Migrate dict.c unit tests to new framework (#946)

This PR migrates the tests related to dict into new test framework as
part of #428.

Signed-off-by: haoqixu <hq.xu0o0@gmail.com>
Signed-off-by: Binbin <binloveplay1314@qq.com>
Co-authored-by: Binbin <binloveplay1314@qq.com>
This commit is contained in:
xu0o0 2024-09-09 13:03:15 +08:00 committed by GitHub
parent 14016d2df7
commit 20d583f774
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 343 additions and 271 deletions

View File

@ -1828,269 +1828,3 @@ void dictGetStats(char *buf, size_t bufsize, dict *d, int full) {
/* Make sure there is a NULL term at the end. */
orig_buf[orig_bufsize - 1] = '\0';
}
/* ------------------------------- Benchmark ---------------------------------*/
#ifdef SERVER_TEST
#include "testhelp.h"
#define TEST(name) printf("test — %s\n", name);
uint64_t hashCallback(const void *key) {
return dictGenHashFunction((unsigned char *)key, strlen((char *)key));
}
int compareCallback(dict *d, const void *key1, const void *key2) {
int l1, l2;
UNUSED(d);
l1 = strlen((char *)key1);
l2 = strlen((char *)key2);
if (l1 != l2) return 0;
return memcmp(key1, key2, l1) == 0;
}
void freeCallback(dict *d, void *val) {
UNUSED(d);
zfree(val);
}
char *stringFromLongLong(long long value) {
char buf[32];
int len;
char *s;
len = snprintf(buf, sizeof(buf), "%lld", value);
s = zmalloc(len + 1);
memcpy(s, buf, len);
s[len] = '\0';
return s;
}
dictType BenchmarkDictType = {hashCallback, NULL, compareCallback, freeCallback, NULL, NULL};
#define start_benchmark() start = timeInMilliseconds()
#define end_benchmark(msg) \
do { \
elapsed = timeInMilliseconds() - start; \
printf(msg ": %ld items in %lld ms\n", count, elapsed); \
} while (0)
/* ./valkey-server test dict [<count> | --accurate] */
int dictTest(int argc, char **argv, int flags) {
long j;
long long start, elapsed;
int retval;
dict *dict = dictCreate(&BenchmarkDictType);
long count = 0;
unsigned long new_dict_size, current_dict_used, remain_keys;
int accurate = (flags & TEST_ACCURATE);
if (argc == 4) {
if (accurate) {
count = 5000000;
} else {
count = strtol(argv[3], NULL, 10);
}
} else {
count = 5000;
}
TEST("Add 16 keys and verify dict resize is ok") {
dictSetResizeEnabled(DICT_RESIZE_ENABLE);
for (j = 0; j < 16; j++) {
retval = dictAdd(dict, stringFromLongLong(j), (void *)j);
assert(retval == DICT_OK);
}
while (dictIsRehashing(dict)) dictRehashMicroseconds(dict, 1000);
assert(dictSize(dict) == 16);
assert(dictBuckets(dict) == 16);
}
TEST("Use DICT_RESIZE_AVOID to disable the dict resize and pad to (dict_force_resize_ratio * 16)") {
/* Use DICT_RESIZE_AVOID to disable the dict resize, and pad
* the number of keys to (dict_force_resize_ratio * 16), so we can satisfy
* dict_force_resize_ratio in next test. */
dictSetResizeEnabled(DICT_RESIZE_AVOID);
for (j = 16; j < (long)dict_force_resize_ratio * 16; j++) {
retval = dictAdd(dict, stringFromLongLong(j), (void *)j);
assert(retval == DICT_OK);
}
current_dict_used = dict_force_resize_ratio * 16;
assert(dictSize(dict) == current_dict_used);
assert(dictBuckets(dict) == 16);
}
TEST("Add one more key, trigger the dict resize") {
retval = dictAdd(dict, stringFromLongLong(current_dict_used), (void *)(current_dict_used));
assert(retval == DICT_OK);
current_dict_used++;
new_dict_size = 1UL << _dictNextExp(current_dict_used);
assert(dictSize(dict) == current_dict_used);
assert(DICTHT_SIZE(dict->ht_size_exp[0]) == 16);
assert(DICTHT_SIZE(dict->ht_size_exp[1]) == new_dict_size);
/* Wait for rehashing. */
dictSetResizeEnabled(DICT_RESIZE_ENABLE);
while (dictIsRehashing(dict)) dictRehashMicroseconds(dict, 1000);
assert(dictSize(dict) == current_dict_used);
assert(DICTHT_SIZE(dict->ht_size_exp[0]) == new_dict_size);
assert(DICTHT_SIZE(dict->ht_size_exp[1]) == 0);
}
TEST("Delete keys until we can trigger shrink in next test") {
/* Delete keys until we can satisfy (1 / HASHTABLE_MIN_FILL) in the next test. */
for (j = new_dict_size / HASHTABLE_MIN_FILL + 1; j < (long)current_dict_used; j++) {
char *key = stringFromLongLong(j);
retval = dictDelete(dict, key);
zfree(key);
assert(retval == DICT_OK);
}
current_dict_used = new_dict_size / HASHTABLE_MIN_FILL + 1;
assert(dictSize(dict) == current_dict_used);
assert(DICTHT_SIZE(dict->ht_size_exp[0]) == new_dict_size);
assert(DICTHT_SIZE(dict->ht_size_exp[1]) == 0);
}
TEST("Delete one more key, trigger the dict resize") {
current_dict_used--;
char *key = stringFromLongLong(current_dict_used);
retval = dictDelete(dict, key);
zfree(key);
unsigned long oldDictSize = new_dict_size;
new_dict_size = 1UL << _dictNextExp(current_dict_used);
assert(retval == DICT_OK);
assert(dictSize(dict) == current_dict_used);
assert(DICTHT_SIZE(dict->ht_size_exp[0]) == oldDictSize);
assert(DICTHT_SIZE(dict->ht_size_exp[1]) == new_dict_size);
/* Wait for rehashing. */
while (dictIsRehashing(dict)) dictRehashMicroseconds(dict, 1000);
assert(dictSize(dict) == current_dict_used);
assert(DICTHT_SIZE(dict->ht_size_exp[0]) == new_dict_size);
assert(DICTHT_SIZE(dict->ht_size_exp[1]) == 0);
}
TEST("Empty the dictionary and add 128 keys") {
dictEmpty(dict, NULL);
for (j = 0; j < 128; j++) {
retval = dictAdd(dict, stringFromLongLong(j), (void *)j);
assert(retval == DICT_OK);
}
while (dictIsRehashing(dict)) dictRehashMicroseconds(dict, 1000);
assert(dictSize(dict) == 128);
assert(dictBuckets(dict) == 128);
}
TEST("Use DICT_RESIZE_AVOID to disable the dict resize and reduce to 3") {
/* Use DICT_RESIZE_AVOID to disable the dict reset, and reduce
* the number of keys until we can trigger shrinking in next test. */
dictSetResizeEnabled(DICT_RESIZE_AVOID);
remain_keys = DICTHT_SIZE(dict->ht_size_exp[0]) / (HASHTABLE_MIN_FILL * dict_force_resize_ratio) + 1;
for (j = remain_keys; j < 128; j++) {
char *key = stringFromLongLong(j);
retval = dictDelete(dict, key);
zfree(key);
assert(retval == DICT_OK);
}
current_dict_used = remain_keys;
assert(dictSize(dict) == remain_keys);
assert(dictBuckets(dict) == 128);
}
TEST("Delete one more key, trigger the dict resize") {
current_dict_used--;
char *key = stringFromLongLong(current_dict_used);
retval = dictDelete(dict, key);
zfree(key);
new_dict_size = 1UL << _dictNextExp(current_dict_used);
assert(retval == DICT_OK);
assert(dictSize(dict) == current_dict_used);
assert(DICTHT_SIZE(dict->ht_size_exp[0]) == 128);
assert(DICTHT_SIZE(dict->ht_size_exp[1]) == new_dict_size);
/* Wait for rehashing. */
dictSetResizeEnabled(DICT_RESIZE_ENABLE);
while (dictIsRehashing(dict)) dictRehashMicroseconds(dict, 1000);
assert(dictSize(dict) == current_dict_used);
assert(DICTHT_SIZE(dict->ht_size_exp[0]) == new_dict_size);
assert(DICTHT_SIZE(dict->ht_size_exp[1]) == 0);
}
TEST("Restore to original state") {
dictEmpty(dict, NULL);
dictSetResizeEnabled(DICT_RESIZE_ENABLE);
}
start_benchmark();
for (j = 0; j < count; j++) {
retval = dictAdd(dict, stringFromLongLong(j), (void *)j);
assert(retval == DICT_OK);
}
end_benchmark("Inserting");
assert((long)dictSize(dict) == count);
/* Wait for rehashing. */
while (dictIsRehashing(dict)) {
dictRehashMicroseconds(dict, 100 * 1000);
}
start_benchmark();
for (j = 0; j < count; j++) {
char *key = stringFromLongLong(j);
dictEntry *de = dictFind(dict, key);
assert(de != NULL);
zfree(key);
}
end_benchmark("Linear access of existing elements");
start_benchmark();
for (j = 0; j < count; j++) {
char *key = stringFromLongLong(j);
dictEntry *de = dictFind(dict, key);
assert(de != NULL);
zfree(key);
}
end_benchmark("Linear access of existing elements (2nd round)");
start_benchmark();
for (j = 0; j < count; j++) {
char *key = stringFromLongLong(rand() % count);
dictEntry *de = dictFind(dict, key);
assert(de != NULL);
zfree(key);
}
end_benchmark("Random access of existing elements");
start_benchmark();
for (j = 0; j < count; j++) {
dictEntry *de = dictGetRandomKey(dict);
assert(de != NULL);
}
end_benchmark("Accessing random keys");
start_benchmark();
for (j = 0; j < count; j++) {
char *key = stringFromLongLong(rand() % count);
key[0] = 'X';
dictEntry *de = dictFind(dict, key);
assert(de == NULL);
zfree(key);
}
end_benchmark("Accessing missing");
start_benchmark();
for (j = 0; j < count; j++) {
char *key = stringFromLongLong(j);
retval = dictDelete(dict, key);
assert(retval == DICT_OK);
key[0] += 17; /* Change first number to letter. */
retval = dictAdd(dict, key, (void *)j);
assert(retval == DICT_OK);
}
end_benchmark("Removing and adding");
dictRelease(dict);
return 0;
}
#endif

View File

@ -250,8 +250,4 @@ dictStats *dictGetStatsHt(dict *d, int htidx, int full);
void dictCombineStats(dictStats *from, dictStats *into);
void dictFreeStats(dictStats *stats);
#ifdef SERVER_TEST
int dictTest(int argc, char *argv[], int flags);
#endif
#endif /* __DICT_H */

View File

@ -6698,7 +6698,6 @@ struct serverTest {
int failed;
} serverTests[] = {
{"quicklist", quicklistTest},
{"dict", dictTest},
};
serverTestProc *getTestProcByName(const char *name) {
int numtests = sizeof(serverTests) / sizeof(struct serverTest);

331
src/unit/test_dict.c Normal file
View File

@ -0,0 +1,331 @@
#include "../dict.c"
#include "test_help.h"
uint64_t hashCallback(const void *key) {
return dictGenHashFunction((unsigned char *)key, strlen((char *)key));
}
int compareCallback(dict *d, const void *key1, const void *key2) {
int l1, l2;
UNUSED(d);
l1 = strlen((char *)key1);
l2 = strlen((char *)key2);
if (l1 != l2) return 0;
return memcmp(key1, key2, l1) == 0;
}
void freeCallback(dict *d, void *val) {
UNUSED(d);
zfree(val);
}
char *stringFromLongLong(long long value) {
char buf[32];
int len;
char *s;
len = snprintf(buf, sizeof(buf), "%lld", value);
s = zmalloc(len + 1);
memcpy(s, buf, len);
s[len] = '\0';
return s;
}
dictType BenchmarkDictType = {hashCallback, NULL, compareCallback, freeCallback, NULL, NULL};
#define start_benchmark() start = timeInMilliseconds()
#define end_benchmark(msg) \
do { \
elapsed = timeInMilliseconds() - start; \
printf(msg ": %ld items in %lld ms\n", count, elapsed); \
} while (0)
static dict *_dict = NULL;
static long j;
static int retval;
static unsigned long new_dict_size, current_dict_used, remain_keys;
int test_dictCreate(int argc, char **argv, int flags) {
_dict = dictCreate(&BenchmarkDictType);
UNUSED(argc);
UNUSED(argv);
UNUSED(flags);
monotonicInit(); /* Required for dict tests, that are relying on monotime during dict rehashing. */
return 0;
}
int test_dictAdd16Keys(int argc, char **argv, int flags) {
/* Add 16 keys and verify dict resize is ok */
UNUSED(argc);
UNUSED(argv);
UNUSED(flags);
dictSetResizeEnabled(DICT_RESIZE_ENABLE);
for (j = 0; j < 16; j++) {
retval = dictAdd(_dict, stringFromLongLong(j), (void *)j);
TEST_ASSERT(retval == DICT_OK);
}
while (dictIsRehashing(_dict)) dictRehashMicroseconds(_dict, 1000);
TEST_ASSERT(dictSize(_dict) == 16);
TEST_ASSERT(dictBuckets(_dict) == 16);
return 0;
}
int test_dictDisableResize(int argc, char **argv, int flags) {
/* Use DICT_RESIZE_AVOID to disable the dict resize and pad to (dict_force_resize_ratio * 16) */
UNUSED(argc);
UNUSED(argv);
UNUSED(flags);
/* Use DICT_RESIZE_AVOID to disable the dict resize, and pad
* the number of keys to (dict_force_resize_ratio * 16), so we can satisfy
* dict_force_resize_ratio in next test. */
dictSetResizeEnabled(DICT_RESIZE_AVOID);
for (j = 16; j < (long)dict_force_resize_ratio * 16; j++) {
retval = dictAdd(_dict, stringFromLongLong(j), (void *)j);
TEST_ASSERT(retval == DICT_OK);
}
current_dict_used = dict_force_resize_ratio * 16;
TEST_ASSERT(dictSize(_dict) == current_dict_used);
TEST_ASSERT(dictBuckets(_dict) == 16);
return 0;
}
int test_dictAddOneKeyTriggerResize(int argc, char **argv, int flags) {
/* Add one more key, trigger the dict resize */
UNUSED(argc);
UNUSED(argv);
UNUSED(flags);
retval = dictAdd(_dict, stringFromLongLong(current_dict_used), (void *)(current_dict_used));
TEST_ASSERT(retval == DICT_OK);
current_dict_used++;
new_dict_size = 1UL << _dictNextExp(current_dict_used);
TEST_ASSERT(dictSize(_dict) == current_dict_used);
TEST_ASSERT(DICTHT_SIZE(_dict->ht_size_exp[0]) == 16);
TEST_ASSERT(DICTHT_SIZE(_dict->ht_size_exp[1]) == new_dict_size);
/* Wait for rehashing. */
dictSetResizeEnabled(DICT_RESIZE_ENABLE);
while (dictIsRehashing(_dict)) dictRehashMicroseconds(_dict, 1000);
TEST_ASSERT(dictSize(_dict) == current_dict_used);
TEST_ASSERT(DICTHT_SIZE(_dict->ht_size_exp[0]) == new_dict_size);
TEST_ASSERT(DICTHT_SIZE(_dict->ht_size_exp[1]) == 0);
return 0;
}
int test_dictDeleteKeys(int argc, char **argv, int flags) {
/* Delete keys until we can trigger shrink in next test */
UNUSED(argc);
UNUSED(argv);
UNUSED(flags);
/* Delete keys until we can satisfy (1 / HASHTABLE_MIN_FILL) in the next test. */
for (j = new_dict_size / HASHTABLE_MIN_FILL + 1; j < (long)current_dict_used; j++) {
char *key = stringFromLongLong(j);
retval = dictDelete(_dict, key);
zfree(key);
TEST_ASSERT(retval == DICT_OK);
}
current_dict_used = new_dict_size / HASHTABLE_MIN_FILL + 1;
TEST_ASSERT(dictSize(_dict) == current_dict_used);
TEST_ASSERT(DICTHT_SIZE(_dict->ht_size_exp[0]) == new_dict_size);
TEST_ASSERT(DICTHT_SIZE(_dict->ht_size_exp[1]) == 0);
return 0;
}
int test_dictDeleteOneKeyTriggerResize(int argc, char **argv, int flags) {
/* Delete one more key, trigger the dict resize */
UNUSED(argc);
UNUSED(argv);
UNUSED(flags);
current_dict_used--;
char *key = stringFromLongLong(current_dict_used);
retval = dictDelete(_dict, key);
zfree(key);
unsigned long oldDictSize = new_dict_size;
new_dict_size = 1UL << _dictNextExp(current_dict_used);
TEST_ASSERT(retval == DICT_OK);
TEST_ASSERT(dictSize(_dict) == current_dict_used);
TEST_ASSERT(DICTHT_SIZE(_dict->ht_size_exp[0]) == oldDictSize);
TEST_ASSERT(DICTHT_SIZE(_dict->ht_size_exp[1]) == new_dict_size);
/* Wait for rehashing. */
while (dictIsRehashing(_dict)) dictRehashMicroseconds(_dict, 1000);
TEST_ASSERT(dictSize(_dict) == current_dict_used);
TEST_ASSERT(DICTHT_SIZE(_dict->ht_size_exp[0]) == new_dict_size);
TEST_ASSERT(DICTHT_SIZE(_dict->ht_size_exp[1]) == 0);
return 0;
}
int test_dictEmptyDirAdd128Keys(int argc, char **argv, int flags) {
/* Empty the dictionary and add 128 keys */
UNUSED(argc);
UNUSED(argv);
UNUSED(flags);
dictEmpty(_dict, NULL);
for (j = 0; j < 128; j++) {
retval = dictAdd(_dict, stringFromLongLong(j), (void *)j);
TEST_ASSERT(retval == DICT_OK);
}
while (dictIsRehashing(_dict)) dictRehashMicroseconds(_dict, 1000);
TEST_ASSERT(dictSize(_dict) == 128);
TEST_ASSERT(dictBuckets(_dict) == 128);
return 0;
}
int test_dictDisableResizeReduceTo3(int argc, char **argv, int flags) {
/* Use DICT_RESIZE_AVOID to disable the dict resize and reduce to 3 */
UNUSED(argc);
UNUSED(argv);
UNUSED(flags);
/* Use DICT_RESIZE_AVOID to disable the dict reset, and reduce
* the number of keys until we can trigger shrinking in next test. */
dictSetResizeEnabled(DICT_RESIZE_AVOID);
remain_keys = DICTHT_SIZE(_dict->ht_size_exp[0]) / (HASHTABLE_MIN_FILL * dict_force_resize_ratio) + 1;
for (j = remain_keys; j < 128; j++) {
char *key = stringFromLongLong(j);
retval = dictDelete(_dict, key);
zfree(key);
TEST_ASSERT(retval == DICT_OK);
}
current_dict_used = remain_keys;
TEST_ASSERT(dictSize(_dict) == remain_keys);
TEST_ASSERT(dictBuckets(_dict) == 128);
return 0;
}
int test_dictDeleteOneKeyTriggerResizeAgain(int argc, char **argv, int flags) {
/* Delete one more key, trigger the dict resize */
UNUSED(argc);
UNUSED(argv);
UNUSED(flags);
current_dict_used--;
char *key = stringFromLongLong(current_dict_used);
retval = dictDelete(_dict, key);
zfree(key);
new_dict_size = 1UL << _dictNextExp(current_dict_used);
TEST_ASSERT(retval == DICT_OK);
TEST_ASSERT(dictSize(_dict) == current_dict_used);
TEST_ASSERT(DICTHT_SIZE(_dict->ht_size_exp[0]) == 128);
TEST_ASSERT(DICTHT_SIZE(_dict->ht_size_exp[1]) == new_dict_size);
/* Wait for rehashing. */
dictSetResizeEnabled(DICT_RESIZE_ENABLE);
while (dictIsRehashing(_dict)) dictRehashMicroseconds(_dict, 1000);
TEST_ASSERT(dictSize(_dict) == current_dict_used);
TEST_ASSERT(DICTHT_SIZE(_dict->ht_size_exp[0]) == new_dict_size);
TEST_ASSERT(DICTHT_SIZE(_dict->ht_size_exp[1]) == 0);
/* This is the last one, restore to original state */
dictRelease(_dict);
return 0;
}
int test_dictBenchmark(int argc, char **argv, int flags) {
long j;
long long start, elapsed;
int retval;
dict *dict = dictCreate(&BenchmarkDictType);
long count = 0;
int accurate = (flags & UNIT_TEST_ACCURATE);
if (argc == 4) {
if (accurate) {
count = 5000000;
} else {
count = strtol(argv[3], NULL, 10);
}
} else {
count = 5000;
}
monotonicInit(); /* Required for dict tests, that are relying on monotime during dict rehashing. */
start_benchmark();
for (j = 0; j < count; j++) {
retval = dictAdd(dict, stringFromLongLong(j), (void *)j);
TEST_ASSERT(retval == DICT_OK);
}
end_benchmark("Inserting");
TEST_ASSERT((long)dictSize(dict) == count);
/* Wait for rehashing. */
while (dictIsRehashing(dict)) {
dictRehashMicroseconds(dict, 100 * 1000);
}
start_benchmark();
for (j = 0; j < count; j++) {
char *key = stringFromLongLong(j);
dictEntry *de = dictFind(dict, key);
TEST_ASSERT(de != NULL);
zfree(key);
}
end_benchmark("Linear access of existing elements");
start_benchmark();
for (j = 0; j < count; j++) {
char *key = stringFromLongLong(j);
dictEntry *de = dictFind(dict, key);
TEST_ASSERT(de != NULL);
zfree(key);
}
end_benchmark("Linear access of existing elements (2nd round)");
start_benchmark();
for (j = 0; j < count; j++) {
char *key = stringFromLongLong(rand() % count);
dictEntry *de = dictFind(dict, key);
TEST_ASSERT(de != NULL);
zfree(key);
}
end_benchmark("Random access of existing elements");
start_benchmark();
for (j = 0; j < count; j++) {
dictEntry *de = dictGetRandomKey(dict);
TEST_ASSERT(de != NULL);
}
end_benchmark("Accessing random keys");
start_benchmark();
for (j = 0; j < count; j++) {
char *key = stringFromLongLong(rand() % count);
key[0] = 'X';
dictEntry *de = dictFind(dict, key);
TEST_ASSERT(de == NULL);
zfree(key);
}
end_benchmark("Accessing missing");
start_benchmark();
for (j = 0; j < count; j++) {
char *key = stringFromLongLong(j);
retval = dictDelete(dict, key);
TEST_ASSERT(retval == DICT_OK);
key[0] += 17; /* Change first number to letter. */
retval = dictAdd(dict, key, (void *)j);
TEST_ASSERT(retval == DICT_OK);
}
end_benchmark("Removing and adding");
dictRelease(dict);
return 0;
}

View File

@ -9,6 +9,16 @@ typedef struct unitTest {
int test_crc64(int argc, char **argv, int flags);
int test_crc64combine(int argc, char **argv, int flags);
int test_dictCreate(int argc, char **argv, int flags);
int test_dictAdd16Keys(int argc, char **argv, int flags);
int test_dictDisableResize(int argc, char **argv, int flags);
int test_dictAddOneKeyTriggerResize(int argc, char **argv, int flags);
int test_dictDeleteKeys(int argc, char **argv, int flags);
int test_dictDeleteOneKeyTriggerResize(int argc, char **argv, int flags);
int test_dictEmptyDirAdd128Keys(int argc, char **argv, int flags);
int test_dictDisableResizeReduceTo3(int argc, char **argv, int flags);
int test_dictDeleteOneKeyTriggerResizeAgain(int argc, char **argv, int flags);
int test_dictBenchmark(int argc, char **argv, int flags);
int test_endianconv(int argc, char *argv[], int flags);
int test_intsetValueEncodings(int argc, char **argv, int flags);
int test_intsetBasicAdding(int argc, char **argv, int flags);
@ -130,6 +140,7 @@ int test_zmallocAllocZeroByteAndFree(int argc, char **argv, int flags);
unitTest __test_crc64_c[] = {{"test_crc64", test_crc64}, {NULL, NULL}};
unitTest __test_crc64combine_c[] = {{"test_crc64combine", test_crc64combine}, {NULL, NULL}};
unitTest __test_dict_c[] = {{"test_dictCreate", test_dictCreate}, {"test_dictAdd16Keys", test_dictAdd16Keys}, {"test_dictDisableResize", test_dictDisableResize}, {"test_dictAddOneKeyTriggerResize", test_dictAddOneKeyTriggerResize}, {"test_dictDeleteKeys", test_dictDeleteKeys}, {"test_dictDeleteOneKeyTriggerResize", test_dictDeleteOneKeyTriggerResize}, {"test_dictEmptyDirAdd128Keys", test_dictEmptyDirAdd128Keys}, {"test_dictDisableResizeReduceTo3", test_dictDisableResizeReduceTo3}, {"test_dictDeleteOneKeyTriggerResizeAgain", test_dictDeleteOneKeyTriggerResizeAgain}, {"test_dictBenchmark", test_dictBenchmark}, {NULL, NULL}};
unitTest __test_endianconv_c[] = {{"test_endianconv", test_endianconv}, {NULL, NULL}};
unitTest __test_intset_c[] = {{"test_intsetValueEncodings", test_intsetValueEncodings}, {"test_intsetBasicAdding", test_intsetBasicAdding}, {"test_intsetLargeNumberRandomAdd", test_intsetLargeNumberRandomAdd}, {"test_intsetUpgradeFromint16Toint32", test_intsetUpgradeFromint16Toint32}, {"test_intsetUpgradeFromint16Toint64", test_intsetUpgradeFromint16Toint64}, {"test_intsetUpgradeFromint32Toint64", test_intsetUpgradeFromint32Toint64}, {"test_intsetStressLookups", test_intsetStressLookups}, {"test_intsetStressAddDelete", test_intsetStressAddDelete}, {NULL, NULL}};
unitTest __test_kvstore_c[] = {{"test_kvstoreAdd16Keys", test_kvstoreAdd16Keys}, {"test_kvstoreIteratorRemoveAllKeysNoDeleteEmptyDict", test_kvstoreIteratorRemoveAllKeysNoDeleteEmptyDict}, {"test_kvstoreIteratorRemoveAllKeysDeleteEmptyDict", test_kvstoreIteratorRemoveAllKeysDeleteEmptyDict}, {"test_kvstoreDictIteratorRemoveAllKeysNoDeleteEmptyDict", test_kvstoreDictIteratorRemoveAllKeysNoDeleteEmptyDict}, {"test_kvstoreDictIteratorRemoveAllKeysDeleteEmptyDict", test_kvstoreDictIteratorRemoveAllKeysDeleteEmptyDict}, {NULL, NULL}};
@ -147,6 +158,7 @@ struct unitTestSuite {
} unitTestSuite[] = {
{"test_crc64.c", __test_crc64_c},
{"test_crc64combine.c", __test_crc64combine_c},
{"test_dict.c", __test_dict_c},
{"test_endianconv.c", __test_endianconv_c},
{"test_intset.c", __test_intset_c},
{"test_kvstore.c", __test_kvstore_c},