8 Commits

Author SHA1 Message Date
zhaozhao.zz
3f21705a6c
Feature COMMANDLOG to record slow execution and large request/reply (#1294)
As discussed in PR #336.

We have different types of resources like CPU, memory, network, etc. The
`slowlog` can only record commands eat lots of CPU during the processing
phase (doesn't include read/write network time), but can not record
commands eat too many memory and network. For example:

1. run "SET key value(10 megabytes)" command would not be recored in
slowlog, since when processing it the SET command only insert the
value's pointer into db dict. But that command eats huge memory in query
buffer and bandwidth from network. In this case, just 1000 tps can cause
10GB/s network flow.
2. run "GET key" command and the key's value length is 10 megabytes. The
get command can eat huge memory in output buffer and bandwidth to
network.

This PR introduces a new command `COMMANDLOG`, to log commands that
consume significant network bandwidth, including both input and output.
Users can retrieve the results using `COMMANDLOG get <count>
large-request` and `COMMANDLOG get <count> large-reply`, all subcommands
for `COMMANDLOG` are:

* `COMMANDLOG HELP`
* `COMMANDLOG GET <count> <slow|large-request|large-reply>`
* `COMMANDLOG LEN <slow|large-request|large-reply>`
* `COMMANDLOG RESET <slow|large-request|large-reply>`

And the slowlog is also incorporated into the commandlog.

For each of these three types, additional configs have been added for
control:

* `commandlog-request-larger-than` and
`commandlog-large-request-max-len` represent the threshold for large
requests(the unit is Bytes) and the maximum number of commands that can
be recorded.
* `commandlog-reply-larger-than` and `commandlog-large-reply-max-len`
represent the threshold for large replies(the unit is Bytes) and the
maximum number of commands that can be recorded.
* `commandlog-execution-slower-than` and
`commandlog-slow-execution-max-len` represent the threshold for slow
executions(the unit is microseconds) and the maximum number of commands
that can be recorded.
* Additionally, `slowlog-log-slower-than` and `slowlog-max-len` are now
set as aliases for these two new configs.

---------

Signed-off-by: zhaozhao.zz <zhaozhao.zz@alibaba-inc.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: Ping Xie <pingxie@outlook.com>
2025-01-24 11:41:40 +08:00
Ricardo Dias
af71619c45
Extract the scripting engine code from the functions unit (#1312)
This commit creates a new compilation unit for the scripting engine code
by extracting the existing code from the functions unit.
We're doing this refactor to prepare the code for running the `EVAL`
command using different scripting engines.

This PR has a module API change: we changed the type of error messages
returned by the callback
`ValkeyModuleScriptingEngineCreateFunctionsLibraryFunc` to be a
`ValkeyModuleString` (aka `robj`);

This PR also fixes #1470.

---------

Signed-off-by: Ricardo Dias <ricardo.dias@percona.com>
2025-01-16 10:08:16 +01:00
eifrah-aws
b3b4bdcda4
CMake: fail on warnings (#1503)
When building with `CMake` (especially the targets `valkey-cli`,
`valkey-server` and `valkey-benchmark`) it is possible to have a
successful build while having warnings.

This PR fixes this - which is aligned with how the `Makefile` is working
today:
- Enable `-Wall` + `-Werror` for valkey targets
- Fixed warning in valkey-cli:jsonStringOutput method

Signed-off-by: Eran Ifrah <eifrah@amazon.com>
2025-01-03 09:44:41 +08:00
Viktor Söderqvist
c8ee5c2c46 Hashtable implementation including unit tests
A cache-line aware hash table with a user-defined key-value entry type,
supporting incremental rehashing, scan, iterator, random sampling,
incremental lookup and more...

Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
2024-12-10 21:30:56 +01:00
zhenwei pi
4695d118dd
RDMA builtin support (#1209)
There are several patches in this PR:

* Abstract set/rewrite config bind option: `bind` option is a special
config, `socket` and `tls` are using the same one. However RDMA uses the
similar style but different one. Use a bit abstract work to make it
flexible for both `socket` and `RDMA`. (Even for QUIC in the future.)
* Introduce closeListener for connection type: closing socket by a
simple syscall would be fine, RDMA has complex logic. Introduce
connection type specific close listener method.
* RDMA: Use valkey.conf style instead of module parameters: use
`--rdma-bind` and `--rdma-port` style instead of module parameters. The
module style config `rdma.bind` and `rdma.port` are removed.
* RDMA: Support builtin: support `make BUILD_RDMA=yes`. module style is
still kept for now.

Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
2024-11-29 11:13:34 +01:00
eifrah-aws
33f42d7fb5
CMake fixes + README update (#1276) 2024-11-22 12:17:53 -08:00
zvi-code
b56eed2479
Remove valkey specific changes in jemalloc source code (#1266)
### Summary of the change

This is a base PR for refactoring defrag. It moves the defrag logic to
rely on jemalloc [native
api](https://github.com/jemalloc/jemalloc/pull/1463#issuecomment-479706489)
instead of relying on custom code changes made by valkey in the jemalloc
([je_defrag_hint](9f8185f5c8/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_c.h (L382)))
library. This enables valkey to use latest vanila jemalloc without the
need to maintain code changes cross jemalloc versions.

This change requires some modifications because the new api is providing
only the information, not a yes\no defrag. The logic needs to be
implemented at valkey code. Additionally, the api does not provide,
within single call, all the information needed to make a decision, this
information is available through additional api call. To reduce the
calls to jemalloc, in this PR the required information is collected
during the `computeDefragCycles` and not for every single ptr, this way
we are avoiding the additional api call.
Followup work will utilize the new options that are now open and will
further improve the defrag decision and process.

### Added files: 

`allocator_defrag.c` / `allocator_defrag.h` - This files implement the
allocator specific knowledge for making defrag decision. The knowledge
about slabs and allocation logic and so on, all goes into this file.
This improves the separation between jemalloc specific code and other
possible implementation.


### Moved functions: 

[`zmalloc_no_tcache` , `zfree_no_tcache`
](4593dc2f05/src/zmalloc.c (L215))
- these are very jemalloc specific logic assumptions, and are very
specific to how we defrag with jemalloc. This is also with the vision
that from performance perspective we should consider using tcache, we
only need to make sure we don't recycle entries without going through
the arena [for example: we can use private tcache, one for free and one
for alloc].
`frag_smallbins_bytes` - the logic and implementation moved to the new
file

### Existing API:

* [once a second + when completed full cycle]
[`computeDefragCycles`](4593dc2f05/src/defrag.c (L916))
* `zmalloc_get_allocator_info` : gets from jemalloc _allocated, active,
resident, retained, muzzy_, `frag_smallbins_bytes`
*
[`frag_smallbins_bytes`](4593dc2f05/src/zmalloc.c (L690))
: for each bin; gets from jemalloc bin_info, `curr_regs`, `cur_slabs`
* [during defrag, for each pointer]
* `je_defrag_hint` is getting a memory pointer and returns {0,1} .
[Internally it
uses](4593dc2f05/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_c.h (L368))
this information points:
        * #`nonfull_slabs`
        * #`total_slabs`
        * #free regs in the ptr slab

## Jemalloc API (via ctl interface)


[BATCH][`experimental_utilization_batch_query_ctl`](4593dc2f05/deps/jemalloc/src/ctl.c (L4114))
: gets an array of pointers, returns for each pointer 3 values,

* number of free regions in the extent
* number of regions in the extent
* size of the extent in terms of bytes


[EXTENDED][`experimental_utilization_query_ctl`](4593dc2f05/deps/jemalloc/src/ctl.c (L3989))
:

* memory address of the extent a potential reallocation would go into
* number of free regions in the extent
* number of regions in the extent
* size of the extent in terms of bytes
* [stats-enabled]total number of free regions in the bin the extent
belongs to
* [stats-enabled]total number of regions in the bin the extent belongs
to

### `experimental_utilization_batch_query_ctl` vs valkey
`je_defrag_hint`?
[good]
   - We can query pointers in a batch, reduce the overall overhead
- The per ptr decision algorithm is not within jemalloc api, jemalloc
only provides information, valkey can tune\configure\optimize easily

 
[bad]
- In the batch API we only know the utilization of the slab (of that
memory ptr), we don’t get the data about #`nonfull_slabs` and total
allocated regs.


## New functions:
1. `defrag_jemalloc_init`: Reducing the cost of call to je_ctl: use the
[MIB interface](https://jemalloc.net/jemalloc.3.html) to get a faster
calls. See this quote from the jemalloc documentation:
    
The mallctlnametomib() function provides a way to avoid repeated name
lookups for
applications that repeatedly query the same portion of the namespace,by
translating
a name to a “Management Information Base” (MIB) that can be passed
repeatedly to
    mallctlbymib().

6. `jemalloc_sz2binind_lgq*` : this api is to support reverse map
between bin size and it’s info without lookup. This mapping depends on
the number of size classes we have that are derived from
[`lg_quantum`](4593dc2f05/deps/Makefile (L115))
7. `defrag_jemalloc_get_frag_smallbins` : This function replaces
`frag_smallbins_bytes` the logic moved to the new file allocator_defrag
`defrag_jemalloc_should_defrag_multi` → `handle_results` - unpacks the
results
8. `should_defrag` : implements the same logic as the existing
implementation
[inside](9f8185f5c8/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_c.h (L382))
je_defrag_hint
9. `defrag_jemalloc_should_defrag_multi` : implements the hint for an
array of pointers, utilizing the new batch api. currently only 1 pointer
is passed.


### Logical differences:

In order to get the information about #`nonfull_slabs` and #`regs`, we
use the query cycle to collect the information per size class. In order
to find the index of bin information given bin size, in o(1), we use
`jemalloc_sz2binind_lgq*` .


## Testing
This is the first draft. I did some initial testing that basically
fragmentation by reducing max memory and than waiting for defrag to
reach desired level. The test only serves as sanity that defrag is
succeeding eventually, no data provided here regarding efficiency and
performance.

### Test: 
1. disable `activedefrag`
2. run valkey benchmark on overlapping address ranges with different
block sizes
3. wait untill `used_memory` reaches 10GB
4. set `maxmemory` to 5GB and `maxmemory-policy` to `allkeys-lru`
5. stop load
6. wait for `mem_fragmentation_ratio` to reach 2
7. enable `activedefrag` - start test timer
8. wait until reach `mem_fragmentation_ratio` = 1.1

#### Results*:
(With this PR)Test results: ` 56 sec`
(Without this PR)Test results: `67 sec`

*both runs perform same "work" number of buffers moved to reach
fragmentation target

Next benchmarking is to compare to:
- DONE // existing `je_get_defrag_hint` 
- compare with naive defrag all: `int defrag_hint() {return 1;}`

---------

Signed-off-by: Zvi Schneider <ezvisch@amazon.com>
Signed-off-by: Zvi Schneider <zvi.schneider22@gmail.com>
Signed-off-by: zvi-code <54795925+zvi-code@users.noreply.github.com>
Co-authored-by: Zvi Schneider <ezvisch@amazon.com>
Co-authored-by: Zvi Schneider <zvi.schneider22@gmail.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2024-11-21 16:29:21 -08:00
eifrah-aws
07b3e7ae7a
Add CMake build system for valkey (#1196)
With this commit, users are able to build valkey using `CMake`.

## Example usage:

Build `valkey-server` in Release mode with TLS enabled and using
`jemalloc` as the allocator:

```bash
mkdir build-release
cd $_
cmake .. -DCMAKE_BUILD_TYPE=Release \
         -DCMAKE_INSTALL_PREFIX=/tmp/valkey-install \
         -DBUILD_MALLOC=jemalloc -DBUILD_TLS=1
make -j$(nproc) install

# start valkey
/tmp/valkey-install/bin/valkey-server
```

Build `valkey-unit-tests`:

```bash
mkdir build-release-ut
cd $_
cmake .. -DCMAKE_BUILD_TYPE=Release \
         -DBUILD_MALLOC=jemalloc -DBUILD_UNIT_TESTS=1
make -j$(nproc)

# Run the tests
./bin/valkey-unit-tests 
```

Current features supported by this PR:

- Building against different allocators: (`jemalloc`, `tcmalloc`,
`tcmalloc_minimal` and `libc`), e.g. to enable `jemalloc` pass
`-DBUILD_MALLOC=jemalloc` to `cmake`
- OpenSSL builds (to enable TLS, pass `-DBUILD_TLS=1` to `cmake`)
- Sanitizier: pass `-DBUILD_SANITIZER=<address|thread|undefined>` to
`cmake`
- Install target + redis symbolic links
- Build `valkey-unit-tests` executable
- Standard CMake variables are supported. e.g. to install `valkey` under
`/home/you/root` pass `-DCMAKE_INSTALL_PREFIX=/home/you/root`

Why using `CMake`? To list *some* of the advantages of using `CMake`:

- Superior IDE integrations: cmake generates the file
`compile_commands.json` which is required by `clangd` to get a compiler
accuracy code completion (in other words: your VScode will thank you)
- Out of the source build tree: with the current build system, object
files are created all over the place polluting the build source tree,
the best practice is to build the project on a separate folder
- Multiple build types co-existing: with the current build system, it is
often hard to have multiple build configurations. With cmake you can do
it easily:
- It is the de-facto standard for C/C++ project these days

More build examples: 

ASAN build:

```bash
mkdir build-asan
cd $_
cmake .. -DBUILD_SANITIZER=address -DBUILD_MALLOC=libc
make -j$(nproc)
```

ASAN with jemalloc:

```bash
mkdir build-asan-jemalloc
cd $_
cmake .. -DBUILD_SANITIZER=address -DBUILD_MALLOC=jemalloc 
make -j$(nproc)
```

As seen by the previous examples, any combination is allowed and
co-exist on the same source tree.

## Valkey installation

With this new `CMake`, it is possible to install the binary by running
`make install` or creating a package `make package` (currently supported
on Debian like distros)

### Example 1: build & install using `make install`:

```bash
mkdir build-release
cd $_
cmake .. -DCMAKE_INSTALL_PREFIX=$HOME/valkey-install -DCMAKE_BUILD_TYPE=Release
make -j$(nproc) install
# valkey is now installed under $HOME/valkey-install
```

### Example 2: create a `.deb` installer:

```bash
mkdir build-release
cd $_
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j$(nproc) package
# ... CPack deb generation output
sudo gdebi -n ./valkey_8.1.0_amd64.deb
# valkey is now installed under /opt/valkey
```

### Example 3: create installer for non Debian systems (e.g. FreeBSD or
macOS):

```bash
mkdir build-release
cd $_
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j$(nproc) package
mkdir -p /opt/valkey && ./valkey-8.1.0-Darwin.sh --prefix=/opt/valkey  --exclude-subdir
# valkey-server is now installed under /opt/valkey

```

Signed-off-by: Eran Ifrah <eifrah@amazon.com>
2024-11-07 18:01:37 -08:00