing:
- moduleUnsubscribeNotifications
- moduleUnregisterFilters
- moduleUnsubscribeAllServerEvents
Refactored the code to reuse the code from moduleUnload.
Fixes#12808.
see discussion from after https://github.com/redis/redis/pull/12453 was
merged
----
This PR replaces signals that are not considered async-signal-safe
(AS-safe) with safe calls.
#### **1. serverLog() and serverLogFromHandler()**
`serverLog` uses unsafe calls. It was decided that we will **avoid**
`serverLog` calls by the signal handlers when:
* The signal is not fatal, such as SIGALRM. In these cases, we prefer
using `serverLogFromHandler` which is the safe version of `serverLog`.
Note they have different prompts:
`serverLog`: `62220:M 26 Oct 2023 14:39:04.526 # <msg>`
`serverLogFromHandler`: `62220:signal-handler (1698331136) <msg>`
* The code was added recently. Calls to `serverLog` by the signal
handler have been there ever since Redis exists and it hasn't caused
problems so far. To avoid regression, from now we should use
`serverLogFromHandler`
#### **2. `snprintf` `fgets` and `strtoul`(base = 16) -------->
`_safe_snprintf`, `fgets_async_signal_safe`, `string_to_hex`**
The safe version of `snprintf` was taken from
[here](8cfc4ca5e7/src/mc_util.c (L754))
#### **3. fopen(), fgets(), fclose() --------> open(), read(), close()**
#### **4. opendir(), readdir(), closedir() --------> open(),
syscall(SYS_getdents64), close()**
#### **5. Threads_mngr sync mechanisms**
* waiting for the thread to generate stack trace: semaphore -------->
busy-wait
* `globals_rw_lock` was removed: as we are not using malloc and the
semaphore anymore we don't need to protect `ThreadsManager_cleanups`.
#### **6. Stacktraces buffer**
The initial problem was that we were not able to safely call malloc
within the signal handler.
To solve that we created a buffer on the stack of `writeStacktraces` and
saved it in a global pointer, assuming that under normal circumstances,
the function `writeStacktraces` would complete before any thread
attempted to write to it. However, **if threads lag behind, they might
access this global pointer after it no longer belongs to the
`writeStacktraces` stack, potentially corrupting memory.**
To address this, various solutions were discussed
[here](https://github.com/redis/redis/pull/12658#discussion_r1390442896)
Eventually, we decided to **create a pipe** at server startup that will
remain valid as long as the process is alive.
We chose this solution due to its minimal memory usage, and since
`write()` and `read()` are atomic operations. It ensures that stack
traces from different threads won't mix.
**The stacktraces collection process is now as follows:**
* Cleaning the pipe to eliminate writes of late threads from previous
runs.
* Each thread writes to the pipe its stacktrace
* Waiting for all the threads to mark completion or until a timeout (2
sec) is reached
* Reading from the pipe to print the stacktraces.
#### **7. Changes that were considered and eventually were dropped**
* replace watchdog timer with a POSIX timer:
according to [settimer man](https://linux.die.net/man/2/setitimer)
> POSIX.1-2008 marks getitimer() and setitimer() obsolete, recommending
the use of the POSIX timers API
([timer_gettime](https://linux.die.net/man/2/timer_gettime)(2),
[timer_settime](https://linux.die.net/man/2/timer_settime)(2), etc.)
instead.
However, although it is supposed to conform to POSIX std, POSIX timers
API is not supported on Mac.
You can take a look here at the Linux implementation:
[here](c7562ee135)
To avoid messing up the code, and uncertainty regarding compatibility,
it was decided to drop it for now.
* avoid using sds (uses malloc) in logConfigDebugInfo
It was considered to print config info instead of using sds, however
apparently, `logConfigDebugInfo` does more than just print the sds, so
it was decided this fix is out of this issue scope.
#### **8. fix Signal mask check**
The check `signum & sig_mask` intended to indicate whether the signal is
blocked by the thread was incorrect. Actually, the bit position in the
signal mask corresponds to the signal number. We fixed this by changing
the condition to: `sig_mask & (1L << (sig_num - 1))`
#### **9. Unrelated changes**
both `fork.tcl `and `util.tcl` implemented a function called
`count_log_message` expecting different parameters. This caused
confusion when trying to run daily tests with additional test parameters
to run a specific test.
The `count_log_message` in `fork.tcl` was removed and the calls were
replaced with calls to `count_log_message` located in `util.tcl`
---------
Co-authored-by: Ozan Tezcan <ozantezcan@gmail.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
Redis 7.2 (#9406) introduced a new modules event, `RedisModuleEvent_Key`.
This new event allows the module to read the key data just before it is removed
from the database (either deleted, expired, evicted, or overwritten).
When the key is removed from the database, either by active expire or eviction.
The new event was not called as part of an execution unit. This can cause an
issue if the module registers a post notification job inside the event. This job will
not be executed atomically with the expiration/eviction operation and will not
replicated inside a Multi/Exec. Moreover, the post notification job will be executed
right after the event where it is still not safe to perform any write operation, this will
violate the promise that post notification job will be called atomically with the
operation that triggered it and **only when it is safe to write**.
This PR fixes the issue by wrapping each expiration/eviction of a key with an execution
unit. This makes sure the entire operation will run atomically and all the post notification
jobs will be executed at the end where it is safe to write.
Tests were modified to verify the fix.
The problem is that WAITAOF could have hang in case commands were
propagated only to replicas.
This can happen if a module uses RM_Call with the REDISMODULE_ARGV_NO_AOF flag.
In that case, master_repl_offset would increase, but there would be nothing to fsync, so
in the absence of other traffic, fsynced_reploff_pending would stay the static, and WAITAOF can hang.
This commit updates fsynced_reploff_pending to the latest offset in flushAppendOnlyFile in case
there's nothing to fsync. i.e. in case it's behind because of the above mentions case it'll be refreshed
and release the WAITAOF.
Other changes:
Fix a race in wait.tcl (client getting blocked vs. the fsync thread)
This PR adds a new Module API int RM_AddACLCategory(RedisModuleCtx *ctx, const char *category_name) to add a new ACL command category.
Here, we initialize the ACLCommandCategories array by allocating space for 64 categories and duplicate the 21 default categories from the predefined array 'ACLDefaultCommandCategories' into the ACLCommandCategories array while ACL initialization. Valid ACL category names can only contain alphanumeric characters, underscores, and dashes.
The API when called, checks for the onload flag, category name validity, and for duplicate category name if present. If the conditions are satisfied, the API adds the new category to the trailing end of the ACLCommandCategories array and assigns the acl_categories flag bit according to the index at which the category is added.
If any error is encountered the errno is set accordingly by the API.
---------
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
Optimized the performance of the SCAN command in a few ways:
1. Move the key filtering (by MATCH pattern) in the scan callback,
so as to avoid collecting them for later filtering.
2. Reduce a many memory allocations and copying (use a reference
to the original sds, instead of creating an robj, an excessive 2 mallocs
and one string duplication)
3. Compare TYPE filter directly (as integers), instead of inefficient string
compare per key.
4. fixed a small bug: when scan zset and hash types, maxiterations uses
a more accurate number to avoid wrong double maxiterations.
Changes **postponed** for a later version (8.0):
1. Prepare to move the TYPE filtering to the scan callback as well. this was
put on hold since it has side effects that can be considered a breaking
change, which is that we will not attempt to do lazy expire (delete) a key
that was filtered by not matching the TYPE (changing it would mean TYPE filter
starts behaving the same as MATCH filter already does in that respect).
2. when the specified key TYPE filter is an unknown type, server will reply a error
immediately instead of doing a full scan that comes back empty handed.
Benchmark result:
For different scenarios, we obtained about 30% or more performance improvement.
Co-authored-by: Oran Agra <oran@redislabs.com>
blocking RM_Call was introduced on: #11568, It allows a module to perform
blocking commands and get the reply asynchronously.If the command gets
block, a special promise CallReply is returned that allow to set the unblock
handler. The unblock handler will be called when the command invocation
finish and it gets, as input, the command real reply.
The issue was that the real CallReply was created using a stack allocated
RedisModuleCtx which is no longer available after the unblock handler finishes.
So if the module keeps the CallReply after the unblock handler finished, the
CallReply holds a pointer to invalid memory and will try to access it when the
CallReply will be released.
The solution is to create the CallReply with a NULL context to make it totally
detached and can be freed freely when the module wants.
Test was added to cover this case, running the test with valgrind before the
fix shows the use after free error. With the fix, there are no valgrind errors.
unrelated: adding a missing `$rd close` in many tests in that file.
Apart from adding the missing coverage, this PR also adds `blockedBeforeSleep`
that gathers all block-related functions from `beforeSleep`
The order inside `blockedBeforeSleep` is different: now `handleClientsBlockedOnKeys`
(which may unblock clients) is called before `processUnblockedClients` (which handles
unblocked clients).
It makes sense to have this order.
There are no visible effects of the wrong ordering, except some cleanups of the now-unblocked
client would have happen in the next `beforeSleep` (will now happen in the current one)
The reason we even got into it is because i triggers an assertion in logresreq.c (breaking
the assumption that `unblockClient` is called **before** actually flushing the reply to the socket):
`handleClientsBlockedOnKeys` is called, then it calls `moduleUnblockClientOnKey`, which calls
`moduleUnblockClient`, which adds the client to `moduleUnblockedClients` back to `beforeSleep`,
we call `handleClientsWithPendingWritesUsingThreads`, it writes the data of buf to the client, so
`client->bufpos` became 0
On the next `beforeSleep`, we call `moduleHandleBlockedClients`, which calls `unblockClient`,
which calls `reqresAppendResponse`, triggering the assert. (because the `bufpos` is 0) - see https://github.com/redis/redis/pull/12301#discussion_r1226386716
Introduced by https://github.com/redis/redis/pull/11923 (Redis 7.2 RC2)
It's very weird and counterintuitive that `RM_ReplyWithError` requires the error-code
**without** a hyphen while `RM_ReplyWithErrorFormat` requires either the error-code
**with** a hyphen or no error-code at all
```
RedisModule_ReplyWithError(ctx, "BLA bla bla");
```
vs.
```
RedisModule_ReplyWithErrorFormat(ctx, "-BLA %s", "bla bla");
```
This commit aligns RM_ReplyWithErrorFormat to behvae like RM_ReplyWithError.
it's a breaking changes but it's done before 7.2 goes GA.
When a connection that's subscribe to a channel emits PUBLISH inside MULTI-EXEC,
the push notification messes up the EXEC response.
e.g. MULTI, PING, PUSH foo bar, PING, EXEC
the EXEC's response will contain: PONG, {message foo bar}, 1. and the second PONG
will be delivered outside the EXEC's response.
Additionally, this PR changes the order of responses in case of a plain PUBLISH (when
the current client also subscribed to it), by delivering the push after the command's
response instead of before it.
This also affects modules calling RM_PublishMessage in a similar way, so that we don't
run the risk of getting that push mixed together with the module command's response.
Adds API
- RedisModule_CommandFilterGetClientId()
Includes addition to commandfilter test module to validate that it works
by performing the same command from 2 different clients
So far clients being blocked and unblocked by a module command would
update the c->woff variable and so WAIT was ineffective and got released
without waiting for the command actions to propagate.
This seems to have existed since forever, but not for RM_BlockClientOnKeys.
It is problematic though to know if the module did or didn't propagate
anything in that command, so for now, instead of adding an API, we'll
just update the woff to the latest offset when unblocking, this will
cause the client to possibly wait excessively, but that's not that bad.
When `RM_ZsetAdd()`/`RM_ZsetIncrby()`/`RM_StreamAdd()` fails, if a new key happens to
be created using `moduleCreateEmptyKey()`, we should clean up the empty key.
## Test
1) Add new module commands(`zset.add` and `zset.incrby`) to cover `RM_ZsetAdd()`/`RM_ZsetIncrby()`.
2) Add a large-memory test to cover `RM_StreamAdd()`.
In order to speed up tests, avoid saving an RDB (mostly notable on shutdown),
except for tests that explicitly test the RDB mechanism
In addition, use `shutdown-on-sigterm force` to prevetn shutdown from failing
in case the server is in the middle of the initial AOFRW
Also a a test that checks that the `shutdown-on-sigterm default` is to refuse
shutdown if there's an initial AOFRW
Co-authored-by: Guy Benoish <guy.benoish@redislabs.com>