Merge branch 'keydbpro' into PRO_RELEASE_6

Former-commit-id: c03c45a1a1bf3c92a75804e123e34ea394adad07
This commit is contained in:
benschermel 2021-03-18 02:01:15 +00:00
commit 7596290472
14 changed files with 334 additions and 232 deletions

209
monkey/monkey.py Normal file
View File

@ -0,0 +1,209 @@
import keydb
import random
import sched, time
import socket
import asyncore
import threading
import sys
from pprint import pprint
# Parameters
numclients = 50
#numkeys = 1000000
numkeys = 100000
# Globals
ops=0
s = sched.scheduler(time.time, time.sleep)
g_exit = False
def _buildResp(*args):
result = "*" + str(len(args)) + "\r\n"
for v in args:
result = result + "$" + str(len(v)) + "\r\n"
result = result + v + "\r\n"
return result.encode('utf-8')
class Client(asyncore.dispatcher):
def __init__(self, host, port):
asyncore.dispatcher.__init__(self)
self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
self.connect((host, port))
self.buf = b''
self.inbuf = b''
self.callbacks = list()
def handle_connect(self):
pass
def handle_read(self):
self.inbuf += self.recv(8192)
self.parse_response()
def handle_write(self):
sent = self.send(self.buf)
self.buf = self.buf[sent:]
def handle_close(self):
self.close()
def writable(self):
return len(self.buf) > 0
def parse_array(self, startpos):
assert(self.inbuf[startpos] == ord('*'))
endrange = self.inbuf[startpos+1:].find(ord('\r')) + 1 + startpos
assert(endrange > 0)
numargs = int(self.inbuf[startpos+1:endrange])
assert(numargs > 0)
args = list()
startpos = endrange + 2 # plus 1 gets us to the '\n' and the next gets us to the start char
while len(args) < numargs:
# We're parsing entries of the form "$N\r\nnnnnnn\r\n"
if startpos >= len(self.inbuf):
return # Not the full response
if self.inbuf[startpos] == ord('*'):
startpos, arr = self.parse_array(startpos)
args.append(arr)
else:
assert(self.inbuf[startpos] == ord('$'))
startpos = startpos + 1
endrange = self.inbuf[startpos:].find(b'\r')
if endrange < 0:
return
endrange += startpos
assert(endrange <= len(self.inbuf))
length = int(self.inbuf[startpos:endrange])
if length < 0:
return
startpos = endrange + 2
assert((startpos + length) <= len(self.inbuf))
assert(self.inbuf[startpos+length] == ord('\r'))
assert(self.inbuf[startpos+length+1] == ord('\n'))
args.append(self.inbuf[startpos:(startpos+length)])
startpos += length + 2
assert(len(args) == numargs)
return startpos, args
def parse_response(self):
if len(self.inbuf) == 0:
return
while len(self.inbuf) > 0:
if self.inbuf[0] == ord('+') or self.inbuf[0] == ord('-') or self.inbuf[0] == ord(':'):
# This is a single line response
endpos = self.inbuf.find(b'\n')
if endpos < 0:
return # incomplete response
self.callbacks[0](self, self.inbuf[0:endpos-1])
self.callbacks.pop(0)
self.inbuf = self.inbuf[endpos+1:]
elif self.inbuf[0] == ord('*'):
#RESP response
try:
startpos, args = self.parse_array(0)
except:
return # Not all data here yet
self.callbacks[0](self, args)
self.callbacks.pop(0)
self.inbuf = self.inbuf[startpos:]
else:
print("ERROR: Unknown response:")
pprint(self.inbuf)
assert(False)
def default_result_handler(self, result):
pprint(result)
# Public Methods
def set(self, key, val, callback = default_result_handler):
self.buf += _buildResp("set", key, val)
self.callbacks.append(callback)
def lpush(self, key, val, callback = default_result_handler):
self.buf += _buildResp("lpush", key, val)
self.callbacks.append(callback)
def delete(self, key, callback = default_result_handler):
self.buf += _buildResp("del", key)
self.callbacks.append(callback)
def scan(self, iter, match=None, count=None, callback = default_result_handler):
args = ["scan", str(iter)]
if match != None:
args.append("MATCH")
args.append(match)
if count != None:
args.append("COUNT")
args.append(str(count))
self.buf += _buildResp(*args)
self.callbacks.append(callback)
def get(self, key, callback = None):
return
def getrandomkey():
return str(random.randrange(0, numkeys))
def handle_lpush_response(c, resp):
global ops
if resp != None:
ops = ops + 1
assert(resp[0] == ord(':'))
c.lpush("list_" + getrandomkey(), 'bardsklfjkldsjfdlsjflksdfjklsdjflksd kldsjflksd jlkdsjf lksdjklds jrfklsdjfklsdjfkl', handle_lpush_response)
def handle_set_response(c, resp):
global ops
if resp != None:
ops = ops + 1
assert(resp[0] == ord('+'))
c.set("str_" + getrandomkey(), 'bardsklfjkldsjfdlsjflksdfjklsdjflksd kldsjflksd jlkdsjf lksdjklds jrfklsdjfklsdjfkl', handle_set_response)
def handle_del_response(c, resp):
global ops
if resp != None:
ops = ops + 1
c.delete("list_" + getrandomkey(), handle_del_response)
def scan_callback(c, resp):
global ops
nextstart = int(resp[0])
c.scan(nextstart, count=500, callback=scan_callback)
ops = ops+1
def stats_thread():
global ops
global g_exit
while not g_exit:
time.sleep(1)
print("Ops per second: " + str(ops))
ops = 0
def main():
global g_exit
clients = []
for i in range(numclients):
clients.append(Client('127.0.0.1', 6379))
for i in range (10):
handle_lpush_response(clients[-1], None)
#handle_set_response(clients[-1], None)
scan_client = Client('127.0.0.1', 6379)
scan_client.scan(0, count=500, callback=scan_callback)
del_client = Client('127.0.0.1', 6379)
handle_del_response(del_client, None)
threading.Thread(target=stats_thread).start()
asyncore.loop()
g_exit = True
sys.exit(0)
print("DONE")
if __name__ == "__main__":
main()

View File

@ -49,6 +49,11 @@ void AsyncWorkQueue::WorkerThreadMain()
}
listRelease(vars.clients_pending_asyncwrite);
std::unique_lock<fastlock> lockf(serverTL->lockPendingWrite);
serverTL->vecclientsProcess.clear();
serverTL->clients_pending_write.clear();
std::atomic_thread_fence(std::memory_order_seq_cst);
}
bool AsyncWorkQueue::removeClientAsyncWrites(client *c)

View File

@ -55,7 +55,9 @@ ifneq ($(strip $(SANITIZE)),)
USEASM=false
endif
ifeq ($(CHECKED),true)
CXXFLAGS+= -DCHECKED_BUILD
endif
# Do we use our assembly spinlock? X64 only
ifeq ($(uname_S),Linux)

View File

@ -31,7 +31,8 @@ void cronCommand(client *c)
if (getLongLongFromObjectOrReply(c, c->argv[ARG_EXPIRE], &interval, "missing expire time") != C_OK)
return;
long long base = g_pserver->mstime;
long long base;
__atomic_load(&g_pserver->mstime, &base, __ATOMIC_ACQUIRE);
if (getLongLongFromObject(c->argv[ARG_EXPIRE+1], &base) == C_OK) {
arg_offset++;
std::swap(base, interval);
@ -120,18 +121,20 @@ void executeCronJobExpireHook(const char *key, robj *o)
else
{
job->startTime += job->interval;
if (job->startTime < (uint64_t)g_pserver->mstime)
mstime_t mstime;
__atomic_load(&g_pserver->mstime, &mstime, __ATOMIC_ACQUIRE);
if (job->startTime < (uint64_t)mstime)
{
// If we are more than one interval in the past then fast forward to
// the first interval still in the future. If startTime wasn't zero align
// this to the original startTime, if it was zero align to now
if (job->startTime == job->interval)
{ // startTime was 0
job->startTime = g_pserver->mstime + job->interval;
job->startTime = mstime + job->interval;
}
else
{
auto delta = g_pserver->mstime - job->startTime;
auto delta = mstime - job->startTime;
auto multiple = (delta / job->interval)+1;
job->startTime += job->interval * multiple;
}

View File

@ -1713,7 +1713,8 @@ void setExpire(client *c, redisDb *db, robj *key, robj *subkey, long long when)
/* Update TTL stats (exponential moving average) */
/* Note: We never have to update this on expiry since we reduce it by the current elapsed time here */
long long now = g_pserver->mstime;
mstime_t now;
__atomic_load(&g_pserver->mstime, &now, __ATOMIC_ACQUIRE);
db->avg_ttl -= (now - db->last_expire_set); // reduce the TTL by the time that has elapsed
if (db->expireSize() == 0)
db->avg_ttl = 0;
@ -1894,7 +1895,7 @@ int keyIsExpired(const redisDbPersistentDataSnapshot *db, robj *key) {
* open object in a next call, if the next call will see the key expired,
* while the first did not. */
else if (serverTL->fixed_time_expire > 0) {
now = g_pserver->mstime;
__atomic_load(&g_pserver->mstime, &now, __ATOMIC_ACQUIRE);
}
/* For the other cases, we want to use the most fresh time we have. */
else {
@ -2588,6 +2589,7 @@ void redisDbPersistentData::ensure(const char *sdsKey, dictEntry **pde)
{
serverAssert(sdsKey != nullptr);
serverAssert(FImplies(*pde != nullptr, dictGetVal(*pde) != nullptr)); // early versions set a NULL object, this is no longer valid
serverAssert(m_refCount == 0);
std::unique_lock<fastlock> ul(g_expireLock);
// First see if the key can be obtained from a snapshot
@ -2781,7 +2783,7 @@ redisDbPersistentData::~redisDbPersistentData()
if (m_spdbSnapshotHOLDER != nullptr)
endSnapshot(m_spdbSnapshotHOLDER.get());
//serverAssert(m_pdbSnapshot == nullptr);
serverAssert(m_pdbSnapshot == nullptr);
serverAssert(m_refCount == 0);
//serverAssert(m_pdict->iterators == 0);
serverAssert(m_pdictTombstone == nullptr || m_pdictTombstone->iterators == 0);
@ -2853,16 +2855,16 @@ bool redisDbPersistentData::removeCachedValue(const char *key)
return true;
}
redisDbPersistentData::redisDbPersistentData() {
m_dictChanged = dictCreate(&dictChangeDescType, nullptr);
}
void redisDbPersistentData::trackChanges(bool fBulk, size_t sizeHint)
{
m_fTrackingChanges.fetch_add(1, std::memory_order_relaxed);
if (fBulk)
m_fAllChanged.fetch_add(1, std::memory_order_acq_rel);
if (m_dictChanged == nullptr) {
m_dictChanged = dictCreate(&dictChangeDescType, nullptr);
}
if (sizeHint > 0)
dictExpand(m_dictChanged, sizeHint, false);
}

View File

@ -129,6 +129,7 @@ int _dictInit(dict *d, dictType *type,
d->rehashidx = -1;
d->iterators = 0;
d->asyncdata = nullptr;
d->refcount = 1;
return DICT_OK;
}
@ -195,7 +196,7 @@ int dictMerge(dict *dst, dict *src)
}
size_t expectedSize = dictSize(src) + dictSize(dst);
if (dictSize(src) > dictSize(dst))
if (dictSize(src) > dictSize(dst) && src->asyncdata == nullptr && dst->asyncdata == nullptr)
{
std::swap(*dst, *src);
std::swap(dst->iterators, src->iterators);
@ -369,8 +370,14 @@ int dictRehash(dict *d, int n) {
return 1;
}
dictAsyncRehashCtl::dictAsyncRehashCtl(struct dict *d, dictAsyncRehashCtl *next) : dict(d), next(next) {
queue.reserve(c_targetQueueSize);
__atomic_fetch_add(&d->refcount, 1, __ATOMIC_RELEASE);
}
dictAsyncRehashCtl *dictRehashAsyncStart(dict *d, int buckets) {
if (!dictIsRehashing(d)) return 0;
assert(d->type->asyncfree != nullptr);
if (!dictIsRehashing(d) || d->iterators != 0) return nullptr;
d->asyncdata = new dictAsyncRehashCtl(d, d->asyncdata);
@ -454,7 +461,7 @@ void dictCompleteRehashAsync(dictAsyncRehashCtl *ctl, bool fFree) {
}
}
if (fUnlinked && !ctl->release) {
if (fUnlinked && !ctl->abondon) {
if (d->ht[0].table != nullptr) { // can be null if we're cleared during the rehash
for (auto &wi : ctl->queue) {
// We need to remove it from the source hash table, and store it in the dest.
@ -487,23 +494,10 @@ void dictCompleteRehashAsync(dictAsyncRehashCtl *ctl, bool fFree) {
}
if (fFree) {
while (ctl->deGCList != nullptr) {
auto next = ctl->deGCList->next;
dictFreeKey(d, ctl->deGCList);
dictFreeVal(d, ctl->deGCList);
zfree(ctl->deGCList);
ctl->deGCList = next;
}
d->type->asyncfree(ctl);
// Was the dictionary free'd while we were in flight?
if (ctl->release) {
if (d->asyncdata != nullptr)
d->asyncdata->release = true;
else
dictRelease(d);
}
delete ctl;
// Remove our reference
dictRelease(d);
}
}
@ -514,6 +508,16 @@ long long timeInMilliseconds(void) {
return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
}
dictAsyncRehashCtl::~dictAsyncRehashCtl() {
while (deGCList != nullptr) {
auto next = deGCList->next;
dictFreeKey(dict, deGCList);
dictFreeVal(dict, deGCList);
zfree(deGCList);
deGCList = next;
}
}
/* Rehash in ms+"delta" milliseconds. The value of "delta" is larger
* than 0, and is smaller than 1 in most cases. The exact upper bound
* depends on the running time of dictRehash(d,100).*/
@ -537,7 +541,7 @@ int dictRehashMilliseconds(dict *d, int ms) {
* dictionary so that the hash table automatically migrates from H1 to H2
* while it is actively used. */
static void _dictRehashStep(dict *d) {
unsigned long iterators;
unsigned iterators;
__atomic_load(&d->iterators, &iterators, __ATOMIC_RELAXED);
if (iterators == 0) dictRehash(d,2);
}
@ -766,13 +770,11 @@ int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {
/* Clear & Release the hash table */
void dictRelease(dict *d)
{
if (d->asyncdata) {
d->asyncdata->release = true;
return;
if (__atomic_sub_fetch(&d->refcount, 1, __ATOMIC_ACQ_REL) == 0) {
_dictClear(d,&d->ht[0],NULL);
_dictClear(d,&d->ht[1],NULL);
zfree(d);
}
_dictClear(d,&d->ht[0],NULL);
_dictClear(d,&d->ht[1],NULL);
zfree(d);
}
dictEntry *dictFindWithPrev(dict *d, const void *key, uint64_t h, dictEntry ***dePrevPtr, dictht **pht, bool fShallowCompare)
@ -1460,7 +1462,7 @@ void dictGetStats(char *buf, size_t bufsize, dict *d) {
void dictForceRehash(dict *d)
{
unsigned long iterators;
unsigned iterators;
__atomic_load(&d->iterators, &iterators, __ATOMIC_RELAXED);
while (iterators == 0 && dictIsRehashing(d)) _dictRehashStep(d);
}

View File

@ -53,6 +53,7 @@ extern "C" {
/* Unused arguments generate annoying warnings... */
#define DICT_NOTUSED(V) ((void) V)
struct dictAsyncRehashCtl;
typedef struct dictEntry {
void *key;
@ -72,6 +73,7 @@ typedef struct dictType {
int (*keyCompare)(void *privdata, const void *key1, const void *key2);
void (*keyDestructor)(void *privdata, void *key);
void (*valDestructor)(void *privdata, void *obj);
void (*asyncfree)(dictAsyncRehashCtl *);
} dictType;
/* This is our hash table structure. Every dictionary has two of this as we
@ -98,13 +100,12 @@ struct dictAsyncRehashCtl {
struct dict *dict = nullptr;
std::vector<workItem> queue;
size_t hashIdx = 0;
bool release = false;
dictAsyncRehashCtl *next = nullptr;
std::atomic<bool> done { false };
std::atomic<bool> abondon { false };
dictAsyncRehashCtl(struct dict *d, dictAsyncRehashCtl *next) : dict(d), next(next) {
queue.reserve(c_targetQueueSize);
}
dictAsyncRehashCtl(struct dict *d, dictAsyncRehashCtl *next);
~dictAsyncRehashCtl();
};
#else
struct dictAsyncRehashCtl;
@ -115,7 +116,8 @@ typedef struct dict {
void *privdata;
dictht ht[2];
long rehashidx; /* rehashing not in progress if rehashidx == -1 */
unsigned long iterators; /* number of iterators currently running */
unsigned iterators; /* number of iterators currently running */
unsigned refcount;
dictAsyncRehashCtl *asyncdata;
} dict;

View File

@ -433,7 +433,7 @@ extern "C" void fastlock_unlock(struct fastlock *lock)
serverAssert(pidT >= 0); // unlock after free
int t = -1;
__atomic_store(&lock->m_pidOwner, &t, __ATOMIC_RELEASE);
std::atomic_thread_fence(std::memory_order_release);
std::atomic_thread_fence(std::memory_order_acq_rel);
ANNOTATE_RWLOCK_RELEASED(lock, true);
uint16_t activeNew = __atomic_add_fetch(&lock->m_ticket.m_active, 1, __ATOMIC_RELEASE); // on x86 the atomic is not required here, but ASM handles that case
#ifdef __linux__

View File

@ -29,6 +29,11 @@ class GarbageCollector
};
public:
~GarbageCollector() {
// Silence TSAN errors
m_lock.lock();
}
uint64_t startEpoch()
{
std::unique_lock<fastlock> lock(m_lock);
@ -41,6 +46,7 @@ public:
{
std::unique_lock<fastlock> lock(m_lock);
m_vecepochs.clear();
m_setepochOutstanding.clear();
}
void endEpoch(uint64_t epoch, bool fNoFree = false)

View File

@ -2370,21 +2370,6 @@ void rdbLoadProgressCallback(rio *r, const void *buf, size_t len) {
}
}
class EvictionPolicyCleanup
{
int oldpolicy;
public:
EvictionPolicyCleanup() {
oldpolicy = g_pserver->maxmemory_policy;
g_pserver->maxmemory_policy = MAXMEMORY_ALLKEYS_RANDOM;
}
~EvictionPolicyCleanup() {
g_pserver->maxmemory_policy = oldpolicy;
}
};
/* Load an RDB file from the rio stream 'rdb'. On success C_OK is returned,
* otherwise C_ERR is returned and 'errno' is set accordingly. */
int rdbLoadRio(rio *rdb, int rdbflags, rdbSaveInfo *rsi) {
@ -2401,10 +2386,6 @@ int rdbLoadRio(rio *rdb, int rdbflags, rdbSaveInfo *rsi) {
sds key = nullptr;
bool fLastKeyExpired = false;
// If we're running flash we may evict during load. We want a fast eviction function
// because there isn't any difference in use times between keys anyways
EvictionPolicyCleanup ecleanup;
for (int idb = 0; idb < cserver.dbnum; ++idb)
{
g_pserver->db[idb]->trackChanges(true, 1024);

View File

@ -195,7 +195,7 @@ void sdsfree(const char *s) {
if ((flags & SDS_TYPE_MASK) == SDS_TYPE_REFCOUNTED)
{
SDS_HDR_VAR_REFCOUNTED(s);
if (__atomic_fetch_sub(&sh->refcount, 1, __ATOMIC_RELAXED) > 1)
if (__atomic_fetch_sub(&sh->refcount, 1, __ATOMIC_ACQ_REL) > 1)
return;
}
s_free((char*)s-sdsHdrSize(s[-1]));

View File

@ -1359,6 +1359,8 @@ uint64_t dictEncObjHash(const void *key) {
}
}
void dictGCAsyncFree(dictAsyncRehashCtl *async);
/* Generic hash table type where keys are Redis Objects, Values
* dummy pointers. */
dictType objectKeyPointerValueDictType = {
@ -1407,8 +1409,9 @@ dictType dbDictType = {
NULL, /* key dup */
NULL, /* val dup */
dictSdsKeyCompare, /* key compare */
dictDbKeyDestructor, /* key destructor */
dictObjectDestructor /* val destructor */
dictDbKeyDestructor, /* key destructor */
dictObjectDestructor, /* val destructor */
dictGCAsyncFree /* async free destructor */
};
/* db->pdict, keys are sds strings, vals are Redis objects. */
@ -2424,18 +2427,6 @@ int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {
}
}
run_with_period(100) {
bool fAnySnapshots = false;
for (int idb = 0; idb < cserver.dbnum && !fAnySnapshots; ++idb)
fAnySnapshots = fAnySnapshots || g_pserver->db[0]->FSnapshot();
if (fAnySnapshots)
{
g_pserver->asyncworkqueue->AddWorkFunction([]{
g_pserver->db[0]->consolidate_snapshot();
}, true /*HiPri*/);
}
}
/* Fire the cron loop modules event. */
RedisModuleCronLoopV1 ei = {REDISMODULE_CRON_LOOP_VERSION,g_pserver->hz};
moduleFireServerEvent(REDISMODULE_EVENT_CRON_LOOP,
@ -3926,7 +3917,7 @@ void call(client *c, int flags) {
dirty = g_pserver->dirty;
incrementMvccTstamp();
__atomic_load(&g_pserver->ustime, &start, __ATOMIC_SEQ_CST);
start = g_pserver->ustime;
try {
c->cmd->proc(c);
} catch (robj_roptr o) {
@ -5403,10 +5394,12 @@ sds genRedisInfoString(const char *section) {
vkeys = g_pserver->db[j]->expireSize();
// Adjust TTL by the current time
g_pserver->db[j]->avg_ttl -= (g_pserver->mstime - g_pserver->db[j]->last_expire_set);
mstime_t mstime;
__atomic_load(&g_pserver->mstime, &mstime, __ATOMIC_ACQUIRE);
g_pserver->db[j]->avg_ttl -= (mstime - g_pserver->db[j]->last_expire_set);
if (g_pserver->db[j]->avg_ttl < 0)
g_pserver->db[j]->avg_ttl = 0;
g_pserver->db[j]->last_expire_set = g_pserver->mstime;
g_pserver->db[j]->last_expire_set = mstime;
if (keys || vkeys) {
info = sdscatprintf(info,

View File

@ -1045,9 +1045,9 @@ class redisDbPersistentData
friend class redisDbPersistentDataSnapshot;
public:
redisDbPersistentData();
virtual ~redisDbPersistentData();
redisDbPersistentData() = default;
redisDbPersistentData(redisDbPersistentData &&) = default;
size_t slots() const { return dictSlots(m_pdict); }
@ -1130,8 +1130,6 @@ public:
void endSnapshotAsync(const redisDbPersistentDataSnapshot *psnapshot);
void restoreSnapshot(const redisDbPersistentDataSnapshot *psnapshot);
void consolidate_snapshot();
bool FStorageProvider() { return m_spstorage != nullptr; }
bool removeCachedValue(const char *key);
void removeAllCachedValues();
@ -1187,7 +1185,6 @@ private:
protected:
static void gcDisposeSnapshot(redisDbPersistentDataSnapshot *psnapshot);
void consolidate_children(redisDbPersistentData *pdbPrimary, bool fForce);
bool freeTombstoneObjects(int depth);
public:
@ -1289,7 +1286,6 @@ struct redisDb : public redisDbPersistentDataSnapshot
using redisDbPersistentData::createSnapshot;
using redisDbPersistentData::endSnapshot;
using redisDbPersistentData::restoreSnapshot;
using redisDbPersistentData::consolidate_snapshot;
using redisDbPersistentData::removeAllCachedValues;
using redisDbPersistentData::dictUnsafeKeyOnly;
using redisDbPersistentData::resortExpire;

View File

@ -26,6 +26,17 @@ public:
std::vector<dictEntry*> vecde;
};
void discontinueAsyncRehash(dict *d) {
if (d->asyncdata != nullptr) {
auto adata = d->asyncdata;
while (adata != nullptr) {
adata->abondon = true;
adata = adata->next;
}
d->rehashidx = 0;
}
}
const redisDbPersistentDataSnapshot *redisDbPersistentData::createSnapshot(uint64_t mvccCheckpoint, bool fOptional)
{
serverAssert(GlobalLocksAcquired());
@ -56,34 +67,6 @@ const redisDbPersistentDataSnapshot *redisDbPersistentData::createSnapshot(uint6
}
}
if (m_pdbSnapshot != nullptr && m_pdbSnapshot == m_pdbSnapshotASYNC && m_spdbSnapshotHOLDER->m_refCount == 1 && dictSize(m_pdictTombstone) < c_elementsSmallLimit)
{
serverLog(LL_WARNING, "Reusing old snapshot");
// is there an existing snapshot only owned by us?
dictIterator *di = dictGetIterator(m_pdictTombstone);
dictEntry *de;
while ((de = dictNext(di)) != nullptr)
{
if (dictDelete(m_pdbSnapshot->m_pdict, dictGetKey(de)) != DICT_OK)
dictAdd(m_spdbSnapshotHOLDER->m_pdictTombstone, sdsdupshared((sds)dictGetKey(de)), nullptr);
}
dictReleaseIterator(di);
dictForceRehash(m_spdbSnapshotHOLDER->m_pdictTombstone);
dictMerge(m_pdbSnapshot->m_pdict, m_pdict);
dictEmpty(m_pdictTombstone, nullptr);
{
std::unique_lock<fastlock> ul(g_expireLock);
(*m_spdbSnapshotHOLDER->m_setexpire) = *m_setexpire;
}
m_pdbSnapshotASYNC = nullptr;
serverAssert(m_pdbSnapshot->m_pdict->iterators == 1);
serverAssert(m_spdbSnapshotHOLDER->m_refCount == 1);
return m_pdbSnapshot;
}
// See if we have too many levels and can bail out of this to reduce load
if (fOptional && (levels >= 6))
{
@ -95,14 +78,8 @@ const redisDbPersistentDataSnapshot *redisDbPersistentData::createSnapshot(uint6
// We can't have async rehash modifying these. Setting the asyncdata list to null
// will cause us to throw away the async work rather than modify the tables in flight
if (m_pdict->asyncdata != nullptr) {
m_pdict->asyncdata = nullptr;
m_pdict->rehashidx = 0;
}
if (m_pdictTombstone->asyncdata != nullptr) {
m_pdictTombstone->rehashidx = 0;
m_pdictTombstone->asyncdata = nullptr;
}
discontinueAsyncRehash(m_pdict);
discontinueAsyncRehash(m_pdictTombstone);
spdb->m_fAllChanged = false;
spdb->m_fTrackingChanges = 0;
@ -125,7 +102,7 @@ const redisDbPersistentDataSnapshot *redisDbPersistentData::createSnapshot(uint6
}
if (dictIsRehashing(spdb->m_pdict) || dictIsRehashing(spdb->m_pdictTombstone)) {
serverLog(LL_NOTICE, "NOTICE: Suboptimal snapshot");
serverLog(LL_VERBOSE, "NOTICE: Suboptimal snapshot");
}
m_pdict = dictCreate(&dbDictType,this);
@ -152,6 +129,7 @@ const redisDbPersistentDataSnapshot *redisDbPersistentData::createSnapshot(uint6
m_pdbSnapshotASYNC = nullptr;
}
std::atomic_thread_fence(std::memory_order_seq_cst);
return m_pdbSnapshot;
}
@ -189,7 +167,7 @@ void redisDbPersistentData::recursiveFreeSnapshots(redisDbPersistentDataSnapshot
//psnapshot->m_pdict->iterators--;
psnapshot->m_spdbSnapshotHOLDER.release();
//psnapshot->m_pdbSnapshot = nullptr;
psnapshot->m_pdbSnapshot = nullptr;
g_pserver->garbageCollector.enqueue(serverTL->gcEpoch, std::unique_ptr<redisDbPersistentDataSnapshot>(psnapshot));
serverLog(LL_VERBOSE, "Garbage collected snapshot");
}
@ -275,7 +253,6 @@ void redisDbPersistentData::endSnapshotAsync(const redisDbPersistentDataSnapshot
aeReleaseLock();
return;
}
const_cast<redisDbPersistentDataSnapshot*>(psnapshotT)->consolidate_children(this, true);
// Final Cleanup
aeAcquireLock(); latencyStartMonitor(latency);
@ -347,6 +324,12 @@ bool redisDbPersistentDataSnapshot::freeTombstoneObjects(int depth)
dictForceRehash(dictTombstoneNew);
aeAcquireLock();
if (m_pdbSnapshot->m_pdict->asyncdata != nullptr) {
// In this case we use the asyncdata to free us, not our own lazy free
for (auto de : splazy->vecde)
dictFreeUnlinkedEntry(m_pdbSnapshot->m_pdict, de);
splazy->vecde.clear();
}
dict *dT = m_pdbSnapshot->m_pdict;
splazy->vecdictLazyFree.push_back(m_pdictTombstone);
__atomic_store(&m_pdictTombstone, &dictTombstoneNew, __ATOMIC_RELEASE);
@ -421,7 +404,7 @@ void redisDbPersistentData::endSnapshot(const redisDbPersistentDataSnapshot *psn
#ifdef CHECKED_BUILD
serverAssert(m_spdbSnapshotHOLDER->m_pdbSnapshot->find_cached_threadsafe((const char*)dictGetKey(de)) != nullptr);
#endif
dictAdd(m_spdbSnapshotHOLDER->m_pdictTombstone, sdsdupshared((sds)dictGetKey(de)), nullptr);
dictAdd(m_spdbSnapshotHOLDER->m_pdictTombstone, sdsdupshared((sds)dictGetKey(de)), dictGetVal(de));
continue;
}
else if (deSnapshot == nullptr)
@ -431,8 +414,14 @@ void redisDbPersistentData::endSnapshot(const redisDbPersistentDataSnapshot *psn
}
// Delete the object from the source dict, we don't use dictDelete to avoid a second search
splazy->vecde.push_back(deSnapshot);
*dePrev = deSnapshot->next;
*dePrev = deSnapshot->next; // Unlink it first
if (deSnapshot != nullptr) {
if (m_spdbSnapshotHOLDER->m_pdict->asyncdata != nullptr) {
dictFreeUnlinkedEntry(m_spdbSnapshotHOLDER->m_pdict, deSnapshot);
} else {
splazy->vecde.push_back(deSnapshot);
}
}
ht->used--;
}
@ -454,12 +443,12 @@ void redisDbPersistentData::endSnapshot(const redisDbPersistentDataSnapshot *psn
if (m_pdbSnapshot != nullptr && m_spdbSnapshotHOLDER->m_pdbSnapshot != nullptr)
{
m_pdbSnapshot = m_spdbSnapshotHOLDER->m_pdbSnapshot;
m_spdbSnapshotHOLDER->m_pdbSnapshot = nullptr;
}
else
{
m_pdbSnapshot = nullptr;
}
m_spdbSnapshotHOLDER->m_pdbSnapshot = nullptr;
// Fixup the about to free'd snapshots iterator count so the dtor doesn't complain
if (m_refCount)
@ -663,111 +652,23 @@ int redisDbPersistentDataSnapshot::snapshot_depth() const
return 0;
}
void redisDbPersistentData::consolidate_snapshot()
{
aeAcquireLock();
auto psnapshot = (m_pdbSnapshot != nullptr) ? m_spdbSnapshotHOLDER.get() : nullptr;
if (psnapshot == nullptr || psnapshot->snapshot_depth() == 0)
{
aeReleaseLock();
return;
}
psnapshot->m_refCount++; // ensure it's not free'd
aeReleaseLock();
psnapshot->consolidate_children(this, false /* fForce */);
aeAcquireLock();
endSnapshot(psnapshot);
aeReleaseLock();
}
// only call this on the "real" database to consolidate the first child
void redisDbPersistentDataSnapshot::consolidate_children(redisDbPersistentData *pdbPrimary, bool fForce)
{
std::unique_lock<fastlock> lock(s_lock, std::defer_lock);
if (!lock.try_lock())
return; // this is a best effort function
if (!fForce && snapshot_depth() < 2)
return;
auto spdb = std::unique_ptr<redisDbPersistentDataSnapshot>(new (MALLOC_LOCAL) redisDbPersistentDataSnapshot());
spdb->initialize();
dictExpand(spdb->m_pdict, m_pdbSnapshot->size());
volatile size_t skipped = 0;
m_pdbSnapshot->iterate_threadsafe([&](const char *key, robj_roptr o) {
if (o != nullptr || !m_spstorage) {
dictAdd(spdb->m_pdict, sdsdupshared(key), o.unsafe_robjcast());
if (o != nullptr) {
incrRefCount(o);
}
} else {
++skipped;
}
return true;
}, true /*fKeyOnly*/, true /*fCacheOnly*/);
spdb->m_spstorage = m_pdbSnapshot->m_spstorage;
{
std::unique_lock<fastlock> ul(g_expireLock);
delete spdb->m_setexpire;
spdb->m_setexpire = new (MALLOC_LOCAL) expireset(*m_pdbSnapshot->m_setexpire);
}
spdb->m_pdict->iterators++;
if (m_spstorage) {
serverAssert(spdb->size() == m_pdbSnapshot->size());
} else {
serverAssert((spdb->size()+skipped) == m_pdbSnapshot->size());
}
// Now wire us in (Acquire the LOCK)
AeLocker locker;
locker.arm(nullptr);
int depth = 0;
redisDbPersistentDataSnapshot *psnapshotT = pdbPrimary->m_spdbSnapshotHOLDER.get();
while (psnapshotT != nullptr)
{
++depth;
if (psnapshotT == this)
break;
psnapshotT = psnapshotT->m_spdbSnapshotHOLDER.get();
}
if (psnapshotT != this)
{
locker.disarm(); // don't run spdb's dtor in the lock
return; // we were unlinked and this was a waste of time
}
serverLog(LL_VERBOSE, "cleaned %d snapshots", snapshot_depth()-1);
spdb->m_refCount = depth;
// Drop our refs from this snapshot and its children
psnapshotT = this;
std::vector<redisDbPersistentDataSnapshot*> vecT;
while ((psnapshotT = psnapshotT->m_spdbSnapshotHOLDER.get()) != nullptr)
{
vecT.push_back(psnapshotT);
}
for (auto itr = vecT.rbegin(); itr != vecT.rend(); ++itr)
{
psnapshotT = *itr;
psnapshotT->m_refCount -= (depth-1); // -1 because dispose will sub another
gcDisposeSnapshot(psnapshotT);
}
std::atomic_thread_fence(std::memory_order_seq_cst);
m_spdbSnapshotHOLDER.release(); // GC has responsibility for it now
m_spdbSnapshotHOLDER = std::move(spdb);
const redisDbPersistentDataSnapshot *ptrT = m_spdbSnapshotHOLDER.get();
__atomic_store(&m_pdbSnapshot, &ptrT, __ATOMIC_SEQ_CST);
locker.disarm(); // ensure we're not locked for any dtors
}
bool redisDbPersistentDataSnapshot::FStale() const
{
// 0.5 seconds considered stale;
static const uint64_t msStale = 500;
return ((getMvccTstamp() - m_mvccCheckpoint) >> MVCC_MS_SHIFT) >= msStale;
}
void dictGCAsyncFree(dictAsyncRehashCtl *async) {
if (async->deGCList != nullptr && serverTL != nullptr && !serverTL->gcEpoch.isReset()) {
auto splazy = std::make_unique<LazyFree>();
auto *de = async->deGCList;
while (de != nullptr) {
splazy->vecde.push_back(de);
de = de->next;
}
async->deGCList = nullptr;
g_pserver->garbageCollector.enqueue(serverTL->gcEpoch, std::move(splazy));
}
delete async;
}