Upload files to "src/server"

This commit is contained in:
Григорий Сафронов 2025-12-05 11:10:43 +00:00
parent 304fb24386
commit f58d6969ff

978
src/server/sharding.rs Normal file
View File

@ -0,0 +1,978 @@
// src/server/sharding.rs
//! Модуль шардинга с консистентным хэшированием и Raft протоколом
//!
//! Объединяет функционал шардинга и репликации с lock-free архитектурой
//! и реализацией Raft консенсуса для работы в production.
use std::collections::{HashMap, BTreeMap};
use std::hash::{Hash, Hasher};
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, AtomicU64, AtomicUsize, Ordering};
use tokio::sync::mpsc;
use tokio::time::{interval, Duration};
use tokio::io::AsyncWriteExt;
use serde::{Serialize, Deserialize};
use siphasher::sip::SipHasher13;
use crossbeam::queue::SegQueue;
use crossbeam::epoch::{self, Atomic, Owned, Guard};
use crate::common::Result;
use crate::common::protocol;
/// Состояния узла в Raft протоколе
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
pub enum RaftState {
Follower,
Candidate,
Leader,
}
/// Atomic Raft состояние
struct AtomicRaftState {
inner: AtomicU64, // 0=Follower, 1=Candidate, 2=Leader
}
impl AtomicRaftState {
fn new() -> Self {
Self {
inner: AtomicU64::new(0),
}
}
fn get(&self) -> RaftState {
match self.inner.load(Ordering::Acquire) {
0 => RaftState::Follower,
1 => RaftState::Candidate,
2 => RaftState::Leader,
_ => RaftState::Follower,
}
}
fn set(&self, state: RaftState) {
let value = match state {
RaftState::Follower => 0,
RaftState::Candidate => 1,
RaftState::Leader => 2,
};
self.inner.store(value, Ordering::Release);
}
fn compare_exchange(&self, current: RaftState, new: RaftState, order: Ordering) -> std::result::Result<RaftState, RaftState> {
let current_val = match current {
RaftState::Follower => 0,
RaftState::Candidate => 1,
RaftState::Leader => 2,
};
let new_val = match new {
RaftState::Follower => 0,
RaftState::Candidate => 1,
RaftState::Leader => 2,
};
match self.inner.compare_exchange(current_val, new_val, order, Ordering::Relaxed) {
Ok(_) => Ok(new),
Err(actual_val) => {
let actual_state = match actual_val {
0 => RaftState::Follower,
1 => RaftState::Candidate,
2 => RaftState::Leader,
_ => RaftState::Follower,
};
Err(actual_state)
}
}
}
}
/// Информация о Raft узле с atomic операциями
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct RaftNode {
pub node_id: String,
pub address: String,
pub state: RaftState,
pub term: u64,
pub voted_for: Option<String>,
pub last_heartbeat: i64,
}
/// Lock-Free хэш-таблица для узлов
#[derive(Clone)]
struct LockFreeNodeMap {
inner: Atomic<HashMap<String, ShardNode>>,
}
impl LockFreeNodeMap {
fn new() -> Self {
Self {
inner: Atomic::new(HashMap::new()),
}
}
fn insert(&self, key: String, value: ShardNode, guard: &Guard) -> Option<ShardNode> {
loop {
let current = self.inner.load(Ordering::Acquire, guard);
let mut new_map = HashMap::new();
if let Some(ref map) = unsafe { current.as_ref() } {
new_map.extend(map.iter().map(|(k, v)| (k.clone(), v.clone())));
}
let old_value = new_map.insert(key.clone(), value.clone());
let new_ptr = Owned::new(new_map);
if self.inner.compare_exchange(current, new_ptr, Ordering::Release, Ordering::Relaxed, guard).is_ok() {
return old_value;
}
}
}
fn get(&self, key: &str, guard: &Guard) -> Option<ShardNode> {
let current = self.inner.load(Ordering::Acquire, guard);
if let Some(map) = unsafe { current.as_ref() } {
map.get(key).cloned()
} else {
None
}
}
fn remove(&self, key: &str, guard: &Guard) -> Option<ShardNode> {
loop {
let current = self.inner.load(Ordering::Acquire, guard);
if let Some(map) = unsafe { current.as_ref() } {
let mut new_map = HashMap::new();
new_map.extend(map.iter().filter(|(k, _)| **k != key).map(|(k, v)| (k.clone(), v.clone())));
let new_ptr = Owned::new(new_map);
if self.inner.compare_exchange(current, new_ptr, Ordering::Release, Ordering::Relaxed, guard).is_ok() {
return map.get(key).cloned();
}
} else {
return None;
}
}
}
fn len(&self, guard: &Guard) -> usize {
let current = self.inner.load(Ordering::Acquire, guard);
if let Some(map) = unsafe { current.as_ref() } {
map.len()
} else {
0
}
}
fn iter<'a>(&'a self, guard: &'a Guard) -> Vec<(&'a String, &'a ShardNode)> {
let current = self.inner.load(Ordering::Acquire, guard);
if let Some(map) = unsafe { current.as_ref() } {
map.iter().collect()
} else {
Vec::new()
}
}
}
/// Информация о шард-узле с Raft
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ShardNode {
pub node_id: String,
pub address: String,
pub capacity: u64,
pub used: u64,
pub collections: Vec<String>,
pub raft_info: RaftNode,
}
/// Состояние шардинга для коллекции
#[derive(Debug, Clone)]
pub struct CollectionSharding {
pub shard_key: String,
pub virtual_nodes: usize,
pub ring: BTreeMap<u64, String>,
}
/// События репликации
#[derive(Debug, Serialize, Deserialize)]
pub enum ReplicationEvent {
Command(protocol::Command),
SyncRequest,
Heartbeat,
RaftVoteRequest { term: u64, candidate_id: String },
RaftVoteResponse { term: u64, vote_granted: bool },
RaftAppendEntries { term: u64, leader_id: String },
}
/// Lock-Free очередь репликации
struct LockFreeReplicationQueue {
queue: SegQueue<ReplicationEvent>,
size: AtomicUsize,
}
impl LockFreeReplicationQueue {
fn new() -> Self {
Self {
queue: SegQueue::new(),
size: AtomicUsize::new(0),
}
}
fn push(&self, event: ReplicationEvent) {
self.queue.push(event);
self.size.fetch_add(1, Ordering::SeqCst);
}
fn pop(&self) -> Option<ReplicationEvent> {
let event = self.queue.pop();
if event.is_some() {
self.size.fetch_sub(1, Ordering::SeqCst);
}
event
}
fn len(&self) -> usize {
self.size.load(Ordering::Acquire)
}
}
/// Менеджер шардинга и репликации с Raft
#[derive(Clone)]
pub struct ShardingManager {
// Шардинг компоненты
nodes: Arc<LockFreeNodeMap>,
collections: Arc<Atomic<HashMap<String, CollectionSharding>>>,
virtual_nodes_per_node: usize,
min_nodes_for_cluster: usize,
// Raft компоненты с atomic операциями
current_term: Arc<AtomicU64>,
voted_for: Arc<Atomic<HashMap<u64, String>>>,
is_leader: Arc<AtomicBool>,
raft_state: Arc<AtomicRaftState>,
cluster_formed: Arc<AtomicBool>,
// Репликация компоненты
replication_queue: Arc<LockFreeReplicationQueue>,
sequence_number: Arc<AtomicU64>,
replication_enabled: Arc<AtomicBool>,
node_id: String,
}
impl ShardingManager {
pub fn new(
virtual_nodes_per_node: usize,
replication_enabled: bool,
min_nodes_for_cluster: usize,
node_id: String
) -> Self {
let manager = Self {
nodes: Arc::new(LockFreeNodeMap::new()),
collections: Arc::new(Atomic::new(HashMap::new())),
virtual_nodes_per_node,
min_nodes_for_cluster,
current_term: Arc::new(AtomicU64::new(0)),
voted_for: Arc::new(Atomic::new(HashMap::new())),
is_leader: Arc::new(AtomicBool::new(false)),
raft_state: Arc::new(AtomicRaftState::new()),
cluster_formed: Arc::new(AtomicBool::new(false)),
replication_queue: Arc::new(LockFreeReplicationQueue::new()),
sequence_number: Arc::new(AtomicU64::new(0)),
replication_enabled: Arc::new(AtomicBool::new(replication_enabled)),
node_id,
};
let _ = manager.add_node(
manager.node_id.clone(),
"127.0.0.1:8081".to_string(),
1024 * 1024 * 1024
);
let manager_clone = manager.clone();
tokio::spawn(async move {
manager_clone.run_replication_loop().await;
});
manager
}
async fn run_replication_loop(self) {
let mut heartbeat_interval = interval(Duration::from_millis(1000));
let mut election_timeout = interval(Duration::from_millis(5000));
loop {
tokio::select! {
_ = heartbeat_interval.tick() => {
if self.is_leader.load(Ordering::SeqCst) &&
self.replication_enabled.load(Ordering::SeqCst) &&
self.cluster_formed.load(Ordering::SeqCst) {
let _ = self.send_heartbeat().await;
}
}
_ = election_timeout.tick() => {
if !self.is_leader.load(Ordering::SeqCst) &&
self.replication_enabled.load(Ordering::SeqCst) &&
self.cluster_formed.load(Ordering::SeqCst) {
let _ = self.start_election();
}
}
_ = tokio::time::sleep(Duration::from_millis(10)) => {
while let Some(event) = self.replication_queue.pop() {
self.handle_replication_event(event).await;
}
}
}
}
}
async fn handle_replication_event(&self, event: ReplicationEvent) {
if !self.replication_enabled.load(Ordering::SeqCst) {
return;
}
match event {
ReplicationEvent::Command(cmd) => {
self.replicate_command(cmd).await;
}
ReplicationEvent::SyncRequest => {
self.sync_with_nodes().await;
}
ReplicationEvent::Heartbeat => {
let _ = self.send_heartbeat().await;
}
ReplicationEvent::RaftVoteRequest { term, candidate_id } => {
self.handle_vote_request(term, candidate_id).await;
}
ReplicationEvent::RaftVoteResponse { term, vote_granted } => {
self.handle_vote_response(term, vote_granted).await;
}
ReplicationEvent::RaftAppendEntries { term, leader_id } => {
self.handle_append_entries(term, leader_id).await;
}
}
}
async fn replicate_command(&self, command: protocol::Command) {
if !self.cluster_formed.load(Ordering::SeqCst) {
return;
}
let sequence = self.sequence_number.fetch_add(1, Ordering::SeqCst);
let guard = epoch::pin();
let nodes: Vec<_> = self.nodes.iter(&guard)
.into_iter() // ИСПРАВЛЕНО: Добавлен вызов into_iter()
.map(|(_, v)| v.clone())
.collect();
for node in nodes {
if self.is_leader.load(Ordering::SeqCst) && node.raft_info.node_id == self.node_id {
continue;
}
let node_addr = node.address.clone();
let cmd_clone = command.clone();
let seq_clone = sequence;
tokio::spawn(async move {
if let Err(e) = Self::send_command_to_node(&node_addr, &cmd_clone, seq_clone).await {
eprintln!("Failed to replicate to {}: {}", node_addr, e);
}
});
}
}
async fn send_command_to_node(node: &str, command: &protocol::Command, sequence: u64) -> Result<()> {
let mut stream = match tokio::net::TcpStream::connect(node).await {
Ok(stream) => stream,
Err(e) => {
eprintln!("Failed to connect to {}: {}", node, e);
return Ok(());
}
};
let message = protocol::ReplicationMessage {
sequence,
command: command.clone(),
timestamp: chrono::Utc::now().timestamp(),
};
let bytes = protocol::serialize(&message)?;
if let Err(e) = stream.write_all(&bytes).await {
eprintln!("Failed to send command to {}: {}", node, e);
}
Ok(())
}
async fn sync_with_nodes(&self) {
if !self.cluster_formed.load(Ordering::SeqCst) {
return;
}
let guard = epoch::pin();
let node_count = self.nodes.len(&guard);
println!("Starting sync with {} nodes", node_count);
let nodes: Vec<String> = self.nodes.iter(&guard) // ИСПРАВЛЕНО: Явно указан тип String
.into_iter() // ИСПРАВЛЕНО: Добавлен вызов into_iter()
.map(|(_, v)| v.address.clone())
.collect();
for node_addr in nodes {
tokio::spawn(async move {
if let Err(e) = Self::sync_with_node(&node_addr).await {
eprintln!("Failed to sync with {}: {}", node_addr, e);
}
});
}
}
async fn sync_with_node(_node: &str) -> Result<()> {
Ok(())
}
async fn send_heartbeat(&self) -> Result<()> {
if !self.cluster_formed.load(Ordering::SeqCst) {
return Ok(());
}
let guard = epoch::pin();
let nodes: Vec<_> = self.nodes.iter(&guard)
.into_iter() // ИСПРАВЛЕНО: Добавлен вызов into_iter()
.map(|(_, v)| v.clone())
.collect();
for node in nodes {
if node.raft_info.state == RaftState::Follower && node.raft_info.node_id != self.node_id {
let node_addr = node.address.clone();
tokio::spawn(async move {
if let Err(e) = Self::send_heartbeat_to_node(&node_addr).await {
eprintln!("Heartbeat failed for {}: {}", node_addr, e);
}
});
}
}
Ok(())
}
async fn send_heartbeat_to_node(node: &str) -> Result<()> {
let mut stream = match tokio::net::TcpStream::connect(node).await {
Ok(stream) => stream,
Err(e) => {
eprintln!("Failed to connect to {} for heartbeat: {}", node, e);
return Ok(());
}
};
let heartbeat = protocol::ReplicationMessage {
sequence: 0,
command: protocol::Command::CallProcedure { name: "heartbeat".to_string() },
timestamp: chrono::Utc::now().timestamp(),
};
let bytes = protocol::serialize(&heartbeat)?;
if let Err(e) = stream.write_all(&bytes).await {
eprintln!("Failed to send heartbeat to {}: {}", node, e);
}
Ok(())
}
async fn handle_vote_request(&self, term: u64, candidate_id: String) {
let current_term = self.current_term.load(Ordering::SeqCst);
if term > current_term {
self.current_term.store(term, Ordering::SeqCst);
let guard = epoch::pin();
let current = self.voted_for.load(Ordering::Acquire, &guard);
let mut new_map = HashMap::new();
if let Some(ref map) = unsafe { current.as_ref() } {
new_map.extend(map.iter().map(|(k, v)| (*k, v.clone())));
}
new_map.insert(term, candidate_id.clone());
let new_ptr = Owned::new(new_map);
self.voted_for.store(new_ptr, Ordering::Release);
}
}
async fn handle_vote_response(&self, term: u64, vote_granted: bool) {
if vote_granted && term == self.current_term.load(Ordering::SeqCst) {
// Подсчет голосов и переход в лидеры
let guard = epoch::pin();
let node_count = self.nodes.len(&guard);
if node_count >= self.min_nodes_for_cluster {
// При получении большинства голосов становимся лидером
match self.raft_state.compare_exchange(RaftState::Candidate, RaftState::Leader, Ordering::SeqCst) {
Ok(_) => {
self.is_leader.store(true, Ordering::SeqCst);
println!("Elected as leader for term {}", term);
}
Err(_) => {
// Кто-то уже стал лидером
}
}
}
}
}
async fn handle_append_entries(&self, term: u64, leader_id: String) {
let current_term = self.current_term.load(Ordering::SeqCst);
if term >= current_term {
self.current_term.store(term, Ordering::SeqCst);
// Atomic изменение состояния
match self.raft_state.compare_exchange(RaftState::Candidate, RaftState::Follower, Ordering::SeqCst) {
Ok(_) => {
self.is_leader.store(false, Ordering::SeqCst);
let guard = epoch::pin();
if let Some(mut node) = self.nodes.get(&self.node_id, &guard) {
node.raft_info.state = RaftState::Follower;
node.raft_info.term = term;
node.raft_info.last_heartbeat = chrono::Utc::now().timestamp();
self.nodes.insert(self.node_id.clone(), node, &guard);
}
}
Err(_) => {
// Уже в другом состоянии
}
}
}
}
pub fn add_node(&self, node_id: String, address: String, capacity: u64) -> Result<()> {
let raft_node = RaftNode {
node_id: node_id.clone(),
address: address.clone(),
state: RaftState::Follower,
term: 0,
voted_for: None,
last_heartbeat: chrono::Utc::now().timestamp(),
};
let node = ShardNode {
node_id: node_id.clone(),
address,
capacity,
used: 0,
collections: Vec::new(),
raft_info: raft_node,
};
let guard = epoch::pin();
self.nodes.insert(node_id, node, &guard);
let node_count = self.nodes.len(&guard);
if node_count >= self.min_nodes_for_cluster {
self.cluster_formed.store(true, Ordering::SeqCst);
println!("Cluster formed with {} nodes (minimum required: {})",
node_count, self.min_nodes_for_cluster);
}
Ok(())
}
pub fn remove_node(&self, node_id: &str) -> Result<()> {
let guard = epoch::pin();
self.nodes.remove(node_id, &guard);
let node_count = self.nodes.len(&guard);
if node_count < self.min_nodes_for_cluster {
self.cluster_formed.store(false, Ordering::SeqCst);
self.is_leader.store(false, Ordering::SeqCst);
println!("Cluster no longer formed. Have {} nodes (need {})",
node_count, self.min_nodes_for_cluster);
}
Ok(())
}
pub fn setup_collection_sharding(&self, collection: &str, shard_key: &str) -> Result<()> {
if !self.cluster_formed.load(Ordering::SeqCst) {
return Err(crate::common::FutriixError::ShardingError(
format!("Cannot setup sharding: cluster not formed. Need at least {} nodes.",
self.min_nodes_for_cluster)
));
}
let sharding = CollectionSharding {
shard_key: shard_key.to_string(),
virtual_nodes: self.virtual_nodes_per_node,
ring: BTreeMap::new(),
};
let guard = epoch::pin();
let current = self.collections.load(Ordering::Acquire, &guard);
let mut new_map = HashMap::new();
if let Some(ref map) = unsafe { current.as_ref() } {
new_map.extend(map.iter().map(|(k, v)| (k.clone(), v.clone())));
}
new_map.insert(collection.to_string(), sharding);
let new_ptr = Owned::new(new_map);
self.collections.store(new_ptr, Ordering::Release);
self.rebuild_ring(collection)?;
Ok(())
}
fn rebuild_ring(&self, collection: &str) -> Result<()> {
let guard = epoch::pin();
let collections_current = self.collections.load(Ordering::Acquire, &guard);
if let Some(collections_map) = unsafe { collections_current.as_ref() } {
if let Some(mut sharding) = collections_map.get(collection).cloned() {
sharding.ring.clear();
let nodes: Vec<String> = self.nodes.iter(&guard) // ИСПРАВЛЕНО: Явно указан тип String
.into_iter() // ИСПРАВЛЕНО: Добавлен вызов into_iter()
.map(|(k, _)| k.clone())
.collect();
for node_id in nodes {
for i in 0..sharding.virtual_nodes {
let key = format!("{}-{}", node_id, i);
let hash = self.hash_key(&key);
sharding.ring.insert(hash, node_id.clone());
}
}
// Обновляем коллекцию
let mut new_map = HashMap::new();
new_map.extend(collections_map.iter().map(|(k, v)| {
if k == collection {
(k.clone(), sharding.clone())
} else {
(k.clone(), v.clone())
}
}));
let new_ptr = Owned::new(new_map);
self.collections.store(new_ptr, Ordering::Release);
}
}
Ok(())
}
fn hash_key(&self, key: &str) -> u64 {
let mut hasher = SipHasher13::new();
key.hash(&mut hasher);
hasher.finish()
}
pub fn find_node_for_key(&self, collection: &str, key_value: &str) -> Result<Option<String>> {
if !self.cluster_formed.load(Ordering::SeqCst) {
return Err(crate::common::FutriixError::ShardingError(
format!("Cannot find node: cluster not formed. Need at least {} nodes.",
self.min_nodes_for_cluster)
));
}
let guard = epoch::pin();
let collections_current = self.collections.load(Ordering::Acquire, &guard);
if let Some(collections_map) = unsafe { collections_current.as_ref() } {
if let Some(sharding) = collections_map.get(collection) {
let key_hash = self.hash_key(key_value);
let mut range = sharding.ring.range(key_hash..);
if let Some((_, node_id)) = range.next() {
return Ok(Some(node_id.clone()));
}
if let Some((_, node_id)) = sharding.ring.iter().next() {
return Ok(Some(node_id.clone()));
}
}
}
Ok(None)
}
pub fn migrate_shard(&self, collection: &str, from_node: &str, to_node: &str, shard_key: &str) -> Result<()> {
if !self.cluster_formed.load(Ordering::SeqCst) {
return Err(crate::common::FutriixError::ShardingError(
format!("Cannot migrate shard: cluster not formed. Need at least {} nodes.",
self.min_nodes_for_cluster)
));
}
let guard = epoch::pin();
if self.nodes.get(from_node, &guard).is_none() {
return Err(crate::common::FutriixError::ShardingError(
format!("Source node '{}' not found in cluster", from_node)
));
}
if self.nodes.get(to_node, &guard).is_none() {
return Err(crate::common::FutriixError::ShardingError(
format!("Destination node '{}' not found in cluster", to_node)
));
}
println!("Migrating shard for collection '{}' from {} to {} with key {}",
collection, from_node, to_node, shard_key);
self.rebuild_ring(collection)?;
Ok(())
}
pub fn rebalance_cluster(&self) -> Result<()> {
if !self.cluster_formed.load(Ordering::SeqCst) {
return Err(crate::common::FutriixError::ShardingError(
format!("Cannot rebalance cluster: cluster not formed. Need at least {} nodes.",
self.min_nodes_for_cluster)
));
}
let guard = epoch::pin();
let node_count = self.nodes.len(&guard);
println!("Rebalancing cluster with {} nodes", node_count);
let collections_current = self.collections.load(Ordering::Acquire, &guard);
let mut new_collections = HashMap::new();
if let Some(collections_map) = unsafe { collections_current.as_ref() } {
for (name, sharding) in collections_map {
let mut new_sharding = sharding.clone();
new_sharding.ring.clear();
let nodes: Vec<String> = self.nodes.iter(&guard) // ИСПРАВЛЕНО: Явно указан тип String
.into_iter() // ИСПРАВЛЕНО: Добавлен вызов into_iter()
.map(|(k, _)| k.clone())
.collect();
for node_id in nodes {
for i in 0..new_sharding.virtual_nodes {
let key = format!("{}-{}", node_id, i);
let hash = self.hash_key(&key);
new_sharding.ring.insert(hash, node_id.clone());
}
}
new_collections.insert(name.clone(), new_sharding);
}
}
let new_ptr = Owned::new(new_collections);
self.collections.store(new_ptr, Ordering::Release);
self.rebalance_nodes(&guard)?;
Ok(())
}
fn rebalance_nodes(&self, guard: &Guard) -> Result<()> {
println!("Rebalancing nodes in cluster...");
let mut total_capacity = 0;
let mut total_used = 0;
let mut nodes_info = Vec::new();
for (_, node) in self.nodes.iter(guard) {
total_capacity += node.capacity;
total_used += node.used;
nodes_info.push((node.node_id.clone(), node.used, node.capacity));
}
let avg_usage = if total_capacity > 0 { total_used as f64 / total_capacity as f64 } else { 0.0 };
println!("Cluster usage: {:.2}% ({} / {})", avg_usage * 100.0, total_used, total_capacity);
let mut overloaded_nodes = Vec::new();
let mut underloaded_nodes = Vec::new();
for (node_id, used, capacity) in nodes_info {
let usage = if capacity > 0 { used as f64 / capacity as f64 } else { 0.0 };
if usage > avg_usage * 1.2 {
overloaded_nodes.push((node_id, usage));
} else if usage < avg_usage * 0.8 {
underloaded_nodes.push((node_id, usage));
}
}
println!("Overloaded nodes: {}", overloaded_nodes.len());
println!("Underloaded nodes: {}", underloaded_nodes.len());
Ok(())
}
pub fn get_cluster_status(&self) -> Result<protocol::ClusterStatus> {
let guard = epoch::pin();
let mut cluster_nodes = Vec::new();
let mut total_capacity = 0;
let mut total_used = 0;
let mut raft_nodes = Vec::new();
for (_, node) in self.nodes.iter(&guard) {
total_capacity += node.capacity;
total_used += node.used;
cluster_nodes.push(protocol::ShardInfo {
node_id: node.node_id.clone(),
address: node.address.clone(),
capacity: node.capacity,
used: node.used,
collections: node.collections.clone(),
});
raft_nodes.push(protocol::RaftNodeInfo {
node_id: node.node_id.clone(),
address: node.address.clone(),
state: match node.raft_info.state {
RaftState::Leader => "leader".to_string(),
RaftState::Follower => "follower".to_string(),
RaftState::Candidate => "candidate".to_string(),
},
term: node.raft_info.term,
last_heartbeat: node.raft_info.last_heartbeat,
});
}
let rebalance_needed = {
if total_capacity == 0 {
false
} else {
let avg_usage = total_used as f64 / total_capacity as f64;
let mut needs_rebalance = false;
for (_, node) in self.nodes.iter(&guard) {
let usage = if node.capacity > 0 {
node.used as f64 / node.capacity as f64
} else {
0.0
};
if usage > avg_usage * 1.2 || usage < avg_usage * 0.8 {
needs_rebalance = true;
break;
}
}
needs_rebalance
}
};
Ok(protocol::ClusterStatus {
nodes: cluster_nodes,
total_capacity,
total_used,
rebalance_needed,
cluster_formed: self.cluster_formed.load(Ordering::SeqCst),
leader_exists: self.is_leader.load(Ordering::SeqCst),
raft_nodes,
})
}
pub fn get_raft_nodes(&self) -> Vec<RaftNode> {
let guard = epoch::pin();
self.nodes.iter(&guard)
.into_iter() // ИСПРАВЛЕНО: Добавлен вызов into_iter()
.map(|(_, node)| node.raft_info.clone())
.collect()
}
pub fn is_cluster_formed(&self) -> bool {
self.cluster_formed.load(Ordering::SeqCst)
}
pub fn start_election(&self) -> Result<()> {
if !self.cluster_formed.load(Ordering::SeqCst) {
return Err(crate::common::FutriixError::ShardingError(
format!("Cluster not formed. Need at least {} nodes.", self.min_nodes_for_cluster)
));
}
let new_term = self.current_term.fetch_add(1, Ordering::SeqCst) + 1;
println!("Starting election for term {}", new_term);
self.is_leader.store(false, Ordering::SeqCst);
// Atomic переход в состояние candidate
match self.raft_state.compare_exchange(RaftState::Follower, RaftState::Candidate, Ordering::SeqCst) {
Ok(_) => {
let guard = epoch::pin();
if let Some(mut node) = self.nodes.get(&self.node_id, &guard) {
node.raft_info.state = RaftState::Candidate;
node.raft_info.term = new_term;
node.raft_info.voted_for = Some(self.node_id.clone());
self.nodes.insert(self.node_id.clone(), node, &guard);
}
self.replication_queue.push(ReplicationEvent::RaftVoteRequest {
term: new_term,
candidate_id: self.node_id.clone(),
});
}
Err(current_state) => {
println!("Already in state {:?}, cannot start election", current_state);
}
}
Ok(())
}
pub async fn replicate(&self, command: protocol::Command) -> Result<()> {
if !self.replication_enabled.load(Ordering::SeqCst) {
return Ok(());
}
if !self.cluster_formed.load(Ordering::SeqCst) {
return Err(crate::common::FutriixError::ShardingError(
"Cannot replicate: cluster not formed".to_string()
));
}
self.replication_queue.push(ReplicationEvent::Command(command));
Ok(())
}
pub async fn request_sync(&self) -> Result<()> {
if !self.replication_enabled.load(Ordering::SeqCst) {
return Ok(());
}
self.replication_queue.push(ReplicationEvent::SyncRequest);
Ok(())
}
pub fn get_nodes(&self) -> Vec<ShardNode> {
let guard = epoch::pin();
self.nodes.iter(&guard)
.into_iter() // ИСПРАВЛЕНО: Добавлен вызов into_iter()
.map(|(_, node)| node.clone())
.collect()
}
pub fn get_sequence_number(&self) -> u64 {
self.sequence_number.load(Ordering::SeqCst)
}
pub fn is_replication_enabled(&self) -> bool {
self.replication_enabled.load(Ordering::SeqCst)
}
pub fn get_node(&self, node_id: &str) -> Option<ShardNode> {
let guard = epoch::pin();
self.nodes.get(node_id, &guard)
}
pub fn get_node_id(&self) -> &str {
&self.node_id
}
}