futriix/src/module.c

13880 lines
564 KiB
C
Raw Normal View History

2016-10-06 08:48:21 +02:00
/*
* Copyright (c) 2016, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/* --------------------------------------------------------------------------
* Modules API documentation information
*
* The comments in this file are used to generate the API documentation on the
* Redis website.
*
* Each function starting with VM_ and preceded by a block comment is included
* in the API documentation. To hide a VM_ function, put a blank line between
* the comment and the function definition or put the comment inside the
* function body.
*
* The functions are divided into sections. Each section is preceded by a
* documentation block, which is comment block starting with a markdown level 2
* heading, i.e. a line starting with ##, on the first line of the comment block
* (with the exception of a ----- line which can appear first). Other comment
* blocks, which are not intended for the modules API user, such as this comment
* block, do NOT start with a markdown level 2 heading, so they are included in
* the generated a API documentation.
*
* The documentation comments may contain markdown formatting. Some automatic
* replacements are done, such as the replacement of RM with ValkeyModule in
* function names. For details, see the script src/modules/gendoc.rb.
* -------------------------------------------------------------------------- */
2016-03-06 13:44:24 +01:00
#include "server.h"
#include "cluster.h"
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
#include "slowlog.h"
#include "rdb.h"
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
#include "monotonic.h"
#include "script.h"
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
#include "call_reply.h"
#include "hdr_histogram.h"
#include "valkeymodule.h"
2016-03-06 13:44:24 +01:00
#include <dlfcn.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <string.h>
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* Private data structures used by the modules system. Those are data
* structures that are never exposed to Redis Modules, if not as void
* pointers that have an API the module can call with them)
* -------------------------------------------------------------------------- */
struct ValkeyModuleInfoCtx {
struct ValkeyModule *module;
dict *requested_sections;
sds info; /* info string we collected so far */
int sections; /* number of sections we collected so far */
int in_section; /* indication if we're in an active section or not */
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
int in_dict_field; /* indication that we're currently appending to a dict */
Build TLS as a loadable module * Support BUILD_TLS=module to be loaded as a module via config file or command line. e.g. redis-server --loadmodule redis-tls.so * Updates to redismodule.h to allow it to be used side by side with server.h by defining REDISMODULE_CORE_MODULE * Changes to server.h, redismodule.h and module.c to avoid repeated type declarations (gcc 4.8 doesn't like these) * Add a mechanism for non-ABI neutral modules (ones who include server.h) to refuse loading if they detect not being built together with redis (release.c) * Fix wrong signature of RedisModuleDefragFunc, this could break compilation of a module, but not the ABI * Move initialization of listeners in server.c to be after loading the modules * Config TLS after initialization of listeners * Init cluster after initialization of listeners * Add TLS module to CI * Fix a test suite race conditions: Now that the listeners are initialized later, it's not sufficient to wait for the PID message in the log, we need to wait for the "Server Initialized" message. * Fix issues with moduleconfigs test as a result from start_server waiting for "Server Initialized" * Fix issues with modules/infra test as a result of an additional module present Notes about Sentinel: Sentinel can't really rely on the tls module, since it uses hiredis to initiate connections and depends on OpenSSL (won't be able to use any other connection modules for that), so it was decided that when TLS is built as a module, sentinel does not support TLS at all. This means that it keeps using redis_tls_ctx and redis_tls_client_ctx directly. Example code of config in redis-tls.so(may be use in the future): RedisModuleString *tls_cfg = NULL; void tlsInfo(RedisModuleInfoCtx *ctx, int for_crash_report) { UNUSED(for_crash_report); RedisModule_InfoAddSection(ctx, ""); RedisModule_InfoAddFieldLongLong(ctx, "var", 42); } int tlsCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) { if (argc != 2) return RedisModule_WrongArity(ctx); return RedisModule_ReplyWithString(ctx, argv[1]); } RedisModuleString *getStringConfigCommand(const char *name, void *privdata) { REDISMODULE_NOT_USED(name); REDISMODULE_NOT_USED(privdata); return tls_cfg; } int setStringConfigCommand(const char *name, RedisModuleString *new, void *privdata, RedisModuleString **err) { REDISMODULE_NOT_USED(name); REDISMODULE_NOT_USED(err); REDISMODULE_NOT_USED(privdata); if (tls_cfg) RedisModule_FreeString(NULL, tls_cfg); RedisModule_RetainString(NULL, new); tls_cfg = new; return REDISMODULE_OK; } int RedisModule_OnLoad(void *ctx, RedisModuleString **argv, int argc) { .... if (RedisModule_CreateCommand(ctx,"tls",tlsCommand,"",0,0,0) == REDISMODULE_ERR) return REDISMODULE_ERR; if (RedisModule_RegisterStringConfig(ctx, "cfg", "", REDISMODULE_CONFIG_DEFAULT, getStringConfigCommand, setStringConfigCommand, NULL, NULL) == REDISMODULE_ERR) return REDISMODULE_ERR; if (RedisModule_LoadConfigs(ctx) == REDISMODULE_ERR) { if (tls_cfg) { RedisModule_FreeString(ctx, tls_cfg); tls_cfg = NULL; } return REDISMODULE_ERR; } ... } Co-authored-by: zhenwei pi <pizhenwei@bytedance.com> Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
2022-08-22 15:53:56 +08:00
};
/* This represents a shared API. Shared APIs will be used to populate
* the server.sharedapi dictionary, mapping names of APIs exported by
* modules for other modules to use, to their structure specifying the
* function pointer that can be called. */
struct ValkeyModuleSharedAPI {
void *func;
ValkeyModule *module;
};
typedef struct ValkeyModuleSharedAPI ValkeyModuleSharedAPI;
dict *modules; /* Hash table of modules. SDS -> ValkeyModule ptr.*/
2016-03-06 13:44:24 +01:00
/* Entries in the context->amqueue array, representing objects to free
* when the callback returns. */
struct AutoMemEntry {
void *ptr;
int type;
};
/* AutoMemEntry type field values. */
#define VALKEYMODULE_AM_KEY 0
#define VALKEYMODULE_AM_STRING 1
#define VALKEYMODULE_AM_REPLY 2
#define VALKEYMODULE_AM_FREED 3 /* Explicitly freed by user already. */
#define VALKEYMODULE_AM_DICT 4
#define VALKEYMODULE_AM_INFO 5
2016-03-06 13:44:24 +01:00
/* The pool allocator block. Redis Modules can allocate memory via this special
* allocator that will automatically release it all once the callback returns.
* This means that it can only be used for ephemeral allocations. However
* there are two advantages for modules to use this API:
*
* 1) The memory is automatically released when the callback returns.
* 2) This allocator is faster for many small allocations since whole blocks
* are allocated, and small pieces returned to the caller just advancing
* the index of the allocation.
*
* Allocations are always rounded to the size of the void pointer in order
* to always return aligned memory chunks. */
#define VALKEYMODULE_POOL_ALLOC_MIN_SIZE (1024*8)
#define VALKEYMODULE_POOL_ALLOC_ALIGN (sizeof(void*))
typedef struct ValkeyModulePoolAllocBlock {
uint32_t size;
uint32_t used;
struct ValkeyModulePoolAllocBlock *next;
char memory[];
} ValkeyModulePoolAllocBlock;
2016-03-06 13:44:24 +01:00
/* This structure represents the context in which Redis modules operate.
* Most APIs module can access, get a pointer to the context, so that the API
* implementation can hold state across calls, or remember what to free after
* the call and so forth.
*
* Note that not all the context structure is always filled with actual values
* but only the fields needed in a given context. */
struct ValkeyModuleBlockedClient;
struct ValkeyModuleUser;
struct ValkeyModuleCtx {
2016-03-06 13:44:24 +01:00
void *getapifuncptr; /* NOTE: Must be the first field. */
struct ValkeyModule *module; /* Module reference. */
2016-03-06 13:44:24 +01:00
client *client; /* Client calling a command. */
struct ValkeyModuleBlockedClient *blocked_client; /* Blocked client for
thread safe context. */
2016-03-06 13:44:24 +01:00
struct AutoMemEntry *amqueue; /* Auto memory queue of objects to free. */
int amqueue_len; /* Number of slots in amqueue. */
int amqueue_used; /* Number of used slots in amqueue. */
int flags; /* VALKEYMODULE_CTX_... flags. */
void **postponed_arrays; /* To set with VM_ReplySetArrayLength(). */
2016-04-21 14:02:42 +02:00
int postponed_arrays_count; /* Number of entries in postponed_arrays. */
void *blocked_privdata; /* Privdata set when unblocking a client. */
ValkeyModuleString *blocked_ready_key; /* Key ready when the reply callback
gets called for clients blocked
on keys. */
/* Used if there is the VALKEYMODULE_CTX_KEYS_POS_REQUEST or
* VALKEYMODULE_CTX_CHANNEL_POS_REQUEST flag set. */
getKeysResult *keys_result;
struct ValkeyModulePoolAllocBlock *pa_head;
long long next_yield_time;
const struct ValkeyModuleUser *user; /* ValkeyModuleUser commands executed via
VM_Call should be executed as, if set */
2016-03-06 13:44:24 +01:00
};
typedef struct ValkeyModuleCtx ValkeyModuleCtx;
#define VALKEYMODULE_CTX_NONE (0)
#define VALKEYMODULE_CTX_AUTO_MEMORY (1<<0)
#define VALKEYMODULE_CTX_KEYS_POS_REQUEST (1<<1)
#define VALKEYMODULE_CTX_BLOCKED_REPLY (1<<2)
#define VALKEYMODULE_CTX_BLOCKED_TIMEOUT (1<<3)
#define VALKEYMODULE_CTX_THREAD_SAFE (1<<4)
#define VALKEYMODULE_CTX_BLOCKED_DISCONNECTED (1<<5)
#define VALKEYMODULE_CTX_TEMP_CLIENT (1<<6) /* Return client object to the pool
2022-01-11 20:00:56 +03:00
when the context is destroyed */
#define VALKEYMODULE_CTX_NEW_CLIENT (1<<7) /* Free client object when the
2022-01-11 20:00:56 +03:00
context is destroyed */
#define VALKEYMODULE_CTX_CHANNELS_POS_REQUEST (1<<8)
#define VALKEYMODULE_CTX_COMMAND (1<<9) /* Context created to serve a command from call() or AOF (which calls cmd->proc directly) */
2016-03-06 13:44:24 +01:00
/* This represents a Redis key opened with VM_OpenKey(). */
struct ValkeyModuleKey {
ValkeyModuleCtx *ctx;
2016-03-06 13:44:24 +01:00
redisDb *db;
robj *key; /* Key name object. */
robj *value; /* Value object, or NULL if the key was not found. */
void *iter; /* Iterator. */
int mode; /* Opening mode. */
2016-04-20 23:01:40 +02:00
union {
struct {
/* List, use only if value->type == OBJ_LIST */
listTypeEntry entry; /* Current entry in iteration. */
long index; /* Current 0-based index in iteration. */
} list;
struct {
/* Zset iterator, use only if value->type == OBJ_ZSET */
uint32_t type; /* VALKEYMODULE_ZSET_RANGE_* */
zrangespec rs; /* Score range. */
zlexrangespec lrs; /* Lex range. */
uint32_t start; /* Start pos for positional ranges. */
uint32_t end; /* End pos for positional ranges. */
void *current; /* Zset iterator current node. */
int er; /* Zset iterator end reached flag
(true if end was reached). */
} zset;
struct {
/* Stream, use only if value->type == OBJ_STREAM */
streamID currentid; /* Current entry while iterating. */
int64_t numfieldsleft; /* Fields left to fetch for current entry. */
int signalready; /* Flag that signalKeyAsReady() is needed. */
} stream;
} u;
2016-03-06 13:44:24 +01:00
};
/* ValkeyModuleKey 'ztype' values. */
#define VALKEYMODULE_ZSET_RANGE_NONE 0 /* This must always be 0. */
#define VALKEYMODULE_ZSET_RANGE_LEX 1
#define VALKEYMODULE_ZSET_RANGE_SCORE 2
#define VALKEYMODULE_ZSET_RANGE_POS 3
2016-04-20 23:01:40 +02:00
2016-03-06 13:44:24 +01:00
/* Function pointer type of a function representing a command inside
* a Redis module. */
struct ValkeyModuleBlockedClient;
typedef int (*ValkeyModuleCmdFunc) (ValkeyModuleCtx *ctx, void **argv, int argc);
typedef int (*ValkeyModuleAuthCallback)(ValkeyModuleCtx *ctx, void *username, void *password, ValkeyModuleString **err);
typedef void (*ValkeyModuleDisconnectFunc) (ValkeyModuleCtx *ctx, struct ValkeyModuleBlockedClient *bc);
2016-03-06 13:44:24 +01:00
/* This struct holds the information about a command registered by a module.*/
struct ValkeyModuleCommand {
struct ValkeyModule *module;
ValkeyModuleCmdFunc func;
2016-03-06 13:44:24 +01:00
struct redisCommand *rediscmd;
};
typedef struct ValkeyModuleCommand ValkeyModuleCommand;
2016-03-06 13:44:24 +01:00
#define VALKEYMODULE_REPLYFLAG_NONE 0
#define VALKEYMODULE_REPLYFLAG_TOPARSE (1<<0) /* Protocol must be parsed. */
#define VALKEYMODULE_REPLYFLAG_NESTED (1<<1) /* Nested reply object. No proto
2016-03-06 13:44:24 +01:00
or struct free. */
/* Reply of VM_Call() function. The function is filled in a lazy
2016-03-06 13:44:24 +01:00
* way depending on the function called on the reply structure. By default
* only the type, proto and protolen are filled. */
typedef struct CallReply ValkeyModuleCallReply;
2016-03-06 13:44:24 +01:00
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
/* Structure to hold the module auth callback & the Module implementing it. */
typedef struct ValkeyModuleAuthCtx {
struct ValkeyModule *module;
ValkeyModuleAuthCallback auth_cb;
} ValkeyModuleAuthCtx;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
/* Structure representing a blocked client. We get a pointer to such
* an object when blocking from modules. */
typedef struct ValkeyModuleBlockedClient {
client *client; /* Pointer to the blocked client. or NULL if the client
was destroyed during the life of this object. */
ValkeyModule *module; /* Module blocking the client. */
ValkeyModuleCmdFunc reply_callback; /* Reply callback on normal completion.*/
ValkeyModuleAuthCallback auth_reply_cb; /* Reply callback on completing blocking
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
module authentication. */
ValkeyModuleCmdFunc timeout_callback; /* Reply callback on timeout. */
ValkeyModuleDisconnectFunc disconnect_callback; /* Called on disconnection.*/
void (*free_privdata)(ValkeyModuleCtx*,void*);/* privdata cleanup callback.*/
void *privdata; /* Module private data that may be used by the reply
or timeout callback. It is set via the
ValkeyModule_UnblockClient() API. */
2022-01-11 20:00:56 +03:00
client *thread_safe_ctx_client; /* Fake client to be used for thread safe
context so that no lock is required. */
client *reply_client; /* Fake client used to accumulate replies
in thread safe contexts. */
int dbid; /* Database number selected by the original client. */
int blocked_on_keys; /* If blocked via VM_BlockClientOnKeys(). */
int unblocked; /* Already on the moduleUnblocked list. */
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
monotime background_timer; /* Timer tracking the start of background work */
uint64_t background_duration; /* Current command background time duration.
Used for measuring latency of blocking cmds */
} ValkeyModuleBlockedClient;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
/* This is a list of Module Auth Contexts. Each time a Module registers a callback, a new ctx is
* added to this list. Multiple modules can register auth callbacks and the same Module can have
* multiple auth callbacks. */
static list *moduleAuthCallbacks;
static pthread_mutex_t moduleUnblockedClientsMutex = PTHREAD_MUTEX_INITIALIZER;
static list *moduleUnblockedClients;
2022-01-11 20:00:56 +03:00
/* Pool for temporary client objects. Creating and destroying a client object is
* costly. We manage a pool of clients to avoid this cost. Pool expands when
* more clients are needed and shrinks when unused. Please see modulesCron()
* for more details. */
static client **moduleTempClients;
static size_t moduleTempClientCap = 0;
static size_t moduleTempClientCount = 0; /* Client count in pool */
static size_t moduleTempClientMinCount = 0; /* Min client count in pool since
the last cron. */
/* We need a mutex that is unlocked / relocked in beforeSleep() in order to
* allow thread safe contexts to execute commands at a safe moment. */
static pthread_mutex_t moduleGIL = PTHREAD_MUTEX_INITIALIZER;
/* Function pointer type for keyspace event notification subscriptions from modules. */
typedef int (*ValkeyModuleNotificationFunc) (ValkeyModuleCtx *ctx, int type, const char *event, ValkeyModuleString *key);
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
/* Function pointer type for post jobs */
typedef void (*ValkeyModulePostNotificationJobFunc) (ValkeyModuleCtx *ctx, void *pd);
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
/* Keyspace notification subscriber information.
* See VM_SubscribeToKeyspaceEvents() for more information. */
typedef struct ValkeyModuleKeyspaceSubscriber {
/* The module subscribed to the event */
ValkeyModule *module;
/* Notification callback in the module*/
ValkeyModuleNotificationFunc notify_callback;
/* A bit mask of the events the module is interested in */
int event_mask;
/* Active flag set on entry, to avoid reentrant subscribers
* calling themselves */
int active;
} ValkeyModuleKeyspaceSubscriber;
typedef struct ValkeyModulePostExecUnitJob {
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
/* The module subscribed to the event */
ValkeyModule *module;
ValkeyModulePostNotificationJobFunc callback;
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
void *pd;
void (*free_pd)(void*);
int dbid;
} ValkeyModulePostExecUnitJob;
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
/* The module keyspace notification subscribers list */
static list *moduleKeyspaceSubscribers;
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
/* The module post keyspace jobs list */
static list *modulePostExecUnitJobs;
/* Data structures related to the exported dictionary data structure. */
typedef struct ValkeyModuleDict {
rax *rax; /* The radix tree. */
} ValkeyModuleDict;
typedef struct ValkeyModuleDictIter {
ValkeyModuleDict *dict;
raxIterator ri;
} ValkeyModuleDictIter;
typedef struct ValkeyModuleCommandFilterCtx {
ValkeyModuleString **argv;
int argv_len;
2018-02-23 16:19:37 +02:00
int argc;
client *c;
} ValkeyModuleCommandFilterCtx;
2018-02-23 16:19:37 +02:00
typedef void (*ValkeyModuleCommandFilterFunc) (ValkeyModuleCommandFilterCtx *filter);
2018-02-23 16:19:37 +02:00
typedef struct ValkeyModuleCommandFilter {
2018-02-23 16:19:37 +02:00
/* The module that registered the filter */
ValkeyModule *module;
2018-02-23 16:19:37 +02:00
/* Filter callback function */
ValkeyModuleCommandFilterFunc callback;
/* VALKEYMODULE_CMDFILTER_* flags */
int flags;
} ValkeyModuleCommandFilter;
2018-02-23 16:19:37 +02:00
/* Registered filters */
static list *moduleCommandFilters;
typedef void (*ValkeyModuleForkDoneHandler) (int exitcode, int bysignal, void *user_data);
static struct ValkeyModuleForkInfo {
ValkeyModuleForkDoneHandler done_handler;
void* done_handler_user_data;
} moduleForkInfo = {0};
typedef struct ValkeyModuleServerInfoData {
rax *rax; /* parsed info data. */
} ValkeyModuleServerInfoData;
/* Flags for moduleCreateArgvFromUserFormat(). */
#define VALKEYMODULE_ARGV_REPLICATE (1<<0)
#define VALKEYMODULE_ARGV_NO_AOF (1<<1)
#define VALKEYMODULE_ARGV_NO_REPLICAS (1<<2)
#define VALKEYMODULE_ARGV_RESP_3 (1<<3)
#define VALKEYMODULE_ARGV_RESP_AUTO (1<<4)
#define VALKEYMODULE_ARGV_RUN_AS_USER (1<<5)
#define VALKEYMODULE_ARGV_SCRIPT_MODE (1<<6)
#define VALKEYMODULE_ARGV_NO_WRITES (1<<7)
#define VALKEYMODULE_ARGV_CALL_REPLIES_AS_ERRORS (1<<8)
#define VALKEYMODULE_ARGV_RESPECT_DENY_OOM (1<<9)
#define VALKEYMODULE_ARGV_DRY_RUN (1<<10)
#define VALKEYMODULE_ARGV_ALLOW_BLOCK (1<<11)
/* Determine whether Redis should signalModifiedKey implicitly.
* In case 'ctx' has no 'module' member (and therefore no module->options),
* we assume default behavior, that is, Redis signals.
* (see VM_GetThreadSafeContext) */
#define SHOULD_SIGNAL_MODIFIED_KEYS(ctx) \
((ctx)->module? !((ctx)->module->options & VALKEYMODULE_OPTION_NO_IMPLICIT_SIGNAL_MODIFIED) : 1)
/* Server events hooks data structures and defines: this modules API
* allow modules to subscribe to certain events in Redis, such as
* the start and end of an RDB or AOF save, the change of role in replication,
* and similar other events. */
typedef struct ValkeyModuleEventListener {
ValkeyModule *module;
ValkeyModuleEvent event;
ValkeyModuleEventCallback callback;
} ValkeyModuleEventListener;
list *ValkeyModule_EventListeners; /* Global list of all the active events. */
/* Data structures related to the redis module users */
/* This is the object returned by VM_CreateModuleUser(). The module API is
* able to create users, set ACLs to such users, and later authenticate
* clients using such newly created users. */
typedef struct ValkeyModuleUser {
user *user; /* Reference to the real redis user */
int free_user; /* Indicates that user should also be freed when this object is freed */
} ValkeyModuleUser;
/* This is a structure used to export some meta-information such as dbid to the module. */
typedef struct ValkeyModuleKeyOptCtx {
struct redisObject *from_key, *to_key; /* Optional name of key processed, NULL when unknown.
In most cases, only 'from_key' is valid, but in callbacks
such as `copy2`, both 'from_key' and 'to_key' are valid. */
int from_dbid, to_dbid; /* The dbid of the key being processed, -1 when unknown.
In most cases, only 'from_dbid' is valid, but in callbacks such
as `copy2`, 'from_dbid' and 'to_dbid' are both valid. */
} ValkeyModuleKeyOptCtx;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
/* Data structures related to redis module configurations */
/* The function signatures for module config get callbacks. These are identical to the ones exposed in valkeymodule.h. */
typedef ValkeyModuleString * (*ValkeyModuleConfigGetStringFunc)(const char *name, void *privdata);
typedef long long (*ValkeyModuleConfigGetNumericFunc)(const char *name, void *privdata);
typedef int (*ValkeyModuleConfigGetBoolFunc)(const char *name, void *privdata);
typedef int (*ValkeyModuleConfigGetEnumFunc)(const char *name, void *privdata);
/* The function signatures for module config set callbacks. These are identical to the ones exposed in valkeymodule.h. */
typedef int (*ValkeyModuleConfigSetStringFunc)(const char *name, ValkeyModuleString *val, void *privdata, ValkeyModuleString **err);
typedef int (*ValkeyModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, ValkeyModuleString **err);
typedef int (*ValkeyModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, ValkeyModuleString **err);
typedef int (*ValkeyModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, ValkeyModuleString **err);
/* Apply signature, identical to valkeymodule.h */
typedef int (*ValkeyModuleConfigApplyFunc)(ValkeyModuleCtx *ctx, void *privdata, ValkeyModuleString **err);
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
/* Struct representing a module config. These are stored in a list in the module struct */
struct ModuleConfig {
sds name; /* Name of config without the module name appended to the front */
void *privdata; /* Optional data passed into the module config callbacks */
union get_fn { /* The get callback specified by the module */
ValkeyModuleConfigGetStringFunc get_string;
ValkeyModuleConfigGetNumericFunc get_numeric;
ValkeyModuleConfigGetBoolFunc get_bool;
ValkeyModuleConfigGetEnumFunc get_enum;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
} get_fn;
union set_fn { /* The set callback specified by the module */
ValkeyModuleConfigSetStringFunc set_string;
ValkeyModuleConfigSetNumericFunc set_numeric;
ValkeyModuleConfigSetBoolFunc set_bool;
ValkeyModuleConfigSetEnumFunc set_enum;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
} set_fn;
ValkeyModuleConfigApplyFunc apply_fn;
ValkeyModule *module;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
};
typedef struct ValkeyModuleAsyncRMCallPromise{
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
size_t ref_count;
void *private_data;
ValkeyModule *module;
ValkeyModuleOnUnblocked on_unblocked;
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
client *c;
ValkeyModuleCtx *ctx;
} ValkeyModuleAsyncRMCallPromise;
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* Prototypes
* -------------------------------------------------------------------------- */
void VM_FreeCallReply(ValkeyModuleCallReply *reply);
void VM_CloseKey(ValkeyModuleKey *key);
void autoMemoryCollect(ValkeyModuleCtx *ctx);
robj **moduleCreateArgvFromUserFormat(const char *cmdname, const char *fmt, int *argcp, int *flags, va_list ap);
void VM_ZsetRangeStop(ValkeyModuleKey *kp);
static void zsetKeyReset(ValkeyModuleKey *key);
static void moduleInitKeyTypeSpecific(ValkeyModuleKey *key);
void VM_FreeDict(ValkeyModuleCtx *ctx, ValkeyModuleDict *d);
void VM_FreeServerInfo(ValkeyModuleCtx *ctx, ValkeyModuleServerInfoData *data);
/* Helpers for VM_SetCommandInfo. */
static int moduleValidateCommandInfo(const ValkeyModuleCommandInfo *info);
static int64_t moduleConvertKeySpecsFlags(int64_t flags, int from_api);
static int moduleValidateCommandArgs(ValkeyModuleCommandArg *args,
const ValkeyModuleCommandInfoVersion *version);
static struct redisCommandArg *moduleCopyCommandArgs(ValkeyModuleCommandArg *args,
const ValkeyModuleCommandInfoVersion *version);
static redisCommandArgType moduleConvertArgType(ValkeyModuleCommandArgType type, int *error);
static int moduleConvertArgFlags(int flags);
void moduleCreateContext(ValkeyModuleCtx *out_ctx, ValkeyModule *module, int ctx_flags);
/* --------------------------------------------------------------------------
* ## Heap allocation raw functions
*
* Memory allocated with these functions are taken into account by Redis key
* eviction algorithms and are reported in Redis memory usage information.
* -------------------------------------------------------------------------- */
/* Use like malloc(). Memory allocated with this function is reported in
* Redis INFO memory, used for keys eviction according to maxmemory settings
* and in general is taken into account as memory allocated by Redis.
* You should avoid using malloc().
* This function panics if unable to allocate enough memory. */
void *VM_Alloc(size_t bytes) {
Use dummy allocator to make accesses defined as per standard (#11982) ## Issue When we use GCC-12 later or clang 9.0 later to build with `-D_FORTIFY_SOURCE=3`, we can see the following buffer overflow: ``` === REDIS BUG REPORT START: Cut & paste starting from here === 6263:M 06 Apr 2023 08:59:12.915 # Redis 255.255.255 crashed by signal: 6, si_code: -6 6263:M 06 Apr 2023 08:59:12.915 # Crashed running the instruction at: 0x7f03d59efa7c ------ STACK TRACE ------ EIP: /lib/x86_64-linux-gnu/libc.so.6(pthread_kill+0x12c)[0x7f03d59efa7c] Backtrace: /lib/x86_64-linux-gnu/libc.so.6(+0x42520)[0x7f03d599b520] /lib/x86_64-linux-gnu/libc.so.6(pthread_kill+0x12c)[0x7f03d59efa7c] /lib/x86_64-linux-gnu/libc.so.6(raise+0x16)[0x7f03d599b476] /lib/x86_64-linux-gnu/libc.so.6(abort+0xd3)[0x7f03d59817f3] /lib/x86_64-linux-gnu/libc.so.6(+0x896f6)[0x7f03d59e26f6] /lib/x86_64-linux-gnu/libc.so.6(__fortify_fail+0x2a)[0x7f03d5a8f76a] /lib/x86_64-linux-gnu/libc.so.6(+0x1350c6)[0x7f03d5a8e0c6] src/redis-server 127.0.0.1:25111(+0xd5e80)[0x557cddd3be80] src/redis-server 127.0.0.1:25111(feedReplicationBufferWithObject+0x78)[0x557cddd3c768] src/redis-server 127.0.0.1:25111(replicationFeedSlaves+0x1a4)[0x557cddd3cbc4] src/redis-server 127.0.0.1:25111(+0x8721a)[0x557cddced21a] src/redis-server 127.0.0.1:25111(call+0x47a)[0x557cddcf38ea] src/redis-server 127.0.0.1:25111(processCommand+0xbf4)[0x557cddcf4aa4] src/redis-server 127.0.0.1:25111(processInputBuffer+0xe6)[0x557cddd22216] src/redis-server 127.0.0.1:25111(readQueryFromClient+0x3a8)[0x557cddd22898] src/redis-server 127.0.0.1:25111(+0x1b9134)[0x557cdde1f134] src/redis-server 127.0.0.1:25111(aeMain+0x119)[0x557cddce5349] src/redis-server 127.0.0.1:25111(main+0x466)[0x557cddcd6716] /lib/x86_64-linux-gnu/libc.so.6(+0x29d90)[0x7f03d5982d90] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80)[0x7f03d5982e40] src/redis-server 127.0.0.1:25111(_start+0x25)[0x557cddcd7025] ``` The main reason is that when FORTIFY_SOURCE is enabled, GCC or clang will enhance some common functions, such as `strcpy`, `memcpy`, `fgets`, etc, so that they can detect buffer overflow errors and stop program execution, thus improving the safety of the program. We use `zmalloc_usable_size()` everywhere to use memory blocks, but that is an abuse since the malloc_usable_size() isn't meant for this kind of use, it is for diagnostics only. That is also why the behavior is flaky when built with _FORTIFY_SOURCE, the compiler can sense that we reach outside the allocated block and SIGABRT. ### Solution If we need to use the additional memory we got, we need to use a dummy realloc with `alloc_size` attribute and no inlining, (see `extend_to_usable`) to let the compiler see the large of memory we need to use. This can either be an implicit call inside `z*usable` that returns the size, so that the caller doesn't have any other worry, or it can be a normal zmalloc call which means that if the caller wants to use zmalloc_usable_size it must also use extend_to_usable. ### Changes This PR does the following: 1) rename the current z[try]malloc_usable family to z[try]malloc_internal and don't expose them to users outside zmalloc.c, 2) expose a new set of `z[*]_usable` family that use z[*]_internal and `extend_to_usable()` implicitly, the caller gets the size of the allocation and it is safe to use. 3) go over all the users of `zmalloc_usable_size` and convert them to use the `z[*]_usable` family if possible. 4) in the places where the caller can't use `z[*]_usable` and store the real size, and must still rely on zmalloc_usable_size, we still make sure that the allocation used `z[*]_usable` (which has a call to `extend_to_usable()`) and ignores the returning size, this way a later call to `zmalloc_usable_size` is still safe. [4] was done for module.c and listpack.c, all the others places (sds, reply proto list, replication backlog, client->buf) are using [3]. Co-authored-by: Oran Agra <oran@redislabs.com>
2023-04-11 01:38:40 +08:00
/* Use 'zmalloc_usable()' instead of 'zmalloc()' to allow the compiler
* to recognize the additional memory size, which means that modules can
* use the memory reported by 'VM_MallocUsableSize()' safely. In theory this
Use dummy allocator to make accesses defined as per standard (#11982) ## Issue When we use GCC-12 later or clang 9.0 later to build with `-D_FORTIFY_SOURCE=3`, we can see the following buffer overflow: ``` === REDIS BUG REPORT START: Cut & paste starting from here === 6263:M 06 Apr 2023 08:59:12.915 # Redis 255.255.255 crashed by signal: 6, si_code: -6 6263:M 06 Apr 2023 08:59:12.915 # Crashed running the instruction at: 0x7f03d59efa7c ------ STACK TRACE ------ EIP: /lib/x86_64-linux-gnu/libc.so.6(pthread_kill+0x12c)[0x7f03d59efa7c] Backtrace: /lib/x86_64-linux-gnu/libc.so.6(+0x42520)[0x7f03d599b520] /lib/x86_64-linux-gnu/libc.so.6(pthread_kill+0x12c)[0x7f03d59efa7c] /lib/x86_64-linux-gnu/libc.so.6(raise+0x16)[0x7f03d599b476] /lib/x86_64-linux-gnu/libc.so.6(abort+0xd3)[0x7f03d59817f3] /lib/x86_64-linux-gnu/libc.so.6(+0x896f6)[0x7f03d59e26f6] /lib/x86_64-linux-gnu/libc.so.6(__fortify_fail+0x2a)[0x7f03d5a8f76a] /lib/x86_64-linux-gnu/libc.so.6(+0x1350c6)[0x7f03d5a8e0c6] src/redis-server 127.0.0.1:25111(+0xd5e80)[0x557cddd3be80] src/redis-server 127.0.0.1:25111(feedReplicationBufferWithObject+0x78)[0x557cddd3c768] src/redis-server 127.0.0.1:25111(replicationFeedSlaves+0x1a4)[0x557cddd3cbc4] src/redis-server 127.0.0.1:25111(+0x8721a)[0x557cddced21a] src/redis-server 127.0.0.1:25111(call+0x47a)[0x557cddcf38ea] src/redis-server 127.0.0.1:25111(processCommand+0xbf4)[0x557cddcf4aa4] src/redis-server 127.0.0.1:25111(processInputBuffer+0xe6)[0x557cddd22216] src/redis-server 127.0.0.1:25111(readQueryFromClient+0x3a8)[0x557cddd22898] src/redis-server 127.0.0.1:25111(+0x1b9134)[0x557cdde1f134] src/redis-server 127.0.0.1:25111(aeMain+0x119)[0x557cddce5349] src/redis-server 127.0.0.1:25111(main+0x466)[0x557cddcd6716] /lib/x86_64-linux-gnu/libc.so.6(+0x29d90)[0x7f03d5982d90] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80)[0x7f03d5982e40] src/redis-server 127.0.0.1:25111(_start+0x25)[0x557cddcd7025] ``` The main reason is that when FORTIFY_SOURCE is enabled, GCC or clang will enhance some common functions, such as `strcpy`, `memcpy`, `fgets`, etc, so that they can detect buffer overflow errors and stop program execution, thus improving the safety of the program. We use `zmalloc_usable_size()` everywhere to use memory blocks, but that is an abuse since the malloc_usable_size() isn't meant for this kind of use, it is for diagnostics only. That is also why the behavior is flaky when built with _FORTIFY_SOURCE, the compiler can sense that we reach outside the allocated block and SIGABRT. ### Solution If we need to use the additional memory we got, we need to use a dummy realloc with `alloc_size` attribute and no inlining, (see `extend_to_usable`) to let the compiler see the large of memory we need to use. This can either be an implicit call inside `z*usable` that returns the size, so that the caller doesn't have any other worry, or it can be a normal zmalloc call which means that if the caller wants to use zmalloc_usable_size it must also use extend_to_usable. ### Changes This PR does the following: 1) rename the current z[try]malloc_usable family to z[try]malloc_internal and don't expose them to users outside zmalloc.c, 2) expose a new set of `z[*]_usable` family that use z[*]_internal and `extend_to_usable()` implicitly, the caller gets the size of the allocation and it is safe to use. 3) go over all the users of `zmalloc_usable_size` and convert them to use the `z[*]_usable` family if possible. 4) in the places where the caller can't use `z[*]_usable` and store the real size, and must still rely on zmalloc_usable_size, we still make sure that the allocation used `z[*]_usable` (which has a call to `extend_to_usable()`) and ignores the returning size, this way a later call to `zmalloc_usable_size` is still safe. [4] was done for module.c and listpack.c, all the others places (sds, reply proto list, replication backlog, client->buf) are using [3]. Co-authored-by: Oran Agra <oran@redislabs.com>
2023-04-11 01:38:40 +08:00
* isn't really needed since this API can't be inlined (not even for embedded
* modules like TLS (we use function pointers for module APIs), and the API doesn't
* have the malloc_size attribute, but it's hard to predict how smart future compilers
* will be, so better safe than sorry. */
return zmalloc_usable(bytes,NULL);
}
/* Similar to VM_Alloc, but returns NULL in case of allocation failure, instead
* of panicking. */
void *VM_TryAlloc(size_t bytes) {
Use dummy allocator to make accesses defined as per standard (#11982) ## Issue When we use GCC-12 later or clang 9.0 later to build with `-D_FORTIFY_SOURCE=3`, we can see the following buffer overflow: ``` === REDIS BUG REPORT START: Cut & paste starting from here === 6263:M 06 Apr 2023 08:59:12.915 # Redis 255.255.255 crashed by signal: 6, si_code: -6 6263:M 06 Apr 2023 08:59:12.915 # Crashed running the instruction at: 0x7f03d59efa7c ------ STACK TRACE ------ EIP: /lib/x86_64-linux-gnu/libc.so.6(pthread_kill+0x12c)[0x7f03d59efa7c] Backtrace: /lib/x86_64-linux-gnu/libc.so.6(+0x42520)[0x7f03d599b520] /lib/x86_64-linux-gnu/libc.so.6(pthread_kill+0x12c)[0x7f03d59efa7c] /lib/x86_64-linux-gnu/libc.so.6(raise+0x16)[0x7f03d599b476] /lib/x86_64-linux-gnu/libc.so.6(abort+0xd3)[0x7f03d59817f3] /lib/x86_64-linux-gnu/libc.so.6(+0x896f6)[0x7f03d59e26f6] /lib/x86_64-linux-gnu/libc.so.6(__fortify_fail+0x2a)[0x7f03d5a8f76a] /lib/x86_64-linux-gnu/libc.so.6(+0x1350c6)[0x7f03d5a8e0c6] src/redis-server 127.0.0.1:25111(+0xd5e80)[0x557cddd3be80] src/redis-server 127.0.0.1:25111(feedReplicationBufferWithObject+0x78)[0x557cddd3c768] src/redis-server 127.0.0.1:25111(replicationFeedSlaves+0x1a4)[0x557cddd3cbc4] src/redis-server 127.0.0.1:25111(+0x8721a)[0x557cddced21a] src/redis-server 127.0.0.1:25111(call+0x47a)[0x557cddcf38ea] src/redis-server 127.0.0.1:25111(processCommand+0xbf4)[0x557cddcf4aa4] src/redis-server 127.0.0.1:25111(processInputBuffer+0xe6)[0x557cddd22216] src/redis-server 127.0.0.1:25111(readQueryFromClient+0x3a8)[0x557cddd22898] src/redis-server 127.0.0.1:25111(+0x1b9134)[0x557cdde1f134] src/redis-server 127.0.0.1:25111(aeMain+0x119)[0x557cddce5349] src/redis-server 127.0.0.1:25111(main+0x466)[0x557cddcd6716] /lib/x86_64-linux-gnu/libc.so.6(+0x29d90)[0x7f03d5982d90] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80)[0x7f03d5982e40] src/redis-server 127.0.0.1:25111(_start+0x25)[0x557cddcd7025] ``` The main reason is that when FORTIFY_SOURCE is enabled, GCC or clang will enhance some common functions, such as `strcpy`, `memcpy`, `fgets`, etc, so that they can detect buffer overflow errors and stop program execution, thus improving the safety of the program. We use `zmalloc_usable_size()` everywhere to use memory blocks, but that is an abuse since the malloc_usable_size() isn't meant for this kind of use, it is for diagnostics only. That is also why the behavior is flaky when built with _FORTIFY_SOURCE, the compiler can sense that we reach outside the allocated block and SIGABRT. ### Solution If we need to use the additional memory we got, we need to use a dummy realloc with `alloc_size` attribute and no inlining, (see `extend_to_usable`) to let the compiler see the large of memory we need to use. This can either be an implicit call inside `z*usable` that returns the size, so that the caller doesn't have any other worry, or it can be a normal zmalloc call which means that if the caller wants to use zmalloc_usable_size it must also use extend_to_usable. ### Changes This PR does the following: 1) rename the current z[try]malloc_usable family to z[try]malloc_internal and don't expose them to users outside zmalloc.c, 2) expose a new set of `z[*]_usable` family that use z[*]_internal and `extend_to_usable()` implicitly, the caller gets the size of the allocation and it is safe to use. 3) go over all the users of `zmalloc_usable_size` and convert them to use the `z[*]_usable` family if possible. 4) in the places where the caller can't use `z[*]_usable` and store the real size, and must still rely on zmalloc_usable_size, we still make sure that the allocation used `z[*]_usable` (which has a call to `extend_to_usable()`) and ignores the returning size, this way a later call to `zmalloc_usable_size` is still safe. [4] was done for module.c and listpack.c, all the others places (sds, reply proto list, replication backlog, client->buf) are using [3]. Co-authored-by: Oran Agra <oran@redislabs.com>
2023-04-11 01:38:40 +08:00
return ztrymalloc_usable(bytes,NULL);
}
2016-06-22 17:32:41 +03:00
/* Use like calloc(). Memory allocated with this function is reported in
* Redis INFO memory, used for keys eviction according to maxmemory settings
* and in general is taken into account as memory allocated by Redis.
* You should avoid using calloc() directly. */
void *VM_Calloc(size_t nmemb, size_t size) {
Use dummy allocator to make accesses defined as per standard (#11982) ## Issue When we use GCC-12 later or clang 9.0 later to build with `-D_FORTIFY_SOURCE=3`, we can see the following buffer overflow: ``` === REDIS BUG REPORT START: Cut & paste starting from here === 6263:M 06 Apr 2023 08:59:12.915 # Redis 255.255.255 crashed by signal: 6, si_code: -6 6263:M 06 Apr 2023 08:59:12.915 # Crashed running the instruction at: 0x7f03d59efa7c ------ STACK TRACE ------ EIP: /lib/x86_64-linux-gnu/libc.so.6(pthread_kill+0x12c)[0x7f03d59efa7c] Backtrace: /lib/x86_64-linux-gnu/libc.so.6(+0x42520)[0x7f03d599b520] /lib/x86_64-linux-gnu/libc.so.6(pthread_kill+0x12c)[0x7f03d59efa7c] /lib/x86_64-linux-gnu/libc.so.6(raise+0x16)[0x7f03d599b476] /lib/x86_64-linux-gnu/libc.so.6(abort+0xd3)[0x7f03d59817f3] /lib/x86_64-linux-gnu/libc.so.6(+0x896f6)[0x7f03d59e26f6] /lib/x86_64-linux-gnu/libc.so.6(__fortify_fail+0x2a)[0x7f03d5a8f76a] /lib/x86_64-linux-gnu/libc.so.6(+0x1350c6)[0x7f03d5a8e0c6] src/redis-server 127.0.0.1:25111(+0xd5e80)[0x557cddd3be80] src/redis-server 127.0.0.1:25111(feedReplicationBufferWithObject+0x78)[0x557cddd3c768] src/redis-server 127.0.0.1:25111(replicationFeedSlaves+0x1a4)[0x557cddd3cbc4] src/redis-server 127.0.0.1:25111(+0x8721a)[0x557cddced21a] src/redis-server 127.0.0.1:25111(call+0x47a)[0x557cddcf38ea] src/redis-server 127.0.0.1:25111(processCommand+0xbf4)[0x557cddcf4aa4] src/redis-server 127.0.0.1:25111(processInputBuffer+0xe6)[0x557cddd22216] src/redis-server 127.0.0.1:25111(readQueryFromClient+0x3a8)[0x557cddd22898] src/redis-server 127.0.0.1:25111(+0x1b9134)[0x557cdde1f134] src/redis-server 127.0.0.1:25111(aeMain+0x119)[0x557cddce5349] src/redis-server 127.0.0.1:25111(main+0x466)[0x557cddcd6716] /lib/x86_64-linux-gnu/libc.so.6(+0x29d90)[0x7f03d5982d90] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80)[0x7f03d5982e40] src/redis-server 127.0.0.1:25111(_start+0x25)[0x557cddcd7025] ``` The main reason is that when FORTIFY_SOURCE is enabled, GCC or clang will enhance some common functions, such as `strcpy`, `memcpy`, `fgets`, etc, so that they can detect buffer overflow errors and stop program execution, thus improving the safety of the program. We use `zmalloc_usable_size()` everywhere to use memory blocks, but that is an abuse since the malloc_usable_size() isn't meant for this kind of use, it is for diagnostics only. That is also why the behavior is flaky when built with _FORTIFY_SOURCE, the compiler can sense that we reach outside the allocated block and SIGABRT. ### Solution If we need to use the additional memory we got, we need to use a dummy realloc with `alloc_size` attribute and no inlining, (see `extend_to_usable`) to let the compiler see the large of memory we need to use. This can either be an implicit call inside `z*usable` that returns the size, so that the caller doesn't have any other worry, or it can be a normal zmalloc call which means that if the caller wants to use zmalloc_usable_size it must also use extend_to_usable. ### Changes This PR does the following: 1) rename the current z[try]malloc_usable family to z[try]malloc_internal and don't expose them to users outside zmalloc.c, 2) expose a new set of `z[*]_usable` family that use z[*]_internal and `extend_to_usable()` implicitly, the caller gets the size of the allocation and it is safe to use. 3) go over all the users of `zmalloc_usable_size` and convert them to use the `z[*]_usable` family if possible. 4) in the places where the caller can't use `z[*]_usable` and store the real size, and must still rely on zmalloc_usable_size, we still make sure that the allocation used `z[*]_usable` (which has a call to `extend_to_usable()`) and ignores the returning size, this way a later call to `zmalloc_usable_size` is still safe. [4] was done for module.c and listpack.c, all the others places (sds, reply proto list, replication backlog, client->buf) are using [3]. Co-authored-by: Oran Agra <oran@redislabs.com>
2023-04-11 01:38:40 +08:00
return zcalloc_usable(nmemb*size,NULL);
2016-06-22 17:32:41 +03:00
}
/* Use like realloc() for memory obtained with ValkeyModule_Alloc(). */
void* VM_Realloc(void *ptr, size_t bytes) {
Use dummy allocator to make accesses defined as per standard (#11982) ## Issue When we use GCC-12 later or clang 9.0 later to build with `-D_FORTIFY_SOURCE=3`, we can see the following buffer overflow: ``` === REDIS BUG REPORT START: Cut & paste starting from here === 6263:M 06 Apr 2023 08:59:12.915 # Redis 255.255.255 crashed by signal: 6, si_code: -6 6263:M 06 Apr 2023 08:59:12.915 # Crashed running the instruction at: 0x7f03d59efa7c ------ STACK TRACE ------ EIP: /lib/x86_64-linux-gnu/libc.so.6(pthread_kill+0x12c)[0x7f03d59efa7c] Backtrace: /lib/x86_64-linux-gnu/libc.so.6(+0x42520)[0x7f03d599b520] /lib/x86_64-linux-gnu/libc.so.6(pthread_kill+0x12c)[0x7f03d59efa7c] /lib/x86_64-linux-gnu/libc.so.6(raise+0x16)[0x7f03d599b476] /lib/x86_64-linux-gnu/libc.so.6(abort+0xd3)[0x7f03d59817f3] /lib/x86_64-linux-gnu/libc.so.6(+0x896f6)[0x7f03d59e26f6] /lib/x86_64-linux-gnu/libc.so.6(__fortify_fail+0x2a)[0x7f03d5a8f76a] /lib/x86_64-linux-gnu/libc.so.6(+0x1350c6)[0x7f03d5a8e0c6] src/redis-server 127.0.0.1:25111(+0xd5e80)[0x557cddd3be80] src/redis-server 127.0.0.1:25111(feedReplicationBufferWithObject+0x78)[0x557cddd3c768] src/redis-server 127.0.0.1:25111(replicationFeedSlaves+0x1a4)[0x557cddd3cbc4] src/redis-server 127.0.0.1:25111(+0x8721a)[0x557cddced21a] src/redis-server 127.0.0.1:25111(call+0x47a)[0x557cddcf38ea] src/redis-server 127.0.0.1:25111(processCommand+0xbf4)[0x557cddcf4aa4] src/redis-server 127.0.0.1:25111(processInputBuffer+0xe6)[0x557cddd22216] src/redis-server 127.0.0.1:25111(readQueryFromClient+0x3a8)[0x557cddd22898] src/redis-server 127.0.0.1:25111(+0x1b9134)[0x557cdde1f134] src/redis-server 127.0.0.1:25111(aeMain+0x119)[0x557cddce5349] src/redis-server 127.0.0.1:25111(main+0x466)[0x557cddcd6716] /lib/x86_64-linux-gnu/libc.so.6(+0x29d90)[0x7f03d5982d90] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80)[0x7f03d5982e40] src/redis-server 127.0.0.1:25111(_start+0x25)[0x557cddcd7025] ``` The main reason is that when FORTIFY_SOURCE is enabled, GCC or clang will enhance some common functions, such as `strcpy`, `memcpy`, `fgets`, etc, so that they can detect buffer overflow errors and stop program execution, thus improving the safety of the program. We use `zmalloc_usable_size()` everywhere to use memory blocks, but that is an abuse since the malloc_usable_size() isn't meant for this kind of use, it is for diagnostics only. That is also why the behavior is flaky when built with _FORTIFY_SOURCE, the compiler can sense that we reach outside the allocated block and SIGABRT. ### Solution If we need to use the additional memory we got, we need to use a dummy realloc with `alloc_size` attribute and no inlining, (see `extend_to_usable`) to let the compiler see the large of memory we need to use. This can either be an implicit call inside `z*usable` that returns the size, so that the caller doesn't have any other worry, or it can be a normal zmalloc call which means that if the caller wants to use zmalloc_usable_size it must also use extend_to_usable. ### Changes This PR does the following: 1) rename the current z[try]malloc_usable family to z[try]malloc_internal and don't expose them to users outside zmalloc.c, 2) expose a new set of `z[*]_usable` family that use z[*]_internal and `extend_to_usable()` implicitly, the caller gets the size of the allocation and it is safe to use. 3) go over all the users of `zmalloc_usable_size` and convert them to use the `z[*]_usable` family if possible. 4) in the places where the caller can't use `z[*]_usable` and store the real size, and must still rely on zmalloc_usable_size, we still make sure that the allocation used `z[*]_usable` (which has a call to `extend_to_usable()`) and ignores the returning size, this way a later call to `zmalloc_usable_size` is still safe. [4] was done for module.c and listpack.c, all the others places (sds, reply proto list, replication backlog, client->buf) are using [3]. Co-authored-by: Oran Agra <oran@redislabs.com>
2023-04-11 01:38:40 +08:00
return zrealloc_usable(ptr,bytes,NULL);
}
/* Use like free() for memory obtained by ValkeyModule_Alloc() and
* ValkeyModule_Realloc(). However you should never try to free with
* ValkeyModule_Free() memory allocated with malloc() inside your module. */
void VM_Free(void *ptr) {
zfree(ptr);
}
/* Like strdup() but returns memory allocated with ValkeyModule_Alloc(). */
char *VM_Strdup(const char *str) {
return zstrdup(str);
}
/* --------------------------------------------------------------------------
* Pool allocator
* -------------------------------------------------------------------------- */
/* Release the chain of blocks used for pool allocations. */
void poolAllocRelease(ValkeyModuleCtx *ctx) {
ValkeyModulePoolAllocBlock *head = ctx->pa_head, *next;
while(head != NULL) {
next = head->next;
zfree(head);
head = next;
}
ctx->pa_head = NULL;
}
/* Return heap allocated memory that will be freed automatically when the
* module callback function returns. Mostly suitable for small allocations
* that are short living and must be released when the callback returns
* anyway. The returned memory is aligned to the architecture word size
* if at least word size bytes are requested, otherwise it is just
* aligned to the next power of two, so for example a 3 bytes request is
* 4 bytes aligned while a 2 bytes request is 2 bytes aligned.
*
* There is no realloc style function since when this is needed to use the
* pool allocator is not a good idea.
*
* The function returns NULL if `bytes` is 0. */
void *VM_PoolAlloc(ValkeyModuleCtx *ctx, size_t bytes) {
if (bytes == 0) return NULL;
ValkeyModulePoolAllocBlock *b = ctx->pa_head;
size_t left = b ? b->size - b->used : 0;
/* Fix alignment. */
if (left >= bytes) {
size_t alignment = VALKEYMODULE_POOL_ALLOC_ALIGN;
while (bytes < alignment && alignment/2 >= bytes) alignment /= 2;
if (b->used % alignment)
b->used += alignment - (b->used % alignment);
left = (b->used > b->size) ? 0 : b->size - b->used;
}
/* Create a new block if needed. */
if (left < bytes) {
size_t blocksize = VALKEYMODULE_POOL_ALLOC_MIN_SIZE;
if (blocksize < bytes) blocksize = bytes;
b = zmalloc(sizeof(*b) + blocksize);
b->size = blocksize;
b->used = 0;
b->next = ctx->pa_head;
ctx->pa_head = b;
}
char *retval = b->memory + b->used;
b->used += bytes;
return retval;
}
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* Helpers for modules API implementation
* -------------------------------------------------------------------------- */
client *moduleAllocTempClient(void) {
2022-01-11 20:00:56 +03:00
client *c = NULL;
if (moduleTempClientCount > 0) {
c = moduleTempClients[--moduleTempClientCount];
if (moduleTempClientCount < moduleTempClientMinCount)
moduleTempClientMinCount = moduleTempClientCount;
} else {
c = createClient(NULL);
c->flags |= CLIENT_MODULE;
c->user = NULL; /* Root user */
2022-01-11 20:00:56 +03:00
}
return c;
}
static void freeValkeyModuleAsyncRMCallPromise(ValkeyModuleAsyncRMCallPromise *promise) {
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
if (--promise->ref_count > 0) {
return;
}
/* When the promise is finally freed it can not have a client attached to it.
* Either releasing the client or VM_CallReplyPromiseAbort would have removed it. */
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
serverAssert(!promise->c);
zfree(promise);
}
2022-01-11 20:00:56 +03:00
void moduleReleaseTempClient(client *c) {
if (moduleTempClientCount == moduleTempClientCap) {
moduleTempClientCap = moduleTempClientCap ? moduleTempClientCap*2 : 32;
moduleTempClients = zrealloc(moduleTempClients, sizeof(c)*moduleTempClientCap);
}
clearClientConnectionState(c);
listEmpty(c->reply);
c->reply_bytes = 0;
c->duration = 0;
2022-01-11 20:00:56 +03:00
resetClient(c);
c->bufpos = 0;
c->flags = CLIENT_MODULE;
c->user = NULL; /* Root user */
c->cmd = c->lastcmd = c->realcmd = NULL;
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
if (c->bstate.async_rm_call_handle) {
ValkeyModuleAsyncRMCallPromise *promise = c->bstate.async_rm_call_handle;
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
promise->c = NULL; /* Remove the client from the promise so it will no longer be possible to abort it. */
freeValkeyModuleAsyncRMCallPromise(promise);
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
c->bstate.async_rm_call_handle = NULL;
}
2022-01-11 20:00:56 +03:00
moduleTempClients[moduleTempClientCount++] = c;
}
/* Create an empty key of the specified type. `key` must point to a key object
* opened for writing where the `.value` member is set to NULL because the
2016-03-06 13:44:24 +01:00
* key was found to be non existing.
*
* On success VALKEYMODULE_OK is returned and the key is populated with
2016-03-06 13:44:24 +01:00
* the value of the specified type. The function fails and returns
* VALKEYMODULE_ERR if:
2016-03-06 13:44:24 +01:00
*
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* 1. The key is not open for writing.
* 2. The key is not empty.
* 3. The specified type is unknown.
2016-03-06 13:44:24 +01:00
*/
int moduleCreateEmptyKey(ValkeyModuleKey *key, int type) {
2016-03-06 13:44:24 +01:00
robj *obj;
/* The key must be open for writing and non existing to proceed. */
if (!(key->mode & VALKEYMODULE_WRITE) || key->value)
return VALKEYMODULE_ERR;
2016-03-06 13:44:24 +01:00
switch(type) {
case VALKEYMODULE_KEYTYPE_LIST:
Add listpack encoding for list (#11303) Improve memory efficiency of list keys ## Description of the feature The new listpack encoding uses the old `list-max-listpack-size` config to perform the conversion, which we can think it of as a node inside a quicklist, but without 80 bytes overhead (internal fragmentation included) of quicklist and quicklistNode structs. For example, a list key with 5 items of 10 chars each, now takes 128 bytes instead of 208 it used to take. ## Conversion rules * Convert listpack to quicklist When the listpack length or size reaches the `list-max-listpack-size` limit, it will be converted to a quicklist. * Convert quicklist to listpack When a quicklist has only one node, and its length or size is reduced to half of the `list-max-listpack-size` limit, it will be converted to a listpack. This is done to avoid frequent conversions when we add or remove at the bounding size or length. ## Interface changes 1. add list entry param to listTypeSetIteratorDirection When list encoding is listpack, `listTypeIterator->lpi` points to the next entry of current entry, so when changing the direction, we need to use the current node (listTypeEntry->p) to update `listTypeIterator->lpi` to the next node in the reverse direction. ## Benchmark ### Listpack VS Quicklist with one node * LPUSH - roughly 0.3% improvement * LRANGE - roughly 13% improvement ### Both are quicklist * LRANGE - roughly 3% improvement * LRANGE without pipeline - roughly 3% improvement From the benchmark, as we can see from the results 1. When list is quicklist encoding, LRANGE improves performance by <5%. 2. When list is listpack encoding, LRANGE improves performance by ~13%, the main enhancement is brought by `addListListpackRangeReply()`. ## Memory usage 1M lists(key:0~key:1000000) with 5 items of 10 chars ("hellohello") each. shows memory usage down by 35.49%, from 214MB to 138MB. ## Note 1. Add conversion callback to support doing some work before conversion Since the quicklist iterator decompresses the current node when it is released, we can no longer decompress the quicklist after we convert the list.
2022-11-17 02:29:46 +08:00
obj = createListListpackObject();
2016-03-06 13:44:24 +01:00
break;
case VALKEYMODULE_KEYTYPE_ZSET:
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
obj = createZsetListpackObject();
2016-04-14 12:49:16 +02:00
break;
case VALKEYMODULE_KEYTYPE_HASH:
2016-04-25 15:39:33 +02:00
obj = createHashObject();
break;
case VALKEYMODULE_KEYTYPE_STREAM:
obj = createStreamObject();
break;
default: return VALKEYMODULE_ERR;
2016-03-06 13:44:24 +01:00
}
dbAdd(key->db,key->key,obj);
key->value = obj;
moduleInitKeyTypeSpecific(key);
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
/* Frees key->iter and sets it to NULL. */
static void moduleFreeKeyIterator(ValkeyModuleKey *key) {
serverAssert(key->iter != NULL);
switch (key->value->type) {
case OBJ_LIST: listTypeReleaseIterator(key->iter); break;
case OBJ_STREAM:
streamIteratorStop(key->iter);
zfree(key->iter);
break;
default: serverAssert(0); /* No key->iter for other types. */
}
key->iter = NULL;
}
Add listpack encoding for list (#11303) Improve memory efficiency of list keys ## Description of the feature The new listpack encoding uses the old `list-max-listpack-size` config to perform the conversion, which we can think it of as a node inside a quicklist, but without 80 bytes overhead (internal fragmentation included) of quicklist and quicklistNode structs. For example, a list key with 5 items of 10 chars each, now takes 128 bytes instead of 208 it used to take. ## Conversion rules * Convert listpack to quicklist When the listpack length or size reaches the `list-max-listpack-size` limit, it will be converted to a quicklist. * Convert quicklist to listpack When a quicklist has only one node, and its length or size is reduced to half of the `list-max-listpack-size` limit, it will be converted to a listpack. This is done to avoid frequent conversions when we add or remove at the bounding size or length. ## Interface changes 1. add list entry param to listTypeSetIteratorDirection When list encoding is listpack, `listTypeIterator->lpi` points to the next entry of current entry, so when changing the direction, we need to use the current node (listTypeEntry->p) to update `listTypeIterator->lpi` to the next node in the reverse direction. ## Benchmark ### Listpack VS Quicklist with one node * LPUSH - roughly 0.3% improvement * LRANGE - roughly 13% improvement ### Both are quicklist * LRANGE - roughly 3% improvement * LRANGE without pipeline - roughly 3% improvement From the benchmark, as we can see from the results 1. When list is quicklist encoding, LRANGE improves performance by <5%. 2. When list is listpack encoding, LRANGE improves performance by ~13%, the main enhancement is brought by `addListListpackRangeReply()`. ## Memory usage 1M lists(key:0~key:1000000) with 5 items of 10 chars ("hellohello") each. shows memory usage down by 35.49%, from 214MB to 138MB. ## Note 1. Add conversion callback to support doing some work before conversion Since the quicklist iterator decompresses the current node when it is released, we can no longer decompress the quicklist after we convert the list.
2022-11-17 02:29:46 +08:00
/* Callback for listTypeTryConversion().
* Frees list iterator and sets it to NULL. */
static void moduleFreeListIterator(void *data) {
ValkeyModuleKey *key = (ValkeyModuleKey*)data;
Add listpack encoding for list (#11303) Improve memory efficiency of list keys ## Description of the feature The new listpack encoding uses the old `list-max-listpack-size` config to perform the conversion, which we can think it of as a node inside a quicklist, but without 80 bytes overhead (internal fragmentation included) of quicklist and quicklistNode structs. For example, a list key with 5 items of 10 chars each, now takes 128 bytes instead of 208 it used to take. ## Conversion rules * Convert listpack to quicklist When the listpack length or size reaches the `list-max-listpack-size` limit, it will be converted to a quicklist. * Convert quicklist to listpack When a quicklist has only one node, and its length or size is reduced to half of the `list-max-listpack-size` limit, it will be converted to a listpack. This is done to avoid frequent conversions when we add or remove at the bounding size or length. ## Interface changes 1. add list entry param to listTypeSetIteratorDirection When list encoding is listpack, `listTypeIterator->lpi` points to the next entry of current entry, so when changing the direction, we need to use the current node (listTypeEntry->p) to update `listTypeIterator->lpi` to the next node in the reverse direction. ## Benchmark ### Listpack VS Quicklist with one node * LPUSH - roughly 0.3% improvement * LRANGE - roughly 13% improvement ### Both are quicklist * LRANGE - roughly 3% improvement * LRANGE without pipeline - roughly 3% improvement From the benchmark, as we can see from the results 1. When list is quicklist encoding, LRANGE improves performance by <5%. 2. When list is listpack encoding, LRANGE improves performance by ~13%, the main enhancement is brought by `addListListpackRangeReply()`. ## Memory usage 1M lists(key:0~key:1000000) with 5 items of 10 chars ("hellohello") each. shows memory usage down by 35.49%, from 214MB to 138MB. ## Note 1. Add conversion callback to support doing some work before conversion Since the quicklist iterator decompresses the current node when it is released, we can no longer decompress the quicklist after we convert the list.
2022-11-17 02:29:46 +08:00
serverAssert(key->value->type == OBJ_LIST);
if (key->iter) moduleFreeKeyIterator(key);
}
2016-03-06 13:44:24 +01:00
/* This function is called in low-level API implementation functions in order
* to check if the value associated with the key remained empty after an
* operation that removed elements from an aggregate data type.
*
* If this happens, the key is deleted from the DB and the key object state
* is set to the right one in order to be targeted again by write operations
* possibly recreating the key if needed.
*
* The function returns 1 if the key value object is found empty and is
* deleted, otherwise 0 is returned. */
int moduleDelKeyIfEmpty(ValkeyModuleKey *key) {
if (!(key->mode & VALKEYMODULE_WRITE) || key->value == NULL) return 0;
2016-03-06 13:44:24 +01:00
int isempty;
robj *o = key->value;
switch(o->type) {
case OBJ_LIST: isempty = listTypeLength(o) == 0; break;
case OBJ_SET: isempty = setTypeSize(o) == 0; break;
case OBJ_ZSET: isempty = zsetLength(o) == 0; break;
case OBJ_HASH: isempty = hashTypeLength(o) == 0; break;
case OBJ_STREAM: isempty = streamLength(o) == 0; break;
2016-03-06 13:44:24 +01:00
default: isempty = 0;
}
if (isempty) {
if (key->iter) moduleFreeKeyIterator(key);
2016-03-06 13:44:24 +01:00
dbDelete(key->db,key->key);
key->value = NULL;
return 1;
} else {
return 0;
}
}
/* --------------------------------------------------------------------------
* Service API exported to modules
*
* Note that all the exported APIs are called VM_<funcname> in the core
* and ValkeyModule_<funcname> in the module side (defined as function
* pointers in valkeymodule.h). In this way the dynamic linker does not
* mess with our global function pointers, overriding it with the symbols
* defined in the main executable having the same names.
2016-03-06 13:44:24 +01:00
* -------------------------------------------------------------------------- */
int VM_GetApi(const char *funcname, void **targetPtrPtr) {
/* Lookup the requested module API and store the function pointer into the
* target pointer. The function returns VALKEYMODULE_ERR if there is no such
* named API, otherwise VALKEYMODULE_OK.
*
* This function is not meant to be used by modules developer, it is only
* used implicitly by including valkeymodule.h. */
2016-03-06 13:44:24 +01:00
dictEntry *he = dictFind(server.moduleapi, funcname);
if (!he) return VALKEYMODULE_ERR;
2016-03-06 13:44:24 +01:00
*targetPtrPtr = dictGetVal(he);
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
void modulePostExecutionUnitOperations(void) {
if (server.execution_nesting)
return;
if (server.busy_module_yield_flags) {
blockingOperationEnds();
server.busy_module_yield_flags = BUSY_MODULE_YIELD_NONE;
if (server.current_client)
unprotectClient(server.current_client);
unblockPostponedClients();
}
}
2016-04-21 14:02:42 +02:00
/* Free the context after the user function was called. */
void moduleFreeContext(ValkeyModuleCtx *ctx) {
/* See comment in moduleCreateContext */
if (!(ctx->flags & (VALKEYMODULE_CTX_THREAD_SAFE|VALKEYMODULE_CTX_COMMAND))) {
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
exitExecutionUnit();
postExecutionUnitOperations();
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
}
2016-04-21 14:02:42 +02:00
autoMemoryCollect(ctx);
poolAllocRelease(ctx);
2016-04-21 14:02:42 +02:00
if (ctx->postponed_arrays) {
zfree(ctx->postponed_arrays);
ctx->postponed_arrays_count = 0;
serverLog(LL_WARNING,
"API misuse detected in module %s: "
"ValkeyModule_ReplyWith*(VALKEYMODULE_POSTPONED_LEN) "
"not matched by the same number of ValkeyModule_SetReply*Len() "
2016-04-21 14:02:42 +02:00
"calls.",
ctx->module->name);
}
2022-01-11 20:00:56 +03:00
/* If this context has a temp client, we return it back to the pool.
* If this context created a new client (e.g detached context), we free it.
* If the client is assigned manually, e.g ctx->client = someClientInstance,
* none of these flags will be set and we do not attempt to free it. */
if (ctx->flags & VALKEYMODULE_CTX_TEMP_CLIENT)
2022-01-11 20:00:56 +03:00
moduleReleaseTempClient(ctx->client);
else if (ctx->flags & VALKEYMODULE_CTX_NEW_CLIENT)
2022-01-11 20:00:56 +03:00
freeClient(ctx->client);
2016-04-21 14:02:42 +02:00
}
static CallReply *moduleParseReply(client *c, ValkeyModuleCtx *ctx) {
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
/* Convert the result of the Redis command into a module reply. */
sds proto = sdsnewlen(c->buf,c->bufpos);
c->bufpos = 0;
while(listLength(c->reply)) {
clientReplyBlock *o = listNodeValue(listFirst(c->reply));
proto = sdscatlen(proto,o->buf,o->used);
listDelNode(c->reply,listFirst(c->reply));
}
CallReply *reply = callReplyCreate(proto, c->deferred_reply_errors, ctx);
c->deferred_reply_errors = NULL; /* now the responsibility of the reply object. */
return reply;
}
void moduleCallCommandUnblockedHandler(client *c) {
ValkeyModuleCtx ctx;
ValkeyModuleAsyncRMCallPromise *promise = c->bstate.async_rm_call_handle;
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
serverAssert(promise);
ValkeyModule *module = promise->module;
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
if (!promise->on_unblocked) {
moduleReleaseTempClient(c);
return; /* module did not set any unblock callback. */
}
moduleCreateContext(&ctx, module, VALKEYMODULE_CTX_TEMP_CLIENT);
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
selectDb(ctx.client, c->db->id);
CallReply *reply = moduleParseReply(c, NULL);
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
module->in_call++;
promise->on_unblocked(&ctx, reply, promise->private_data);
module->in_call--;
moduleFreeContext(&ctx);
moduleReleaseTempClient(c);
}
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
/* Create a module ctx and keep track of the nesting level.
*
* Note: When creating ctx for threads (VM_GetThreadSafeContext and
* VM_GetDetachedThreadSafeContext) we do not bump up the nesting level
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
* because we only need to track of nesting level in the main thread
* (only the main thread uses propagatePendingCommands) */
void moduleCreateContext(ValkeyModuleCtx *out_ctx, ValkeyModule *module, int ctx_flags) {
memset(out_ctx, 0 ,sizeof(ValkeyModuleCtx));
out_ctx->getapifuncptr = (void*)(unsigned long)&VM_GetApi;
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
out_ctx->module = module;
out_ctx->flags = ctx_flags;
if (ctx_flags & VALKEYMODULE_CTX_TEMP_CLIENT)
out_ctx->client = moduleAllocTempClient();
else if (ctx_flags & VALKEYMODULE_CTX_NEW_CLIENT)
2022-01-11 20:00:56 +03:00
out_ctx->client = createClient(NULL);
/* Calculate the initial yield time for long blocked contexts.
* in loading we depend on the server hz, but in other cases we also wait
* for busy_reply_threshold.
* Note that in theory we could have started processing BUSY_MODULE_YIELD_EVENTS
* sooner, and only delay the processing for clients till the busy_reply_threshold,
* but this carries some overheads of frequently marking clients with BLOCKED_POSTPONE
* and releasing them, i.e. if modules only block for short periods. */
if (server.loading)
out_ctx->next_yield_time = getMonotonicUs() + 1000000 / server.hz;
else
out_ctx->next_yield_time = getMonotonicUs() + server.busy_reply_threshold * 1000;
/* Increment the execution_nesting counter (module is about to execute some code),
* except in the following cases:
* 1. We came here from cmd->proc (either call() or AOF load).
* In the former, the counter has been already incremented from within
* call() and in the latter we don't care about execution_nesting
* 2. If we are running in a thread (execution_nesting will be dealt with
* when locking/unlocking the GIL) */
if (!(ctx_flags & (VALKEYMODULE_CTX_THREAD_SAFE|VALKEYMODULE_CTX_COMMAND))) {
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
enterExecutionUnit(1, 0);
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
}
}
/* This Redis command binds the normal Redis command invocation with commands
* exported by modules. */
void ValkeyModuleCommandDispatcher(client *c) {
ValkeyModuleCommand *cp = c->cmd->module_cmd;
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, cp->module, VALKEYMODULE_CTX_COMMAND);
ctx.client = c;
cp->func(&ctx,(void**)c->argv,c->argc);
2016-04-21 14:02:42 +02:00
moduleFreeContext(&ctx);
/* In some cases processMultibulkBuffer uses sdsMakeRoomFor to
2019-03-14 12:47:36 +01:00
* expand the query buffer, and in order to avoid a big object copy
* the query buffer SDS may be used directly as the SDS string backing
* the client argument vectors: sometimes this will result in the SDS
* string having unused space at the end. Later if a module takes ownership
* of the RedisString, such space will be wasted forever. Inside the
* Redis core this is not a problem because tryObjectEncoding() is called
* before storing strings in the key space. Here we need to do it
* for the module. */
for (int i = 0; i < c->argc; i++) {
2019-03-14 12:47:36 +01:00
/* Only do the work if the module took ownership of the object:
* in that case the refcount is no longer 1. */
if (c->argv[i]->refcount > 1)
trimStringObjectIfNeeded(c->argv[i], 0);
}
2016-03-06 13:44:24 +01:00
}
/* This function returns the list of keys, with the same interface as the
* 'getkeys' function of the native commands, for module commands that exported
* the "getkeys-api" flag during the registration. This is done when the
* list of keys are not at fixed positions, so that first/last/step cannot
* be used.
*
* In order to accomplish its work, the module command is called, flagging
* the context in a way that the command can recognize this is a special
* "get keys" call by calling ValkeyModule_IsKeysPositionRequest(ctx). */
int moduleGetCommandKeysViaAPI(struct redisCommand *cmd, robj **argv, int argc, getKeysResult *result) {
ValkeyModuleCommand *cp = cmd->module_cmd;
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, cp->module, VALKEYMODULE_CTX_KEYS_POS_REQUEST);
/* Initialize getKeysResult */
getKeysPrepareResult(result, MAX_KEYS_BUFFER);
ctx.keys_result = result;
cp->func(&ctx,(void**)argv,argc);
/* We currently always use the array allocated by VM_KeyAtPos() and don't try
* to optimize for the pre-allocated buffer.
*/
moduleFreeContext(&ctx);
return result->numkeys;
}
/* This function returns the list of channels, with the same interface as
* moduleGetCommandKeysViaAPI, for modules that declare "getchannels-api"
* during registration. Unlike keys, this is the only way to declare channels. */
int moduleGetCommandChannelsViaAPI(struct redisCommand *cmd, robj **argv, int argc, getKeysResult *result) {
ValkeyModuleCommand *cp = cmd->module_cmd;
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, cp->module, VALKEYMODULE_CTX_CHANNELS_POS_REQUEST);
/* Initialize getKeysResult */
getKeysPrepareResult(result, MAX_KEYS_BUFFER);
ctx.keys_result = result;
cp->func(&ctx,(void**)argv,argc);
/* We currently always use the array allocated by VM_RM_ChannelAtPosWithFlags() and don't try
* to optimize for the pre-allocated buffer. */
moduleFreeContext(&ctx);
return result->numkeys;
}
/* --------------------------------------------------------------------------
* ## Commands API
*
* These functions are used to implement custom Redis commands.
*
* For examples, see https://redis.io/topics/modules-intro.
* -------------------------------------------------------------------------- */
/* Return non-zero if a module command, that was declared with the
* flag "getkeys-api", is called in a special way to get the keys positions
* and not to get executed. Otherwise zero is returned. */
int VM_IsKeysPositionRequest(ValkeyModuleCtx *ctx) {
return (ctx->flags & VALKEYMODULE_CTX_KEYS_POS_REQUEST) != 0;
}
/* When a module command is called in order to obtain the position of
* keys, since it was flagged as "getkeys-api" during the registration,
* the command implementation checks for this special call using the
* ValkeyModule_IsKeysPositionRequest() API and uses this function in
* order to report keys.
*
* The supported flags are the ones used by VM_SetCommandInfo, see VALKEYMODULE_CMD_KEY_*.
*
*
* The following is an example of how it could be used:
*
* if (ValkeyModule_IsKeysPositionRequest(ctx)) {
* ValkeyModule_KeyAtPosWithFlags(ctx, 2, VALKEYMODULE_CMD_KEY_RO | VALKEYMODULE_CMD_KEY_ACCESS);
* ValkeyModule_KeyAtPosWithFlags(ctx, 1, VALKEYMODULE_CMD_KEY_RW | VALKEYMODULE_CMD_KEY_UPDATE | VALKEYMODULE_CMD_KEY_ACCESS);
* }
*
* Note: in the example above the get keys API could have been handled by key-specs (preferred).
* Implementing the getkeys-api is required only when is it not possible to declare key-specs that cover all keys.
*
*/
void VM_KeyAtPosWithFlags(ValkeyModuleCtx *ctx, int pos, int flags) {
if (!(ctx->flags & VALKEYMODULE_CTX_KEYS_POS_REQUEST) || !ctx->keys_result) return;
if (pos <= 0) return;
getKeysResult *res = ctx->keys_result;
/* Check overflow */
if (res->numkeys == res->size) {
int newsize = res->size + (res->size > 8192 ? 8192 : res->size);
getKeysPrepareResult(res, newsize);
}
res->keys[res->numkeys].pos = pos;
res->keys[res->numkeys].flags = moduleConvertKeySpecsFlags(flags, 1);
res->numkeys++;
}
/* This API existed before VM_KeyAtPosWithFlags was added, now deprecated and
* can be used for compatibility with older versions, before key-specs and flags
* were introduced. */
void VM_KeyAtPos(ValkeyModuleCtx *ctx, int pos) {
/* Default flags require full access */
int flags = moduleConvertKeySpecsFlags(CMD_KEY_FULL_ACCESS, 0);
VM_KeyAtPosWithFlags(ctx, pos, flags);
}
/* Return non-zero if a module command, that was declared with the
* flag "getchannels-api", is called in a special way to get the channel positions
* and not to get executed. Otherwise zero is returned. */
int VM_IsChannelsPositionRequest(ValkeyModuleCtx *ctx) {
return (ctx->flags & VALKEYMODULE_CTX_CHANNELS_POS_REQUEST) != 0;
}
/* When a module command is called in order to obtain the position of
* channels, since it was flagged as "getchannels-api" during the
* registration, the command implementation checks for this special call
* using the ValkeyModule_IsChannelsPositionRequest() API and uses this
* function in order to report the channels.
*
* The supported flags are:
* * VALKEYMODULE_CMD_CHANNEL_SUBSCRIBE: This command will subscribe to the channel.
* * VALKEYMODULE_CMD_CHANNEL_UNSUBSCRIBE: This command will unsubscribe from this channel.
* * VALKEYMODULE_CMD_CHANNEL_PUBLISH: This command will publish to this channel.
* * VALKEYMODULE_CMD_CHANNEL_PATTERN: Instead of acting on a specific channel, will act on any
* channel specified by the pattern. This is the same access
* used by the PSUBSCRIBE and PUNSUBSCRIBE commands available
* in Redis. Not intended to be used with PUBLISH permissions.
*
* The following is an example of how it could be used:
*
* if (ValkeyModule_IsChannelsPositionRequest(ctx)) {
* ValkeyModule_ChannelAtPosWithFlags(ctx, 1, VALKEYMODULE_CMD_CHANNEL_SUBSCRIBE | VALKEYMODULE_CMD_CHANNEL_PATTERN);
* ValkeyModule_ChannelAtPosWithFlags(ctx, 1, VALKEYMODULE_CMD_CHANNEL_PUBLISH);
* }
*
* Note: One usage of declaring channels is for evaluating ACL permissions. In this context,
* unsubscribing is always allowed, so commands will only be checked against subscribe and
* publish permissions. This is preferred over using VM_ACLCheckChannelPermissions, since
* it allows the ACLs to be checked before the command is executed. */
void VM_ChannelAtPosWithFlags(ValkeyModuleCtx *ctx, int pos, int flags) {
if (!(ctx->flags & VALKEYMODULE_CTX_CHANNELS_POS_REQUEST) || !ctx->keys_result) return;
if (pos <= 0) return;
getKeysResult *res = ctx->keys_result;
/* Check overflow */
if (res->numkeys == res->size) {
int newsize = res->size + (res->size > 8192 ? 8192 : res->size);
getKeysPrepareResult(res, newsize);
}
int new_flags = 0;
if (flags & VALKEYMODULE_CMD_CHANNEL_SUBSCRIBE) new_flags |= CMD_CHANNEL_SUBSCRIBE;
if (flags & VALKEYMODULE_CMD_CHANNEL_UNSUBSCRIBE) new_flags |= CMD_CHANNEL_UNSUBSCRIBE;
if (flags & VALKEYMODULE_CMD_CHANNEL_PUBLISH) new_flags |= CMD_CHANNEL_PUBLISH;
if (flags & VALKEYMODULE_CMD_CHANNEL_PATTERN) new_flags |= CMD_CHANNEL_PATTERN;
res->keys[res->numkeys].pos = pos;
res->keys[res->numkeys].flags = new_flags;
res->numkeys++;
}
/* Returns 1 if name is valid, otherwise returns 0.
*
* We want to block some chars in module command names that we know can
* mess things up.
*
* There are these characters:
* ' ' (space) - issues with old inline protocol.
* '\r', '\n' (newline) - can mess up the protocol on acl error replies.
* '|' - sub-commands.
* '@' - ACL categories.
* '=', ',' - info and client list fields (':' handled by getSafeInfoString).
* */
int isCommandNameValid(const char *name) {
const char *block_chars = " \r\n|@=,";
if (strpbrk(name, block_chars))
return 0;
return 1;
}
/* Helper for VM_CreateCommand(). Turns a string representing command
* flags into the command flags used by the Redis core.
*
* It returns the set of flags, or -1 if unknown flags are found. */
int64_t commandFlagsFromString(char *s) {
int count, j;
int64_t flags = 0;
sds *tokens = sdssplitlen(s,strlen(s)," ",1,&count);
for (j = 0; j < count; j++) {
char *t = tokens[j];
if (!strcasecmp(t,"write")) flags |= CMD_WRITE;
else if (!strcasecmp(t,"readonly")) flags |= CMD_READONLY;
else if (!strcasecmp(t,"admin")) flags |= CMD_ADMIN;
else if (!strcasecmp(t,"deny-oom")) flags |= CMD_DENYOOM;
else if (!strcasecmp(t,"deny-script")) flags |= CMD_NOSCRIPT;
else if (!strcasecmp(t,"allow-loading")) flags |= CMD_LOADING;
else if (!strcasecmp(t,"pubsub")) flags |= CMD_PUBSUB;
Add command tips to COMMAND DOCS (#10104) Adding command tips (see https://redis.io/topics/command-tips) to commands. Breaking changes: 1. Removed the "random" and "sort_for_script" flags. They are now command tips. (this isn't affecting redis behavior since #9812, but could affect some client applications that's relying on COMMAND command flags) Summary of changes: 1. add BLOCKING flag (new flag) for all commands that could block. The ACL category with the same name is now implicit. 2. move RANDOM flag to a `nondeterministic_output` tip 3. move SORT_FOR_SCRIPT flag to `nondeterministic_output_order` tip 3. add REQUEST_POLICY and RESPONSE_POLICY where appropriate as documented in the tips 4. deprecate (ignore) the `random` flag for RM_CreateCommand Other notes: 1. Proxies need to send `RANDOMKEY` to all shards and then select one key randomly. The other option is to pick a random shard and transfer `RANDOMKEY `to it, but that scheme fails if this specific shard is empty 2. Remove CMD_RANDOM from `XACK` (i.e. XACK does not have RANDOM_OUTPUT) It was added in 9e4fb96ca12476b1c7468b143efca86b478bfb4a, I guess by mistake. Also from `(P)EXPIRETIME` (new command, was flagged "random" by mistake). 3. Add `nondeterministic_output` to `OBJECT ENCODING` (for the same reason `XTRIM` has it: the reply may differ depending on the internal representation in memory) 4. RANDOM on `HGETALL` was wrong (there due to a limitation of the old script sorting logic), now it's `nondeterministic_output_order` 5. Unrelated: Hide CMD_PROTECTED from COMMAND
2022-01-20 10:32:11 +01:00
else if (!strcasecmp(t,"random")) { /* Deprecated. Silently ignore. */ }
else if (!strcasecmp(t,"blocking")) flags |= CMD_BLOCKING;
else if (!strcasecmp(t,"allow-stale")) flags |= CMD_STALE;
else if (!strcasecmp(t,"no-monitor")) flags |= CMD_SKIP_MONITOR;
else if (!strcasecmp(t,"no-slowlog")) flags |= CMD_SKIP_SLOWLOG;
else if (!strcasecmp(t,"fast")) flags |= CMD_FAST;
else if (!strcasecmp(t,"no-auth")) flags |= CMD_NO_AUTH;
else if (!strcasecmp(t,"may-replicate")) flags |= CMD_MAY_REPLICATE;
else if (!strcasecmp(t,"getkeys-api")) flags |= CMD_MODULE_GETKEYS;
else if (!strcasecmp(t,"getchannels-api")) flags |= CMD_MODULE_GETCHANNELS;
else if (!strcasecmp(t,"no-cluster")) flags |= CMD_MODULE_NO_CLUSTER;
else if (!strcasecmp(t,"no-mandatory-keys")) flags |= CMD_NO_MANDATORY_KEYS;
else if (!strcasecmp(t,"allow-busy")) flags |= CMD_ALLOW_BUSY;
else break;
}
sdsfreesplitres(tokens,count);
if (j != count) return -1; /* Some token not processed correctly. */
return flags;
}
ValkeyModuleCommand *moduleCreateCommandProxy(struct ValkeyModule *module, sds declared_name, sds fullname, ValkeyModuleCmdFunc cmdfunc, int64_t flags, int firstkey, int lastkey, int keystep);
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
2016-03-06 13:44:24 +01:00
/* Register a new command in the Redis server, that will be handled by
* calling the function pointer 'cmdfunc' using the ValkeyModule calling
* convention.
*
* The function returns VALKEYMODULE_ERR in these cases:
* - If creation of module command is called outside the ValkeyModule_OnLoad.
* - The specified command is already busy.
* - The command name contains some chars that are not allowed.
* - A set of invalid flags were passed.
*
* Otherwise VALKEYMODULE_OK is returned and the new command is registered.
*
* This function must be called during the initialization of the module
* inside the ValkeyModule_OnLoad() function. Calling this function outside
* of the initialization function is not defined.
*
* The command function type is the following:
*
* int MyCommand_RedisCommand(ValkeyModuleCtx *ctx, ValkeyModuleString **argv, int argc);
*
* And is supposed to always return VALKEYMODULE_OK.
*
* The set of flags 'strflags' specify the behavior of the command, and should
2018-07-30 16:18:56 +03:00
* be passed as a C string composed of space separated words, like for
* example "write deny-oom". The set of flags are:
*
* * **"write"**: The command may modify the data set (it may also read
* from it).
* * **"readonly"**: The command returns data from keys but never writes.
* * **"admin"**: The command is an administrative command (may change
* replication or perform similar tasks).
* * **"deny-oom"**: The command may use additional memory and should be
* denied during out of memory conditions.
* * **"deny-script"**: Don't allow this command in Lua scripts.
* * **"allow-loading"**: Allow this command while the server is loading data.
* Only commands not interacting with the data set
* should be allowed to run in this mode. If not sure
* don't use this flag.
* * **"pubsub"**: The command publishes things on Pub/Sub channels.
* * **"random"**: The command may have different outputs even starting
* from the same input arguments and key values.
Add command tips to COMMAND DOCS (#10104) Adding command tips (see https://redis.io/topics/command-tips) to commands. Breaking changes: 1. Removed the "random" and "sort_for_script" flags. They are now command tips. (this isn't affecting redis behavior since #9812, but could affect some client applications that's relying on COMMAND command flags) Summary of changes: 1. add BLOCKING flag (new flag) for all commands that could block. The ACL category with the same name is now implicit. 2. move RANDOM flag to a `nondeterministic_output` tip 3. move SORT_FOR_SCRIPT flag to `nondeterministic_output_order` tip 3. add REQUEST_POLICY and RESPONSE_POLICY where appropriate as documented in the tips 4. deprecate (ignore) the `random` flag for RM_CreateCommand Other notes: 1. Proxies need to send `RANDOMKEY` to all shards and then select one key randomly. The other option is to pick a random shard and transfer `RANDOMKEY `to it, but that scheme fails if this specific shard is empty 2. Remove CMD_RANDOM from `XACK` (i.e. XACK does not have RANDOM_OUTPUT) It was added in 9e4fb96ca12476b1c7468b143efca86b478bfb4a, I guess by mistake. Also from `(P)EXPIRETIME` (new command, was flagged "random" by mistake). 3. Add `nondeterministic_output` to `OBJECT ENCODING` (for the same reason `XTRIM` has it: the reply may differ depending on the internal representation in memory) 4. RANDOM on `HGETALL` was wrong (there due to a limitation of the old script sorting logic), now it's `nondeterministic_output_order` 5. Unrelated: Hide CMD_PROTECTED from COMMAND
2022-01-20 10:32:11 +01:00
* Starting from Redis 7.0 this flag has been deprecated.
* Declaring a command as "random" can be done using
* command tips, see https://redis.io/topics/command-tips.
* * **"allow-stale"**: The command is allowed to run on slaves that don't
* serve stale data. Don't use if you don't know what
* this means.
2018-07-30 16:18:56 +03:00
* * **"no-monitor"**: Don't propagate the command on monitor. Use this if
* the command has sensitive data among the arguments.
* * **"no-slowlog"**: Don't log this command in the slowlog. Use this if
* the command has sensitive data among the arguments.
* * **"fast"**: The command time complexity is not greater
* than O(log(N)) where N is the size of the collection or
* anything else representing the normal scalability
* issue with the command.
* * **"getkeys-api"**: The command implements the interface to return
* the arguments that are keys. Used when start/stop/step
* is not enough because of the command syntax.
* * **"no-cluster"**: The command should not register in Redis Cluster
* since is not designed to work with it because, for
* example, is unable to report the position of the
* keys, programmatically creates key names, or any
* other reason.
* * **"no-auth"**: This command can be run by an un-authenticated client.
* Normally this is used by a command that is used
* to authenticate a client.
* * **"may-replicate"**: This command may generate replication traffic, even
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
* though it's not a write command.
* * **"no-mandatory-keys"**: All the keys this command may take are optional
Add command tips to COMMAND DOCS (#10104) Adding command tips (see https://redis.io/topics/command-tips) to commands. Breaking changes: 1. Removed the "random" and "sort_for_script" flags. They are now command tips. (this isn't affecting redis behavior since #9812, but could affect some client applications that's relying on COMMAND command flags) Summary of changes: 1. add BLOCKING flag (new flag) for all commands that could block. The ACL category with the same name is now implicit. 2. move RANDOM flag to a `nondeterministic_output` tip 3. move SORT_FOR_SCRIPT flag to `nondeterministic_output_order` tip 3. add REQUEST_POLICY and RESPONSE_POLICY where appropriate as documented in the tips 4. deprecate (ignore) the `random` flag for RM_CreateCommand Other notes: 1. Proxies need to send `RANDOMKEY` to all shards and then select one key randomly. The other option is to pick a random shard and transfer `RANDOMKEY `to it, but that scheme fails if this specific shard is empty 2. Remove CMD_RANDOM from `XACK` (i.e. XACK does not have RANDOM_OUTPUT) It was added in 9e4fb96ca12476b1c7468b143efca86b478bfb4a, I guess by mistake. Also from `(P)EXPIRETIME` (new command, was flagged "random" by mistake). 3. Add `nondeterministic_output` to `OBJECT ENCODING` (for the same reason `XTRIM` has it: the reply may differ depending on the internal representation in memory) 4. RANDOM on `HGETALL` was wrong (there due to a limitation of the old script sorting logic), now it's `nondeterministic_output_order` 5. Unrelated: Hide CMD_PROTECTED from COMMAND
2022-01-20 10:32:11 +01:00
* * **"blocking"**: The command has the potential to block the client.
* * **"allow-busy"**: Permit the command while the server is blocked either by
* a script or by a slow module command, see
* VM_Yield.
* * **"getchannels-api"**: The command implements the interface to return
* the arguments that are channels.
*
* The last three parameters specify which arguments of the new command are
* Redis keys. See https://redis.io/commands/command for more information.
*
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
* * `firstkey`: One-based index of the first argument that's a key.
* Position 0 is always the command name itself.
* 0 for commands with no keys.
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
* * `lastkey`: One-based index of the last argument that's a key.
* Negative numbers refer to counting backwards from the last
* argument (-1 means the last argument provided)
* 0 for commands with no keys.
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
* * `keystep`: Step between first and last key indexes.
* 0 for commands with no keys.
*
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
* This information is used by ACL, Cluster and the `COMMAND` command.
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
*
* NOTE: The scheme described above serves a limited purpose and can
* only be used to find keys that exist at constant indices.
* For non-trivial key arguments, you may pass 0,0,0 and use
* ValkeyModule_SetCommandInfo to set key specs using a more advanced scheme and use
* ValkeyModule_SetCommandACLCategories to set Redis ACL categories of the commands. */
int VM_CreateCommand(ValkeyModuleCtx *ctx, const char *name, ValkeyModuleCmdFunc cmdfunc, const char *strflags, int firstkey, int lastkey, int keystep) {
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
if (!ctx->module->onload)
return VALKEYMODULE_ERR;
int64_t flags = strflags ? commandFlagsFromString((char*)strflags) : 0;
if (flags == -1) return VALKEYMODULE_ERR;
if ((flags & CMD_MODULE_NO_CLUSTER) && server.cluster_enabled)
return VALKEYMODULE_ERR;
/* Check if the command name is valid. */
if (!isCommandNameValid(name))
return VALKEYMODULE_ERR;
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
/* Check if the command name is busy. */
if (lookupCommandByCString(name) != NULL)
return VALKEYMODULE_ERR;
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
sds declared_name = sdsnew(name);
ValkeyModuleCommand *cp = moduleCreateCommandProxy(ctx->module, declared_name, sdsdup(declared_name), cmdfunc, flags, firstkey, lastkey, keystep);
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
cp->rediscmd->arity = cmdfunc ? -1 : -2; /* Default value, can be changed later via dedicated API */
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
serverAssert(dictAdd(server.commands, sdsdup(declared_name), cp->rediscmd) == DICT_OK);
serverAssert(dictAdd(server.orig_commands, sdsdup(declared_name), cp->rediscmd) == DICT_OK);
cp->rediscmd->id = ACLGetCommandID(declared_name); /* ID used for ACL. */
return VALKEYMODULE_OK;
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
}
/* A proxy that help create a module command / subcommand.
*
* 'declared_name': it contains the sub_name, which is just the fullname for non-subcommands.
* 'fullname': sds string representing the command fullname.
*
* Function will take the ownership of both 'declared_name' and 'fullname' SDS.
*/
ValkeyModuleCommand *moduleCreateCommandProxy(struct ValkeyModule *module, sds declared_name, sds fullname, ValkeyModuleCmdFunc cmdfunc, int64_t flags, int firstkey, int lastkey, int keystep) {
2016-03-06 13:44:24 +01:00
struct redisCommand *rediscmd;
ValkeyModuleCommand *cp;
2016-03-06 13:44:24 +01:00
/* Create a command "proxy", which is a structure that is referenced
* in the command table, so that the generic command that works as
* binding between modules and Redis, can know what function to call
* and what the module is. */
cp = zcalloc(sizeof(*cp));
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
cp->module = module;
2016-03-06 13:44:24 +01:00
cp->func = cmdfunc;
cp->rediscmd = zcalloc(sizeof(*rediscmd));
cp->rediscmd->declared_name = declared_name; /* SDS for module commands */
cp->rediscmd->fullname = fullname;
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
cp->rediscmd->group = COMMAND_GROUP_MODULE;
cp->rediscmd->proc = ValkeyModuleCommandDispatcher;
cp->rediscmd->flags = flags | CMD_MODULE;
cp->rediscmd->module_cmd = cp;
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
if (firstkey != 0) {
cp->rediscmd->key_specs_num = 1;
Reimplement cli hints based on command arg docs (#10515) Now that the command argument specs are available at runtime (#9656), this PR addresses #8084 by implementing a complete solution for command-line hinting in `redis-cli`. It correctly handles nearly every case in Redis's complex command argument definitions, including `BLOCK` and `ONEOF` arguments, reordering of optional arguments, and repeated arguments (even when followed by mandatory arguments). It also validates numerically-typed arguments. It may not correctly handle all possible combinations of those, but overall it is quite robust. Arguments are only matched after the space bar is typed, so partial word matching is not supported - that proved to be more confusing than helpful. When the user's current input cannot be matched against the argument specs, hinting is disabled. Partial support has been implemented for legacy (pre-7.0) servers that do not support `COMMAND DOCS`, by falling back to a statically-compiled command argument table. On startup, if the server does not support `COMMAND DOCS`, `redis-cli` will now issue an `INFO SERVER` command to retrieve the server version (unless `HELLO` has already been sent, in which case the server version will be extracted from the reply to `HELLO`). The server version will be used to filter the commands and arguments in the command table, removing those not supported by that version of the server. However, the static table only includes core Redis commands, so with a legacy server hinting will not be supported for module commands. The auto generated help.h and the scripts that generates it are gone. Command and argument tables for the server and CLI use different structs, due primarily to the need to support different runtime data. In order to generate code for both, macros have been added to `commands.def` (previously `commands.c`) to make it possible to configure the code generation differently for different use cases (one linked with redis-server, and one with redis-cli). Also adding a basic testing framework for the command hints based on new (undocumented) command line options to `redis-cli`: `--test_hint 'INPUT'` prints out the command-line hint for a given input string, and `--test_hint_file <filename>` runs a suite of test cases for the hinting mechanism. The test suite is in `tests/assets/test_cli_hint_suite.txt`, and it is run from `tests/integration/redis-cli.tcl`. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
2023-03-30 19:03:56 +03:00
cp->rediscmd->key_specs = zcalloc(sizeof(keySpec));
cp->rediscmd->key_specs[0].flags = CMD_KEY_FULL_ACCESS;
if (flags & CMD_MODULE_GETKEYS)
cp->rediscmd->key_specs[0].flags |= CMD_KEY_VARIABLE_FLAGS;
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
cp->rediscmd->key_specs[0].begin_search_type = KSPEC_BS_INDEX;
cp->rediscmd->key_specs[0].bs.index.pos = firstkey;
cp->rediscmd->key_specs[0].find_keys_type = KSPEC_FK_RANGE;
cp->rediscmd->key_specs[0].fk.range.lastkey = lastkey < 0 ? lastkey : (lastkey-firstkey);
cp->rediscmd->key_specs[0].fk.range.keystep = keystep;
cp->rediscmd->key_specs[0].fk.range.limit = 0;
} else {
cp->rediscmd->key_specs_num = 0;
Reimplement cli hints based on command arg docs (#10515) Now that the command argument specs are available at runtime (#9656), this PR addresses #8084 by implementing a complete solution for command-line hinting in `redis-cli`. It correctly handles nearly every case in Redis's complex command argument definitions, including `BLOCK` and `ONEOF` arguments, reordering of optional arguments, and repeated arguments (even when followed by mandatory arguments). It also validates numerically-typed arguments. It may not correctly handle all possible combinations of those, but overall it is quite robust. Arguments are only matched after the space bar is typed, so partial word matching is not supported - that proved to be more confusing than helpful. When the user's current input cannot be matched against the argument specs, hinting is disabled. Partial support has been implemented for legacy (pre-7.0) servers that do not support `COMMAND DOCS`, by falling back to a statically-compiled command argument table. On startup, if the server does not support `COMMAND DOCS`, `redis-cli` will now issue an `INFO SERVER` command to retrieve the server version (unless `HELLO` has already been sent, in which case the server version will be extracted from the reply to `HELLO`). The server version will be used to filter the commands and arguments in the command table, removing those not supported by that version of the server. However, the static table only includes core Redis commands, so with a legacy server hinting will not be supported for module commands. The auto generated help.h and the scripts that generates it are gone. Command and argument tables for the server and CLI use different structs, due primarily to the need to support different runtime data. In order to generate code for both, macros have been added to `commands.def` (previously `commands.c`) to make it possible to configure the code generation differently for different use cases (one linked with redis-server, and one with redis-cli). Also adding a basic testing framework for the command hints based on new (undocumented) command line options to `redis-cli`: `--test_hint 'INPUT'` prints out the command-line hint for a given input string, and `--test_hint_file <filename>` runs a suite of test cases for the hinting mechanism. The test suite is in `tests/assets/test_cli_hint_suite.txt`, and it is run from `tests/integration/redis-cli.tcl`. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
2023-03-30 19:03:56 +03:00
cp->rediscmd->key_specs = NULL;
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
}
populateCommandLegacyRangeSpec(cp->rediscmd);
2016-03-06 13:44:24 +01:00
cp->rediscmd->microseconds = 0;
cp->rediscmd->calls = 0;
cp->rediscmd->rejected_calls = 0;
cp->rediscmd->failed_calls = 0;
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
return cp;
}
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
/* Get an opaque structure, representing a module command, by command name.
* This structure is used in some of the command-related APIs.
*
* NULL is returned in case of the following errors:
*
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
* * Command not found
* * The command is not a module command
* * The command doesn't belong to the calling module
*/
ValkeyModuleCommand *VM_GetCommand(ValkeyModuleCtx *ctx, const char *name) {
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
struct redisCommand *cmd = lookupCommandByCString(name);
if (!cmd || !(cmd->flags & CMD_MODULE))
return NULL;
ValkeyModuleCommand *cp = cmd->module_cmd;
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
if (cp->module != ctx->module)
return NULL;
return cp;
}
/* Very similar to ValkeyModule_CreateCommand except that it is used to create
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
* a subcommand, associated with another, container, command.
*
* Example: If a module has a configuration command, MODULE.CONFIG, then
* GET and SET should be individual subcommands, while MODULE.CONFIG is
* a command, but should not be registered with a valid `funcptr`:
*
* if (ValkeyModule_CreateCommand(ctx,"module.config",NULL,"",0,0,0) == VALKEYMODULE_ERR)
* return VALKEYMODULE_ERR;
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
*
* ValkeyModuleCommand *parent = ValkeyModule_GetCommand(ctx,,"module.config");
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
*
* if (ValkeyModule_CreateSubcommand(parent,"set",cmd_config_set,"",0,0,0) == VALKEYMODULE_ERR)
* return VALKEYMODULE_ERR;
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
*
* if (ValkeyModule_CreateSubcommand(parent,"get",cmd_config_get,"",0,0,0) == VALKEYMODULE_ERR)
* return VALKEYMODULE_ERR;
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
*
* Returns VALKEYMODULE_OK on success and VALKEYMODULE_ERR in case of the following errors:
*
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
* * Error while parsing `strflags`
* * Command is marked as `no-cluster` but cluster mode is enabled
* * `parent` is already a subcommand (we do not allow more than one level of command nesting)
* * `parent` is a command with an implementation (ValkeyModuleCmdFunc) (A parent command should be a pure container of subcommands)
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
* * `parent` already has a subcommand called `name`
* * Creating a subcommand is called outside of ValkeyModule_OnLoad.
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
*/
int VM_CreateSubcommand(ValkeyModuleCommand *parent, const char *name, ValkeyModuleCmdFunc cmdfunc, const char *strflags, int firstkey, int lastkey, int keystep) {
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
if (!parent->module->onload)
return VALKEYMODULE_ERR;
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
int64_t flags = strflags ? commandFlagsFromString((char*)strflags) : 0;
if (flags == -1) return VALKEYMODULE_ERR;
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
if ((flags & CMD_MODULE_NO_CLUSTER) && server.cluster_enabled)
return VALKEYMODULE_ERR;
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
struct redisCommand *parent_cmd = parent->rediscmd;
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
if (parent_cmd->parent)
return VALKEYMODULE_ERR; /* We don't allow more than one level of subcommands */
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
ValkeyModuleCommand *parent_cp = parent_cmd->module_cmd;
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
if (parent_cp->func)
return VALKEYMODULE_ERR; /* A parent command should be a pure container of subcommands */
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
/* Check if the command name is valid. */
if (!isCommandNameValid(name))
return VALKEYMODULE_ERR;
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
/* Check if the command name is busy within the parent command. */
sds declared_name = sdsnew(name);
if (parent_cmd->subcommands_dict && lookupSubcommand(parent_cmd, declared_name) != NULL) {
sdsfree(declared_name);
return VALKEYMODULE_ERR;
}
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
sds fullname = catSubCommandFullname(parent_cmd->fullname, name);
ValkeyModuleCommand *cp = moduleCreateCommandProxy(parent->module, declared_name, fullname, cmdfunc, flags, firstkey, lastkey, keystep);
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
cp->rediscmd->arity = -2;
commandAddSubcommand(parent_cmd, cp->rediscmd, name);
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
/* Accessors of array elements of structs where the element size is stored
* separately in the version struct. */
static ValkeyModuleCommandHistoryEntry *
moduleCmdHistoryEntryAt(const ValkeyModuleCommandInfoVersion *version,
ValkeyModuleCommandHistoryEntry *entries, int index) {
off_t offset = index * version->sizeof_historyentry;
return (ValkeyModuleCommandHistoryEntry *)((char *)(entries) + offset);
}
static ValkeyModuleCommandKeySpec *
moduleCmdKeySpecAt(const ValkeyModuleCommandInfoVersion *version,
ValkeyModuleCommandKeySpec *keyspecs, int index) {
off_t offset = index * version->sizeof_keyspec;
return (ValkeyModuleCommandKeySpec *)((char *)(keyspecs) + offset);
}
static ValkeyModuleCommandArg *
moduleCmdArgAt(const ValkeyModuleCommandInfoVersion *version,
const ValkeyModuleCommandArg *args, int index) {
off_t offset = index * version->sizeof_arg;
return (ValkeyModuleCommandArg *)((char *)(args) + offset);
}
Reimplement cli hints based on command arg docs (#10515) Now that the command argument specs are available at runtime (#9656), this PR addresses #8084 by implementing a complete solution for command-line hinting in `redis-cli`. It correctly handles nearly every case in Redis's complex command argument definitions, including `BLOCK` and `ONEOF` arguments, reordering of optional arguments, and repeated arguments (even when followed by mandatory arguments). It also validates numerically-typed arguments. It may not correctly handle all possible combinations of those, but overall it is quite robust. Arguments are only matched after the space bar is typed, so partial word matching is not supported - that proved to be more confusing than helpful. When the user's current input cannot be matched against the argument specs, hinting is disabled. Partial support has been implemented for legacy (pre-7.0) servers that do not support `COMMAND DOCS`, by falling back to a statically-compiled command argument table. On startup, if the server does not support `COMMAND DOCS`, `redis-cli` will now issue an `INFO SERVER` command to retrieve the server version (unless `HELLO` has already been sent, in which case the server version will be extracted from the reply to `HELLO`). The server version will be used to filter the commands and arguments in the command table, removing those not supported by that version of the server. However, the static table only includes core Redis commands, so with a legacy server hinting will not be supported for module commands. The auto generated help.h and the scripts that generates it are gone. Command and argument tables for the server and CLI use different structs, due primarily to the need to support different runtime data. In order to generate code for both, macros have been added to `commands.def` (previously `commands.c`) to make it possible to configure the code generation differently for different use cases (one linked with redis-server, and one with redis-cli). Also adding a basic testing framework for the command hints based on new (undocumented) command line options to `redis-cli`: `--test_hint 'INPUT'` prints out the command-line hint for a given input string, and `--test_hint_file <filename>` runs a suite of test cases for the hinting mechanism. The test suite is in `tests/assets/test_cli_hint_suite.txt`, and it is run from `tests/integration/redis-cli.tcl`. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
2023-03-30 19:03:56 +03:00
/* Recursively populate the args structure (setting num_args to the number of
* subargs) and return the number of args. */
int populateArgsStructure(struct redisCommandArg *args) {
if (!args)
return 0;
int count = 0;
while (args->name) {
serverAssert(count < INT_MAX);
args->num_args = populateArgsStructure(args->subargs);
count++;
args++;
}
return count;
}
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
/* Helper for categoryFlagsFromString(). Attempts to find an acl flag representing the provided flag string
* and adds that flag to acl_categories_flags if a match is found.
*
* Returns '1' if acl category flag is recognized or
* returns '0' if not recognized */
int matchAclCategoryFlag(char *flag, int64_t *acl_categories_flags) {
uint64_t this_flag = ACLGetCommandCategoryFlagByName(flag);
if (this_flag) {
*acl_categories_flags |= (int64_t) this_flag;
return 1;
}
return 0; /* Unrecognized */
}
/* Helper for VM_SetCommandACLCategories(). Turns a string representing acl category
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
* flags into the acl category flags used by Redis ACL which allows users to access
* the module commands by acl categories.
*
* It returns the set of acl flags, or -1 if unknown flags are found. */
int64_t categoryFlagsFromString(char *aclflags) {
int count, j;
int64_t acl_categories_flags = 0;
sds *tokens = sdssplitlen(aclflags,strlen(aclflags)," ",1,&count);
for (j = 0; j < count; j++) {
char *t = tokens[j];
if (!matchAclCategoryFlag(t, &acl_categories_flags)) {
serverLog(LL_WARNING,"Unrecognized categories flag %s on module load", t);
break;
}
}
sdsfreesplitres(tokens,count);
if (j != count) return -1; /* Some token not processed correctly. */
return acl_categories_flags;
}
/* ValkeyModule_SetCommandACLCategories can be used to set ACL categories to module
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
* commands and subcommands. The set of ACL categories should be passed as
* a space separated C string 'aclflags'.
*
* Example, the acl flags 'write slow' marks the command as part of the write and
* slow ACL categories.
*
* On success VALKEYMODULE_OK is returned. On error VALKEYMODULE_ERR is returned.
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
*
* This function can only be called during the ValkeyModule_OnLoad function. If called
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
* outside of this function, an error is returned.
*/
int VM_SetCommandACLCategories(ValkeyModuleCommand *command, const char *aclflags) {
if (!command || !command->module || !command->module->onload) return VALKEYMODULE_ERR;
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
int64_t categories_flags = aclflags ? categoryFlagsFromString((char*)aclflags) : 0;
if (categories_flags == -1) return VALKEYMODULE_ERR;
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
struct redisCommand *rcmd = command->rediscmd;
rcmd->acl_categories = categories_flags; /* ACL categories flags for module command */
command->module->num_commands_with_acl_categories++;
return VALKEYMODULE_OK;
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
}
/* Set additional command information.
*
* Affects the output of `COMMAND`, `COMMAND INFO` and `COMMAND DOCS`, Cluster,
* ACL and is used to filter commands with the wrong number of arguments before
* the call reaches the module code.
*
* This function can be called after creating a command using VM_CreateCommand
* and fetching the command pointer using VM_GetCommand. The information can
* only be set once for each command and has the following structure:
*
* typedef struct ValkeyModuleCommandInfo {
* const ValkeyModuleCommandInfoVersion *version;
* const char *summary;
* const char *complexity;
* const char *since;
* ValkeyModuleCommandHistoryEntry *history;
* const char *tips;
* int arity;
* ValkeyModuleCommandKeySpec *key_specs;
* ValkeyModuleCommandArg *args;
* } ValkeyModuleCommandInfo;
*
* All fields except `version` are optional. Explanation of the fields:
*
* - `version`: This field enables compatibility with different Redis versions.
* Always set this field to VALKEYMODULE_COMMAND_INFO_VERSION.
*
* - `summary`: A short description of the command (optional).
*
* - `complexity`: Complexity description (optional).
*
* - `since`: The version where the command was introduced (optional).
* Note: The version specified should be the module's, not Redis version.
*
* - `history`: An array of ValkeyModuleCommandHistoryEntry (optional), which is
* a struct with the following fields:
*
* const char *since;
* const char *changes;
*
* `since` is a version string and `changes` is a string describing the
* changes. The array is terminated by a zeroed entry, i.e. an entry with
* both strings set to NULL.
*
* - `tips`: A string of space-separated tips regarding this command, meant for
* clients and proxies. See https://redis.io/topics/command-tips.
*
* - `arity`: Number of arguments, including the command name itself. A positive
* number specifies an exact number of arguments and a negative number
* specifies a minimum number of arguments, so use -N to say >= N. Redis
* validates a call before passing it to a module, so this can replace an
* arity check inside the module command implementation. A value of 0 (or an
* omitted arity field) is equivalent to -2 if the command has sub commands
* and -1 otherwise.
*
* - `key_specs`: An array of ValkeyModuleCommandKeySpec, terminated by an
* element memset to zero. This is a scheme that tries to describe the
* positions of key arguments better than the old VM_CreateCommand arguments
* `firstkey`, `lastkey`, `keystep` and is needed if those three are not
* enough to describe the key positions. There are two steps to retrieve key
* positions: *begin search* (BS) in which index should find the first key and
* *find keys* (FK) which, relative to the output of BS, describes how can we
* will which arguments are keys. Additionally, there are key specific flags.
*
* Key-specs cause the triplet (firstkey, lastkey, keystep) given in
* VM_CreateCommand to be recomputed, but it is still useful to provide
* these three parameters in VM_CreateCommand, to better support old Redis
* versions where VM_SetCommandInfo is not available.
*
* Note that key-specs don't fully replace the "getkeys-api" (see
* VM_CreateCommand, VM_IsKeysPositionRequest and VM_KeyAtPosWithFlags) so
* it may be a good idea to supply both key-specs and implement the
* getkeys-api.
*
* A key-spec has the following structure:
*
* typedef struct ValkeyModuleCommandKeySpec {
* const char *notes;
* uint64_t flags;
* ValkeyModuleKeySpecBeginSearchType begin_search_type;
* union {
* struct {
* int pos;
* } index;
* struct {
* const char *keyword;
* int startfrom;
* } keyword;
* } bs;
* ValkeyModuleKeySpecFindKeysType find_keys_type;
* union {
* struct {
* int lastkey;
* int keystep;
* int limit;
* } range;
* struct {
* int keynumidx;
* int firstkey;
* int keystep;
* } keynum;
* } fk;
* } ValkeyModuleCommandKeySpec;
*
* Explanation of the fields of ValkeyModuleCommandKeySpec:
*
* * `notes`: Optional notes or clarifications about this key spec.
*
* * `flags`: A bitwise or of key-spec flags described below.
*
* * `begin_search_type`: This describes how the first key is discovered.
* There are two ways to determine the first key:
*
* * `VALKEYMODULE_KSPEC_BS_UNKNOWN`: There is no way to tell where the
* key args start.
* * `VALKEYMODULE_KSPEC_BS_INDEX`: Key args start at a constant index.
* * `VALKEYMODULE_KSPEC_BS_KEYWORD`: Key args start just after a
* specific keyword.
*
* * `bs`: This is a union in which the `index` or `keyword` branch is used
* depending on the value of the `begin_search_type` field.
*
* * `bs.index.pos`: The index from which we start the search for keys.
* (`VALKEYMODULE_KSPEC_BS_INDEX` only.)
*
* * `bs.keyword.keyword`: The keyword (string) that indicates the
* beginning of key arguments. (`VALKEYMODULE_KSPEC_BS_KEYWORD` only.)
*
* * `bs.keyword.startfrom`: An index in argv from which to start
* searching. Can be negative, which means start search from the end,
* in reverse. Example: -2 means to start in reverse from the
* penultimate argument. (`VALKEYMODULE_KSPEC_BS_KEYWORD` only.)
*
* * `find_keys_type`: After the "begin search", this describes which
* arguments are keys. The strategies are:
*
* * `VALKEYMODULE_KSPEC_BS_UNKNOWN`: There is no way to tell where the
* key args are located.
* * `VALKEYMODULE_KSPEC_FK_RANGE`: Keys end at a specific index (or
* relative to the last argument).
* * `VALKEYMODULE_KSPEC_FK_KEYNUM`: There's an argument that contains
* the number of key args somewhere before the keys themselves.
*
* `find_keys_type` and `fk` can be omitted if this keyspec describes
* exactly one key.
*
* * `fk`: This is a union in which the `range` or `keynum` branch is used
* depending on the value of the `find_keys_type` field.
*
* * `fk.range` (for `VALKEYMODULE_KSPEC_FK_RANGE`): A struct with the
* following fields:
*
* * `lastkey`: Index of the last key relative to the result of the
* begin search step. Can be negative, in which case it's not
* relative. -1 indicates the last argument, -2 one before the
* last and so on.
*
* * `keystep`: How many arguments should we skip after finding a
* key, in order to find the next one?
*
* * `limit`: If `lastkey` is -1, we use `limit` to stop the search
* by a factor. 0 and 1 mean no limit. 2 means 1/2 of the
* remaining args, 3 means 1/3, and so on.
*
* * `fk.keynum` (for `VALKEYMODULE_KSPEC_FK_KEYNUM`): A struct with the
* following fields:
*
* * `keynumidx`: Index of the argument containing the number of
* keys to come, relative to the result of the begin search step.
*
* * `firstkey`: Index of the fist key relative to the result of the
* begin search step. (Usually it's just after `keynumidx`, in
* which case it should be set to `keynumidx + 1`.)
*
* * `keystep`: How many arguments should we skip after finding a
* key, in order to find the next one?
*
* Key-spec flags:
*
* The first four refer to what the command actually does with the *value or
* metadata of the key*, and not necessarily the user data or how it affects
* it. Each key-spec may must have exactly one of these. Any operation
* that's not distinctly deletion, overwrite or read-only would be marked as
* RW.
*
* * `VALKEYMODULE_CMD_KEY_RO`: Read-Only. Reads the value of the key, but
* doesn't necessarily return it.
*
* * `VALKEYMODULE_CMD_KEY_RW`: Read-Write. Modifies the data stored in the
* value of the key or its metadata.
*
* * `VALKEYMODULE_CMD_KEY_OW`: Overwrite. Overwrites the data stored in the
* value of the key.
*
* * `VALKEYMODULE_CMD_KEY_RM`: Deletes the key.
*
* The next four refer to *user data inside the value of the key*, not the
* metadata like LRU, type, cardinality. It refers to the logical operation
* on the user's data (actual input strings or TTL), being
* used/returned/copied/changed. It doesn't refer to modification or
* returning of metadata (like type, count, presence of data). ACCESS can be
* combined with one of the write operations INSERT, DELETE or UPDATE. Any
* write that's not an INSERT or a DELETE would be UPDATE.
*
* * `VALKEYMODULE_CMD_KEY_ACCESS`: Returns, copies or uses the user data
* from the value of the key.
*
* * `VALKEYMODULE_CMD_KEY_UPDATE`: Updates data to the value, new value may
* depend on the old value.
*
* * `VALKEYMODULE_CMD_KEY_INSERT`: Adds data to the value with no chance of
* modification or deletion of existing data.
*
* * `VALKEYMODULE_CMD_KEY_DELETE`: Explicitly deletes some content from the
* value of the key.
*
* Other flags:
*
* * `VALKEYMODULE_CMD_KEY_NOT_KEY`: The key is not actually a key, but
* should be routed in cluster mode as if it was a key.
*
* * `VALKEYMODULE_CMD_KEY_INCOMPLETE`: The keyspec might not point out all
* the keys it should cover.
*
* * `VALKEYMODULE_CMD_KEY_VARIABLE_FLAGS`: Some keys might have different
* flags depending on arguments.
*
* - `args`: An array of ValkeyModuleCommandArg, terminated by an element memset
* to zero. ValkeyModuleCommandArg is a structure with at the fields described
* below.
*
* typedef struct ValkeyModuleCommandArg {
* const char *name;
* ValkeyModuleCommandArgType type;
* int key_spec_index;
* const char *token;
* const char *summary;
* const char *since;
* int flags;
* struct ValkeyModuleCommandArg *subargs;
* } ValkeyModuleCommandArg;
*
* Explanation of the fields:
*
* * `name`: Name of the argument.
*
* * `type`: The type of the argument. See below for details. The types
* `VALKEYMODULE_ARG_TYPE_ONEOF` and `VALKEYMODULE_ARG_TYPE_BLOCK` require
* an argument to have sub-arguments, i.e. `subargs`.
*
* * `key_spec_index`: If the `type` is `VALKEYMODULE_ARG_TYPE_KEY` you must
* provide the index of the key-spec associated with this argument. See
* `key_specs` above. If the argument is not a key, you may specify -1.
*
* * `token`: The token preceding the argument (optional). Example: the
* argument `seconds` in `SET` has a token `EX`. If the argument consists
* of only a token (for example `NX` in `SET`) the type should be
* `VALKEYMODULE_ARG_TYPE_PURE_TOKEN` and `value` should be NULL.
*
* * `summary`: A short description of the argument (optional).
*
* * `since`: The first version which included this argument (optional).
*
* * `flags`: A bitwise or of the macros `VALKEYMODULE_CMD_ARG_*`. See below.
*
* * `value`: The display-value of the argument. This string is what should
* be displayed when creating the command syntax from the output of
* `COMMAND`. If `token` is not NULL, it should also be displayed.
*
* Explanation of `ValkeyModuleCommandArgType`:
*
* * `VALKEYMODULE_ARG_TYPE_STRING`: String argument.
* * `VALKEYMODULE_ARG_TYPE_INTEGER`: Integer argument.
* * `VALKEYMODULE_ARG_TYPE_DOUBLE`: Double-precision float argument.
* * `VALKEYMODULE_ARG_TYPE_KEY`: String argument representing a keyname.
* * `VALKEYMODULE_ARG_TYPE_PATTERN`: String, but regex pattern.
* * `VALKEYMODULE_ARG_TYPE_UNIX_TIME`: Integer, but Unix timestamp.
* * `VALKEYMODULE_ARG_TYPE_PURE_TOKEN`: Argument doesn't have a placeholder.
* It's just a token without a value. Example: the `KEEPTTL` option of the
* `SET` command.
* * `VALKEYMODULE_ARG_TYPE_ONEOF`: Used when the user can choose only one of
* a few sub-arguments. Requires `subargs`. Example: the `NX` and `XX`
* options of `SET`.
* * `VALKEYMODULE_ARG_TYPE_BLOCK`: Used when one wants to group together
* several sub-arguments, usually to apply something on all of them, like
* making the entire group "optional". Requires `subargs`. Example: the
* `LIMIT offset count` parameters in `ZRANGE`.
*
* Explanation of the command argument flags:
*
* * `VALKEYMODULE_CMD_ARG_OPTIONAL`: The argument is optional (like GET in
* the SET command).
* * `VALKEYMODULE_CMD_ARG_MULTIPLE`: The argument may repeat itself (like
* key in DEL).
* * `VALKEYMODULE_CMD_ARG_MULTIPLE_TOKEN`: The argument may repeat itself,
* and so does its token (like `GET pattern` in SORT).
*
* On success VALKEYMODULE_OK is returned. On error VALKEYMODULE_ERR is returned
* and `errno` is set to EINVAL if invalid info was provided or EEXIST if info
* has already been set. If the info is invalid, a warning is logged explaining
* which part of the info is invalid and why. */
int VM_SetCommandInfo(ValkeyModuleCommand *command, const ValkeyModuleCommandInfo *info) {
if (!moduleValidateCommandInfo(info)) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
struct redisCommand *cmd = command->rediscmd;
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
/* Check if any info has already been set. Overwriting info involves freeing
* the old info, which is not implemented. */
if (cmd->summary || cmd->complexity || cmd->since || cmd->history ||
cmd->tips || cmd->args ||
!(cmd->key_specs_num == 0 ||
/* Allow key spec populated from legacy (first,last,step) to exist. */
Reimplement cli hints based on command arg docs (#10515) Now that the command argument specs are available at runtime (#9656), this PR addresses #8084 by implementing a complete solution for command-line hinting in `redis-cli`. It correctly handles nearly every case in Redis's complex command argument definitions, including `BLOCK` and `ONEOF` arguments, reordering of optional arguments, and repeated arguments (even when followed by mandatory arguments). It also validates numerically-typed arguments. It may not correctly handle all possible combinations of those, but overall it is quite robust. Arguments are only matched after the space bar is typed, so partial word matching is not supported - that proved to be more confusing than helpful. When the user's current input cannot be matched against the argument specs, hinting is disabled. Partial support has been implemented for legacy (pre-7.0) servers that do not support `COMMAND DOCS`, by falling back to a statically-compiled command argument table. On startup, if the server does not support `COMMAND DOCS`, `redis-cli` will now issue an `INFO SERVER` command to retrieve the server version (unless `HELLO` has already been sent, in which case the server version will be extracted from the reply to `HELLO`). The server version will be used to filter the commands and arguments in the command table, removing those not supported by that version of the server. However, the static table only includes core Redis commands, so with a legacy server hinting will not be supported for module commands. The auto generated help.h and the scripts that generates it are gone. Command and argument tables for the server and CLI use different structs, due primarily to the need to support different runtime data. In order to generate code for both, macros have been added to `commands.def` (previously `commands.c`) to make it possible to configure the code generation differently for different use cases (one linked with redis-server, and one with redis-cli). Also adding a basic testing framework for the command hints based on new (undocumented) command line options to `redis-cli`: `--test_hint 'INPUT'` prints out the command-line hint for a given input string, and `--test_hint_file <filename>` runs a suite of test cases for the hinting mechanism. The test suite is in `tests/assets/test_cli_hint_suite.txt`, and it is run from `tests/integration/redis-cli.tcl`. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
2023-03-30 19:03:56 +03:00
(cmd->key_specs_num == 1 &&
cmd->key_specs[0].begin_search_type == KSPEC_BS_INDEX &&
cmd->key_specs[0].find_keys_type == KSPEC_FK_RANGE))) {
errno = EEXIST;
return VALKEYMODULE_ERR;
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
if (info->summary) cmd->summary = zstrdup(info->summary);
if (info->complexity) cmd->complexity = zstrdup(info->complexity);
if (info->since) cmd->since = zstrdup(info->since);
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
const ValkeyModuleCommandInfoVersion *version = info->version;
if (info->history) {
size_t count = 0;
while (moduleCmdHistoryEntryAt(version, info->history, count)->since)
count++;
serverAssert(count < SIZE_MAX / sizeof(commandHistory));
cmd->history = zmalloc(sizeof(commandHistory) * (count + 1));
for (size_t j = 0; j < count; j++) {
ValkeyModuleCommandHistoryEntry *entry =
moduleCmdHistoryEntryAt(version, info->history, j);
cmd->history[j].since = zstrdup(entry->since);
cmd->history[j].changes = zstrdup(entry->changes);
}
cmd->history[count].since = NULL;
cmd->history[count].changes = NULL;
cmd->num_history = count;
}
if (info->tips) {
int count;
sds *tokens = sdssplitlen(info->tips, strlen(info->tips), " ", 1, &count);
if (tokens) {
cmd->tips = zmalloc(sizeof(char *) * (count + 1));
for (int j = 0; j < count; j++) {
cmd->tips[j] = zstrdup(tokens[j]);
}
cmd->tips[count] = NULL;
cmd->num_tips = count;
sdsfreesplitres(tokens, count);
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
}
if (info->arity) cmd->arity = info->arity;
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
if (info->key_specs) {
/* Count and allocate the key specs. */
size_t count = 0;
while (moduleCmdKeySpecAt(version, info->key_specs, count)->begin_search_type)
count++;
serverAssert(count < INT_MAX);
Reimplement cli hints based on command arg docs (#10515) Now that the command argument specs are available at runtime (#9656), this PR addresses #8084 by implementing a complete solution for command-line hinting in `redis-cli`. It correctly handles nearly every case in Redis's complex command argument definitions, including `BLOCK` and `ONEOF` arguments, reordering of optional arguments, and repeated arguments (even when followed by mandatory arguments). It also validates numerically-typed arguments. It may not correctly handle all possible combinations of those, but overall it is quite robust. Arguments are only matched after the space bar is typed, so partial word matching is not supported - that proved to be more confusing than helpful. When the user's current input cannot be matched against the argument specs, hinting is disabled. Partial support has been implemented for legacy (pre-7.0) servers that do not support `COMMAND DOCS`, by falling back to a statically-compiled command argument table. On startup, if the server does not support `COMMAND DOCS`, `redis-cli` will now issue an `INFO SERVER` command to retrieve the server version (unless `HELLO` has already been sent, in which case the server version will be extracted from the reply to `HELLO`). The server version will be used to filter the commands and arguments in the command table, removing those not supported by that version of the server. However, the static table only includes core Redis commands, so with a legacy server hinting will not be supported for module commands. The auto generated help.h and the scripts that generates it are gone. Command and argument tables for the server and CLI use different structs, due primarily to the need to support different runtime data. In order to generate code for both, macros have been added to `commands.def` (previously `commands.c`) to make it possible to configure the code generation differently for different use cases (one linked with redis-server, and one with redis-cli). Also adding a basic testing framework for the command hints based on new (undocumented) command line options to `redis-cli`: `--test_hint 'INPUT'` prints out the command-line hint for a given input string, and `--test_hint_file <filename>` runs a suite of test cases for the hinting mechanism. The test suite is in `tests/assets/test_cli_hint_suite.txt`, and it is run from `tests/integration/redis-cli.tcl`. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
2023-03-30 19:03:56 +03:00
zfree(cmd->key_specs);
cmd->key_specs = zmalloc(sizeof(keySpec) * count);
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
/* Copy the contents of the ValkeyModuleCommandKeySpec array. */
cmd->key_specs_num = count;
for (size_t j = 0; j < count; j++) {
ValkeyModuleCommandKeySpec *spec =
moduleCmdKeySpecAt(version, info->key_specs, j);
cmd->key_specs[j].notes = spec->notes ? zstrdup(spec->notes) : NULL;
cmd->key_specs[j].flags = moduleConvertKeySpecsFlags(spec->flags, 1);
switch (spec->begin_search_type) {
case VALKEYMODULE_KSPEC_BS_UNKNOWN:
cmd->key_specs[j].begin_search_type = KSPEC_BS_UNKNOWN;
break;
case VALKEYMODULE_KSPEC_BS_INDEX:
cmd->key_specs[j].begin_search_type = KSPEC_BS_INDEX;
cmd->key_specs[j].bs.index.pos = spec->bs.index.pos;
break;
case VALKEYMODULE_KSPEC_BS_KEYWORD:
cmd->key_specs[j].begin_search_type = KSPEC_BS_KEYWORD;
cmd->key_specs[j].bs.keyword.keyword = zstrdup(spec->bs.keyword.keyword);
cmd->key_specs[j].bs.keyword.startfrom = spec->bs.keyword.startfrom;
break;
default:
/* Can't happen; stopped in moduleValidateCommandInfo(). */
serverPanic("Unknown begin_search_type");
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
switch (spec->find_keys_type) {
case VALKEYMODULE_KSPEC_FK_OMITTED:
/* Omitted field is shorthand to say that it's a single key. */
cmd->key_specs[j].find_keys_type = KSPEC_FK_RANGE;
cmd->key_specs[j].fk.range.lastkey = 0;
cmd->key_specs[j].fk.range.keystep = 1;
cmd->key_specs[j].fk.range.limit = 0;
break;
case VALKEYMODULE_KSPEC_FK_UNKNOWN:
cmd->key_specs[j].find_keys_type = KSPEC_FK_UNKNOWN;
break;
case VALKEYMODULE_KSPEC_FK_RANGE:
cmd->key_specs[j].find_keys_type = KSPEC_FK_RANGE;
cmd->key_specs[j].fk.range.lastkey = spec->fk.range.lastkey;
cmd->key_specs[j].fk.range.keystep = spec->fk.range.keystep;
cmd->key_specs[j].fk.range.limit = spec->fk.range.limit;
break;
case VALKEYMODULE_KSPEC_FK_KEYNUM:
cmd->key_specs[j].find_keys_type = KSPEC_FK_KEYNUM;
cmd->key_specs[j].fk.keynum.keynumidx = spec->fk.keynum.keynumidx;
cmd->key_specs[j].fk.keynum.firstkey = spec->fk.keynum.firstkey;
cmd->key_specs[j].fk.keynum.keystep = spec->fk.keynum.keystep;
break;
default:
/* Can't happen; stopped in moduleValidateCommandInfo(). */
serverPanic("Unknown find_keys_type");
}
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
/* Update the legacy (first,last,step) spec and "movablekeys" flag used by the COMMAND command,
* by trying to "glue" consecutive range key specs. */
populateCommandLegacyRangeSpec(cmd);
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
if (info->args) {
cmd->args = moduleCopyCommandArgs(info->args, version);
/* Populate arg.num_args with the number of subargs, recursively */
cmd->num_args = populateArgsStructure(cmd->args);
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
/* Fields added in future versions to be added here, under conditions like
* `if (info->version >= 2) { access version 2 fields here }` */
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
return VALKEYMODULE_OK;
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
}
/* Returns 1 if v is a power of two, 0 otherwise. */
static inline int isPowerOfTwo(uint64_t v) {
return v && !(v & (v - 1));
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
/* Returns 1 if the command info is valid and 0 otherwise. */
static int moduleValidateCommandInfo(const ValkeyModuleCommandInfo *info) {
const ValkeyModuleCommandInfoVersion *version = info->version;
if (!version) {
serverLog(LL_WARNING, "Invalid command info: version missing");
return 0;
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
/* No validation for the fields summary, complexity, since, tips (strings or
* NULL) and arity (any integer). */
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
/* History: If since is set, changes must also be set. */
if (info->history) {
for (size_t j = 0;
moduleCmdHistoryEntryAt(version, info->history, j)->since;
j++)
{
if (!moduleCmdHistoryEntryAt(version, info->history, j)->changes) {
serverLog(LL_WARNING, "Invalid command info: history[%zd].changes missing", j);
return 0;
}
}
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
/* Key specs. */
if (info->key_specs) {
for (size_t j = 0;
moduleCmdKeySpecAt(version, info->key_specs, j)->begin_search_type;
j++)
{
ValkeyModuleCommandKeySpec *spec =
moduleCmdKeySpecAt(version, info->key_specs, j);
if (j >= INT_MAX) {
serverLog(LL_WARNING, "Invalid command info: Too many key specs");
return 0; /* redisCommand.key_specs_num is an int. */
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
/* Flags. Exactly one flag in a group is set if and only if the
* masked bits is a power of two. */
uint64_t key_flags =
VALKEYMODULE_CMD_KEY_RO | VALKEYMODULE_CMD_KEY_RW |
VALKEYMODULE_CMD_KEY_OW | VALKEYMODULE_CMD_KEY_RM;
uint64_t write_flags =
VALKEYMODULE_CMD_KEY_INSERT | VALKEYMODULE_CMD_KEY_DELETE |
VALKEYMODULE_CMD_KEY_UPDATE;
if (!isPowerOfTwo(spec->flags & key_flags)) {
serverLog(LL_WARNING,
"Invalid command info: key_specs[%zd].flags: "
"Exactly one of the flags RO, RW, OW, RM required", j);
return 0;
}
if ((spec->flags & write_flags) != 0 &&
!isPowerOfTwo(spec->flags & write_flags))
{
serverLog(LL_WARNING,
"Invalid command info: key_specs[%zd].flags: "
"INSERT, DELETE and UPDATE are mutually exclusive", j);
return 0;
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
switch (spec->begin_search_type) {
case VALKEYMODULE_KSPEC_BS_UNKNOWN: break;
case VALKEYMODULE_KSPEC_BS_INDEX: break;
case VALKEYMODULE_KSPEC_BS_KEYWORD:
if (spec->bs.keyword.keyword == NULL) {
serverLog(LL_WARNING,
"Invalid command info: key_specs[%zd].bs.keyword.keyword "
"required when begin_search_type is KEYWORD", j);
return 0;
}
break;
default:
serverLog(LL_WARNING,
"Invalid command info: key_specs[%zd].begin_search_type: "
"Invalid value %d", j, spec->begin_search_type);
return 0;
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
/* Validate find_keys_type. */
switch (spec->find_keys_type) {
case VALKEYMODULE_KSPEC_FK_OMITTED: break; /* short for RANGE {0,1,0} */
case VALKEYMODULE_KSPEC_FK_UNKNOWN: break;
case VALKEYMODULE_KSPEC_FK_RANGE: break;
case VALKEYMODULE_KSPEC_FK_KEYNUM: break;
default:
serverLog(LL_WARNING,
"Invalid command info: key_specs[%zd].find_keys_type: "
"Invalid value %d", j, spec->find_keys_type);
return 0;
}
}
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
/* Args, subargs (recursive) */
return moduleValidateCommandArgs(info->args, version);
}
/* When from_api is true, converts from VALKEYMODULE_CMD_KEY_* flags to CMD_KEY_* flags.
* When from_api is false, converts from CMD_KEY_* flags to VALKEYMODULE_CMD_KEY_* flags. */
static int64_t moduleConvertKeySpecsFlags(int64_t flags, int from_api) {
int64_t out = 0;
int64_t map[][2] = {
{VALKEYMODULE_CMD_KEY_RO, CMD_KEY_RO},
{VALKEYMODULE_CMD_KEY_RW, CMD_KEY_RW},
{VALKEYMODULE_CMD_KEY_OW, CMD_KEY_OW},
{VALKEYMODULE_CMD_KEY_RM, CMD_KEY_RM},
{VALKEYMODULE_CMD_KEY_ACCESS, CMD_KEY_ACCESS},
{VALKEYMODULE_CMD_KEY_INSERT, CMD_KEY_INSERT},
{VALKEYMODULE_CMD_KEY_UPDATE, CMD_KEY_UPDATE},
{VALKEYMODULE_CMD_KEY_DELETE, CMD_KEY_DELETE},
{VALKEYMODULE_CMD_KEY_NOT_KEY, CMD_KEY_NOT_KEY},
{VALKEYMODULE_CMD_KEY_INCOMPLETE, CMD_KEY_INCOMPLETE},
{VALKEYMODULE_CMD_KEY_VARIABLE_FLAGS, CMD_KEY_VARIABLE_FLAGS},
{0,0}};
int from_idx = from_api ? 0 : 1, to_idx = !from_idx;
for (int i=0; map[i][0]; i++)
if (flags & map[i][from_idx]) out |= map[i][to_idx];
return out;
}
/* Validates an array of ValkeyModuleCommandArg. Returns 1 if it's valid and 0 if
* it's invalid. */
static int moduleValidateCommandArgs(ValkeyModuleCommandArg *args,
const ValkeyModuleCommandInfoVersion *version) {
if (args == NULL) return 1; /* Missing args is OK. */
for (size_t j = 0; moduleCmdArgAt(version, args, j)->name != NULL; j++) {
ValkeyModuleCommandArg *arg = moduleCmdArgAt(version, args, j);
int arg_type_error = 0;
moduleConvertArgType(arg->type, &arg_type_error);
if (arg_type_error) {
serverLog(LL_WARNING,
"Invalid command info: Argument \"%s\": Undefined type %d",
arg->name, arg->type);
return 0;
}
if (arg->type == VALKEYMODULE_ARG_TYPE_PURE_TOKEN && !arg->token) {
serverLog(LL_WARNING,
"Invalid command info: Argument \"%s\": "
"token required when type is PURE_TOKEN", args[j].name);
return 0;
}
if (arg->type == VALKEYMODULE_ARG_TYPE_KEY) {
if (arg->key_spec_index < 0) {
serverLog(LL_WARNING,
"Invalid command info: Argument \"%s\": "
"key_spec_index required when type is KEY",
arg->name);
return 0;
}
} else if (arg->key_spec_index != -1 && arg->key_spec_index != 0) {
/* 0 is allowed for convenience, to allow it to be omitted in
* compound struct literals on the form `.field = value`. */
serverLog(LL_WARNING,
"Invalid command info: Argument \"%s\": "
"key_spec_index specified but type isn't KEY",
arg->name);
return 0;
}
if (arg->flags & ~(_VALKEYMODULE_CMD_ARG_NEXT - 1)) {
serverLog(LL_WARNING,
"Invalid command info: Argument \"%s\": Invalid flags",
arg->name);
return 0;
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
if (arg->type == VALKEYMODULE_ARG_TYPE_ONEOF ||
arg->type == VALKEYMODULE_ARG_TYPE_BLOCK)
{
if (arg->subargs == NULL) {
serverLog(LL_WARNING,
"Invalid command info: Argument \"%s\": "
"subargs required when type is ONEOF or BLOCK",
arg->name);
return 0;
}
if (!moduleValidateCommandArgs(arg->subargs, version)) return 0;
} else {
if (arg->subargs != NULL) {
serverLog(LL_WARNING,
"Invalid command info: Argument \"%s\": "
"subargs specified but type isn't ONEOF nor BLOCK",
arg->name);
return 0;
}
}
}
return 1;
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
}
/* Converts an array of ValkeyModuleCommandArg into a freshly allocated array of
* struct redisCommandArg. */
static struct redisCommandArg *moduleCopyCommandArgs(ValkeyModuleCommandArg *args,
const ValkeyModuleCommandInfoVersion *version) {
size_t count = 0;
while (moduleCmdArgAt(version, args, count)->name) count++;
serverAssert(count < SIZE_MAX / sizeof(struct redisCommandArg));
struct redisCommandArg *realargs = zcalloc((count+1) * sizeof(redisCommandArg));
for (size_t j = 0; j < count; j++) {
ValkeyModuleCommandArg *arg = moduleCmdArgAt(version, args, j);
realargs[j].name = zstrdup(arg->name);
realargs[j].type = moduleConvertArgType(arg->type, NULL);
if (arg->type == VALKEYMODULE_ARG_TYPE_KEY)
realargs[j].key_spec_index = arg->key_spec_index;
else
realargs[j].key_spec_index = -1;
if (arg->token) realargs[j].token = zstrdup(arg->token);
if (arg->summary) realargs[j].summary = zstrdup(arg->summary);
if (arg->since) realargs[j].since = zstrdup(arg->since);
if (arg->deprecated_since) realargs[j].deprecated_since = zstrdup(arg->deprecated_since);
if (arg->display_text) realargs[j].display_text = zstrdup(arg->display_text);
realargs[j].flags = moduleConvertArgFlags(arg->flags);
if (arg->subargs) realargs[j].subargs = moduleCopyCommandArgs(arg->subargs, version);
}
return realargs;
}
static redisCommandArgType moduleConvertArgType(ValkeyModuleCommandArgType type, int *error) {
if (error) *error = 0;
switch (type) {
case VALKEYMODULE_ARG_TYPE_STRING: return ARG_TYPE_STRING;
case VALKEYMODULE_ARG_TYPE_INTEGER: return ARG_TYPE_INTEGER;
case VALKEYMODULE_ARG_TYPE_DOUBLE: return ARG_TYPE_DOUBLE;
case VALKEYMODULE_ARG_TYPE_KEY: return ARG_TYPE_KEY;
case VALKEYMODULE_ARG_TYPE_PATTERN: return ARG_TYPE_PATTERN;
case VALKEYMODULE_ARG_TYPE_UNIX_TIME: return ARG_TYPE_UNIX_TIME;
case VALKEYMODULE_ARG_TYPE_PURE_TOKEN: return ARG_TYPE_PURE_TOKEN;
case VALKEYMODULE_ARG_TYPE_ONEOF: return ARG_TYPE_ONEOF;
case VALKEYMODULE_ARG_TYPE_BLOCK: return ARG_TYPE_BLOCK;
default:
if (error) *error = 1;
return -1;
}
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
static int moduleConvertArgFlags(int flags) {
int realflags = 0;
if (flags & VALKEYMODULE_CMD_ARG_OPTIONAL) realflags |= CMD_ARG_OPTIONAL;
if (flags & VALKEYMODULE_CMD_ARG_MULTIPLE) realflags |= CMD_ARG_MULTIPLE;
if (flags & VALKEYMODULE_CMD_ARG_MULTIPLE_TOKEN) realflags |= CMD_ARG_MULTIPLE_TOKEN;
return realflags;
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
}
/* Return `struct ValkeyModule *` as `void *` to avoid exposing it outside of module.c. */
void *moduleGetHandleByName(char *modulename) {
return dictFetchValue(modules,modulename);
}
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
/* Returns 1 if `cmd` is a command of the module `modulename`. 0 otherwise. */
int moduleIsModuleCommand(void *module_handle, struct redisCommand *cmd) {
if (cmd->proc != ValkeyModuleCommandDispatcher)
return 0;
if (module_handle == NULL)
return 0;
ValkeyModuleCommand *cp = cmd->module_cmd;
return (cp->module == module_handle);
A better approach for COMMAND INFO for movablekeys commands (#8324) Fix #7297 The problem: Today, there is no way for a client library or app to know the key name indexes for commands such as ZUNIONSTORE/EVAL and others with "numkeys", since COMMAND INFO returns no useful info for them. For cluster-aware redis clients, this requires to 'patch' the client library code specifically for each of these commands or to resolve each execution of these commands with COMMAND GETKEYS. The solution: Introducing key specs other than the legacy "range" (first,last,step) The 8th element of the command info array, if exists, holds an array of key specs. The array may be empty, which indicates the command doesn't take any key arguments or may contain one or more key-specs, each one may leads to the discovery of 0 or more key arguments. A client library that doesn't support this key-spec feature will keep using the first,last,step and movablekeys flag which will obviously remain unchanged. A client that supports this key-specs feature needs only to look at the key-specs array. If it finds an unrecognized spec, it must resort to using COMMAND GETKEYS if it wishes to get all key name arguments, but if all it needs is one key in order to know which cluster node to use, then maybe another spec (if the command has several) can supply that, and there's no need to use GETKEYS. Each spec is an array of arguments, first one is the spec name, the second is an array of flags, and the third is an array containing details about the spec (specific meaning for each spec type) The initial flags we support are "read" and "write" indicating if the keys that this key-spec finds are used for read or for write. clients should ignore any unfamiliar flags. In order to easily find the positions of keys in a given array of args we introduce keys specs. There are two logical steps of key specs: 1. `start_search`: Given an array of args, indicate where we should start searching for keys 2. `find_keys`: Given the output of start_search and an array of args, indicate all possible indices of keys. ### start_search step specs - `index`: specify an argument index explicitly - `index`: 0 based index (1 means the first command argument) - `keyword`: specify a string to match in `argv`. We should start searching for keys just after the keyword appears. - `keyword`: the string to search for - `start_search`: an index from which to start the keyword search (can be negative, which means to search from the end) Examples: - `SET` has start_search of type `index` with value `1` - `XREAD` has start_search of type `keyword` with value `[“STREAMS”,1]` - `MIGRATE` has start_search of type `keyword` with value `[“KEYS”,-2]` ### find_keys step specs - `range`: specify `[count, step, limit]`. - `lastkey`: index of the last key. relative to the index returned from begin_search. -1 indicating till the last argument, -2 one before the last - `step`: how many args should we skip after finding a key, in order to find the next one - `limit`: if count is -1, we use limit to stop the search by a factor. 0 and 1 mean no limit. 2 means ½ of the remaining args, 3 means ⅓, and so on. - “keynum”: specify `[keynum_index, first_key_index, step]`. - `keynum_index`: is relative to the return of the `start_search` spec. - `first_key_index`: is relative to `keynum_index`. - `step`: how many args should we skip after finding a key, in order to find the next one Examples: - `SET` has `range` of `[0,1,0]` - `MSET` has `range` of `[-1,2,0]` - `XREAD` has `range` of `[-1,1,2]` - `ZUNION` has `start_search` of type `index` with value `1` and `find_keys` of type `keynum` with value `[0,1,1]` - `AI.DAGRUN` has `start_search` of type `keyword` with value `[“LOAD“,1]` and `find_keys` of type `keynum` with value `[0,1,1]` (see https://oss.redislabs.com/redisai/master/commands/#aidagrun) Note: this solution is not perfect as the module writers can come up with anything, but at least we will be able to find the key args of the vast majority of commands. If one of the above specs can’t describe the key positions, the module writer can always fall back to the `getkeys-api` option. Some keys cannot be found easily (`KEYS` in `MIGRATE`: Imagine the argument for `AUTH` is the string “KEYS” - we will start searching in the wrong index). The guarantee is that the specs may be incomplete (`incomplete` will be specified in the spec to denote that) but we never report false information (assuming the command syntax is correct). For `MIGRATE` we start searching from the end - `startfrom=-1` - and if one of the keys is actually called "keys" we will report only a subset of all keys - hence the `incomplete` flag. Some `incomplete` specs can be completely empty (i.e. UNKNOWN begin_search) which should tell the client that COMMAND GETKEYS (or any other way to get the keys) must be used (Example: For `SORT` there is no way to describe the STORE keyword spec, as the word "store" can appear anywhere in the command). We will expose these key specs in the `COMMAND` command so that clients can learn, on startup, where the keys are for all commands instead of holding hardcoded tables or use `COMMAND GETKEYS` in runtime. Comments: 1. Redis doesn't internally use the new specs, they are only used for COMMAND output. 2. In order to support the current COMMAND INFO format (reply array indices 4, 5, 6) we created a synthetic range, called legacy_range, that, if possible, is built according to the new specs. 3. Redis currently uses only getkeys_proc or the legacy_range to get the keys indices (in COMMAND GETKEYS for example). "incomplete" specs: the command we have issues with are MIGRATE, STRALGO, and SORT for MIGRATE, because the token KEYS, if exists, must be the last token, we can search in reverse. it one of the keys is actually the string "keys" will return just a subset of the keys (hence, it's "incomplete") for SORT and STRALGO we can use this heuristic (the keys can be anywhere in the command) and therefore we added a key spec that is both "incomplete" and of "unknown type" if a client encounters an "incomplete" spec it means that it must find a different way (either COMMAND GETKEYS or have its own parser) to retrieve the keys. please note that all commands, apart from the three mentioned above, have "complete" key specs
2021-09-15 10:10:29 +02:00
}
/* --------------------------------------------------------------------------
* ## Module information and time measurement
* -------------------------------------------------------------------------- */
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
int moduleListConfigMatch(void *config, void *name) {
return strcasecmp(((ModuleConfig *) config)->name, (char *) name) == 0;
}
void moduleListFree(void *config) {
ModuleConfig *module_config = (ModuleConfig *) config;
sdsfree(module_config->name);
zfree(config);
}
void VM_SetModuleAttribs(ValkeyModuleCtx *ctx, const char *name, int ver, int apiver) {
/* Called by VM_Init() to setup the `ctx->module` structure.
*
* This is an internal function, Redis modules developers don't need
* to use it. */
ValkeyModule *module;
2016-03-06 13:44:24 +01:00
if (ctx->module != NULL) return;
module = zmalloc(sizeof(*module));
module->name = sdsnew(name);
2016-03-06 13:44:24 +01:00
module->ver = ver;
module->apiver = apiver;
module->types = listCreate();
module->usedby = listCreate();
module->using = listCreate();
module->filters = listCreate();
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
module->module_configs = listCreate();
listSetMatchMethod(module->module_configs, moduleListConfigMatch);
listSetFreeMethod(module->module_configs, moduleListFree);
2019-03-24 12:00:33 +02:00
module->in_call = 0;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
module->configs_initialized = 0;
module->in_hook = 0;
module->options = 0;
module->info_cb = 0;
module->defrag_cb = 0;
module->loadmod = NULL;
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
module->num_commands_with_acl_categories = 0;
module->onload = 1;
2016-03-06 13:44:24 +01:00
ctx->module = module;
}
2017-09-28 17:38:40 +08:00
/* Return non-zero if the module name is busy.
* Otherwise zero is returned. */
int VM_IsModuleNameBusy(const char *name) {
2017-09-28 17:38:40 +08:00
sds modulename = sdsnew(name);
dictEntry *de = dictFind(modules,modulename);
sdsfree(modulename);
return de != NULL;
2017-09-28 17:38:40 +08:00
}
2016-10-07 16:34:19 +02:00
/* Return the current UNIX time in milliseconds. */
mstime_t VM_Milliseconds(void) {
2016-10-07 16:34:19 +02:00
return mstime();
}
/* Return counter of micro-seconds relative to an arbitrary point in time. */
uint64_t VM_MonotonicMicroseconds(void) {
return getMonotonicUs();
}
/* Return the current UNIX time in microseconds */
ustime_t VM_Microseconds(void) {
return ustime();
}
/* Return the cached UNIX time in microseconds.
* It is updated in the server cron job and before executing a command.
* It is useful for complex call stacks, such as a command causing a
* key space notification, causing a module to execute a ValkeyModule_Call,
* causing another notification, etc.
* It makes sense that all this callbacks would use the same clock. */
ustime_t VM_CachedMicroseconds(void) {
return server.ustime;
}
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
/* Mark a point in time that will be used as the start time to calculate
* the elapsed execution time when VM_BlockedClientMeasureTimeEnd() is called.
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
* Within the same command, you can call multiple times
* VM_BlockedClientMeasureTimeStart() and VM_BlockedClientMeasureTimeEnd()
* to accumulate independent time intervals to the background duration.
* This method always return VALKEYMODULE_OK. */
int VM_BlockedClientMeasureTimeStart(ValkeyModuleBlockedClient *bc) {
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
elapsedStart(&(bc->background_timer));
return VALKEYMODULE_OK;
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
}
/* Mark a point in time that will be used as the end time
* to calculate the elapsed execution time.
* On success VALKEYMODULE_OK is returned.
* This method only returns VALKEYMODULE_ERR if no start time was
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
* previously defined ( meaning RM_BlockedClientMeasureTimeStart was not called ). */
int VM_BlockedClientMeasureTimeEnd(ValkeyModuleBlockedClient *bc) {
// If the counter is 0 then we haven't called VM_BlockedClientMeasureTimeStart
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
if (!bc->background_timer)
return VALKEYMODULE_ERR;
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
bc->background_duration += elapsedUs(bc->background_timer);
return VALKEYMODULE_OK;
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
}
/* This API allows modules to let Redis process background tasks, and some
* commands during long blocking execution of a module command.
* The module can call this API periodically.
* The flags is a bit mask of these:
*
* - `VALKEYMODULE_YIELD_FLAG_NONE`: No special flags, can perform some background
* operations, but not process client commands.
* - `VALKEYMODULE_YIELD_FLAG_CLIENTS`: Redis can also process client commands.
*
* The `busy_reply` argument is optional, and can be used to control the verbose
* error string after the `-BUSY` error code.
*
* When the `VALKEYMODULE_YIELD_FLAG_CLIENTS` is used, Redis will only start
* processing client commands after the time defined by the
* `busy-reply-threshold` config, in which case Redis will start rejecting most
* commands with `-BUSY` error, but allow the ones marked with the `allow-busy`
* flag to be executed.
* This API can also be used in thread safe context (while locked), and during
* loading (in the `rdb_load` callback, in which case it'll reject commands with
* the -LOADING error)
*/
void VM_Yield(ValkeyModuleCtx *ctx, int flags, const char *busy_reply) {
static int yield_nesting = 0;
/* Avoid nested calls to VM_Yield */
if (yield_nesting)
return;
yield_nesting++;
long long now = getMonotonicUs();
if (now >= ctx->next_yield_time) {
/* In loading mode, there's no need to handle busy_module_yield_reply,
* and busy_module_yield_flags, since redis is anyway rejecting all
* commands with -LOADING. */
if (server.loading) {
/* Let redis process events */
processEventsWhileBlocked();
} else {
const char *prev_busy_module_yield_reply = server.busy_module_yield_reply;
server.busy_module_yield_reply = busy_reply;
/* start the blocking operation if not already started. */
if (!server.busy_module_yield_flags) {
server.busy_module_yield_flags = BUSY_MODULE_YIELD_EVENTS;
blockingOperationStarts();
if (server.current_client)
protectClient(server.current_client);
}
if (flags & VALKEYMODULE_YIELD_FLAG_CLIENTS)
server.busy_module_yield_flags |= BUSY_MODULE_YIELD_CLIENTS;
/* Let redis process events */
processEventsWhileBlocked();
server.busy_module_yield_reply = prev_busy_module_yield_reply;
/* Possibly restore the previous flags in case of two nested contexts
* that use this API with different flags, but keep the first bit
* (PROCESS_EVENTS) set, so we know to call blockingOperationEnds on time. */
server.busy_module_yield_flags &= ~BUSY_MODULE_YIELD_CLIENTS;
}
/* decide when the next event should fire. */
ctx->next_yield_time = now + 1000000 / server.hz;
}
yield_nesting--;
}
/* Set flags defining capabilities or behavior bit flags.
*
* VALKEYMODULE_OPTIONS_HANDLE_IO_ERRORS:
* Generally, modules don't need to bother with this, as the process will just
* terminate if a read error happens, however, setting this flag would allow
* repl-diskless-load to work if enabled.
* The module should use ValkeyModule_IsIOError after reads, before using the
* data that was read, and in case of error, propagate it upwards, and also be
* able to release the partially populated value and all it's allocations.
*
* VALKEYMODULE_OPTION_NO_IMPLICIT_SIGNAL_MODIFIED:
* See VM_SignalModifiedKey().
Replica keep serving data during repl-diskless-load=swapdb for better availability (#9323) For diskless replication in swapdb mode, considering we already spend replica memory having a backup of current db to restore in case of failure, we can have the following benefits by instead swapping database only in case we succeeded in transferring db from master: - Avoid `LOADING` response during failed and successful synchronization for cases where the replica is already up and running with data. - Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping. - This could be implemented also for disk replication with similar benefits if consumers are willing to spend the extra memory usage. General notes: - The concept of `backupDb` becomes `tempDb` for clarity. - Async loading mode will only kick in if the replica is syncing from a master that has the same repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline. - New property in INFO: `async_loading` to differentiate from the blocking loading - Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db and the tempDb that is passed around. - Because this is affecting replicas only, we assume that if they are not readonly and write commands during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET here anyways to avoid complications. Considerations for review: - We have many cases where server.loading flag is used and even though I tried my best, there may be cases where async_loading should be checked as well and cases where it shouldn't (would require very good understanding of whole code) - Several places that had different behavior depending on the loading flag where actually meant to just handle commands coming from the AOF client differently than ones coming from real clients, changed to check CLIENT_ID_AOF instead. **Additional for Release Notes** - Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't contribute on triggering next database SAVE - New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING - Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event. Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED, ABORTED and COMPLETED. - New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions to allow modules to declare they support the diskless replication with async loading (when absent, we fall back to disk-based loading). Co-authored-by: Eduardo Semprebon <edus@saxobank.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2021-11-04 09:46:50 +01:00
*
* VALKEYMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD:
Replica keep serving data during repl-diskless-load=swapdb for better availability (#9323) For diskless replication in swapdb mode, considering we already spend replica memory having a backup of current db to restore in case of failure, we can have the following benefits by instead swapping database only in case we succeeded in transferring db from master: - Avoid `LOADING` response during failed and successful synchronization for cases where the replica is already up and running with data. - Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping. - This could be implemented also for disk replication with similar benefits if consumers are willing to spend the extra memory usage. General notes: - The concept of `backupDb` becomes `tempDb` for clarity. - Async loading mode will only kick in if the replica is syncing from a master that has the same repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline. - New property in INFO: `async_loading` to differentiate from the blocking loading - Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db and the tempDb that is passed around. - Because this is affecting replicas only, we assume that if they are not readonly and write commands during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET here anyways to avoid complications. Considerations for review: - We have many cases where server.loading flag is used and even though I tried my best, there may be cases where async_loading should be checked as well and cases where it shouldn't (would require very good understanding of whole code) - Several places that had different behavior depending on the loading flag where actually meant to just handle commands coming from the AOF client differently than ones coming from real clients, changed to check CLIENT_ID_AOF instead. **Additional for Release Notes** - Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't contribute on triggering next database SAVE - New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING - Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event. Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED, ABORTED and COMPLETED. - New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions to allow modules to declare they support the diskless replication with async loading (when absent, we fall back to disk-based loading). Co-authored-by: Eduardo Semprebon <edus@saxobank.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2021-11-04 09:46:50 +01:00
* Setting this flag indicates module awareness of diskless async replication (repl-diskless-load=swapdb)
* and that redis could be serving reads during replication instead of blocking with LOADING status.
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
*
* VALKEYMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS:
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
* Declare that the module wants to get nested key-space notifications.
* By default, Redis will not fire key-space notifications that happened inside
* a key-space notification callback. This flag allows to change this behavior
* and fire nested key-space notifications. Notice: if enabled, the module
* should protected itself from infinite recursion. */
void VM_SetModuleOptions(ValkeyModuleCtx *ctx, int options) {
ctx->module->options = options;
}
/* Signals that the key is modified from user's perspective (i.e. invalidate WATCH
* and client side caching).
*
* This is done automatically when a key opened for writing is closed, unless
* the option VALKEYMODULE_OPTION_NO_IMPLICIT_SIGNAL_MODIFIED has been set using
* VM_SetModuleOptions().
*/
int VM_SignalModifiedKey(ValkeyModuleCtx *ctx, ValkeyModuleString *keyname) {
signalModifiedKey(ctx->client,ctx->client->db,keyname);
return VALKEYMODULE_OK;
}
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* ## Automatic memory management for modules
2016-03-06 13:44:24 +01:00
* -------------------------------------------------------------------------- */
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
/* Enable automatic memory management.
*
* The function must be called as the first function of a command implementation
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
* that wants to use automatic memory.
*
* When enabled, automatic memory management tracks and automatically frees
* keys, call replies and Redis string objects once the command returns. In most
* cases this eliminates the need of calling the following functions:
*
* 1. ValkeyModule_CloseKey()
* 2. ValkeyModule_FreeCallReply()
* 3. ValkeyModule_FreeString()
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
*
* These functions can still be used with automatic memory management enabled,
* to optimize loops that make numerous allocations for example. */
void VM_AutoMemory(ValkeyModuleCtx *ctx) {
ctx->flags |= VALKEYMODULE_CTX_AUTO_MEMORY;
2016-03-06 13:44:24 +01:00
}
/* Add a new object to release automatically when the callback returns. */
void autoMemoryAdd(ValkeyModuleCtx *ctx, int type, void *ptr) {
if (!(ctx->flags & VALKEYMODULE_CTX_AUTO_MEMORY)) return;
2016-03-06 13:44:24 +01:00
if (ctx->amqueue_used == ctx->amqueue_len) {
ctx->amqueue_len *= 2;
if (ctx->amqueue_len < 16) ctx->amqueue_len = 16;
ctx->amqueue = zrealloc(ctx->amqueue,sizeof(struct AutoMemEntry)*ctx->amqueue_len);
}
ctx->amqueue[ctx->amqueue_used].type = type;
ctx->amqueue[ctx->amqueue_used].ptr = ptr;
ctx->amqueue_used++;
}
/* Mark an object as freed in the auto release queue, so that users can still
* free things manually if they want.
*
* The function returns 1 if the object was actually found in the auto memory
* pool, otherwise 0 is returned. */
int autoMemoryFreed(ValkeyModuleCtx *ctx, int type, void *ptr) {
if (!(ctx->flags & VALKEYMODULE_CTX_AUTO_MEMORY)) return 0;
2016-03-06 13:44:24 +01:00
int count = (ctx->amqueue_used+1)/2;
for (int j = 0; j < count; j++) {
for (int side = 0; side < 2; side++) {
/* For side = 0 check right side of the array, for
* side = 1 check the left side instead (zig-zag scanning). */
int i = (side == 0) ? (ctx->amqueue_used - 1 - j) : j;
if (ctx->amqueue[i].type == type &&
ctx->amqueue[i].ptr == ptr)
{
ctx->amqueue[i].type = VALKEYMODULE_AM_FREED;
/* Switch the freed element and the last element, to avoid growing
* the queue unnecessarily if we allocate/free in a loop */
if (i != ctx->amqueue_used-1) {
ctx->amqueue[i] = ctx->amqueue[ctx->amqueue_used-1];
}
/* Reduce the size of the queue because we either moved the top
* element elsewhere or freed it */
ctx->amqueue_used--;
return 1;
2016-05-19 13:51:55 +03:00
}
2016-03-06 13:44:24 +01:00
}
}
return 0;
2016-03-06 13:44:24 +01:00
}
/* Release all the objects in queue. */
void autoMemoryCollect(ValkeyModuleCtx *ctx) {
if (!(ctx->flags & VALKEYMODULE_CTX_AUTO_MEMORY)) return;
2016-03-06 13:44:24 +01:00
/* Clear the AUTO_MEMORY flag from the context, otherwise the functions
* we call to free the resources, will try to scan the auto release
* queue to mark the entries as freed. */
ctx->flags &= ~VALKEYMODULE_CTX_AUTO_MEMORY;
2016-03-06 13:44:24 +01:00
int j;
for (j = 0; j < ctx->amqueue_used; j++) {
void *ptr = ctx->amqueue[j].ptr;
switch(ctx->amqueue[j].type) {
case VALKEYMODULE_AM_STRING: decrRefCount(ptr); break;
case VALKEYMODULE_AM_REPLY: VM_FreeCallReply(ptr); break;
case VALKEYMODULE_AM_KEY: VM_CloseKey(ptr); break;
case VALKEYMODULE_AM_DICT: VM_FreeDict(NULL,ptr); break;
case VALKEYMODULE_AM_INFO: VM_FreeServerInfo(NULL,ptr); break;
2016-03-06 13:44:24 +01:00
}
}
ctx->flags |= VALKEYMODULE_CTX_AUTO_MEMORY;
2016-03-06 13:44:24 +01:00
zfree(ctx->amqueue);
ctx->amqueue = NULL;
ctx->amqueue_len = 0;
ctx->amqueue_used = 0;
}
/* --------------------------------------------------------------------------
* ## String objects APIs
2016-03-06 13:44:24 +01:00
* -------------------------------------------------------------------------- */
/* Create a new module string object. The returned string must be freed
* with ValkeyModule_FreeString(), unless automatic memory is enabled.
*
* The string is created by copying the `len` bytes starting
* at `ptr`. No reference is retained to the passed buffer.
*
* The module context 'ctx' is optional and may be NULL if you want to create
* a string out of the context scope. However in that case, the automatic
* memory management will not be available, and the string memory must be
* managed manually. */
ValkeyModuleString *VM_CreateString(ValkeyModuleCtx *ctx, const char *ptr, size_t len) {
ValkeyModuleString *o = createStringObject(ptr,len);
if (ctx != NULL) autoMemoryAdd(ctx,VALKEYMODULE_AM_STRING,o);
2016-03-06 13:44:24 +01:00
return o;
}
2016-10-13 12:48:36 +02:00
/* Create a new module string object from a printf format and arguments.
* The returned string must be freed with ValkeyModule_FreeString(), unless
2016-10-13 12:48:36 +02:00
* automatic memory is enabled.
2016-09-21 12:30:38 +03:00
*
* The string is created using the sds formatter function sdscatvprintf().
*
* The passed context 'ctx' may be NULL if necessary, see the
* ValkeyModule_CreateString() documentation for more info. */
ValkeyModuleString *VM_CreateStringPrintf(ValkeyModuleCtx *ctx, const char *fmt, ...) {
2016-09-21 12:30:38 +03:00
sds s = sdsempty();
va_list ap;
va_start(ap, fmt);
s = sdscatvprintf(s, fmt, ap);
va_end(ap);
ValkeyModuleString *o = createObject(OBJ_STRING, s);
if (ctx != NULL) autoMemoryAdd(ctx,VALKEYMODULE_AM_STRING,o);
2016-09-21 12:30:38 +03:00
return o;
}
/* Like ValkeyModule_CreateString(), but creates a string starting from a `long long`
* integer instead of taking a buffer and its length.
*
* The returned string must be released with ValkeyModule_FreeString() or by
* enabling automatic memory management.
*
* The passed context 'ctx' may be NULL if necessary, see the
* ValkeyModule_CreateString() documentation for more info. */
ValkeyModuleString *VM_CreateStringFromLongLong(ValkeyModuleCtx *ctx, long long ll) {
2016-03-06 13:44:24 +01:00
char buf[LONG_STR_SIZE];
size_t len = ll2string(buf,sizeof(buf),ll);
return VM_CreateString(ctx,buf,len);
2016-03-06 13:44:24 +01:00
}
/* Like ValkeyModule_CreateString(), but creates a string starting from a `unsigned long long`
* integer instead of taking a buffer and its length.
*
* The returned string must be released with ValkeyModule_FreeString() or by
* enabling automatic memory management.
*
* The passed context 'ctx' may be NULL if necessary, see the
* ValkeyModule_CreateString() documentation for more info. */
ValkeyModuleString *VM_CreateStringFromULongLong(ValkeyModuleCtx *ctx, unsigned long long ull) {
char buf[LONG_STR_SIZE];
size_t len = ull2string(buf,sizeof(buf),ull);
return VM_CreateString(ctx,buf,len);
}
/* Like ValkeyModule_CreateString(), but creates a string starting from a double
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
* instead of taking a buffer and its length.
2020-02-04 19:28:09 +05:30
*
* The returned string must be released with ValkeyModule_FreeString() or by
2020-02-04 19:28:09 +05:30
* enabling automatic memory management. */
ValkeyModuleString *VM_CreateStringFromDouble(ValkeyModuleCtx *ctx, double d) {
char buf[MAX_D2STRING_CHARS];
2020-02-04 19:28:09 +05:30
size_t len = d2string(buf,sizeof(buf),d);
return VM_CreateString(ctx,buf,len);
2020-02-04 19:28:09 +05:30
}
/* Like ValkeyModule_CreateString(), but creates a string starting from a long
* double.
*
* The returned string must be released with ValkeyModule_FreeString() or by
* enabling automatic memory management.
*
* The passed context 'ctx' may be NULL if necessary, see the
* ValkeyModule_CreateString() documentation for more info. */
ValkeyModuleString *VM_CreateStringFromLongDouble(ValkeyModuleCtx *ctx, long double ld, int humanfriendly) {
char buf[MAX_LONG_DOUBLE_CHARS];
size_t len = ld2string(buf,sizeof(buf),ld,
(humanfriendly ? LD_STR_HUMAN : LD_STR_AUTO));
return VM_CreateString(ctx,buf,len);
}
/* Like ValkeyModule_CreateString(), but creates a string starting from another
* ValkeyModuleString.
*
* The returned string must be released with ValkeyModule_FreeString() or by
* enabling automatic memory management.
*
* The passed context 'ctx' may be NULL if necessary, see the
* ValkeyModule_CreateString() documentation for more info. */
ValkeyModuleString *VM_CreateStringFromString(ValkeyModuleCtx *ctx, const ValkeyModuleString *str) {
ValkeyModuleString *o = dupStringObject(str);
if (ctx != NULL) autoMemoryAdd(ctx,VALKEYMODULE_AM_STRING,o);
return o;
}
/* Creates a string from a stream ID. The returned string must be released with
* ValkeyModule_FreeString(), unless automatic memory is enabled.
*
* The passed context `ctx` may be NULL if necessary. See the
* ValkeyModule_CreateString() documentation for more info. */
ValkeyModuleString *VM_CreateStringFromStreamID(ValkeyModuleCtx *ctx, const ValkeyModuleStreamID *id) {
streamID streamid = {id->ms, id->seq};
ValkeyModuleString *o = createObjectFromStreamID(&streamid);
if (ctx != NULL) autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, o);
return o;
}
/* Free a module string object obtained with one of the Redis modules API calls
* that return new string objects.
*
* It is possible to call this function even when automatic memory management
* is enabled. In that case the string will be released ASAP and removed
* from the pool of string to release at the end.
*
* If the string was created with a NULL context 'ctx', it is also possible to
* pass ctx as NULL when releasing the string (but passing a context will not
* create any issue). Strings created with a context should be freed also passing
* the context, so if you want to free a string out of context later, make sure
* to create it using a NULL context. */
void VM_FreeString(ValkeyModuleCtx *ctx, ValkeyModuleString *str) {
2016-03-06 13:44:24 +01:00
decrRefCount(str);
if (ctx != NULL) autoMemoryFreed(ctx,VALKEYMODULE_AM_STRING,str);
2016-03-06 13:44:24 +01:00
}
/* Every call to this function, will make the string 'str' requiring
* an additional call to ValkeyModule_FreeString() in order to really
* free the string. Note that the automatic freeing of the string obtained
* enabling modules automatic memory management counts for one
* ValkeyModule_FreeString() call (it is just executed automatically).
*
* Normally you want to call this function when, at the same time
* the following conditions are true:
*
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* 1. You have automatic memory management enabled.
* 2. You want to create string objects.
* 3. Those string objects you create need to live *after* the callback
* function(for example a command implementation) creating them returns.
*
* Usually you want this in order to store the created string object
* into your own data structure, for example when implementing a new data
* type.
*
* Note that when memory management is turned off, you don't need
* any call to RetainString() since creating a string will always result
* into a string that lives after the callback function returns, if
* no FreeString() call is performed.
*
* It is possible to call this function with a NULL context.
*
* When strings are going to be retained for an extended duration, it is good
* practice to also call ValkeyModule_TrimStringAllocation() in order to
* optimize memory usage.
*
* Threaded modules that reference retained strings from other threads *must*
* explicitly trim the allocation as soon as the string is retained. Not doing
* so may result with automatic trimming which is not thread safe. */
void VM_RetainString(ValkeyModuleCtx *ctx, ValkeyModuleString *str) {
if (ctx == NULL || !autoMemoryFreed(ctx,VALKEYMODULE_AM_STRING,str)) {
/* Increment the string reference counting only if we can't
* just remove the object from the list of objects that should
* be reclaimed. Why we do that, instead of just incrementing
* the refcount in any case, and let the automatic FreeString()
* call at the end to bring the refcount back at the desired
* value? Because this way we ensure that the object refcount
* value is 1 (instead of going to 2 to be dropped later to 1)
* after the call to this function. This is needed for functions
* like ValkeyModule_StringAppendBuffer() to work. */
incrRefCount(str);
}
}
/**
* This function can be used instead of ValkeyModule_RetainString().
* The main difference between the two is that this function will always
* succeed, whereas ValkeyModule_RetainString() may fail because of an
* assertion.
*
* The function returns a pointer to ValkeyModuleString, which is owned
* by the caller. It requires a call to ValkeyModule_FreeString() to free
* the string when automatic memory management is disabled for the context.
* When automatic memory management is enabled, you can either call
* ValkeyModule_FreeString() or let the automation free it.
*
* This function is more efficient than ValkeyModule_CreateStringFromString()
* because whenever possible, it avoids copying the underlying
* ValkeyModuleString. The disadvantage of using this function is that it
* might not be possible to use ValkeyModule_StringAppendBuffer() on the
* returned ValkeyModuleString.
*
* It is possible to call this function with a NULL context.
*
* When strings are going to be held for an extended duration, it is good
* practice to also call ValkeyModule_TrimStringAllocation() in order to
* optimize memory usage.
*
* Threaded modules that reference held strings from other threads *must*
* explicitly trim the allocation as soon as the string is held. Not doing
* so may result with automatic trimming which is not thread safe. */
ValkeyModuleString* VM_HoldString(ValkeyModuleCtx *ctx, ValkeyModuleString *str) {
if (str->refcount == OBJ_STATIC_REFCOUNT) {
return VM_CreateStringFromString(ctx, str);
}
incrRefCount(str);
if (ctx != NULL) {
/*
* Put the str in the auto memory management of the ctx.
* It might already be there, in this case, the ref count will
* be 2 and we will decrease the ref count twice and free the
* object in the auto memory free function.
*
* Why we can not do the same trick of just remove the object
* from the auto memory (like in VM_RetainString)?
* This code shows the issue:
*
* VM_AutoMemory(ctx);
* str1 = VM_CreateString(ctx, "test", 4);
* str2 = VM_HoldString(ctx, str1);
* VM_FreeString(str1);
* VM_FreeString(str2);
*
* If after the VM_HoldString we would just remove the string from
* the auto memory, this example will cause access to a freed memory
* on 'VM_FreeString(str2);' because the String will be free
* on 'VM_FreeString(str1);'.
*
* So it's safer to just increase the ref count
* and add the String to auto memory again.
*
* The limitation is that it is not possible to use ValkeyModule_StringAppendBuffer
* on the String.
*/
autoMemoryAdd(ctx,VALKEYMODULE_AM_STRING,str);
}
return str;
}
/* Given a string module object, this function returns the string pointer
* and length of the string. The returned pointer and length should only
* be used for read only accesses and never modified. */
const char *VM_StringPtrLen(const ValkeyModuleString *str, size_t *len) {
if (str == NULL) {
const char *errmsg = "(NULL string reply referenced in module)";
if (len) *len = strlen(errmsg);
return errmsg;
}
2016-03-06 13:44:24 +01:00
if (len) *len = sdslen(str->ptr);
return str->ptr;
}
/* --------------------------------------------------------------------------
* Higher level string operations
* ------------------------------------------------------------------------- */
/* Convert the string into a `long long` integer, storing it at `*ll`.
* Returns VALKEYMODULE_OK on success. If the string can't be parsed
* as a valid, strict `long long` (no spaces before/after), VALKEYMODULE_ERR
2016-03-06 13:44:24 +01:00
* is returned. */
int VM_StringToLongLong(const ValkeyModuleString *str, long long *ll) {
return string2ll(str->ptr,sdslen(str->ptr),ll) ? VALKEYMODULE_OK :
VALKEYMODULE_ERR;
2016-03-06 13:44:24 +01:00
}
/* Convert the string into a `unsigned long long` integer, storing it at `*ull`.
* Returns VALKEYMODULE_OK on success. If the string can't be parsed
* as a valid, strict `unsigned long long` (no spaces before/after), VALKEYMODULE_ERR
* is returned. */
int VM_StringToULongLong(const ValkeyModuleString *str, unsigned long long *ull) {
return string2ull(str->ptr,ull) ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
2016-05-10 18:54:58 +02:00
/* Convert the string into a double, storing it at `*d`.
* Returns VALKEYMODULE_OK on success or VALKEYMODULE_ERR if the string is
2016-04-19 15:22:33 +02:00
* not a valid string representation of a double value. */
int VM_StringToDouble(const ValkeyModuleString *str, double *d) {
2016-04-19 15:22:33 +02:00
int retval = getDoubleFromObject(str,d);
return (retval == C_OK) ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
2016-04-19 15:22:33 +02:00
}
/* Convert the string into a long double, storing it at `*ld`.
* Returns VALKEYMODULE_OK on success or VALKEYMODULE_ERR if the string is
* not a valid string representation of a double value. */
int VM_StringToLongDouble(const ValkeyModuleString *str, long double *ld) {
int retval = string2ld(str->ptr,sdslen(str->ptr),ld);
return retval ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* Convert the string into a stream ID, storing it at `*id`.
* Returns VALKEYMODULE_OK on success and returns VALKEYMODULE_ERR if the string
* is not a valid string representation of a stream ID. The special IDs "+" and
* "-" are allowed.
*/
int VM_StringToStreamID(const ValkeyModuleString *str, ValkeyModuleStreamID *id) {
streamID streamid;
if (streamParseID(str, &streamid) == C_OK) {
id->ms = streamid.ms;
id->seq = streamid.seq;
return VALKEYMODULE_OK;
} else {
return VALKEYMODULE_ERR;
}
}
/* Compare two string objects, returning -1, 0 or 1 respectively if
* a < b, a == b, a > b. Strings are compared byte by byte as two
* binary blobs without any encoding care / collation attempt. */
int VM_StringCompare(const ValkeyModuleString *a, const ValkeyModuleString *b) {
return compareStringObjects(a,b);
}
/* Return the (possibly modified in encoding) input 'str' object if
* the string is unshared, otherwise NULL is returned. */
ValkeyModuleString *moduleAssertUnsharedString(ValkeyModuleString *str) {
if (str->refcount != 1) {
serverLog(LL_WARNING,
"Module attempted to use an in-place string modify operation "
"with a string referenced multiple times. Please check the code "
"for API usage correctness.");
return NULL;
}
if (str->encoding == OBJ_ENCODING_EMBSTR) {
/* Note: here we "leak" the additional allocation that was
* used in order to store the embedded string in the object. */
str->ptr = sdsnewlen(str->ptr,sdslen(str->ptr));
str->encoding = OBJ_ENCODING_RAW;
} else if (str->encoding == OBJ_ENCODING_INT) {
/* Convert the string from integer to raw encoding. */
str->ptr = sdsfromlonglong((long)str->ptr);
str->encoding = OBJ_ENCODING_RAW;
}
return str;
}
2018-07-30 16:18:56 +03:00
/* Append the specified buffer to the string 'str'. The string must be a
* string created by the user that is referenced only a single time, otherwise
* VALKEYMODULE_ERR is returned and the operation is not performed. */
int VM_StringAppendBuffer(ValkeyModuleCtx *ctx, ValkeyModuleString *str, const char *buf, size_t len) {
UNUSED(ctx);
str = moduleAssertUnsharedString(str);
if (str == NULL) return VALKEYMODULE_ERR;
str->ptr = sdscatlen(str->ptr,buf,len);
return VALKEYMODULE_OK;
}
/* Trim possible excess memory allocated for a ValkeyModuleString.
*
* Sometimes a ValkeyModuleString may have more memory allocated for
* it than required, typically for argv arguments that were constructed
* from network buffers. This function optimizes such strings by reallocating
* their memory, which is useful for strings that are not short lived but
* retained for an extended duration.
*
* This operation is *not thread safe* and should only be called when
* no concurrent access to the string is guaranteed. Using it for an argv
* string in a module command before the string is potentially available
* to other threads is generally safe.
*
* Currently, Redis may also automatically trim retained strings when a
* module command returns. However, doing this explicitly should still be
* a preferred option:
*
* 1. Future versions of Redis may abandon auto-trimming.
* 2. Auto-trimming as currently implemented is *not thread safe*.
* A background thread manipulating a recently retained string may end up
* in a race condition with the auto-trim, which could result with
* data corruption.
*/
void VM_TrimStringAllocation(ValkeyModuleString *str) {
if (!str) return;
trimStringObjectIfNeeded(str, 1);
}
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* ## Reply APIs
*
* These functions are used for sending replies to the client.
2016-03-06 13:44:24 +01:00
*
* Most functions always return VALKEYMODULE_OK so you can use it with
2016-03-06 13:44:24 +01:00
* 'return' in order to return from the command implementation with:
*
* if (... some condition ...)
* return ValkeyModule_ReplyWithLongLong(ctx,mycount);
*
* ### Reply with collection functions
*
* After starting a collection reply, the module must make calls to other
* `ReplyWith*` style functions in order to emit the elements of the collection.
* Collection types include: Array, Map, Set and Attribute.
*
* When producing collections with a number of elements that is not known
* beforehand, the function can be called with a special flag
* VALKEYMODULE_POSTPONED_LEN (VALKEYMODULE_POSTPONED_ARRAY_LEN in the past),
* and the actual number of elements can be later set with VM_ReplySet*Length()
* call (which will set the latest "open" count if there are multiple ones).
2016-03-06 13:44:24 +01:00
* -------------------------------------------------------------------------- */
/* Send an error about the number of arguments given to the command,
* citing the command name in the error message. Returns VALKEYMODULE_OK.
*
* Example:
*
* if (argc != 3) return ValkeyModule_WrongArity(ctx);
*/
int VM_WrongArity(ValkeyModuleCtx *ctx) {
addReplyErrorArity(ctx->client);
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
/* Return the client object the `VM_Reply*` functions should target.
* Normally this is just `ctx->client`, that is the client that called
* the module command, however in the case of thread safe contexts there
* is no directly associated client (since it would not be safe to access
* the client from a thread), so instead the blocked client object referenced
* in the thread safe context, has a fake client that we just use to accumulate
* the replies. Later, when the client is unblocked, the accumulated replies
* are appended to the actual client.
*
* The function returns the client pointer depending on the context, or
* NULL if there is no potential client. This happens when we are in the
* context of a thread safe context that was not initialized with a blocked
* client object. Other contexts without associated clients are the ones
* initialized to run the timers callbacks. */
client *moduleGetReplyClient(ValkeyModuleCtx *ctx) {
if (ctx->flags & VALKEYMODULE_CTX_THREAD_SAFE) {
if (ctx->blocked_client)
return ctx->blocked_client->reply_client;
else
return NULL;
} else {
/* If this is a non thread safe context, just return the client
* that is running the command if any. This may be NULL as well
* in the case of contexts that are not executed with associated
* clients, like timer contexts. */
return ctx->client;
}
}
/* Send an integer reply to the client, with the specified `long long` value.
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithLongLong(ValkeyModuleCtx *ctx, long long ll) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyLongLong(c,ll);
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
/* Reply with the error 'err'.
*
* Note that 'err' must contain all the error, including
* the initial error code. The function only provides the initial "-", so
* the usage is, for example:
*
* ValkeyModule_ReplyWithError(ctx,"ERR Wrong Type");
2016-03-06 13:44:24 +01:00
*
* and not just:
*
* ValkeyModule_ReplyWithError(ctx,"Wrong Type");
*
* The function always returns VALKEYMODULE_OK.
2016-03-06 13:44:24 +01:00
*/
int VM_ReplyWithError(ValkeyModuleCtx *ctx, const char *err) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyErrorFormat(c,"-%s",err);
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
/* Reply with the error create from a printf format and arguments.
*
* Note that 'fmt' must contain all the error, including
* the initial error code. The function only provides the initial "-", so
* the usage is, for example:
*
* ValkeyModule_ReplyWithErrorFormat(ctx,"ERR Wrong Type: %s",type);
*
* and not just:
*
* ValkeyModule_ReplyWithErrorFormat(ctx,"Wrong Type: %s",type);
*
* The function always returns VALKEYMODULE_OK.
*/
int VM_ReplyWithErrorFormat(ValkeyModuleCtx *ctx, const char *fmt, ...) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
int len = strlen(fmt) + 2; /* 1 for the \0 and 1 for the hyphen */
char *hyphenfmt = zmalloc(len);
snprintf(hyphenfmt, len, "-%s", fmt);
va_list ap;
va_start(ap, fmt);
addReplyErrorFormatInternal(c, 0, hyphenfmt, ap);
va_end(ap);
zfree(hyphenfmt);
return VALKEYMODULE_OK;
}
/* Reply with a simple string (`+... \r\n` in RESP protocol). This replies
* are suitable only when sending a small non-binary string with small
* overhead, like "OK" or similar replies.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithSimpleString(ValkeyModuleCtx *ctx, const char *msg) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyProto(c,"+",1);
addReplyProto(c,msg,strlen(msg));
addReplyProto(c,"\r\n",2);
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
#define COLLECTION_REPLY_ARRAY 1
#define COLLECTION_REPLY_MAP 2
#define COLLECTION_REPLY_SET 3
#define COLLECTION_REPLY_ATTRIBUTE 4
int moduleReplyWithCollection(ValkeyModuleCtx *ctx, long len, int type) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
if (len == VALKEYMODULE_POSTPONED_LEN) {
2016-04-21 14:02:42 +02:00
ctx->postponed_arrays = zrealloc(ctx->postponed_arrays,sizeof(void*)*
(ctx->postponed_arrays_count+1));
ctx->postponed_arrays[ctx->postponed_arrays_count] =
2018-11-30 17:12:32 +01:00
addReplyDeferredLen(c);
2016-04-21 14:02:42 +02:00
ctx->postponed_arrays_count++;
} else if (len == 0) {
switch (type) {
case COLLECTION_REPLY_ARRAY:
addReply(c, shared.emptyarray);
break;
case COLLECTION_REPLY_MAP:
addReply(c, shared.emptymap[c->resp]);
break;
case COLLECTION_REPLY_SET:
addReply(c, shared.emptyset[c->resp]);
break;
case COLLECTION_REPLY_ATTRIBUTE:
addReplyAttributeLen(c,len);
break;
default:
serverPanic("Invalid module empty reply type %d", type); }
2016-04-21 14:02:42 +02:00
} else {
switch (type) {
case COLLECTION_REPLY_ARRAY:
addReplyArrayLen(c,len);
break;
case COLLECTION_REPLY_MAP:
addReplyMapLen(c,len);
break;
case COLLECTION_REPLY_SET:
addReplySetLen(c,len);
break;
case COLLECTION_REPLY_ATTRIBUTE:
addReplyAttributeLen(c,len);
break;
default:
serverPanic("Invalid module reply type %d", type);
}
2016-04-21 14:02:42 +02:00
}
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
/* Reply with an array type of 'len' elements.
*
* After starting an array reply, the module must make `len` calls to other
* `ReplyWith*` style functions in order to emit the elements of the array.
* See Reply APIs section for more details.
*
* Use VM_ReplySetArrayLength() to set deferred length.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithArray(ValkeyModuleCtx *ctx, long len) {
return moduleReplyWithCollection(ctx, len, COLLECTION_REPLY_ARRAY);
}
/* Reply with a RESP3 Map type of 'len' pairs.
* Visit https://github.com/antirez/RESP3/blob/master/spec.md for more info about RESP3.
*
* After starting a map reply, the module must make `len*2` calls to other
* `ReplyWith*` style functions in order to emit the elements of the map.
* See Reply APIs section for more details.
*
* If the connected client is using RESP2, the reply will be converted to a flat
* array.
*
* Use VM_ReplySetMapLength() to set deferred length.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithMap(ValkeyModuleCtx *ctx, long len) {
return moduleReplyWithCollection(ctx, len, COLLECTION_REPLY_MAP);
}
/* Reply with a RESP3 Set type of 'len' elements.
* Visit https://github.com/antirez/RESP3/blob/master/spec.md for more info about RESP3.
*
* After starting a set reply, the module must make `len` calls to other
* `ReplyWith*` style functions in order to emit the elements of the set.
* See Reply APIs section for more details.
*
* If the connected client is using RESP2, the reply will be converted to an
* array type.
*
* Use VM_ReplySetSetLength() to set deferred length.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithSet(ValkeyModuleCtx *ctx, long len) {
return moduleReplyWithCollection(ctx, len, COLLECTION_REPLY_SET);
}
/* Add attributes (metadata) to the reply. Should be done before adding the
* actual reply. see https://github.com/antirez/RESP3/blob/master/spec.md#attribute-type
*
* After starting an attribute's reply, the module must make `len*2` calls to other
* `ReplyWith*` style functions in order to emit the elements of the attribute map.
* See Reply APIs section for more details.
*
* Use VM_ReplySetAttributeLength() to set deferred length.
*
* Not supported by RESP2 and will return VALKEYMODULE_ERR, otherwise
* the function always returns VALKEYMODULE_OK. */
int VM_ReplyWithAttribute(ValkeyModuleCtx *ctx, long len) {
if (ctx->client->resp == 2) return VALKEYMODULE_ERR;
return moduleReplyWithCollection(ctx, len, COLLECTION_REPLY_ATTRIBUTE);
}
/* Reply to the client with a null array, simply null in RESP3,
* null array in RESP2.
*
* Note: In RESP3 there's no difference between Null reply and
* NullArray reply, so to prevent ambiguity it's better to avoid
* using this API and use ValkeyModule_ReplyWithNull instead.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithNullArray(ValkeyModuleCtx *ctx) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyNullArray(c);
return VALKEYMODULE_OK;
}
/* Reply to the client with an empty array.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithEmptyArray(ValkeyModuleCtx *ctx) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReply(c,shared.emptyarray);
return VALKEYMODULE_OK;
}
void moduleReplySetCollectionLength(ValkeyModuleCtx *ctx, long len, int type) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return;
if (ctx->postponed_arrays_count == 0) {
serverLog(LL_WARNING,
"API misuse detected in module %s: "
"ValkeyModule_ReplySet*Length() called without previous "
"ValkeyModule_ReplyWith*(ctx,VALKEYMODULE_POSTPONED_LEN) "
"call.", ctx->module->name);
return;
}
ctx->postponed_arrays_count--;
switch(type) {
case COLLECTION_REPLY_ARRAY:
setDeferredArrayLen(c,ctx->postponed_arrays[ctx->postponed_arrays_count],len);
break;
case COLLECTION_REPLY_MAP:
setDeferredMapLen(c,ctx->postponed_arrays[ctx->postponed_arrays_count],len);
break;
case COLLECTION_REPLY_SET:
setDeferredSetLen(c,ctx->postponed_arrays[ctx->postponed_arrays_count],len);
break;
case COLLECTION_REPLY_ATTRIBUTE:
setDeferredAttributeLen(c,ctx->postponed_arrays[ctx->postponed_arrays_count],len);
break;
default:
serverPanic("Invalid module reply type %d", type);
}
if (ctx->postponed_arrays_count == 0) {
zfree(ctx->postponed_arrays);
ctx->postponed_arrays = NULL;
}
}
/* When ValkeyModule_ReplyWithArray() is used with the argument
* VALKEYMODULE_POSTPONED_LEN, because we don't know beforehand the number
2016-04-21 14:02:42 +02:00
* of items we are going to output as elements of the array, this function
* will take care to set the array length.
*
* Since it is possible to have multiple array replies pending with unknown
* length, this function guarantees to always set the latest array length
* that was created in a postponed way.
*
* For example in order to output an array like [1,[10,20,30]] we
* could write:
*
* ValkeyModule_ReplyWithArray(ctx,VALKEYMODULE_POSTPONED_LEN);
* ValkeyModule_ReplyWithLongLong(ctx,1);
* ValkeyModule_ReplyWithArray(ctx,VALKEYMODULE_POSTPONED_LEN);
* ValkeyModule_ReplyWithLongLong(ctx,10);
* ValkeyModule_ReplyWithLongLong(ctx,20);
* ValkeyModule_ReplyWithLongLong(ctx,30);
* ValkeyModule_ReplySetArrayLength(ctx,3); // Set len of 10,20,30 array.
* ValkeyModule_ReplySetArrayLength(ctx,2); // Set len of top array
2016-04-21 14:02:42 +02:00
*
* Note that in the above example there is no reason to postpone the array
* length, since we produce a fixed number of elements, but in the practice
2018-07-30 16:18:56 +03:00
* the code may use an iterator or other ways of creating the output so
2016-04-21 14:02:42 +02:00
* that is not easy to calculate in advance the number of elements.
*/
void VM_ReplySetArrayLength(ValkeyModuleCtx *ctx, long len) {
moduleReplySetCollectionLength(ctx, len, COLLECTION_REPLY_ARRAY);
}
/* Very similar to ValkeyModule_ReplySetArrayLength except `len` should
* exactly half of the number of `ReplyWith*` functions called in the
* context of the map.
* Visit https://github.com/antirez/RESP3/blob/master/spec.md for more info about RESP3. */
void VM_ReplySetMapLength(ValkeyModuleCtx *ctx, long len) {
moduleReplySetCollectionLength(ctx, len, COLLECTION_REPLY_MAP);
}
/* Very similar to ValkeyModule_ReplySetArrayLength
* Visit https://github.com/antirez/RESP3/blob/master/spec.md for more info about RESP3. */
void VM_ReplySetSetLength(ValkeyModuleCtx *ctx, long len) {
moduleReplySetCollectionLength(ctx, len, COLLECTION_REPLY_SET);
}
/* Very similar to ValkeyModule_ReplySetMapLength
* Visit https://github.com/antirez/RESP3/blob/master/spec.md for more info about RESP3.
*
* Must not be called if VM_ReplyWithAttribute returned an error. */
void VM_ReplySetAttributeLength(ValkeyModuleCtx *ctx, long len) {
if (ctx->client->resp == 2) return;
moduleReplySetCollectionLength(ctx, len, COLLECTION_REPLY_ATTRIBUTE);
2016-04-21 14:02:42 +02:00
}
/* Reply with a bulk string, taking in input a C buffer pointer and length.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithStringBuffer(ValkeyModuleCtx *ctx, const char *buf, size_t len) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyBulkCBuffer(c,(char*)buf,len);
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
/* Reply with a bulk string, taking in input a C buffer pointer that is
* assumed to be null-terminated.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithCString(ValkeyModuleCtx *ctx, const char *buf) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyBulkCString(c,(char*)buf);
return VALKEYMODULE_OK;
}
/* Reply with a bulk string, taking in input a ValkeyModuleString object.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithString(ValkeyModuleCtx *ctx, ValkeyModuleString *str) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyBulk(c,str);
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
/* Reply with an empty string.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithEmptyString(ValkeyModuleCtx *ctx) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReply(c,shared.emptybulk);
return VALKEYMODULE_OK;
}
/* Reply with a binary safe string, which should not be escaped or filtered
* taking in input a C buffer pointer, length and a 3 character type/extension.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithVerbatimStringType(ValkeyModuleCtx *ctx, const char *buf, size_t len, const char *ext) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyVerbatim(c, buf, len, ext);
return VALKEYMODULE_OK;
}
/* Reply with a binary safe string, which should not be escaped or filtered
* taking in input a C buffer pointer and length.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithVerbatimString(ValkeyModuleCtx *ctx, const char *buf, size_t len) {
return VM_ReplyWithVerbatimStringType(ctx, buf, len, "txt");
}
/* Reply to the client with a NULL.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithNull(ValkeyModuleCtx *ctx) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
2018-11-30 17:12:32 +01:00
addReplyNull(c);
return VALKEYMODULE_OK;
}
/* Reply with a RESP3 Boolean type.
* Visit https://github.com/antirez/RESP3/blob/master/spec.md for more info about RESP3.
*
* In RESP3, this is boolean type
* In RESP2, it's a string response of "1" and "0" for true and false respectively.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithBool(ValkeyModuleCtx *ctx, int b) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyBool(c,b);
return VALKEYMODULE_OK;
}
/* Reply exactly what a Redis command returned us with ValkeyModule_Call().
* This function is useful when we use ValkeyModule_Call() in order to
* execute some command, as we want to reply to the client exactly the
* same reply we obtained by the command.
*
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
* Return:
* - VALKEYMODULE_OK on success.
* - VALKEYMODULE_ERR if the given reply is in RESP3 format but the client expects RESP2.
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
* In case of an error, it's the module writer responsibility to translate the reply
* to RESP2 (or handle it differently by returning an error). Notice that for
* module writer convenience, it is possible to pass `0` as a parameter to the fmt
* argument of `VM_Call` so that the ValkeyModuleCallReply will return in the same
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
* protocol (RESP2 or RESP3) as set in the current client's context. */
int VM_ReplyWithCallReply(ValkeyModuleCtx *ctx, ValkeyModuleCallReply *reply) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
if (c->resp == 2 && callReplyIsResp3(reply)) {
/* The reply is in RESP3 format and the client is RESP2,
* so it isn't possible to send this reply to the client. */
return VALKEYMODULE_ERR;
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
}
size_t proto_len;
const char *proto = callReplyGetProto(reply, &proto_len);
addReplyProto(c, proto, proto_len);
/* Propagate the error list from that reply to the other client, to do some
* post error reply handling, like statistics.
* Note that if the original reply had an array with errors, and the module
* replied with just a portion of the original reply, and not the entire
* reply, the errors are currently not propagated and the errors stats
* will not get propagated. */
list *errors = callReplyDeferredErrorList(reply);
if (errors)
deferredAfterErrorReply(c, errors);
return VALKEYMODULE_OK;
}
/* Reply with a RESP3 Double type.
* Visit https://github.com/antirez/RESP3/blob/master/spec.md for more info about RESP3.
*
* Send a string reply obtained converting the double 'd' into a bulk string.
* This function is basically equivalent to converting a double into
* a string into a C buffer, and then calling the function
* ValkeyModule_ReplyWithStringBuffer() with the buffer and length.
*
* In RESP3 the string is tagged as a double, while in RESP2 it's just a plain string
* that the user will have to parse.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithDouble(ValkeyModuleCtx *ctx, double d) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyDouble(c,d);
return VALKEYMODULE_OK;
2016-04-19 15:22:33 +02:00
}
/* Reply with a RESP3 BigNumber type.
* Visit https://github.com/antirez/RESP3/blob/master/spec.md for more info about RESP3.
*
* In RESP3, this is a string of length `len` that is tagged as a BigNumber,
* however, it's up to the caller to ensure that it's a valid BigNumber.
* In RESP2, this is just a plain bulk string response.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithBigNumber(ValkeyModuleCtx *ctx, const char *bignum, size_t len) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyBigNum(c, bignum, len);
return VALKEYMODULE_OK;
}
/* Send a string reply obtained converting the long double 'ld' into a bulk
* string. This function is basically equivalent to converting a long double
* into a string into a C buffer, and then calling the function
* ValkeyModule_ReplyWithStringBuffer() with the buffer and length.
* The double string uses human readable formatting (see
* `addReplyHumanLongDouble` in networking.c).
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplyWithLongDouble(ValkeyModuleCtx *ctx, long double ld) {
client *c = moduleGetReplyClient(ctx);
if (c == NULL) return VALKEYMODULE_OK;
addReplyHumanLongDouble(c, ld);
return VALKEYMODULE_OK;
}
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* ## Commands replication API
2016-03-06 13:44:24 +01:00
* -------------------------------------------------------------------------- */
/* Replicate the specified command and arguments to slaves and AOF, as effect
* of execution of the calling command implementation.
*
* The replicated commands are always wrapped into the MULTI/EXEC that
2016-03-06 13:44:24 +01:00
* contains all the commands replicated in a given module command
* execution. However the commands replicated with ValkeyModule_Call()
* are the first items, the ones replicated with ValkeyModule_Replicate()
2016-03-06 13:44:24 +01:00
* will all follow before the EXEC.
*
* Modules should try to use one interface or the other.
*
* This command follows exactly the same interface of ValkeyModule_Call(),
* so a set of format specifiers must be passed, followed by arguments
* matching the provided format specifiers.
*
* Please refer to ValkeyModule_Call() for more information.
*
* Using the special "A" and "R" modifiers, the caller can exclude either
* the AOF or the replicas from the propagation of the specified command.
* Otherwise, by default, the command will be propagated in both channels.
*
* #### Note about calling this function from a thread safe context:
*
* Normally when you call this function from the callback implementing a
* module command, or any other callback provided by the Redis Module API,
* Redis will accumulate all the calls to this function in the context of
* the callback, and will propagate all the commands wrapped in a MULTI/EXEC
* transaction. However when calling this function from a threaded safe context
* that can live an undefined amount of time, and can be locked/unlocked in
* at will, the behavior is different: MULTI/EXEC wrapper is not emitted
* and the command specified is inserted in the AOF and replication stream
* immediately.
*
* #### Return value
*
* The command returns VALKEYMODULE_ERR if the format specifiers are invalid
* or the command name does not belong to a known command. */
int VM_Replicate(ValkeyModuleCtx *ctx, const char *cmdname, const char *fmt, ...) {
2016-03-06 13:44:24 +01:00
struct redisCommand *cmd;
robj **argv = NULL;
int argc = 0, flags = 0, j;
va_list ap;
cmd = lookupCommandByCString((char*)cmdname);
if (!cmd) return VALKEYMODULE_ERR;
2016-03-06 13:44:24 +01:00
/* Create the client and dispatch the command. */
va_start(ap, fmt);
argv = moduleCreateArgvFromUserFormat(cmdname,fmt,&argc,&flags,ap);
2016-03-06 13:44:24 +01:00
va_end(ap);
if (argv == NULL) return VALKEYMODULE_ERR;
2016-03-06 13:44:24 +01:00
/* Select the propagation target. Usually is AOF + replicas, however
* the caller can exclude one or the other using the "A" or "R"
* modifiers. */
int target = 0;
if (!(flags & VALKEYMODULE_ARGV_NO_AOF)) target |= PROPAGATE_AOF;
if (!(flags & VALKEYMODULE_ARGV_NO_REPLICAS)) target |= PROPAGATE_REPL;
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
alsoPropagate(ctx->client->db->id,argv,argc,target);
2016-03-06 13:44:24 +01:00
/* Release the argv. */
for (j = 0; j < argc; j++) decrRefCount(argv[j]);
zfree(argv);
server.dirty++;
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
/* This function will replicate the command exactly as it was invoked
* by the client. Note that this function will not wrap the command into
2016-03-06 13:44:24 +01:00
* a MULTI/EXEC stanza, so it should not be mixed with other replication
* commands.
*
* Basically this form of replication is useful when you want to propagate
* the command to the slaves and AOF file exactly as it was called, since
* the command can just be re-executed to deterministically re-create the
* new state starting from the old one.
*
* The function always returns VALKEYMODULE_OK. */
int VM_ReplicateVerbatim(ValkeyModuleCtx *ctx) {
alsoPropagate(ctx->client->db->id,
2016-03-06 13:44:24 +01:00
ctx->client->argv,ctx->client->argc,
PROPAGATE_AOF|PROPAGATE_REPL);
server.dirty++;
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
/* --------------------------------------------------------------------------
* ## DB and Key APIs -- Generic API
2016-03-06 13:44:24 +01:00
* -------------------------------------------------------------------------- */
2016-05-03 14:32:39 +02:00
/* Return the ID of the current client calling the currently active module
* command. The returned ID has a few guarantees:
*
* 1. The ID is different for each different client, so if the same client
* executes a module command multiple times, it can be recognized as
* having the same ID, otherwise the ID will be different.
* 2. The ID increases monotonically. Clients connecting to the server later
* are guaranteed to get IDs greater than any past ID previously seen.
*
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* Valid IDs are from 1 to 2^64 - 1. If 0 is returned it means there is no way
* to fetch the ID in the context the function was currently called.
*
* After obtaining the ID, it is possible to check if the command execution
* is actually happening in the context of AOF loading, using this macro:
*
* if (ValkeyModule_IsAOFClient(ValkeyModule_GetClientId(ctx)) {
* // Handle it differently.
* }
*/
unsigned long long VM_GetClientId(ValkeyModuleCtx *ctx) {
2016-05-03 14:32:39 +02:00
if (ctx->client == NULL) return 0;
return ctx->client->id;
}
/* Return the ACL user name used by the client with the specified client ID.
* Client ID can be obtained with VM_GetClientId() API. If the client does not
* exist, NULL is returned and errno is set to ENOENT. If the client isn't
* using an ACL user, NULL is returned and errno is set to ENOTSUP */
ValkeyModuleString *VM_GetClientUserNameById(ValkeyModuleCtx *ctx, uint64_t id) {
client *client = lookupClientByID(id);
if (client == NULL) {
errno = ENOENT;
return NULL;
}
if (client->user == NULL) {
errno = ENOTSUP;
return NULL;
}
sds name = sdsnew(client->user->name);
robj *str = createObject(OBJ_STRING, name);
autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, str);
return str;
}
/* This is a helper for VM_GetClientInfoById() and other functions: given
* a client, it populates the client info structure with the appropriate
* fields depending on the version provided. If the version is not valid
* then VALKEYMODULE_ERR is returned. Otherwise the function returns
* VALKEYMODULE_OK and the structure pointed by 'ci' gets populated. */
2019-10-21 17:51:18 +02:00
int modulePopulateClientInfoStructure(void *ci, client *client, int structver) {
if (structver != 1) return VALKEYMODULE_ERR;
ValkeyModuleClientInfoV1 *ci1 = ci;
memset(ci1,0,sizeof(*ci1));
ci1->version = structver;
if (client->flags & CLIENT_MULTI)
ci1->flags |= VALKEYMODULE_CLIENTINFO_FLAG_MULTI;
if (client->flags & CLIENT_PUBSUB)
ci1->flags |= VALKEYMODULE_CLIENTINFO_FLAG_PUBSUB;
if (client->flags & CLIENT_UNIX_SOCKET)
ci1->flags |= VALKEYMODULE_CLIENTINFO_FLAG_UNIXSOCKET;
if (client->flags & CLIENT_TRACKING)
ci1->flags |= VALKEYMODULE_CLIENTINFO_FLAG_TRACKING;
if (client->flags & CLIENT_BLOCKED)
ci1->flags |= VALKEYMODULE_CLIENTINFO_FLAG_BLOCKED;
if (client->conn->type == connectionTypeTls())
ci1->flags |= VALKEYMODULE_CLIENTINFO_FLAG_SSL;
int port;
connAddrPeerName(client->conn,ci1->addr,sizeof(ci1->addr),&port);
ci1->port = port;
ci1->db = client->db->id;
ci1->id = client->id;
return VALKEYMODULE_OK;
}
/* This is a helper for moduleFireServerEvent() and other functions:
* It populates the replication info structure with the appropriate
* fields depending on the version provided. If the version is not valid
* then VALKEYMODULE_ERR is returned. Otherwise the function returns
* VALKEYMODULE_OK and the structure pointed by 'ri' gets populated. */
int modulePopulateReplicationInfoStructure(void *ri, int structver) {
if (structver != 1) return VALKEYMODULE_ERR;
ValkeyModuleReplicationInfoV1 *ri1 = ri;
memset(ri1,0,sizeof(*ri1));
ri1->version = structver;
ri1->master = server.masterhost==NULL;
ri1->masterhost = server.masterhost? server.masterhost: "";
ri1->masterport = server.masterport;
ri1->replid1 = server.replid;
ri1->replid2 = server.replid2;
ri1->repl1_offset = server.master_repl_offset;
ri1->repl2_offset = server.second_replid_offset;
return VALKEYMODULE_OK;
}
2019-10-15 19:31:06 +02:00
/* Return information about the client with the specified ID (that was
* previously obtained via the ValkeyModule_GetClientId() API). If the
* client exists, VALKEYMODULE_OK is returned, otherwise VALKEYMODULE_ERR
2019-10-15 19:31:06 +02:00
* is returned.
*
* When the client exist and the `ci` pointer is not NULL, but points to
* a structure of type ValkeyModuleClientInfoV1, previously initialized with
* the correct VALKEYMODULE_CLIENTINFO_INITIALIZER_V1, the structure is populated
2019-10-15 19:31:06 +02:00
* with the following fields:
*
* uint64_t flags; // VALKEYMODULE_CLIENTINFO_FLAG_*
* uint64_t id; // Client ID
2019-10-15 19:31:06 +02:00
* char addr[46]; // IPv4 or IPv6 address.
* uint16_t port; // TCP port.
* uint16_t db; // Selected DB.
*
* Note: the client ID is useless in the context of this call, since we
* already know, however the same structure could be used in other
* contexts where we don't know the client ID, yet the same structure
* is returned.
*
2019-10-15 19:31:06 +02:00
* With flags having the following meaning:
*
* VALKEYMODULE_CLIENTINFO_FLAG_SSL Client using SSL connection.
* VALKEYMODULE_CLIENTINFO_FLAG_PUBSUB Client in Pub/Sub mode.
* VALKEYMODULE_CLIENTINFO_FLAG_BLOCKED Client blocked in command.
* VALKEYMODULE_CLIENTINFO_FLAG_TRACKING Client with keys tracking on.
* VALKEYMODULE_CLIENTINFO_FLAG_UNIXSOCKET Client using unix domain socket.
* VALKEYMODULE_CLIENTINFO_FLAG_MULTI Client in MULTI state.
2019-10-15 19:31:06 +02:00
*
* However passing NULL is a way to just check if the client exists in case
* we are not interested in any additional information.
*
* This is the correct usage when we want the client info structure
* returned:
*
* ValkeyModuleClientInfo ci = VALKEYMODULE_CLIENTINFO_INITIALIZER;
* int retval = ValkeyModule_GetClientInfoById(&ci,client_id);
* if (retval == VALKEYMODULE_OK) {
2019-10-15 19:31:06 +02:00
* printf("Address: %s\n", ci.addr);
* }
*/
int VM_GetClientInfoById(void *ci, uint64_t id) {
2019-10-15 19:31:06 +02:00
client *client = lookupClientByID(id);
if (client == NULL) return VALKEYMODULE_ERR;
if (ci == NULL) return VALKEYMODULE_OK;
2019-10-15 19:31:06 +02:00
/* Fill the info structure if passed. */
uint64_t structver = ((uint64_t*)ci)[0];
return modulePopulateClientInfoStructure(ci,client,structver);
2019-10-15 19:31:06 +02:00
}
/* Returns the name of the client connection with the given ID.
*
* If the client ID does not exist or if the client has no name associated with
* it, NULL is returned. */
ValkeyModuleString *VM_GetClientNameById(ValkeyModuleCtx *ctx, uint64_t id) {
client *client = lookupClientByID(id);
if (client == NULL || client->name == NULL) return NULL;
robj *name = client->name;
incrRefCount(name);
autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, name);
return name;
}
/* Sets the name of the client with the given ID. This is equivalent to the client calling
* `CLIENT SETNAME name`.
*
* Returns VALKEYMODULE_OK on success. On failure, VALKEYMODULE_ERR is returned
* and errno is set as follows:
*
* - ENOENT if the client does not exist
* - EINVAL if the name contains invalid characters */
int VM_SetClientNameById(uint64_t id, ValkeyModuleString *name) {
client *client = lookupClientByID(id);
if (client == NULL) {
errno = ENOENT;
return VALKEYMODULE_ERR;
}
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
if (clientSetName(client, name, NULL) == C_ERR) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
}
/* Publish a message to subscribers (see PUBLISH command). */
int VM_PublishMessage(ValkeyModuleCtx *ctx, ValkeyModuleString *channel, ValkeyModuleString *message) {
UNUSED(ctx);
return pubsubPublishMessageAndPropagateToCluster(channel, message, 0);
}
/* Publish a message to shard-subscribers (see SPUBLISH command). */
int VM_PublishMessageShard(ValkeyModuleCtx *ctx, ValkeyModuleString *channel, ValkeyModuleString *message) {
UNUSED(ctx);
return pubsubPublishMessageAndPropagateToCluster(channel, message, 1);
}
2016-03-06 13:44:24 +01:00
/* Return the currently selected DB. */
int VM_GetSelectedDb(ValkeyModuleCtx *ctx) {
2016-03-06 13:44:24 +01:00
return ctx->client->db->id;
}
2018-04-09 17:16:55 +02:00
/* Return the current context's flags. The flags provide information on the
* current request context (whether the client is a Lua script or in a MULTI),
2018-04-09 17:16:55 +02:00
* and about the Redis instance in general, i.e replication and persistence.
*
* It is possible to call this function even with a NULL context, however
* in this case the following flags will not be reported:
*
* * LUA, MULTI, REPLICATED, DIRTY (see below for more info).
*
* Available flags and their meaning:
2018-04-09 17:16:55 +02:00
*
* * VALKEYMODULE_CTX_FLAGS_LUA: The command is running in a Lua script
2018-04-09 17:16:55 +02:00
*
* * VALKEYMODULE_CTX_FLAGS_MULTI: The command is running inside a transaction
2018-04-09 17:16:55 +02:00
*
* * VALKEYMODULE_CTX_FLAGS_REPLICATED: The command was sent over the replication
* link by the MASTER
*
* * VALKEYMODULE_CTX_FLAGS_PRIMARY: The Redis instance is a primary
2018-04-09 17:16:55 +02:00
*
* * VALKEYMODULE_CTX_FLAGS_REPLICA: The Redis instance is a replica
2018-04-09 17:16:55 +02:00
*
* * VALKEYMODULE_CTX_FLAGS_READONLY: The Redis instance is read-only
2018-04-09 17:16:55 +02:00
*
* * VALKEYMODULE_CTX_FLAGS_CLUSTER: The Redis instance is in cluster mode
2018-04-09 17:16:55 +02:00
*
* * VALKEYMODULE_CTX_FLAGS_AOF: The Redis instance has AOF enabled
2018-04-09 17:16:55 +02:00
*
* * VALKEYMODULE_CTX_FLAGS_RDB: The instance has RDB enabled
2018-04-09 17:16:55 +02:00
*
* * VALKEYMODULE_CTX_FLAGS_MAXMEMORY: The instance has Maxmemory set
2018-04-09 17:16:55 +02:00
*
* * VALKEYMODULE_CTX_FLAGS_EVICT: Maxmemory is set and has an eviction
* policy that may delete keys
*
* * VALKEYMODULE_CTX_FLAGS_OOM: Redis is out of memory according to the
* maxmemory setting.
*
* * VALKEYMODULE_CTX_FLAGS_OOM_WARNING: Less than 25% of memory remains before
* reaching the maxmemory level.
*
* * VALKEYMODULE_CTX_FLAGS_LOADING: Server is loading RDB/AOF
2019-11-14 09:09:10 +02:00
*
* * VALKEYMODULE_CTX_FLAGS_REPLICA_IS_STALE: No active link with the master.
*
* * VALKEYMODULE_CTX_FLAGS_REPLICA_IS_CONNECTING: The replica is trying to
* connect with the master.
*
* * VALKEYMODULE_CTX_FLAGS_REPLICA_IS_TRANSFERRING: Master -> Replica RDB
* transfer is in progress.
*
* * VALKEYMODULE_CTX_FLAGS_REPLICA_IS_ONLINE: The replica has an active link
* with its master. This is the
* contrary of STALE state.
*
* * VALKEYMODULE_CTX_FLAGS_ACTIVE_CHILD: There is currently some background
* process active (RDB, AUX or module).
*
* * VALKEYMODULE_CTX_FLAGS_MULTI_DIRTY: The next EXEC will fail due to dirty
* CAS (touched keys).
*
* * VALKEYMODULE_CTX_FLAGS_IS_CHILD: Redis is currently running inside
* background child process.
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
*
* * VALKEYMODULE_CTX_FLAGS_RESP3: Indicate the that client attached to this
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
* context is using RESP3.
*
* * VALKEYMODULE_CTX_FLAGS_SERVER_STARTUP: The Redis instance is starting
*/
int VM_GetContextFlags(ValkeyModuleCtx *ctx) {
int flags = 0;
/* Client specific flags */
if (ctx) {
if (ctx->client) {
Unified MULTI, LUA, and RM_Call with respect to blocking commands (#8025) Blocking command should not be used with MULTI, LUA, and RM_Call. This is because, the caller, who executes the command in this context, expects a reply. Today, LUA and MULTI have a special (and different) treatment to blocking commands: LUA - Most commands are marked with no-script flag which are checked when executing and command from LUA, commands that are not marked (like XREAD) verify that their blocking mode is not used inside LUA (by checking the CLIENT_LUA client flag). MULTI - Command that is going to block, first verify that the client is not inside multi (by checking the CLIENT_MULTI client flag). If the client is inside multi, they return a result which is a match to the empty key with no timeout (for example blpop inside MULTI will act as lpop) For modules that perform RM_Call with blocking command, the returned results type is REDISMODULE_REPLY_UNKNOWN and the caller can not really know what happened. Disadvantages of the current state are: No unified approach, LUA, MULTI, and RM_Call, each has a different treatment Module can not safely execute blocking command (and get reply or error). Though It is true that modules are not like LUA or MULTI and should be smarter not to execute blocking commands on RM_Call, sometimes you want to execute a command base on client input (for example if you create a module that provides a new scripting language like javascript or python). While modules (on modules command) can check for REDISMODULE_CTX_FLAGS_LUA or REDISMODULE_CTX_FLAGS_MULTI to know not to block the client, there is no way to check if the command came from another module using RM_Call. So there is no way for a module to know not to block another module RM_Call execution. This commit adds a way to unify the treatment for blocking clients by introducing a new CLIENT_DENY_BLOCKING client flag. On LUA, MULTI, and RM_Call the new flag turned on to signify that the client should not be blocked. A blocking command verifies that the flag is turned off before blocking. If a blocking command sees that the CLIENT_DENY_BLOCKING flag is on, it's not blocking and return results which are matches to empty key with no timeout (as MULTI does today). The new flag is checked on the following commands: List blocking commands: BLPOP, BRPOP, BRPOPLPUSH, BLMOVE, Zset blocking commands: BZPOPMIN, BZPOPMAX Stream blocking commands: XREAD, XREADGROUP SUBSCRIBE, PSUBSCRIBE, MONITOR In addition, the new flag is turned on inside the AOF client, we do not want to block the AOF client to prevent deadlocks and commands ordering issues (and there is also an existing assert in the code that verifies it). To keep backward compatibility on LUA, all the no-script flags on existing commands were kept untouched. In addition, a LUA special treatment on XREAD and XREADGROUP was kept. To keep backward compatibility on MULTI (which today allows SUBSCRIBE, and PSUBSCRIBE). We added a special treatment on those commands to allow executing them on MULTI. The only backward compatibility issue that this PR introduces is that now MONITOR is not allowed inside MULTI. Tests were added to verify blocking commands are not blocking the client on LUA, MULTI, or RM_Call. Tests were added to verify the module can check for CLIENT_DENY_BLOCKING flag. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Itamar Haber <itamar@redislabs.com>
2020-11-17 18:58:55 +02:00
if (ctx->client->flags & CLIENT_DENY_BLOCKING)
flags |= VALKEYMODULE_CTX_FLAGS_DENY_BLOCKING;
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
/* Module command received from MASTER, is replicated. */
if (ctx->client->flags & CLIENT_MASTER)
flags |= VALKEYMODULE_CTX_FLAGS_REPLICATED;
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
if (ctx->client->resp == 3) {
flags |= VALKEYMODULE_CTX_FLAGS_RESP3;
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
}
}
/* For DIRTY flags, we need the blocked client if used */
client *c = ctx->blocked_client ? ctx->blocked_client->client : ctx->client;
if (c && (c->flags & (CLIENT_DIRTY_CAS|CLIENT_DIRTY_EXEC))) {
flags |= VALKEYMODULE_CTX_FLAGS_MULTI_DIRTY;
}
2019-06-06 20:08:26 +03:00
}
if (scriptIsRunning())
flags |= VALKEYMODULE_CTX_FLAGS_LUA;
if (server.in_exec)
flags |= VALKEYMODULE_CTX_FLAGS_MULTI;
if (server.cluster_enabled)
flags |= VALKEYMODULE_CTX_FLAGS_CLUSTER;
2018-04-09 17:16:55 +02:00
Replica keep serving data during repl-diskless-load=swapdb for better availability (#9323) For diskless replication in swapdb mode, considering we already spend replica memory having a backup of current db to restore in case of failure, we can have the following benefits by instead swapping database only in case we succeeded in transferring db from master: - Avoid `LOADING` response during failed and successful synchronization for cases where the replica is already up and running with data. - Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping. - This could be implemented also for disk replication with similar benefits if consumers are willing to spend the extra memory usage. General notes: - The concept of `backupDb` becomes `tempDb` for clarity. - Async loading mode will only kick in if the replica is syncing from a master that has the same repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline. - New property in INFO: `async_loading` to differentiate from the blocking loading - Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db and the tempDb that is passed around. - Because this is affecting replicas only, we assume that if they are not readonly and write commands during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET here anyways to avoid complications. Considerations for review: - We have many cases where server.loading flag is used and even though I tried my best, there may be cases where async_loading should be checked as well and cases where it shouldn't (would require very good understanding of whole code) - Several places that had different behavior depending on the loading flag where actually meant to just handle commands coming from the AOF client differently than ones coming from real clients, changed to check CLIENT_ID_AOF instead. **Additional for Release Notes** - Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't contribute on triggering next database SAVE - New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING - Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event. Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED, ABORTED and COMPLETED. - New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions to allow modules to declare they support the diskless replication with async loading (when absent, we fall back to disk-based loading). Co-authored-by: Eduardo Semprebon <edus@saxobank.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2021-11-04 09:46:50 +01:00
if (server.async_loading)
flags |= VALKEYMODULE_CTX_FLAGS_ASYNC_LOADING;
Replica keep serving data during repl-diskless-load=swapdb for better availability (#9323) For diskless replication in swapdb mode, considering we already spend replica memory having a backup of current db to restore in case of failure, we can have the following benefits by instead swapping database only in case we succeeded in transferring db from master: - Avoid `LOADING` response during failed and successful synchronization for cases where the replica is already up and running with data. - Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping. - This could be implemented also for disk replication with similar benefits if consumers are willing to spend the extra memory usage. General notes: - The concept of `backupDb` becomes `tempDb` for clarity. - Async loading mode will only kick in if the replica is syncing from a master that has the same repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline. - New property in INFO: `async_loading` to differentiate from the blocking loading - Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db and the tempDb that is passed around. - Because this is affecting replicas only, we assume that if they are not readonly and write commands during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET here anyways to avoid complications. Considerations for review: - We have many cases where server.loading flag is used and even though I tried my best, there may be cases where async_loading should be checked as well and cases where it shouldn't (would require very good understanding of whole code) - Several places that had different behavior depending on the loading flag where actually meant to just handle commands coming from the AOF client differently than ones coming from real clients, changed to check CLIENT_ID_AOF instead. **Additional for Release Notes** - Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't contribute on triggering next database SAVE - New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING - Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event. Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED, ABORTED and COMPLETED. - New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions to allow modules to declare they support the diskless replication with async loading (when absent, we fall back to disk-based loading). Co-authored-by: Eduardo Semprebon <edus@saxobank.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2021-11-04 09:46:50 +01:00
else if (server.loading)
flags |= VALKEYMODULE_CTX_FLAGS_LOADING;
/* Maxmemory and eviction policy */
if (server.maxmemory > 0 && (!server.masterhost || !server.repl_slave_ignore_maxmemory)) {
flags |= VALKEYMODULE_CTX_FLAGS_MAXMEMORY;
2018-04-09 17:16:55 +02:00
if (server.maxmemory_policy != MAXMEMORY_NO_EVICTION)
flags |= VALKEYMODULE_CTX_FLAGS_EVICT;
}
/* Persistence flags */
if (server.aof_state != AOF_OFF)
flags |= VALKEYMODULE_CTX_FLAGS_AOF;
if (server.saveparamslen > 0)
flags |= VALKEYMODULE_CTX_FLAGS_RDB;
/* Replication flags */
if (server.masterhost == NULL) {
flags |= VALKEYMODULE_CTX_FLAGS_PRIMARY;
} else {
flags |= VALKEYMODULE_CTX_FLAGS_REPLICA;
if (server.repl_slave_ro)
flags |= VALKEYMODULE_CTX_FLAGS_READONLY;
/* Replica state flags. */
if (server.repl_state == REPL_STATE_CONNECT ||
server.repl_state == REPL_STATE_CONNECTING)
{
flags |= VALKEYMODULE_CTX_FLAGS_REPLICA_IS_CONNECTING;
} else if (server.repl_state == REPL_STATE_TRANSFER) {
flags |= VALKEYMODULE_CTX_FLAGS_REPLICA_IS_TRANSFERRING;
} else if (server.repl_state == REPL_STATE_CONNECTED) {
flags |= VALKEYMODULE_CTX_FLAGS_REPLICA_IS_ONLINE;
}
if (server.repl_state != REPL_STATE_CONNECTED)
flags |= VALKEYMODULE_CTX_FLAGS_REPLICA_IS_STALE;
}
2018-04-09 17:16:55 +02:00
/* OOM flag. */
float level;
int retval = getMaxmemoryState(NULL,NULL,NULL,&level);
if (retval == C_ERR) flags |= VALKEYMODULE_CTX_FLAGS_OOM;
if (level > 0.75) flags |= VALKEYMODULE_CTX_FLAGS_OOM_WARNING;
/* Presence of children processes. */
if (hasActiveChildProcess()) flags |= VALKEYMODULE_CTX_FLAGS_ACTIVE_CHILD;
if (server.in_fork_child) flags |= VALKEYMODULE_CTX_FLAGS_IS_CHILD;
/* Non-empty server.loadmodule_queue means that Redis is starting. */
if (listLength(server.loadmodule_queue) > 0)
flags |= VALKEYMODULE_CTX_FLAGS_SERVER_STARTUP;
return flags;
}
/* Returns true if a client sent the CLIENT PAUSE command to the server or
* if Redis Cluster does a manual failover, pausing the clients.
* This is needed when we have a master with replicas, and want to write,
* without adding further data to the replication channel, that the replicas
* replication offset, match the one of the master. When this happens, it is
* safe to failover the master without data loss.
*
* However modules may generate traffic by calling ValkeyModule_Call() with
* the "!" flag, or by calling ValkeyModule_Replicate(), in a context outside
* commands execution, for instance in timeout callbacks, threads safe
* contexts, and so forth. When modules will generate too much traffic, it
* will be hard for the master and replicas offset to match, because there
* is more data to send in the replication channel.
*
* So modules may want to try to avoid very heavy background work that has
* the effect of creating data to the replication channel, when this function
* returns true. This is mostly useful for modules that have background
* garbage collection tasks, or that do writes and replicate such writes
* periodically in timer callbacks or other periodic callbacks.
*/
int VM_AvoidReplicaTraffic(void) {
return !!(isPausedActionsWithUpdate(PAUSE_ACTION_REPLICA));
}
2016-03-06 13:44:24 +01:00
/* Change the currently selected DB. Returns an error if the id
* is out of range.
*
* Note that the client will retain the currently selected DB even after
* the Redis command implemented by the module calling this function
* returns.
*
* If the module command wishes to change something in a different DB and
* returns back to the original one, it should call ValkeyModule_GetSelectedDb()
* before in order to restore the old DB number before returning. */
int VM_SelectDb(ValkeyModuleCtx *ctx, int newid) {
2016-03-06 13:44:24 +01:00
int retval = selectDb(ctx->client,newid);
return (retval == C_OK) ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
2016-03-06 13:44:24 +01:00
}
/* Check if a key exists, without affecting its last access time.
*
* This is equivalent to calling VM_OpenKey with the mode VALKEYMODULE_READ |
* VALKEYMODULE_OPEN_KEY_NOTOUCH, then checking if NULL was returned and, if not,
* calling VM_CloseKey on the opened key.
*/
int VM_KeyExists(ValkeyModuleCtx *ctx, robj *keyname) {
robj *value = lookupKeyReadWithFlags(ctx->client->db, keyname, LOOKUP_NOTOUCH);
return (value != NULL);
}
/* Initialize a ValkeyModuleKey struct */
static void moduleInitKey(ValkeyModuleKey *kp, ValkeyModuleCtx *ctx, robj *keyname, robj *value, int mode){
kp->ctx = ctx;
kp->db = ctx->client->db;
kp->key = keyname;
incrRefCount(keyname);
kp->value = value;
kp->iter = NULL;
kp->mode = mode;
if (kp->value) moduleInitKeyTypeSpecific(kp);
}
/* Initialize the type-specific part of the key. Only when key has a value. */
static void moduleInitKeyTypeSpecific(ValkeyModuleKey *key) {
switch (key->value->type) {
case OBJ_ZSET: zsetKeyReset(key); break;
case OBJ_STREAM: key->u.stream.signalready = 0; break;
}
}
/* Return a handle representing a Redis key, so that it is possible
2016-03-06 13:44:24 +01:00
* to call other APIs with the key handle as argument to perform
* operations on the key.
*
2018-07-30 16:18:56 +03:00
* The return value is the handle representing the key, that must be
* closed with VM_CloseKey().
2016-03-06 13:44:24 +01:00
*
* If the key does not exist and VALKEYMODULE_WRITE mode is requested, the handle
2016-03-06 13:44:24 +01:00
* is still returned, since it is possible to perform operations on
* a yet not existing key (that will be created, for example, after
* a list push operation). If the mode is just VALKEYMODULE_READ instead, and the
2016-03-06 13:44:24 +01:00
* key does not exist, NULL is returned. However it is still safe to
* call ValkeyModule_CloseKey() and ValkeyModule_KeyType() on a NULL
* value.
*
* Extra flags that can be pass to the API under the mode argument:
* * VALKEYMODULE_OPEN_KEY_NOTOUCH - Avoid touching the LRU/LFU of the key when opened.
* * VALKEYMODULE_OPEN_KEY_NONOTIFY - Don't trigger keyspace event on key misses.
* * VALKEYMODULE_OPEN_KEY_NOSTATS - Don't update keyspace hits/misses counters.
* * VALKEYMODULE_OPEN_KEY_NOEXPIRE - Avoid deleting lazy expired keys.
* * VALKEYMODULE_OPEN_KEY_NOEFFECTS - Avoid any effects from fetching the key. */
ValkeyModuleKey *VM_OpenKey(ValkeyModuleCtx *ctx, robj *keyname, int mode) {
ValkeyModuleKey *kp;
2016-03-06 13:44:24 +01:00
robj *value;
int flags = 0;
flags |= (mode & VALKEYMODULE_OPEN_KEY_NOTOUCH? LOOKUP_NOTOUCH: 0);
flags |= (mode & VALKEYMODULE_OPEN_KEY_NONOTIFY? LOOKUP_NONOTIFY: 0);
flags |= (mode & VALKEYMODULE_OPEN_KEY_NOSTATS? LOOKUP_NOSTATS: 0);
flags |= (mode & VALKEYMODULE_OPEN_KEY_NOEXPIRE? LOOKUP_NOEXPIRE: 0);
flags |= (mode & VALKEYMODULE_OPEN_KEY_NOEFFECTS? LOOKUP_NOEFFECTS: 0);
2016-03-06 13:44:24 +01:00
if (mode & VALKEYMODULE_WRITE) {
value = lookupKeyWriteWithFlags(ctx->client->db,keyname, flags);
2016-03-06 13:44:24 +01:00
} else {
value = lookupKeyReadWithFlags(ctx->client->db,keyname, flags);
2016-03-06 13:44:24 +01:00
if (value == NULL) {
return NULL;
}
}
/* Setup the key handle. */
kp = zmalloc(sizeof(*kp));
moduleInitKey(kp, ctx, keyname, value, mode);
autoMemoryAdd(ctx,VALKEYMODULE_AM_KEY,kp);
return kp;
2016-03-06 13:44:24 +01:00
}
/**
* Returns the full OpenKey modes mask, using the return value
* the module can check if a certain set of OpenKey modes are supported
* by the redis server version in use.
* Example:
*
* int supportedMode = VM_GetOpenKeyModesAll();
* if (supportedMode & VALKEYMODULE_OPEN_KEY_NOTOUCH) {
* // VALKEYMODULE_OPEN_KEY_NOTOUCH is supported
* } else{
* // VALKEYMODULE_OPEN_KEY_NOTOUCH is not supported
* }
*/
int VM_GetOpenKeyModesAll(void) {
return _VALKEYMODULE_OPEN_KEY_ALL;
}
/* Destroy a ValkeyModuleKey struct (freeing is the responsibility of the caller). */
static void moduleCloseKey(ValkeyModuleKey *key) {
int signal = SHOULD_SIGNAL_MODIFIED_KEYS(key->ctx);
if ((key->mode & VALKEYMODULE_WRITE) && signal)
signalModifiedKey(key->ctx->client,key->db,key->key);
if (key->value) {
if (key->iter) moduleFreeKeyIterator(key);
switch (key->value->type) {
case OBJ_ZSET:
VM_ZsetRangeStop(key);
break;
case OBJ_STREAM:
if (key->u.stream.signalready)
/* One or more VM_StreamAdd() have been done. */
signalKeyAsReady(key->db, key->key, OBJ_STREAM);
break;
}
}
serverAssert(key->iter == NULL);
2016-03-06 13:44:24 +01:00
decrRefCount(key->key);
}
/* Close a key handle. */
void VM_CloseKey(ValkeyModuleKey *key) {
if (key == NULL) return;
moduleCloseKey(key);
autoMemoryFreed(key->ctx,VALKEYMODULE_AM_KEY,key);
2016-03-06 13:44:24 +01:00
zfree(key);
}
/* Return the type of the key. If the key pointer is NULL then
* VALKEYMODULE_KEYTYPE_EMPTY is returned. */
int VM_KeyType(ValkeyModuleKey *key) {
if (key == NULL || key->value == NULL) return VALKEYMODULE_KEYTYPE_EMPTY;
2016-03-06 13:44:24 +01:00
/* We map between defines so that we are free to change the internal
* defines as desired. */
switch(key->value->type) {
case OBJ_STRING: return VALKEYMODULE_KEYTYPE_STRING;
case OBJ_LIST: return VALKEYMODULE_KEYTYPE_LIST;
case OBJ_SET: return VALKEYMODULE_KEYTYPE_SET;
case OBJ_ZSET: return VALKEYMODULE_KEYTYPE_ZSET;
case OBJ_HASH: return VALKEYMODULE_KEYTYPE_HASH;
case OBJ_MODULE: return VALKEYMODULE_KEYTYPE_MODULE;
case OBJ_STREAM: return VALKEYMODULE_KEYTYPE_STREAM;
default: return VALKEYMODULE_KEYTYPE_EMPTY;
2016-03-06 13:44:24 +01:00
}
}
/* Return the length of the value associated with the key.
* For strings this is the length of the string. For all the other types
* is the number of elements (just counting keys for hashes).
*
* If the key pointer is NULL or the key is empty, zero is returned. */
size_t VM_ValueLength(ValkeyModuleKey *key) {
2016-03-06 13:44:24 +01:00
if (key == NULL || key->value == NULL) return 0;
switch(key->value->type) {
case OBJ_STRING: return stringObjectLen(key->value);
case OBJ_LIST: return listTypeLength(key->value);
case OBJ_SET: return setTypeSize(key->value);
case OBJ_ZSET: return zsetLength(key->value);
case OBJ_HASH: return hashTypeLength(key->value);
case OBJ_STREAM: return streamLength(key->value);
2016-03-06 13:44:24 +01:00
default: return 0;
}
}
/* If the key is open for writing, remove it, and setup the key to
* accept new writes as an empty key (that will be created on demand).
* On success VALKEYMODULE_OK is returned. If the key is not open for
* writing VALKEYMODULE_ERR is returned. */
int VM_DeleteKey(ValkeyModuleKey *key) {
if (!(key->mode & VALKEYMODULE_WRITE)) return VALKEYMODULE_ERR;
2016-03-06 13:44:24 +01:00
if (key->value) {
dbDelete(key->db,key->key);
key->value = NULL;
}
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
/* If the key is open for writing, unlink it (that is delete it in a
* non-blocking way, not reclaiming memory immediately) and setup the key to
* accept new writes as an empty key (that will be created on demand).
* On success VALKEYMODULE_OK is returned. If the key is not open for
* writing VALKEYMODULE_ERR is returned. */
int VM_UnlinkKey(ValkeyModuleKey *key) {
if (!(key->mode & VALKEYMODULE_WRITE)) return VALKEYMODULE_ERR;
if (key->value) {
dbAsyncDelete(key->db,key->key);
key->value = NULL;
}
return VALKEYMODULE_OK;
}
2016-04-11 17:12:11 +02:00
/* Return the key expire value, as milliseconds of remaining TTL.
* If no TTL is associated with the key or if the key is empty,
* VALKEYMODULE_NO_EXPIRE is returned. */
mstime_t VM_GetExpire(ValkeyModuleKey *key) {
2016-04-11 17:12:11 +02:00
mstime_t expire = getExpire(key->db,key->key);
if (expire == -1 || key->value == NULL)
return VALKEYMODULE_NO_EXPIRE;
Freeze time sampling during command execution, and scripts (#10300) Freeze time during execution of scripts and all other commands. This means that a key is either expired or not, and doesn't change state during a script execution. resolves #10182 This PR try to add a new `commandTimeSnapshot` function. The function logic is extracted from `keyIsExpired`, but the related calls to `fixed_time_expire` and `mstime()` are removed, see below. In commands, we will avoid calling `mstime()` multiple times and just use the one that sampled in call. The background is, e.g. using `PEXPIRE 1` with valgrind sometimes result in the key being deleted rather than expired. The reason is that both `PEXPIRE` command and `checkAlreadyExpired` call `mstime()` separately. There are other more important changes in this PR: 1. Eliminate `fixed_time_expire`, it is no longer needed. When we want to sample time we should always use a time snapshot. We will use `in_nested_call` instead to update the cached time in `call`. 2. Move the call for `updateCachedTime` from `serverCron` to `afterSleep`. Now `commandTimeSnapshot` will always return the sample time, the `lookupKeyReadWithFlags` call in `getNodeByQuery` will get a outdated cached time (because `processCommand` is out of the `call` context). We put the call to `updateCachedTime` in `aftersleep`. 3. Cache the time each time the module lock Redis. Call `updateCachedTime` in `moduleGILAfterLock`, affecting `RM_ThreadSafeContextLock` and `RM_ThreadSafeContextTryLock` Currently the commandTimeSnapshot change affects the following TTL commands: - SET EX / SET PX - EXPIRE / PEXPIRE - SETEX / PSETEX - GETEX EX / GETEX PX - TTL / PTTL - EXPIRETIME / PEXPIRETIME - RESTORE key TTL And other commands just use the cached mstime (including TIME). This is considered to be a breaking change since it can break a script that uses a loop to wait for a key to expire.
2022-10-09 13:18:34 +08:00
expire -= commandTimeSnapshot();
2016-04-11 17:12:11 +02:00
return expire >= 0 ? expire : 0;
}
/* Set a new expire for the key. If the special expire
* VALKEYMODULE_NO_EXPIRE is set, the expire is cancelled if there was
2016-04-11 17:12:11 +02:00
* one (the same as the PERSIST command).
*
* Note that the expire must be provided as a positive integer representing
* the number of milliseconds of TTL the key should have.
*
* The function returns VALKEYMODULE_OK on success or VALKEYMODULE_ERR if
2016-04-11 17:12:11 +02:00
* the key was not open for writing or is an empty key. */
int VM_SetExpire(ValkeyModuleKey *key, mstime_t expire) {
if (!(key->mode & VALKEYMODULE_WRITE) || key->value == NULL || (expire < 0 && expire != VALKEYMODULE_NO_EXPIRE))
return VALKEYMODULE_ERR;
if (expire != VALKEYMODULE_NO_EXPIRE) {
Freeze time sampling during command execution, and scripts (#10300) Freeze time during execution of scripts and all other commands. This means that a key is either expired or not, and doesn't change state during a script execution. resolves #10182 This PR try to add a new `commandTimeSnapshot` function. The function logic is extracted from `keyIsExpired`, but the related calls to `fixed_time_expire` and `mstime()` are removed, see below. In commands, we will avoid calling `mstime()` multiple times and just use the one that sampled in call. The background is, e.g. using `PEXPIRE 1` with valgrind sometimes result in the key being deleted rather than expired. The reason is that both `PEXPIRE` command and `checkAlreadyExpired` call `mstime()` separately. There are other more important changes in this PR: 1. Eliminate `fixed_time_expire`, it is no longer needed. When we want to sample time we should always use a time snapshot. We will use `in_nested_call` instead to update the cached time in `call`. 2. Move the call for `updateCachedTime` from `serverCron` to `afterSleep`. Now `commandTimeSnapshot` will always return the sample time, the `lookupKeyReadWithFlags` call in `getNodeByQuery` will get a outdated cached time (because `processCommand` is out of the `call` context). We put the call to `updateCachedTime` in `aftersleep`. 3. Cache the time each time the module lock Redis. Call `updateCachedTime` in `moduleGILAfterLock`, affecting `RM_ThreadSafeContextLock` and `RM_ThreadSafeContextTryLock` Currently the commandTimeSnapshot change affects the following TTL commands: - SET EX / SET PX - EXPIRE / PEXPIRE - SETEX / PSETEX - GETEX EX / GETEX PX - TTL / PTTL - EXPIRETIME / PEXPIRETIME - RESTORE key TTL And other commands just use the cached mstime (including TIME). This is considered to be a breaking change since it can break a script that uses a loop to wait for a key to expire.
2022-10-09 13:18:34 +08:00
expire += commandTimeSnapshot();
Replication: fix the infamous key leakage of writable slaves + EXPIRE. BACKGROUND AND USE CASEj Redis slaves are normally write only, however the supprot a "writable" mode which is very handy when scaling reads on slaves, that actually need write operations in order to access data. For instance imagine having slaves replicating certain Sets keys from the master. When accessing the data on the slave, we want to peform intersections between such Sets values. However we don't want to intersect each time: to cache the intersection for some time often is a good idea. To do so, it is possible to setup a slave as a writable slave, and perform the intersection on the slave side, perhaps setting a TTL on the resulting key so that it will expire after some time. THE BUG Problem: in order to have a consistent replication, expiring of keys in Redis replication is up to the master, that synthesize DEL operations to send in the replication stream. However slaves logically expire keys by hiding them from read attempts from clients so that if the master did not promptly sent a DEL, the client still see logically expired keys as non existing. Because slaves don't actively expire keys by actually evicting them but just masking from the POV of read operations, if a key is created in a writable slave, and an expire is set, the key will be leaked forever: 1. No DEL will be received from the master, which does not know about such a key at all. 2. No eviction will be performed by the slave, since it needs to disable eviction because it's up to masters, otherwise consistency of data is lost. THE FIX In order to fix the problem, the slave should be able to tag keys that were created in the slave side and have an expire set in some way. My solution involved using an unique additional dictionary created by the writable slave only if needed. The dictionary is obviously keyed by the key name that we need to track: all the keys that are set with an expire directly by a client writing to the slave are tracked. The value in the dictionary is a bitmap of all the DBs where such a key name need to be tracked, so that we can use a single dictionary to track keys in all the DBs used by the slave (actually this limits the solution to the first 64 DBs, but the default with Redis is to use 16 DBs). This solution allows to pay both a small complexity and CPU penalty, which is zero when the feature is not used, actually. The slave-side eviction is encapsulated in code which is not coupled with the rest of the Redis core, if not for the hook to track the keys. TODO I'm doing the first smoke tests to see if the feature works as expected: so far so good. Unit tests should be added before merging into the 4.0 branch.
2016-12-13 10:20:06 +01:00
setExpire(key->ctx->client,key->db,key->key,expire);
2016-04-11 17:12:11 +02:00
} else {
removeExpire(key->db,key->key);
}
return VALKEYMODULE_OK;
2016-04-11 17:12:11 +02:00
}
/* Return the key expire value, as absolute Unix timestamp.
* If no TTL is associated with the key or if the key is empty,
* VALKEYMODULE_NO_EXPIRE is returned. */
mstime_t VM_GetAbsExpire(ValkeyModuleKey *key) {
mstime_t expire = getExpire(key->db,key->key);
if (expire == -1 || key->value == NULL)
return VALKEYMODULE_NO_EXPIRE;
return expire;
}
/* Set a new expire for the key. If the special expire
* VALKEYMODULE_NO_EXPIRE is set, the expire is cancelled if there was
* one (the same as the PERSIST command).
*
* Note that the expire must be provided as a positive integer representing
* the absolute Unix timestamp the key should have.
*
* The function returns VALKEYMODULE_OK on success or VALKEYMODULE_ERR if
* the key was not open for writing or is an empty key. */
int VM_SetAbsExpire(ValkeyModuleKey *key, mstime_t expire) {
if (!(key->mode & VALKEYMODULE_WRITE) || key->value == NULL || (expire < 0 && expire != VALKEYMODULE_NO_EXPIRE))
return VALKEYMODULE_ERR;
if (expire != VALKEYMODULE_NO_EXPIRE) {
setExpire(key->ctx->client,key->db,key->key,expire);
} else {
removeExpire(key->db,key->key);
}
return VALKEYMODULE_OK;
}
/* Performs similar operation to FLUSHALL, and optionally start a new AOF file (if enabled)
* If restart_aof is true, you must make sure the command that triggered this call is not
* propagated to the AOF file.
* When async is set to true, db contents will be freed by a background thread. */
void VM_ResetDataset(int restart_aof, int async) {
if (restart_aof && server.aof_state != AOF_OFF) stopAppendOnly();
flushAllDataAndResetRDB((async? EMPTYDB_ASYNC: EMPTYDB_NO_FLAGS) | EMPTYDB_NOFUNCTIONS);
if (server.aof_enabled && restart_aof) restartAOFAfterSYNC();
}
/* Returns the number of keys in the current db. */
unsigned long long VM_DbSize(ValkeyModuleCtx *ctx) {
return dictSize(ctx->client->db->dict);
}
/* Returns a name of a random key, or NULL if current db is empty. */
ValkeyModuleString *VM_RandomKey(ValkeyModuleCtx *ctx) {
robj *key = dbRandomKey(ctx->client->db);
autoMemoryAdd(ctx,VALKEYMODULE_AM_STRING,key);
return key;
}
/* Returns the name of the key currently being processed. */
const ValkeyModuleString *VM_GetKeyNameFromOptCtx(ValkeyModuleKeyOptCtx *ctx) {
return ctx->from_key;
}
/* Returns the name of the target key currently being processed. */
const ValkeyModuleString *VM_GetToKeyNameFromOptCtx(ValkeyModuleKeyOptCtx *ctx) {
return ctx->to_key;
}
/* Returns the dbid currently being processed. */
int VM_GetDbIdFromOptCtx(ValkeyModuleKeyOptCtx *ctx) {
return ctx->from_dbid;
}
/* Returns the target dbid currently being processed. */
int VM_GetToDbIdFromOptCtx(ValkeyModuleKeyOptCtx *ctx) {
return ctx->to_dbid;
}
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* ## Key API for String type
*
* See also VM_ValueLength(), which returns the length of a string.
2016-03-06 13:44:24 +01:00
* -------------------------------------------------------------------------- */
/* If the key is open for writing, set the specified string 'str' as the
* value of the key, deleting the old value if any.
* On success VALKEYMODULE_OK is returned. If the key is not open for
* writing or there is an active iterator, VALKEYMODULE_ERR is returned. */
int VM_StringSet(ValkeyModuleKey *key, ValkeyModuleString *str) {
if (!(key->mode & VALKEYMODULE_WRITE) || key->iter) return VALKEYMODULE_ERR;
VM_DeleteKey(key);
setKey(key->ctx->client,key->db,key->key,str,SETKEY_NO_SIGNAL);
2016-04-06 22:46:22 +08:00
key->value = str;
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
/* Prepare the key associated string value for DMA access, and returns
* a pointer and size (by reference), that the user can use to read or
* modify the string in-place accessing it directly via pointer.
*
* The 'mode' is composed by bitwise OR-ing the following flags:
*
* VALKEYMODULE_READ -- Read access
* VALKEYMODULE_WRITE -- Write access
2016-03-06 13:44:24 +01:00
*
* If the DMA is not requested for writing, the pointer returned should
* only be accessed in a read-only fashion.
*
* On error (wrong type) NULL is returned.
*
* DMA access rules:
*
* 1. No other key writing function should be called since the moment
* the pointer is obtained, for all the time we want to use DMA access
* to read or modify the string.
*
* 2. Each time VM_StringTruncate() is called, to continue with the DMA
* access, VM_StringDMA() should be called again to re-obtain
2016-03-06 13:44:24 +01:00
* a new pointer and length.
*
* 3. If the returned pointer is not NULL, but the length is zero, no
* byte can be touched (the string is empty, or the key itself is empty)
* so a VM_StringTruncate() call should be used if there is to enlarge
2016-03-06 13:44:24 +01:00
* the string, and later call StringDMA() again to get the pointer.
*/
char *VM_StringDMA(ValkeyModuleKey *key, size_t *len, int mode) {
2016-03-06 13:44:24 +01:00
/* We need to return *some* pointer for empty keys, we just return
* a string literal pointer, that is the advantage to be mapped into
* a read only memory page, so the module will segfault if a write
* attempt is performed. */
char *emptystring = "<dma-empty-string>";
if (key->value == NULL) {
*len = 0;
return emptystring;
}
if (key->value->type != OBJ_STRING) return NULL;
/* For write access, and even for read access if the object is encoded,
* we unshare the string (that has the side effect of decoding it). */
if ((mode & VALKEYMODULE_WRITE) || key->value->encoding != OBJ_ENCODING_RAW)
2016-03-06 13:44:24 +01:00
key->value = dbUnshareStringValue(key->db, key->key, key->value);
*len = sdslen(key->value->ptr);
return key->value->ptr;
}
/* If the key is open for writing and is of string type, resize it, padding
2016-03-06 13:44:24 +01:00
* with zero bytes if the new length is greater than the old one.
*
* After this call, VM_StringDMA() must be called again to continue
2016-03-06 13:44:24 +01:00
* DMA access with the new pointer.
*
* The function returns VALKEYMODULE_OK on success, and VALKEYMODULE_ERR on
2016-03-06 13:44:24 +01:00
* error, that is, the key is not open for writing, is not a string
* or resizing for more than 512 MB is requested.
*
* If the key is empty, a string key is created with the new string value
* unless the new length value requested is zero. */
int VM_StringTruncate(ValkeyModuleKey *key, size_t newlen) {
if (!(key->mode & VALKEYMODULE_WRITE)) return VALKEYMODULE_ERR;
if (key->value && key->value->type != OBJ_STRING) return VALKEYMODULE_ERR;
if (newlen > 512*1024*1024) return VALKEYMODULE_ERR;
2016-03-06 13:44:24 +01:00
/* Empty key and new len set to 0. Just return VALKEYMODULE_OK without
2016-03-06 13:44:24 +01:00
* doing anything. */
if (key->value == NULL && newlen == 0) return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
if (key->value == NULL) {
/* Empty key: create it with the new size. */
robj *o = createObject(OBJ_STRING,sdsnewlen(NULL, newlen));
setKey(key->ctx->client,key->db,key->key,o,SETKEY_NO_SIGNAL);
key->value = o;
decrRefCount(o);
} else {
/* Unshare and resize. */
key->value = dbUnshareStringValue(key->db, key->key, key->value);
size_t curlen = sdslen(key->value->ptr);
if (newlen > curlen) {
key->value->ptr = sdsgrowzero(key->value->ptr,newlen);
} else if (newlen < curlen) {
sdssubstr(key->value->ptr,0,newlen);
/* If the string is too wasteful, reallocate it. */
if (sdslen(key->value->ptr) < sdsavail(key->value->ptr))
Optimization: sdsRemoveFreeSpace to avoid realloc on noop (#11766) In #7875 (Redis 6.2), we changed the sds alloc to be the usable allocation size in order to: > reduce the need for realloc calls by making the sds implicitly take over the internal fragmentation This change was done most sds functions, excluding `sdsRemoveFreeSpace` and `sdsResize`, the reason is that in some places (e.g. clientsCronResizeQueryBuffer) we call sdsRemoveFreeSpace when we see excessive free space and want to trim it. so if we don't trim it exactly to size, the caller may still see excessive free space and call it again and again. However, this resulted in some excessive calls to realloc, even when there's no need and it's gonna be a no-op (e.g. when reducing 15 bytes allocation to 13). It turns out that a call for realloc with jemalloc can be expensive even if it ends up doing nothing, so this PR adds a check using `je_nallocx`, which is cheap to avoid the call for realloc. in addition to that this PR unifies sdsResize and sdsRemoveFreeSpace into common code. the difference between them was that sdsResize would avoid using SDS_TYPE_5, since it want to keep the string ready to be resized again, while sdsRemoveFreeSpace would permit using SDS_TYPE_5 and get an optimal memory consumption. now both methods take a `would_regrow` argument that makes it more explicit. the only actual impact of that is that in clientsCronResizeQueryBuffer we call both sdsResize and sdsRemoveFreeSpace for in different cases, and we now prevent the use of SDS_TYPE_5 in both. The new test that was added to cover this concern used to pass before this PR as well, this PR is just a performance optimization and cleanup. Benchmark: `redis-benchmark -c 100 -t set -d 512 -P 10 -n 100000000` on i7-9850H with jemalloc, shows improvement from 1021k ops/sec to 1067k (average of 3 runs). some 4.5% improvement. Co-authored-by: Oran Agra <oran@redislabs.com>
2023-01-31 17:26:35 +02:00
key->value->ptr = sdsRemoveFreeSpace(key->value->ptr, 0);
}
2016-03-06 13:44:24 +01:00
}
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
/* --------------------------------------------------------------------------
* ## Key API for List type
*
* Many of the list functions access elements by index. Since a list is in
* essence a doubly-linked list, accessing elements by index is generally an
* O(N) operation. However, if elements are accessed sequentially or with
* indices close together, the functions are optimized to seek the index from
* the previous index, rather than seeking from the ends of the list.
*
* This enables iteration to be done efficiently using a simple for loop:
*
* long n = VM_ValueLength(key);
* for (long i = 0; i < n; i++) {
* ValkeyModuleString *elem = ValkeyModule_ListGet(key, i);
* // Do stuff...
* }
*
* Note that after modifying a list using VM_ListPop, VM_ListSet or
* VM_ListInsert, the internal iterator is invalidated so the next operation
* will require a linear seek.
*
* Modifying a list in any another way, for example using VM_Call(), while a key
* is open will confuse the internal iterator and may cause trouble if the key
* is used after such modifications. The key must be reopened in this case.
*
* See also VM_ValueLength(), which returns the length of a list.
2016-03-06 13:44:24 +01:00
* -------------------------------------------------------------------------- */
/* Seeks the key's internal list iterator to the given index. On success, 1 is
* returned and key->iter, key->u.list.entry and key->u.list.index are set. On
* failure, 0 is returned and errno is set as required by the list API
* functions. */
int moduleListIteratorSeek(ValkeyModuleKey *key, long index, int mode) {
if (!key) {
errno = EINVAL;
return 0;
} else if (!key->value || key->value->type != OBJ_LIST) {
errno = ENOTSUP;
return 0;
} if (!(key->mode & mode)) {
errno = EBADF;
return 0;
}
long length = listTypeLength(key->value);
if (index < -length || index >= length) {
errno = EDOM; /* Invalid index */
return 0;
}
if (key->iter == NULL) {
/* No existing iterator. Create one. */
key->iter = listTypeInitIterator(key->value, index, LIST_TAIL);
serverAssert(key->iter != NULL);
serverAssert(listTypeNext(key->iter, &key->u.list.entry));
key->u.list.index = index;
return 1;
}
/* There's an existing iterator. Make sure the requested index has the same
* sign as the iterator's index. */
if (index < 0 && key->u.list.index >= 0) index += length;
else if (index >= 0 && key->u.list.index < 0) index -= length;
if (index == key->u.list.index) return 1; /* We're done. */
/* Seek the iterator to the requested index. */
unsigned char dir = key->u.list.index < index ? LIST_TAIL : LIST_HEAD;
Add listpack encoding for list (#11303) Improve memory efficiency of list keys ## Description of the feature The new listpack encoding uses the old `list-max-listpack-size` config to perform the conversion, which we can think it of as a node inside a quicklist, but without 80 bytes overhead (internal fragmentation included) of quicklist and quicklistNode structs. For example, a list key with 5 items of 10 chars each, now takes 128 bytes instead of 208 it used to take. ## Conversion rules * Convert listpack to quicklist When the listpack length or size reaches the `list-max-listpack-size` limit, it will be converted to a quicklist. * Convert quicklist to listpack When a quicklist has only one node, and its length or size is reduced to half of the `list-max-listpack-size` limit, it will be converted to a listpack. This is done to avoid frequent conversions when we add or remove at the bounding size or length. ## Interface changes 1. add list entry param to listTypeSetIteratorDirection When list encoding is listpack, `listTypeIterator->lpi` points to the next entry of current entry, so when changing the direction, we need to use the current node (listTypeEntry->p) to update `listTypeIterator->lpi` to the next node in the reverse direction. ## Benchmark ### Listpack VS Quicklist with one node * LPUSH - roughly 0.3% improvement * LRANGE - roughly 13% improvement ### Both are quicklist * LRANGE - roughly 3% improvement * LRANGE without pipeline - roughly 3% improvement From the benchmark, as we can see from the results 1. When list is quicklist encoding, LRANGE improves performance by <5%. 2. When list is listpack encoding, LRANGE improves performance by ~13%, the main enhancement is brought by `addListListpackRangeReply()`. ## Memory usage 1M lists(key:0~key:1000000) with 5 items of 10 chars ("hellohello") each. shows memory usage down by 35.49%, from 214MB to 138MB. ## Note 1. Add conversion callback to support doing some work before conversion Since the quicklist iterator decompresses the current node when it is released, we can no longer decompress the quicklist after we convert the list.
2022-11-17 02:29:46 +08:00
listTypeSetIteratorDirection(key->iter, &key->u.list.entry, dir);
while (key->u.list.index != index) {
serverAssert(listTypeNext(key->iter, &key->u.list.entry));
key->u.list.index += dir == LIST_HEAD ? -1 : 1;
}
return 1;
}
/* Push an element into a list, on head or tail depending on 'where' argument
* (VALKEYMODULE_LIST_HEAD or VALKEYMODULE_LIST_TAIL). If the key refers to an
* empty key opened for writing, the key is created. On success, VALKEYMODULE_OK
* is returned. On failure, VALKEYMODULE_ERR is returned and `errno` is set as
* follows:
*
* - EINVAL if key or ele is NULL.
* - ENOTSUP if the key is of another type than list.
* - EBADF if the key is not opened for writing.
*
* Note: Before Redis 7.0, `errno` was not set by this function. */
int VM_ListPush(ValkeyModuleKey *key, int where, ValkeyModuleString *ele) {
if (!key || !ele) {
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (key->value != NULL && key->value->type != OBJ_LIST) {
errno = ENOTSUP;
return VALKEYMODULE_ERR;
} if (!(key->mode & VALKEYMODULE_WRITE)) {
errno = EBADF;
return VALKEYMODULE_ERR;
}
if (!(key->mode & VALKEYMODULE_WRITE)) return VALKEYMODULE_ERR;
if (key->value && key->value->type != OBJ_LIST) return VALKEYMODULE_ERR;
if (key->iter) moduleFreeKeyIterator(key);
if (key->value == NULL) moduleCreateEmptyKey(key,VALKEYMODULE_KEYTYPE_LIST);
Add listpack encoding for list (#11303) Improve memory efficiency of list keys ## Description of the feature The new listpack encoding uses the old `list-max-listpack-size` config to perform the conversion, which we can think it of as a node inside a quicklist, but without 80 bytes overhead (internal fragmentation included) of quicklist and quicklistNode structs. For example, a list key with 5 items of 10 chars each, now takes 128 bytes instead of 208 it used to take. ## Conversion rules * Convert listpack to quicklist When the listpack length or size reaches the `list-max-listpack-size` limit, it will be converted to a quicklist. * Convert quicklist to listpack When a quicklist has only one node, and its length or size is reduced to half of the `list-max-listpack-size` limit, it will be converted to a listpack. This is done to avoid frequent conversions when we add or remove at the bounding size or length. ## Interface changes 1. add list entry param to listTypeSetIteratorDirection When list encoding is listpack, `listTypeIterator->lpi` points to the next entry of current entry, so when changing the direction, we need to use the current node (listTypeEntry->p) to update `listTypeIterator->lpi` to the next node in the reverse direction. ## Benchmark ### Listpack VS Quicklist with one node * LPUSH - roughly 0.3% improvement * LRANGE - roughly 13% improvement ### Both are quicklist * LRANGE - roughly 3% improvement * LRANGE without pipeline - roughly 3% improvement From the benchmark, as we can see from the results 1. When list is quicklist encoding, LRANGE improves performance by <5%. 2. When list is listpack encoding, LRANGE improves performance by ~13%, the main enhancement is brought by `addListListpackRangeReply()`. ## Memory usage 1M lists(key:0~key:1000000) with 5 items of 10 chars ("hellohello") each. shows memory usage down by 35.49%, from 214MB to 138MB. ## Note 1. Add conversion callback to support doing some work before conversion Since the quicklist iterator decompresses the current node when it is released, we can no longer decompress the quicklist after we convert the list.
2022-11-17 02:29:46 +08:00
listTypeTryConversionAppend(key->value, &ele, 0, 0, moduleFreeListIterator, key);
2016-03-06 13:44:24 +01:00
listTypePush(key->value, ele,
(where == VALKEYMODULE_LIST_HEAD) ? LIST_HEAD : LIST_TAIL);
return VALKEYMODULE_OK;
2016-03-06 13:44:24 +01:00
}
/* Pop an element from the list, and returns it as a module string object
* that the user should be free with VM_FreeString() or by enabling
* automatic memory. The `where` argument specifies if the element should be
* popped from the beginning or the end of the list (VALKEYMODULE_LIST_HEAD or
* VALKEYMODULE_LIST_TAIL). On failure, the command returns NULL and sets
* `errno` as follows:
*
* - EINVAL if key is NULL.
* - ENOTSUP if the key is empty or of another type than list.
* - EBADF if the key is not opened for writing.
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
*
* Note: Before Redis 7.0, `errno` was not set by this function. */
ValkeyModuleString *VM_ListPop(ValkeyModuleKey *key, int where) {
if (!key) {
errno = EINVAL;
return NULL;
} else if (key->value == NULL || key->value->type != OBJ_LIST) {
errno = ENOTSUP;
return NULL;
} else if (!(key->mode & VALKEYMODULE_WRITE)) {
errno = EBADF;
return NULL;
}
if (key->iter) moduleFreeKeyIterator(key);
2016-03-06 13:44:24 +01:00
robj *ele = listTypePop(key->value,
(where == VALKEYMODULE_LIST_HEAD) ? LIST_HEAD : LIST_TAIL);
2016-03-06 13:44:24 +01:00
robj *decoded = getDecodedObject(ele);
decrRefCount(ele);
Add listpack encoding for list (#11303) Improve memory efficiency of list keys ## Description of the feature The new listpack encoding uses the old `list-max-listpack-size` config to perform the conversion, which we can think it of as a node inside a quicklist, but without 80 bytes overhead (internal fragmentation included) of quicklist and quicklistNode structs. For example, a list key with 5 items of 10 chars each, now takes 128 bytes instead of 208 it used to take. ## Conversion rules * Convert listpack to quicklist When the listpack length or size reaches the `list-max-listpack-size` limit, it will be converted to a quicklist. * Convert quicklist to listpack When a quicklist has only one node, and its length or size is reduced to half of the `list-max-listpack-size` limit, it will be converted to a listpack. This is done to avoid frequent conversions when we add or remove at the bounding size or length. ## Interface changes 1. add list entry param to listTypeSetIteratorDirection When list encoding is listpack, `listTypeIterator->lpi` points to the next entry of current entry, so when changing the direction, we need to use the current node (listTypeEntry->p) to update `listTypeIterator->lpi` to the next node in the reverse direction. ## Benchmark ### Listpack VS Quicklist with one node * LPUSH - roughly 0.3% improvement * LRANGE - roughly 13% improvement ### Both are quicklist * LRANGE - roughly 3% improvement * LRANGE without pipeline - roughly 3% improvement From the benchmark, as we can see from the results 1. When list is quicklist encoding, LRANGE improves performance by <5%. 2. When list is listpack encoding, LRANGE improves performance by ~13%, the main enhancement is brought by `addListListpackRangeReply()`. ## Memory usage 1M lists(key:0~key:1000000) with 5 items of 10 chars ("hellohello") each. shows memory usage down by 35.49%, from 214MB to 138MB. ## Note 1. Add conversion callback to support doing some work before conversion Since the quicklist iterator decompresses the current node when it is released, we can no longer decompress the quicklist after we convert the list.
2022-11-17 02:29:46 +08:00
if (!moduleDelKeyIfEmpty(key))
listTypeTryConversion(key->value, LIST_CONV_SHRINKING, moduleFreeListIterator, key);
autoMemoryAdd(key->ctx,VALKEYMODULE_AM_STRING,decoded);
2016-03-06 13:44:24 +01:00
return decoded;
}
/* Returns the element at index `index` in the list stored at `key`, like the
* LINDEX command. The element should be free'd using VM_FreeString() or using
* automatic memory management.
*
* The index is zero-based, so 0 means the first element, 1 the second element
* and so on. Negative indices can be used to designate elements starting at the
* tail of the list. Here, -1 means the last element, -2 means the penultimate
* and so forth.
*
* When no value is found at the given key and index, NULL is returned and
* `errno` is set as follows:
*
* - EINVAL if key is NULL.
* - ENOTSUP if the key is not a list.
* - EBADF if the key is not opened for reading.
* - EDOM if the index is not a valid index in the list.
*/
ValkeyModuleString *VM_ListGet(ValkeyModuleKey *key, long index) {
if (moduleListIteratorSeek(key, index, VALKEYMODULE_READ)) {
robj *elem = listTypeGet(&key->u.list.entry);
robj *decoded = getDecodedObject(elem);
decrRefCount(elem);
autoMemoryAdd(key->ctx, VALKEYMODULE_AM_STRING, decoded);
return decoded;
} else {
return NULL;
}
}
/* Replaces the element at index `index` in the list stored at `key`.
*
* The index is zero-based, so 0 means the first element, 1 the second element
* and so on. Negative indices can be used to designate elements starting at the
* tail of the list. Here, -1 means the last element, -2 means the penultimate
* and so forth.
*
* On success, VALKEYMODULE_OK is returned. On failure, VALKEYMODULE_ERR is
* returned and `errno` is set as follows:
*
* - EINVAL if key or value is NULL.
* - ENOTSUP if the key is not a list.
* - EBADF if the key is not opened for writing.
* - EDOM if the index is not a valid index in the list.
*/
int VM_ListSet(ValkeyModuleKey *key, long index, ValkeyModuleString *value) {
if (!value) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
Add listpack encoding for list (#11303) Improve memory efficiency of list keys ## Description of the feature The new listpack encoding uses the old `list-max-listpack-size` config to perform the conversion, which we can think it of as a node inside a quicklist, but without 80 bytes overhead (internal fragmentation included) of quicklist and quicklistNode structs. For example, a list key with 5 items of 10 chars each, now takes 128 bytes instead of 208 it used to take. ## Conversion rules * Convert listpack to quicklist When the listpack length or size reaches the `list-max-listpack-size` limit, it will be converted to a quicklist. * Convert quicklist to listpack When a quicklist has only one node, and its length or size is reduced to half of the `list-max-listpack-size` limit, it will be converted to a listpack. This is done to avoid frequent conversions when we add or remove at the bounding size or length. ## Interface changes 1. add list entry param to listTypeSetIteratorDirection When list encoding is listpack, `listTypeIterator->lpi` points to the next entry of current entry, so when changing the direction, we need to use the current node (listTypeEntry->p) to update `listTypeIterator->lpi` to the next node in the reverse direction. ## Benchmark ### Listpack VS Quicklist with one node * LPUSH - roughly 0.3% improvement * LRANGE - roughly 13% improvement ### Both are quicklist * LRANGE - roughly 3% improvement * LRANGE without pipeline - roughly 3% improvement From the benchmark, as we can see from the results 1. When list is quicklist encoding, LRANGE improves performance by <5%. 2. When list is listpack encoding, LRANGE improves performance by ~13%, the main enhancement is brought by `addListListpackRangeReply()`. ## Memory usage 1M lists(key:0~key:1000000) with 5 items of 10 chars ("hellohello") each. shows memory usage down by 35.49%, from 214MB to 138MB. ## Note 1. Add conversion callback to support doing some work before conversion Since the quicklist iterator decompresses the current node when it is released, we can no longer decompress the quicklist after we convert the list.
2022-11-17 02:29:46 +08:00
if (!key->value || key->value->type != OBJ_LIST) {
errno = ENOTSUP;
return VALKEYMODULE_ERR;
Add listpack encoding for list (#11303) Improve memory efficiency of list keys ## Description of the feature The new listpack encoding uses the old `list-max-listpack-size` config to perform the conversion, which we can think it of as a node inside a quicklist, but without 80 bytes overhead (internal fragmentation included) of quicklist and quicklistNode structs. For example, a list key with 5 items of 10 chars each, now takes 128 bytes instead of 208 it used to take. ## Conversion rules * Convert listpack to quicklist When the listpack length or size reaches the `list-max-listpack-size` limit, it will be converted to a quicklist. * Convert quicklist to listpack When a quicklist has only one node, and its length or size is reduced to half of the `list-max-listpack-size` limit, it will be converted to a listpack. This is done to avoid frequent conversions when we add or remove at the bounding size or length. ## Interface changes 1. add list entry param to listTypeSetIteratorDirection When list encoding is listpack, `listTypeIterator->lpi` points to the next entry of current entry, so when changing the direction, we need to use the current node (listTypeEntry->p) to update `listTypeIterator->lpi` to the next node in the reverse direction. ## Benchmark ### Listpack VS Quicklist with one node * LPUSH - roughly 0.3% improvement * LRANGE - roughly 13% improvement ### Both are quicklist * LRANGE - roughly 3% improvement * LRANGE without pipeline - roughly 3% improvement From the benchmark, as we can see from the results 1. When list is quicklist encoding, LRANGE improves performance by <5%. 2. When list is listpack encoding, LRANGE improves performance by ~13%, the main enhancement is brought by `addListListpackRangeReply()`. ## Memory usage 1M lists(key:0~key:1000000) with 5 items of 10 chars ("hellohello") each. shows memory usage down by 35.49%, from 214MB to 138MB. ## Note 1. Add conversion callback to support doing some work before conversion Since the quicklist iterator decompresses the current node when it is released, we can no longer decompress the quicklist after we convert the list.
2022-11-17 02:29:46 +08:00
}
listTypeTryConversionAppend(key->value, &value, 0, 0, moduleFreeListIterator, key);
if (moduleListIteratorSeek(key, index, VALKEYMODULE_WRITE)) {
listTypeReplace(&key->u.list.entry, value);
/* A note in quicklist.c forbids use of iterator after insert, so
* probably also after replace. */
moduleFreeKeyIterator(key);
return VALKEYMODULE_OK;
} else {
return VALKEYMODULE_ERR;
}
}
/* Inserts an element at the given index.
*
* The index is zero-based, so 0 means the first element, 1 the second element
* and so on. Negative indices can be used to designate elements starting at the
* tail of the list. Here, -1 means the last element, -2 means the penultimate
* and so forth. The index is the element's index after inserting it.
*
* On success, VALKEYMODULE_OK is returned. On failure, VALKEYMODULE_ERR is
* returned and `errno` is set as follows:
*
* - EINVAL if key or value is NULL.
* - ENOTSUP if the key of another type than list.
* - EBADF if the key is not opened for writing.
* - EDOM if the index is not a valid index in the list.
*/
int VM_ListInsert(ValkeyModuleKey *key, long index, ValkeyModuleString *value) {
if (!value) {
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (key != NULL && key->value == NULL &&
(index == 0 || index == -1)) {
/* Insert in empty key => push. */
return VM_ListPush(key, VALKEYMODULE_LIST_TAIL, value);
} else if (key != NULL && key->value != NULL &&
key->value->type == OBJ_LIST &&
(index == (long)listTypeLength(key->value) || index == -1)) {
/* Insert after the last element => push tail. */
return VM_ListPush(key, VALKEYMODULE_LIST_TAIL, value);
} else if (key != NULL && key->value != NULL &&
key->value->type == OBJ_LIST &&
(index == 0 || index == -(long)listTypeLength(key->value) - 1)) {
/* Insert before the first element => push head. */
return VM_ListPush(key, VALKEYMODULE_LIST_HEAD, value);
}
Add listpack encoding for list (#11303) Improve memory efficiency of list keys ## Description of the feature The new listpack encoding uses the old `list-max-listpack-size` config to perform the conversion, which we can think it of as a node inside a quicklist, but without 80 bytes overhead (internal fragmentation included) of quicklist and quicklistNode structs. For example, a list key with 5 items of 10 chars each, now takes 128 bytes instead of 208 it used to take. ## Conversion rules * Convert listpack to quicklist When the listpack length or size reaches the `list-max-listpack-size` limit, it will be converted to a quicklist. * Convert quicklist to listpack When a quicklist has only one node, and its length or size is reduced to half of the `list-max-listpack-size` limit, it will be converted to a listpack. This is done to avoid frequent conversions when we add or remove at the bounding size or length. ## Interface changes 1. add list entry param to listTypeSetIteratorDirection When list encoding is listpack, `listTypeIterator->lpi` points to the next entry of current entry, so when changing the direction, we need to use the current node (listTypeEntry->p) to update `listTypeIterator->lpi` to the next node in the reverse direction. ## Benchmark ### Listpack VS Quicklist with one node * LPUSH - roughly 0.3% improvement * LRANGE - roughly 13% improvement ### Both are quicklist * LRANGE - roughly 3% improvement * LRANGE without pipeline - roughly 3% improvement From the benchmark, as we can see from the results 1. When list is quicklist encoding, LRANGE improves performance by <5%. 2. When list is listpack encoding, LRANGE improves performance by ~13%, the main enhancement is brought by `addListListpackRangeReply()`. ## Memory usage 1M lists(key:0~key:1000000) with 5 items of 10 chars ("hellohello") each. shows memory usage down by 35.49%, from 214MB to 138MB. ## Note 1. Add conversion callback to support doing some work before conversion Since the quicklist iterator decompresses the current node when it is released, we can no longer decompress the quicklist after we convert the list.
2022-11-17 02:29:46 +08:00
listTypeTryConversionAppend(key->value, &value, 0, 0, moduleFreeListIterator, key);
if (moduleListIteratorSeek(key, index, VALKEYMODULE_WRITE)) {
int where = index < 0 ? LIST_TAIL : LIST_HEAD;
listTypeInsert(&key->u.list.entry, value, where);
/* A note in quicklist.c forbids use of iterator after insert. */
moduleFreeKeyIterator(key);
return VALKEYMODULE_OK;
} else {
return VALKEYMODULE_ERR;
}
}
/* Removes an element at the given index. The index is 0-based. A negative index
* can also be used, counting from the end of the list.
*
* On success, VALKEYMODULE_OK is returned. On failure, VALKEYMODULE_ERR is
* returned and `errno` is set as follows:
*
* - EINVAL if key or value is NULL.
* - ENOTSUP if the key is not a list.
* - EBADF if the key is not opened for writing.
* - EDOM if the index is not a valid index in the list.
*/
int VM_ListDelete(ValkeyModuleKey *key, long index) {
if (moduleListIteratorSeek(key, index, VALKEYMODULE_WRITE)) {
listTypeDelete(key->iter, &key->u.list.entry);
if (moduleDelKeyIfEmpty(key)) return VALKEYMODULE_OK;
Add listpack encoding for list (#11303) Improve memory efficiency of list keys ## Description of the feature The new listpack encoding uses the old `list-max-listpack-size` config to perform the conversion, which we can think it of as a node inside a quicklist, but without 80 bytes overhead (internal fragmentation included) of quicklist and quicklistNode structs. For example, a list key with 5 items of 10 chars each, now takes 128 bytes instead of 208 it used to take. ## Conversion rules * Convert listpack to quicklist When the listpack length or size reaches the `list-max-listpack-size` limit, it will be converted to a quicklist. * Convert quicklist to listpack When a quicklist has only one node, and its length or size is reduced to half of the `list-max-listpack-size` limit, it will be converted to a listpack. This is done to avoid frequent conversions when we add or remove at the bounding size or length. ## Interface changes 1. add list entry param to listTypeSetIteratorDirection When list encoding is listpack, `listTypeIterator->lpi` points to the next entry of current entry, so when changing the direction, we need to use the current node (listTypeEntry->p) to update `listTypeIterator->lpi` to the next node in the reverse direction. ## Benchmark ### Listpack VS Quicklist with one node * LPUSH - roughly 0.3% improvement * LRANGE - roughly 13% improvement ### Both are quicklist * LRANGE - roughly 3% improvement * LRANGE without pipeline - roughly 3% improvement From the benchmark, as we can see from the results 1. When list is quicklist encoding, LRANGE improves performance by <5%. 2. When list is listpack encoding, LRANGE improves performance by ~13%, the main enhancement is brought by `addListListpackRangeReply()`. ## Memory usage 1M lists(key:0~key:1000000) with 5 items of 10 chars ("hellohello") each. shows memory usage down by 35.49%, from 214MB to 138MB. ## Note 1. Add conversion callback to support doing some work before conversion Since the quicklist iterator decompresses the current node when it is released, we can no longer decompress the quicklist after we convert the list.
2022-11-17 02:29:46 +08:00
listTypeTryConversion(key->value, LIST_CONV_SHRINKING, moduleFreeListIterator, key);
if (!key->iter) return VALKEYMODULE_OK; /* Return ASAP if iterator has been freed */
if (listTypeNext(key->iter, &key->u.list.entry)) {
/* After delete entry at position 'index', we need to update
* 'key->u.list.index' according to the following cases:
* 1) [1, 2, 3] => dir: forward, index: 0 => [2, 3] => index: still 0
* 2) [1, 2, 3] => dir: forward, index: -3 => [2, 3] => index: -2
* 3) [1, 2, 3] => dir: reverse, index: 2 => [1, 2] => index: 1
* 4) [1, 2, 3] => dir: reverse, index: -1 => [1, 2] => index: still -1 */
listTypeIterator *li = key->iter;
int reverse = li->direction == LIST_HEAD;
if (key->u.list.index < 0)
key->u.list.index += reverse ? 0 : 1;
else
key->u.list.index += reverse ? -1 : 0;
} else {
/* Reset list iterator if the next entry doesn't exist. */
moduleFreeKeyIterator(key);
}
return VALKEYMODULE_OK;
} else {
return VALKEYMODULE_ERR;
}
}
2016-04-14 12:49:16 +02:00
/* --------------------------------------------------------------------------
* ## Key API for Sorted Set type
*
* See also VM_ValueLength(), which returns the length of a sorted set.
2016-04-14 12:49:16 +02:00
* -------------------------------------------------------------------------- */
2016-04-14 15:58:49 +02:00
/* Conversion from/to public flags of the Modules API and our private flags,
* so that we have everything decoupled. */
int moduleZsetAddFlagsToCoreFlags(int flags) {
2016-04-14 15:58:49 +02:00
int retflags = 0;
if (flags & VALKEYMODULE_ZADD_XX) retflags |= ZADD_IN_XX;
if (flags & VALKEYMODULE_ZADD_NX) retflags |= ZADD_IN_NX;
if (flags & VALKEYMODULE_ZADD_GT) retflags |= ZADD_IN_GT;
if (flags & VALKEYMODULE_ZADD_LT) retflags |= ZADD_IN_LT;
2016-04-14 15:58:49 +02:00
return retflags;
}
/* See previous function comment. */
int moduleZsetAddFlagsFromCoreFlags(int flags) {
2016-04-14 15:58:49 +02:00
int retflags = 0;
if (flags & ZADD_OUT_ADDED) retflags |= VALKEYMODULE_ZADD_ADDED;
if (flags & ZADD_OUT_UPDATED) retflags |= VALKEYMODULE_ZADD_UPDATED;
if (flags & ZADD_OUT_NOP) retflags |= VALKEYMODULE_ZADD_NOP;
2016-04-14 15:58:49 +02:00
return retflags;
}
/* Add a new element into a sorted set, with the specified 'score'.
* If the element already exists, the score is updated.
*
* A new sorted set is created at value if the key is an empty open key
* setup for writing.
*
* Additional flags can be passed to the function via a pointer, the flags
* are both used to receive input and to communicate state when the function
* returns. 'flagsptr' can be NULL if no special flags are used.
*
* The input flags are:
*
* VALKEYMODULE_ZADD_XX: Element must already exist. Do nothing otherwise.
* VALKEYMODULE_ZADD_NX: Element must not exist. Do nothing otherwise.
* VALKEYMODULE_ZADD_GT: If element exists, new score must be greater than the current score.
* Do nothing otherwise. Can optionally be combined with XX.
* VALKEYMODULE_ZADD_LT: If element exists, new score must be less than the current score.
* Do nothing otherwise. Can optionally be combined with XX.
2016-04-14 15:58:49 +02:00
*
* The output flags are:
*
* VALKEYMODULE_ZADD_ADDED: The new element was added to the sorted set.
* VALKEYMODULE_ZADD_UPDATED: The score of the element was updated.
* VALKEYMODULE_ZADD_NOP: No operation was performed because XX or NX flags.
2016-04-14 15:58:49 +02:00
*
* On success the function returns VALKEYMODULE_OK. On the following errors
* VALKEYMODULE_ERR is returned:
2016-04-14 15:58:49 +02:00
*
2016-05-10 18:54:58 +02:00
* * The key was not opened for writing.
* * The key is of the wrong type.
* * 'score' double value is not a number (NaN).
2016-04-14 15:58:49 +02:00
*/
int VM_ZsetAdd(ValkeyModuleKey *key, double score, ValkeyModuleString *ele, int *flagsptr) {
int in_flags = 0, out_flags = 0;
if (!(key->mode & VALKEYMODULE_WRITE)) return VALKEYMODULE_ERR;
if (key->value && key->value->type != OBJ_ZSET) return VALKEYMODULE_ERR;
if (key->value == NULL) moduleCreateEmptyKey(key,VALKEYMODULE_KEYTYPE_ZSET);
if (flagsptr) in_flags = moduleZsetAddFlagsToCoreFlags(*flagsptr);
if (zsetAdd(key->value,score,ele->ptr,in_flags,&out_flags,NULL) == 0) {
2016-04-14 15:58:49 +02:00
if (flagsptr) *flagsptr = 0;
moduleDelKeyIfEmpty(key);
return VALKEYMODULE_ERR;
2016-04-14 15:58:49 +02:00
}
if (flagsptr) *flagsptr = moduleZsetAddFlagsFromCoreFlags(out_flags);
return VALKEYMODULE_OK;
2016-04-14 15:58:49 +02:00
}
/* This function works exactly like VM_ZsetAdd(), but instead of setting
2016-04-14 15:58:49 +02:00
* a new score, the score of the existing element is incremented, or if the
* element does not already exist, it is added assuming the old score was
* zero.
*
* The input and output flags, and the return value, have the same exact
* meaning, with the only difference that this function will return
* VALKEYMODULE_ERR even when 'score' is a valid double number, but adding it
2018-07-30 16:18:56 +03:00
* to the existing score results into a NaN (not a number) condition.
2016-04-14 15:58:49 +02:00
*
* This function has an additional field 'newscore', if not NULL is filled
* with the new score of the element after the increment, if no error
* is returned. */
int VM_ZsetIncrby(ValkeyModuleKey *key, double score, ValkeyModuleString *ele, int *flagsptr, double *newscore) {
int in_flags = 0, out_flags = 0;
if (!(key->mode & VALKEYMODULE_WRITE)) return VALKEYMODULE_ERR;
if (key->value && key->value->type != OBJ_ZSET) return VALKEYMODULE_ERR;
if (key->value == NULL) moduleCreateEmptyKey(key,VALKEYMODULE_KEYTYPE_ZSET);
if (flagsptr) in_flags = moduleZsetAddFlagsToCoreFlags(*flagsptr);
in_flags |= ZADD_IN_INCR;
if (zsetAdd(key->value,score,ele->ptr,in_flags,&out_flags,newscore) == 0) {
2016-04-14 15:58:49 +02:00
if (flagsptr) *flagsptr = 0;
moduleDelKeyIfEmpty(key);
return VALKEYMODULE_ERR;
2016-04-14 15:58:49 +02:00
}
if (flagsptr) *flagsptr = moduleZsetAddFlagsFromCoreFlags(out_flags);
return VALKEYMODULE_OK;
2016-04-14 12:49:16 +02:00
}
2016-04-15 15:35:11 +02:00
/* Remove the specified element from the sorted set.
* The function returns VALKEYMODULE_OK on success, and VALKEYMODULE_ERR
2016-04-15 15:35:11 +02:00
* on one of the following conditions:
*
2016-05-10 18:54:58 +02:00
* * The key was not opened for writing.
* * The key is of the wrong type.
2016-04-15 15:35:11 +02:00
*
* The return value does NOT indicate the fact the element was really
* removed (since it existed) or not, just if the function was executed
* with success.
*
* In order to know if the element was removed, the additional argument
* 'deleted' must be passed, that populates the integer by reference
* setting it to 1 or 0 depending on the outcome of the operation.
* The 'deleted' argument can be NULL if the caller is not interested
* to know if the element was really removed.
*
* Empty keys will be handled correctly by doing nothing. */
int VM_ZsetRem(ValkeyModuleKey *key, ValkeyModuleString *ele, int *deleted) {
if (!(key->mode & VALKEYMODULE_WRITE)) return VALKEYMODULE_ERR;
if (key->value && key->value->type != OBJ_ZSET) return VALKEYMODULE_ERR;
2016-04-15 15:35:11 +02:00
if (key->value != NULL && zsetDel(key->value,ele->ptr)) {
if (deleted) *deleted = 1;
moduleDelKeyIfEmpty(key);
2016-04-15 15:35:11 +02:00
} else {
if (deleted) *deleted = 0;
}
return VALKEYMODULE_OK;
2016-04-15 15:35:11 +02:00
}
2016-04-15 12:46:56 +02:00
/* On success retrieve the double score associated at the sorted set element
* 'ele' and returns VALKEYMODULE_OK. Otherwise VALKEYMODULE_ERR is returned
2016-04-15 12:46:56 +02:00
* to signal one of the following conditions:
*
2016-05-10 18:54:58 +02:00
* * There is no such element 'ele' in the sorted set.
* * The key is not a sorted set.
* * The key is an open empty key.
2016-04-15 12:46:56 +02:00
*/
int VM_ZsetScore(ValkeyModuleKey *key, ValkeyModuleString *ele, double *score) {
if (key->value == NULL) return VALKEYMODULE_ERR;
if (key->value->type != OBJ_ZSET) return VALKEYMODULE_ERR;
if (zsetScore(key->value,ele->ptr,score) == C_ERR) return VALKEYMODULE_ERR;
return VALKEYMODULE_OK;
2016-04-15 12:46:56 +02:00
}
2016-04-19 15:22:33 +02:00
/* --------------------------------------------------------------------------
* ## Key API for Sorted Set iterator
2016-04-19 15:22:33 +02:00
* -------------------------------------------------------------------------- */
void zsetKeyReset(ValkeyModuleKey *key) {
key->u.zset.type = VALKEYMODULE_ZSET_RANGE_NONE;
key->u.zset.current = NULL;
key->u.zset.er = 1;
}
2016-04-19 15:22:33 +02:00
/* Stop a sorted set iteration. */
void VM_ZsetRangeStop(ValkeyModuleKey *key) {
if (!key->value || key->value->type != OBJ_ZSET) return;
2016-04-20 23:01:40 +02:00
/* Free resources if needed. */
if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_LEX)
zslFreeLexRange(&key->u.zset.lrs);
2016-04-19 15:22:33 +02:00
/* Setup sensible values so that misused iteration API calls when an
* iterator is not active will result into something more sensible
* than crashing. */
zsetKeyReset(key);
2016-04-19 15:22:33 +02:00
}
/* Return the "End of range" flag value to signal the end of the iteration. */
int VM_ZsetRangeEndReached(ValkeyModuleKey *key) {
if (!key->value || key->value->type != OBJ_ZSET) return 1;
return key->u.zset.er;
2016-04-19 15:22:33 +02:00
}
/* Helper function for VM_ZsetFirstInScoreRange() and VM_ZsetLastInScoreRange().
2016-04-20 23:01:40 +02:00
* Setup the sorted set iteration according to the specified score range
* (see the functions calling it for more info). If 'first' is true the
2016-04-20 12:38:14 +02:00
* first element in the range is used as a starting point for the iterator
* otherwise the last. Return VALKEYMODULE_OK on success otherwise
* VALKEYMODULE_ERR. */
int zsetInitScoreRange(ValkeyModuleKey *key, double min, double max, int minex, int maxex, int first) {
if (!key->value || key->value->type != OBJ_ZSET) return VALKEYMODULE_ERR;
2016-04-20 23:01:40 +02:00
VM_ZsetRangeStop(key);
key->u.zset.type = VALKEYMODULE_ZSET_RANGE_SCORE;
key->u.zset.er = 0;
2016-04-19 15:22:33 +02:00
2016-04-20 23:01:40 +02:00
/* Setup the range structure used by the sorted set core implementation
* in order to seek at the specified element. */
zrangespec *zrs = &key->u.zset.rs;
2016-04-20 23:01:40 +02:00
zrs->min = min;
zrs->max = max;
zrs->minex = minex;
zrs->maxex = maxex;
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
if (key->value->encoding == OBJ_ENCODING_LISTPACK) {
key->u.zset.current = first ? zzlFirstInRange(key->value->ptr,zrs) :
zzlLastInRange(key->value->ptr,zrs);
2016-04-20 23:01:40 +02:00
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = key->value->ptr;
zskiplist *zsl = zs->zsl;
key->u.zset.current = first ? zslFirstInRange(zsl,zrs) :
zslLastInRange(zsl,zrs);
2016-04-19 15:22:33 +02:00
} else {
2016-04-20 23:01:40 +02:00
serverPanic("Unsupported zset encoding");
2016-04-19 15:22:33 +02:00
}
if (key->u.zset.current == NULL) key->u.zset.er = 1;
return VALKEYMODULE_OK;
2016-04-19 15:22:33 +02:00
}
2016-04-20 12:38:14 +02:00
/* Setup a sorted set iterator seeking the first element in the specified
* range. Returns VALKEYMODULE_OK if the iterator was correctly initialized
* otherwise VALKEYMODULE_ERR is returned in the following conditions:
2016-04-20 12:38:14 +02:00
*
2016-04-21 09:27:13 +02:00
* 1. The value stored at key is not a sorted set or the key is empty.
*
* The range is specified according to the two double values 'min' and 'max'.
* Both can be infinite using the following two macros:
*
* * VALKEYMODULE_POSITIVE_INFINITE for positive infinite value
* * VALKEYMODULE_NEGATIVE_INFINITE for negative infinite value
2016-04-21 09:27:13 +02:00
*
* 'minex' and 'maxex' parameters, if true, respectively setup a range
* where the min and max value are exclusive (not included) instead of
* inclusive. */
int VM_ZsetFirstInScoreRange(ValkeyModuleKey *key, double min, double max, int minex, int maxex) {
2016-04-20 23:01:40 +02:00
return zsetInitScoreRange(key,min,max,minex,maxex,1);
2016-04-20 12:38:14 +02:00
}
/* Exactly like ValkeyModule_ZsetFirstInScoreRange() but the last element of
2016-04-21 09:27:13 +02:00
* the range is selected for the start of the iteration instead. */
int VM_ZsetLastInScoreRange(ValkeyModuleKey *key, double min, double max, int minex, int maxex) {
2016-04-20 23:01:40 +02:00
return zsetInitScoreRange(key,min,max,minex,maxex,0);
2016-04-20 12:38:14 +02:00
}
/* Helper function for VM_ZsetFirstInLexRange() and VM_ZsetLastInLexRange().
2016-04-21 09:27:13 +02:00
* Setup the sorted set iteration according to the specified lexicographical
* range (see the functions calling it for more info). If 'first' is true the
* first element in the range is used as a starting point for the iterator
* otherwise the last. Return VALKEYMODULE_OK on success otherwise
* VALKEYMODULE_ERR.
2016-04-21 09:27:13 +02:00
*
* Note that this function takes 'min' and 'max' in the same form of the
* Redis ZRANGEBYLEX command. */
int zsetInitLexRange(ValkeyModuleKey *key, ValkeyModuleString *min, ValkeyModuleString *max, int first) {
if (!key->value || key->value->type != OBJ_ZSET) return VALKEYMODULE_ERR;
2016-04-21 09:27:13 +02:00
VM_ZsetRangeStop(key);
key->u.zset.er = 0;
2016-04-21 09:27:13 +02:00
/* Setup the range structure used by the sorted set core implementation
* in order to seek at the specified element. */
zlexrangespec *zlrs = &key->u.zset.lrs;
if (zslParseLexRange(min, max, zlrs) == C_ERR) return VALKEYMODULE_ERR;
2016-04-21 09:27:13 +02:00
2016-04-21 11:45:52 +02:00
/* Set the range type to lex only after successfully parsing the range,
* otherwise we don't want the zlexrangespec to be freed. */
key->u.zset.type = VALKEYMODULE_ZSET_RANGE_LEX;
2016-04-21 11:45:52 +02:00
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
if (key->value->encoding == OBJ_ENCODING_LISTPACK) {
key->u.zset.current = first ? zzlFirstInLexRange(key->value->ptr,zlrs) :
zzlLastInLexRange(key->value->ptr,zlrs);
2016-04-21 09:27:13 +02:00
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = key->value->ptr;
zskiplist *zsl = zs->zsl;
key->u.zset.current = first ? zslFirstInLexRange(zsl,zlrs) :
zslLastInLexRange(zsl,zlrs);
2016-04-21 09:27:13 +02:00
} else {
serverPanic("Unsupported zset encoding");
}
if (key->u.zset.current == NULL) key->u.zset.er = 1;
2016-04-21 11:45:52 +02:00
return VALKEYMODULE_OK;
2016-04-21 09:27:13 +02:00
}
/* Setup a sorted set iterator seeking the first element in the specified
* lexicographical range. Returns VALKEYMODULE_OK if the iterator was correctly
* initialized otherwise VALKEYMODULE_ERR is returned in the
2016-04-21 09:27:13 +02:00
* following conditions:
*
* 1. The value stored at key is not a sorted set or the key is empty.
* 2. The lexicographical range 'min' and 'max' format is invalid.
*
* 'min' and 'max' should be provided as two ValkeyModuleString objects
2016-04-21 09:27:13 +02:00
* in the same format as the parameters passed to the ZRANGEBYLEX command.
* The function does not take ownership of the objects, so they can be released
* ASAP after the iterator is setup. */
int VM_ZsetFirstInLexRange(ValkeyModuleKey *key, ValkeyModuleString *min, ValkeyModuleString *max) {
2016-04-21 09:27:13 +02:00
return zsetInitLexRange(key,min,max,1);
}
/* Exactly like ValkeyModule_ZsetFirstInLexRange() but the last element of
2016-04-21 09:27:13 +02:00
* the range is selected for the start of the iteration instead. */
int VM_ZsetLastInLexRange(ValkeyModuleKey *key, ValkeyModuleString *min, ValkeyModuleString *max) {
2016-04-21 09:27:13 +02:00
return zsetInitLexRange(key,min,max,0);
}
2016-04-19 15:22:33 +02:00
/* Return the current sorted set element of an active sorted set iterator
* or NULL if the range specified in the iterator does not include any
* element. */
ValkeyModuleString *VM_ZsetRangeCurrentElement(ValkeyModuleKey *key, double *score) {
ValkeyModuleString *str;
if (!key->value || key->value->type != OBJ_ZSET) return NULL;
if (key->u.zset.current == NULL) return NULL;
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
if (key->value->encoding == OBJ_ENCODING_LISTPACK) {
2016-04-19 15:22:33 +02:00
unsigned char *eptr, *sptr;
eptr = key->u.zset.current;
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
sds ele = lpGetObject(eptr);
2016-04-19 15:22:33 +02:00
if (score) {
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
sptr = lpNext(key->value->ptr,eptr);
2016-04-19 15:22:33 +02:00
*score = zzlGetScore(sptr);
}
str = createObject(OBJ_STRING,ele);
2016-04-19 15:22:33 +02:00
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
zskiplistNode *ln = key->u.zset.current;
2016-04-19 15:22:33 +02:00
if (score) *score = ln->score;
str = createStringObject(ln->ele,sdslen(ln->ele));
2016-04-19 15:22:33 +02:00
} else {
serverPanic("Unsupported zset encoding");
}
autoMemoryAdd(key->ctx,VALKEYMODULE_AM_STRING,str);
return str;
2016-04-19 15:22:33 +02:00
}
/* Go to the next element of the sorted set iterator. Returns 1 if there was
* a next element, 0 if we are already at the latest element or the range
* does not include any item at all. */
int VM_ZsetRangeNext(ValkeyModuleKey *key) {
if (!key->value || key->value->type != OBJ_ZSET) return 0;
if (!key->u.zset.type || !key->u.zset.current) return 0; /* No active iterator. */
2016-04-19 17:02:24 +02:00
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
if (key->value->encoding == OBJ_ENCODING_LISTPACK) {
2016-04-19 15:22:33 +02:00
unsigned char *zl = key->value->ptr;
unsigned char *eptr = key->u.zset.current;
2016-04-19 15:22:33 +02:00
unsigned char *next;
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
next = lpNext(zl,eptr); /* Skip element. */
if (next) next = lpNext(zl,next); /* Skip score. */
2016-04-19 15:22:33 +02:00
if (next == NULL) {
key->u.zset.er = 1;
2016-04-19 15:22:33 +02:00
return 0;
} else {
2016-04-19 17:02:24 +02:00
/* Are we still within the range? */
if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_SCORE) {
2016-04-20 12:38:14 +02:00
/* Fetch the next element score for the
* range check. */
unsigned char *saved_next = next;
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
next = lpNext(zl,next); /* Skip next element. */
2016-04-20 12:38:14 +02:00
double score = zzlGetScore(next); /* Obtain the next score. */
if (!zslValueLteMax(score,&key->u.zset.rs)) {
key->u.zset.er = 1;
2016-04-20 12:38:14 +02:00
return 0;
}
next = saved_next;
} else if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_LEX) {
if (!zzlLexValueLteMax(next,&key->u.zset.lrs)) {
key->u.zset.er = 1;
2016-04-21 11:17:00 +02:00
return 0;
}
2016-04-19 17:02:24 +02:00
}
key->u.zset.current = next;
2016-04-19 15:22:33 +02:00
return 1;
}
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
zskiplistNode *ln = key->u.zset.current, *next = ln->level[0].forward;
2016-04-19 15:22:33 +02:00
if (next == NULL) {
key->u.zset.er = 1;
2016-04-19 15:22:33 +02:00
return 0;
} else {
2016-04-19 17:02:24 +02:00
/* Are we still within the range? */
if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_SCORE &&
!zslValueLteMax(next->score,&key->u.zset.rs))
2016-04-19 17:02:24 +02:00
{
key->u.zset.er = 1;
2016-04-19 17:02:24 +02:00
return 0;
} else if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_LEX) {
if (!zslLexValueLteMax(next->ele,&key->u.zset.lrs)) {
key->u.zset.er = 1;
2016-04-21 11:17:00 +02:00
return 0;
}
2016-04-19 17:02:24 +02:00
}
key->u.zset.current = next;
2016-04-19 15:22:33 +02:00
return 1;
}
} else {
serverPanic("Unsupported zset encoding");
}
}
2016-04-20 12:38:14 +02:00
/* Go to the previous element of the sorted set iterator. Returns 1 if there was
* a previous element, 0 if we are already at the first element or the range
* does not include any item at all. */
int VM_ZsetRangePrev(ValkeyModuleKey *key) {
if (!key->value || key->value->type != OBJ_ZSET) return 0;
if (!key->u.zset.type || !key->u.zset.current) return 0; /* No active iterator. */
2016-04-20 12:38:14 +02:00
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
if (key->value->encoding == OBJ_ENCODING_LISTPACK) {
2016-04-20 12:38:14 +02:00
unsigned char *zl = key->value->ptr;
unsigned char *eptr = key->u.zset.current;
2016-04-20 12:38:14 +02:00
unsigned char *prev;
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
prev = lpPrev(zl,eptr); /* Go back to previous score. */
if (prev) prev = lpPrev(zl,prev); /* Back to previous ele. */
2016-04-20 12:38:14 +02:00
if (prev == NULL) {
key->u.zset.er = 1;
2016-04-20 12:38:14 +02:00
return 0;
} else {
/* Are we still within the range? */
if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_SCORE) {
2016-04-20 12:38:14 +02:00
/* Fetch the previous element score for the
* range check. */
unsigned char *saved_prev = prev;
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
prev = lpNext(zl,prev); /* Skip element to get the score.*/
2016-04-20 12:38:14 +02:00
double score = zzlGetScore(prev); /* Obtain the prev score. */
if (!zslValueGteMin(score,&key->u.zset.rs)) {
key->u.zset.er = 1;
2016-04-20 12:38:14 +02:00
return 0;
}
prev = saved_prev;
} else if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_LEX) {
if (!zzlLexValueGteMin(prev,&key->u.zset.lrs)) {
key->u.zset.er = 1;
2016-04-21 11:17:00 +02:00
return 0;
}
2016-04-20 12:38:14 +02:00
}
key->u.zset.current = prev;
2016-04-20 12:38:14 +02:00
return 1;
}
} else if (key->value->encoding == OBJ_ENCODING_SKIPLIST) {
zskiplistNode *ln = key->u.zset.current, *prev = ln->backward;
2016-04-20 12:38:14 +02:00
if (prev == NULL) {
key->u.zset.er = 1;
2016-04-20 12:38:14 +02:00
return 0;
} else {
/* Are we still within the range? */
if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_SCORE &&
!zslValueGteMin(prev->score,&key->u.zset.rs))
2016-04-20 12:38:14 +02:00
{
key->u.zset.er = 1;
2016-04-20 12:38:14 +02:00
return 0;
} else if (key->u.zset.type == VALKEYMODULE_ZSET_RANGE_LEX) {
if (!zslLexValueGteMin(prev->ele,&key->u.zset.lrs)) {
key->u.zset.er = 1;
2016-04-21 11:17:00 +02:00
return 0;
}
2016-04-20 12:38:14 +02:00
}
key->u.zset.current = prev;
2016-04-20 12:38:14 +02:00
return 1;
}
} else {
serverPanic("Unsupported zset encoding");
}
}
2016-04-25 15:39:33 +02:00
/* --------------------------------------------------------------------------
* ## Key API for Hash type
*
* See also VM_ValueLength(), which returns the number of fields in a hash.
2016-04-25 15:39:33 +02:00
* -------------------------------------------------------------------------- */
/* Set the field of the specified hash field to the specified value.
* If the key is an empty key open for writing, it is created with an empty
* hash value, in order to set the specified field.
*
* The function is variadic and the user must specify pairs of field
* names and values, both as ValkeyModuleString pointers (unless the
* CFIELD option is set, see later). At the end of the field/value-ptr pairs,
* NULL must be specified as last argument to signal the end of the arguments
* in the variadic function.
2016-04-25 15:39:33 +02:00
*
* Example to set the hash argv[1] to the value argv[2]:
*
* ValkeyModule_HashSet(key,VALKEYMODULE_HASH_NONE,argv[1],argv[2],NULL);
2016-04-25 15:39:33 +02:00
*
* The function can also be used in order to delete fields (if they exist)
* by setting them to the specified value of VALKEYMODULE_HASH_DELETE:
2016-04-25 15:39:33 +02:00
*
* ValkeyModule_HashSet(key,VALKEYMODULE_HASH_NONE,argv[1],
* VALKEYMODULE_HASH_DELETE,NULL);
2016-04-25 15:39:33 +02:00
*
* The behavior of the command changes with the specified flags, that can be
* set to VALKEYMODULE_HASH_NONE if no special behavior is needed.
2016-04-25 15:39:33 +02:00
*
* VALKEYMODULE_HASH_NX: The operation is performed only if the field was not
* already existing in the hash.
* VALKEYMODULE_HASH_XX: The operation is performed only if the field was
* already existing, so that a new value could be
* associated to an existing filed, but no new fields
* are created.
* VALKEYMODULE_HASH_CFIELDS: The field names passed are null terminated C
* strings instead of ValkeyModuleString objects.
* VALKEYMODULE_HASH_COUNT_ALL: Include the number of inserted fields in the
* returned number, in addition to the number of
* updated and deleted fields. (Added in Redis
* 6.2.)
2016-04-25 15:39:33 +02:00
*
* Unless NX is specified, the command overwrites the old field value with
* the new one.
*
* When using VALKEYMODULE_HASH_CFIELDS, field names are reported using
2016-04-25 15:39:33 +02:00
* normal C strings, so for example to delete the field "foo" the following
* code can be used:
*
* ValkeyModule_HashSet(key,VALKEYMODULE_HASH_CFIELDS,"foo",
* VALKEYMODULE_HASH_DELETE,NULL);
2016-04-25 15:39:33 +02:00
*
* Return value:
*
* The number of fields existing in the hash prior to the call, which have been
* updated (its old value has been replaced by a new value) or deleted. If the
* flag VALKEYMODULE_HASH_COUNT_ALL is set, inserted fields not previously
* existing in the hash are also counted.
2016-04-25 15:39:33 +02:00
*
* If the return value is zero, `errno` is set (since Redis 6.2) as follows:
2016-04-25 15:39:33 +02:00
*
* - EINVAL if any unknown flags are set or if key is NULL.
* - ENOTSUP if the key is associated with a non Hash value.
* - EBADF if the key was not opened for writing.
* - ENOENT if no fields were counted as described under Return value above.
* This is not actually an error. The return value can be zero if all fields
* were just created and the COUNT_ALL flag was unset, or if changes were held
* back due to the NX and XX flags.
*
* NOTICE: The return value semantics of this function are very different
* between Redis 6.2 and older versions. Modules that use it should determine
* the Redis version and handle it accordingly.
2016-04-25 15:39:33 +02:00
*/
int VM_HashSet(ValkeyModuleKey *key, int flags, ...) {
2016-04-25 15:39:33 +02:00
va_list ap;
if (!key || (flags & ~(VALKEYMODULE_HASH_NX |
VALKEYMODULE_HASH_XX |
VALKEYMODULE_HASH_CFIELDS |
VALKEYMODULE_HASH_COUNT_ALL))) {
errno = EINVAL;
return 0;
} else if (key->value && key->value->type != OBJ_HASH) {
errno = ENOTSUP;
return 0;
} else if (!(key->mode & VALKEYMODULE_WRITE)) {
errno = EBADF;
return 0;
}
if (key->value == NULL) moduleCreateEmptyKey(key,VALKEYMODULE_KEYTYPE_HASH);
2016-04-25 15:39:33 +02:00
int count = 0;
2016-04-25 15:39:33 +02:00
va_start(ap, flags);
while(1) {
ValkeyModuleString *field, *value;
2016-04-25 15:39:33 +02:00
/* Get the field and value objects. */
if (flags & VALKEYMODULE_HASH_CFIELDS) {
2016-04-25 15:39:33 +02:00
char *cfield = va_arg(ap,char*);
if (cfield == NULL) break;
field = createRawStringObject(cfield,strlen(cfield));
} else {
field = va_arg(ap,ValkeyModuleString*);
2016-04-25 15:39:33 +02:00
if (field == NULL) break;
}
value = va_arg(ap,ValkeyModuleString*);
2016-04-25 15:39:33 +02:00
/* Handle XX and NX */
if (flags & (VALKEYMODULE_HASH_XX|VALKEYMODULE_HASH_NX)) {
2016-04-25 15:39:33 +02:00
int exists = hashTypeExists(key->value, field->ptr);
if (((flags & VALKEYMODULE_HASH_XX) && !exists) ||
((flags & VALKEYMODULE_HASH_NX) && exists))
2016-04-25 15:39:33 +02:00
{
if (flags & VALKEYMODULE_HASH_CFIELDS) decrRefCount(field);
2016-04-25 15:39:33 +02:00
continue;
}
}
/* Handle deletion if value is VALKEYMODULE_HASH_DELETE. */
if (value == VALKEYMODULE_HASH_DELETE) {
count += hashTypeDelete(key->value, field->ptr);
if (flags & VALKEYMODULE_HASH_CFIELDS) decrRefCount(field);
2016-04-25 15:39:33 +02:00
continue;
}
int low_flags = HASH_SET_COPY;
2016-04-25 15:39:33 +02:00
/* If CFIELDS is active, we can pass the ownership of the
* SDS object to the low level function that sets the field
* to avoid a useless copy. */
if (flags & VALKEYMODULE_HASH_CFIELDS)
2016-04-25 15:39:33 +02:00
low_flags |= HASH_SET_TAKE_FIELD;
robj *argv[2] = {field,value};
hashTypeTryConversion(key->value,argv,0,1);
int updated = hashTypeSet(key->value, field->ptr, value->ptr, low_flags);
count += (flags & VALKEYMODULE_HASH_COUNT_ALL) ? 1 : updated;
/* If CFIELDS is active, SDS string ownership is now of hashTypeSet(),
* however we still have to release the 'field' object shell. */
if (flags & VALKEYMODULE_HASH_CFIELDS) {
field->ptr = NULL; /* Prevent the SDS string from being freed. */
decrRefCount(field);
}
2016-04-25 15:39:33 +02:00
}
va_end(ap);
moduleDelKeyIfEmpty(key);
if (count == 0) errno = ENOENT;
return count;
2016-04-25 15:39:33 +02:00
}
/* Get fields from a hash value. This function is called using a variable
* number of arguments, alternating a field name (as a ValkeyModuleString
* pointer) with a pointer to a ValkeyModuleString pointer, that is set to the
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
* value of the field if the field exists, or NULL if the field does not exist.
2016-04-25 15:39:33 +02:00
* At the end of the field/value-ptr pairs, NULL must be specified as last
* argument to signal the end of the arguments in the variadic function.
*
* This is an example usage:
*
* ValkeyModuleString *first, *second;
* ValkeyModule_HashGet(mykey,VALKEYMODULE_HASH_NONE,argv[1],&first,
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* argv[2],&second,NULL);
2016-04-25 15:39:33 +02:00
*
* As with ValkeyModule_HashSet() the behavior of the command can be specified
* passing flags different than VALKEYMODULE_HASH_NONE:
2016-04-25 15:39:33 +02:00
*
* VALKEYMODULE_HASH_CFIELDS: field names as null terminated C strings.
2016-04-25 15:39:33 +02:00
*
* VALKEYMODULE_HASH_EXISTS: instead of setting the value of the field
* expecting a ValkeyModuleString pointer to pointer, the function just
2019-09-05 16:25:06 +01:00
* reports if the field exists or not and expects an integer pointer
2016-04-25 15:39:33 +02:00
* as the second element of each pair.
*
* Example of VALKEYMODULE_HASH_CFIELDS:
2016-04-25 15:39:33 +02:00
*
* ValkeyModuleString *username, *hashedpass;
* ValkeyModule_HashGet(mykey,VALKEYMODULE_HASH_CFIELDS,"username",&username,"hp",&hashedpass, NULL);
2016-04-25 15:39:33 +02:00
*
* Example of VALKEYMODULE_HASH_EXISTS:
2016-04-25 15:39:33 +02:00
*
2016-05-10 18:54:58 +02:00
* int exists;
* ValkeyModule_HashGet(mykey,VALKEYMODULE_HASH_EXISTS,argv[1],&exists,NULL);
2016-04-25 15:39:33 +02:00
*
* The function returns VALKEYMODULE_OK on success and VALKEYMODULE_ERR if
* the key is not a hash value.
2016-04-25 17:09:26 +02:00
*
* Memory management:
*
* The returned ValkeyModuleString objects should be released with
* ValkeyModule_FreeString(), or by enabling automatic memory management.
2016-04-25 15:39:33 +02:00
*/
int VM_HashGet(ValkeyModuleKey *key, int flags, ...) {
2016-04-25 17:09:26 +02:00
va_list ap;
if (key->value && key->value->type != OBJ_HASH) return VALKEYMODULE_ERR;
2016-04-25 17:09:26 +02:00
va_start(ap, flags);
while(1) {
ValkeyModuleString *field, **valueptr;
2016-04-25 17:09:26 +02:00
int *existsptr;
/* Get the field object and the value pointer to pointer. */
if (flags & VALKEYMODULE_HASH_CFIELDS) {
2016-04-25 17:09:26 +02:00
char *cfield = va_arg(ap,char*);
if (cfield == NULL) break;
field = createRawStringObject(cfield,strlen(cfield));
} else {
field = va_arg(ap,ValkeyModuleString*);
2016-04-25 17:09:26 +02:00
if (field == NULL) break;
}
/* Query the hash for existence or value object. */
if (flags & VALKEYMODULE_HASH_EXISTS) {
2016-04-25 17:09:26 +02:00
existsptr = va_arg(ap,int*);
if (key->value)
*existsptr = hashTypeExists(key->value,field->ptr);
else
*existsptr = 0;
} else {
valueptr = va_arg(ap,ValkeyModuleString**);
2016-04-25 17:09:26 +02:00
if (key->value) {
*valueptr = hashTypeGetValueObject(key->value,field->ptr);
if (*valueptr) {
robj *decoded = getDecodedObject(*valueptr);
decrRefCount(*valueptr);
*valueptr = decoded;
}
if (*valueptr)
autoMemoryAdd(key->ctx,VALKEYMODULE_AM_STRING,*valueptr);
2016-04-25 17:09:26 +02:00
} else {
*valueptr = NULL;
}
}
/* Cleanup */
if (flags & VALKEYMODULE_HASH_CFIELDS) decrRefCount(field);
2016-04-25 17:09:26 +02:00
}
va_end(ap);
return VALKEYMODULE_OK;
2016-04-25 15:39:33 +02:00
}
/* --------------------------------------------------------------------------
* ## Key API for Stream type
*
* For an introduction to streams, see https://redis.io/topics/streams-intro.
*
* The type ValkeyModuleStreamID, which is used in stream functions, is a struct
* with two 64-bit fields and is defined as
*
* typedef struct ValkeyModuleStreamID {
* uint64_t ms;
* uint64_t seq;
* } ValkeyModuleStreamID;
*
* See also VM_ValueLength(), which returns the length of a stream, and the
* conversion functions VM_StringToStreamID() and VM_CreateStringFromStreamID().
* -------------------------------------------------------------------------- */
/* Adds an entry to a stream. Like XADD without trimming.
*
* - `key`: The key where the stream is (or will be) stored
* - `flags`: A bit field of
* - `VALKEYMODULE_STREAM_ADD_AUTOID`: Assign a stream ID automatically, like
* `*` in the XADD command.
* - `id`: If the `AUTOID` flag is set, this is where the assigned ID is
* returned. Can be NULL if `AUTOID` is set, if you don't care to receive the
* ID. If `AUTOID` is not set, this is the requested ID.
* - `argv`: A pointer to an array of size `numfields * 2` containing the
* fields and values.
* - `numfields`: The number of field-value pairs in `argv`.
*
* Returns VALKEYMODULE_OK if an entry has been added. On failure,
* VALKEYMODULE_ERR is returned and `errno` is set as follows:
*
* - EINVAL if called with invalid arguments
* - ENOTSUP if the key refers to a value of a type other than stream
* - EBADF if the key was not opened for writing
* - EDOM if the given ID was 0-0 or not greater than all other IDs in the
* stream (only if the AUTOID flag is unset)
* - EFBIG if the stream has reached the last possible ID
* - ERANGE if the elements are too large to be stored.
*/
int VM_StreamAdd(ValkeyModuleKey *key, int flags, ValkeyModuleStreamID *id, ValkeyModuleString **argv, long numfields) {
/* Validate args */
if (!key || (numfields != 0 && !argv) || /* invalid key or argv */
(flags & ~(VALKEYMODULE_STREAM_ADD_AUTOID)) || /* invalid flags */
(!(flags & VALKEYMODULE_STREAM_ADD_AUTOID) && !id)) { /* id required */
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (key->value && key->value->type != OBJ_STREAM) {
errno = ENOTSUP; /* wrong type */
return VALKEYMODULE_ERR;
} else if (!(key->mode & VALKEYMODULE_WRITE)) {
errno = EBADF; /* key not open for writing */
return VALKEYMODULE_ERR;
} else if (!(flags & VALKEYMODULE_STREAM_ADD_AUTOID) &&
id->ms == 0 && id->seq == 0) {
errno = EDOM; /* ID out of range */
return VALKEYMODULE_ERR;
}
/* Create key if necessary */
int created = 0;
if (key->value == NULL) {
moduleCreateEmptyKey(key, VALKEYMODULE_KEYTYPE_STREAM);
created = 1;
}
stream *s = key->value->ptr;
if (s->last_id.ms == UINT64_MAX && s->last_id.seq == UINT64_MAX) {
/* The stream has reached the last possible ID */
errno = EFBIG;
return VALKEYMODULE_ERR;
}
streamID added_id;
streamID use_id;
streamID *use_id_ptr = NULL;
if (!(flags & VALKEYMODULE_STREAM_ADD_AUTOID)) {
use_id.ms = id->ms;
use_id.seq = id->seq;
use_id_ptr = &use_id;
}
if (streamAppendItem(s,argv,numfields,&added_id,use_id_ptr,1) == C_ERR) {
/* Either the ID not greater than all existing IDs in the stream, or
* the elements are too large to be stored. either way, errno is already
* set by streamAppendItem. */
if (created) moduleDelKeyIfEmpty(key);
return VALKEYMODULE_ERR;
}
/* Postponed signalKeyAsReady(). Done implicitly by moduleCreateEmptyKey()
* so not needed if the stream has just been created. */
if (!created) key->u.stream.signalready = 1;
if (id != NULL) {
id->ms = added_id.ms;
id->seq = added_id.seq;
}
return VALKEYMODULE_OK;
}
/* Deletes an entry from a stream.
*
* - `key`: A key opened for writing, with no stream iterator started.
* - `id`: The stream ID of the entry to delete.
*
* Returns VALKEYMODULE_OK on success. On failure, VALKEYMODULE_ERR is returned
* and `errno` is set as follows:
*
* - EINVAL if called with invalid arguments
* - ENOTSUP if the key refers to a value of a type other than stream or if the
* key is empty
* - EBADF if the key was not opened for writing or if a stream iterator is
* associated with the key
* - ENOENT if no entry with the given stream ID exists
*
* See also VM_StreamIteratorDelete() for deleting the current entry while
* iterating using a stream iterator.
*/
int VM_StreamDelete(ValkeyModuleKey *key, ValkeyModuleStreamID *id) {
if (!key || !id) {
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP; /* wrong type */
return VALKEYMODULE_ERR;
} else if (!(key->mode & VALKEYMODULE_WRITE) ||
key->iter != NULL) {
errno = EBADF; /* key not opened for writing or iterator started */
return VALKEYMODULE_ERR;
}
stream *s = key->value->ptr;
streamID streamid = {id->ms, id->seq};
if (streamDeleteItem(s, &streamid)) {
return VALKEYMODULE_OK;
} else {
errno = ENOENT; /* no entry with this id */
return VALKEYMODULE_ERR;
}
}
/* Sets up a stream iterator.
*
* - `key`: The stream key opened for reading using ValkeyModule_OpenKey().
* - `flags`:
* - `VALKEYMODULE_STREAM_ITERATOR_EXCLUSIVE`: Don't include `start` and `end`
* in the iterated range.
* - `VALKEYMODULE_STREAM_ITERATOR_REVERSE`: Iterate in reverse order, starting
* from the `end` of the range.
* - `start`: The lower bound of the range. Use NULL for the beginning of the
* stream.
* - `end`: The upper bound of the range. Use NULL for the end of the stream.
*
* Returns VALKEYMODULE_OK on success. On failure, VALKEYMODULE_ERR is returned
* and `errno` is set as follows:
*
* - EINVAL if called with invalid arguments
* - ENOTSUP if the key refers to a value of a type other than stream or if the
* key is empty
* - EBADF if the key was not opened for writing or if a stream iterator is
* already associated with the key
* - EDOM if `start` or `end` is outside the valid range
*
* Returns VALKEYMODULE_OK on success and VALKEYMODULE_ERR if the key doesn't
* refer to a stream or if invalid arguments were given.
*
* The stream IDs are retrieved using ValkeyModule_StreamIteratorNextID() and
* for each stream ID, the fields and values are retrieved using
* ValkeyModule_StreamIteratorNextField(). The iterator is freed by calling
* ValkeyModule_StreamIteratorStop().
*
* Example (error handling omitted):
*
* ValkeyModule_StreamIteratorStart(key, 0, startid_ptr, endid_ptr);
* ValkeyModuleStreamID id;
* long numfields;
* while (ValkeyModule_StreamIteratorNextID(key, &id, &numfields) ==
* VALKEYMODULE_OK) {
* ValkeyModuleString *field, *value;
* while (ValkeyModule_StreamIteratorNextField(key, &field, &value) ==
* VALKEYMODULE_OK) {
* //
* // ... Do stuff ...
* //
* ValkeyModule_FreeString(ctx, field);
* ValkeyModule_FreeString(ctx, value);
* }
* }
* ValkeyModule_StreamIteratorStop(key);
*/
int VM_StreamIteratorStart(ValkeyModuleKey *key, int flags, ValkeyModuleStreamID *start, ValkeyModuleStreamID *end) {
/* check args */
if (!key ||
(flags & ~(VALKEYMODULE_STREAM_ITERATOR_EXCLUSIVE |
VALKEYMODULE_STREAM_ITERATOR_REVERSE))) {
errno = EINVAL; /* key missing or invalid flags */
return VALKEYMODULE_ERR;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP;
return VALKEYMODULE_ERR; /* not a stream */
} else if (key->iter) {
errno = EBADF; /* iterator already started */
return VALKEYMODULE_ERR;
}
/* define range for streamIteratorStart() */
streamID lower, upper;
if (start) lower = (streamID){start->ms, start->seq};
if (end) upper = (streamID){end->ms, end->seq};
if (flags & VALKEYMODULE_STREAM_ITERATOR_EXCLUSIVE) {
if ((start && streamIncrID(&lower) != C_OK) ||
(end && streamDecrID(&upper) != C_OK)) {
errno = EDOM; /* end is 0-0 or start is MAX-MAX? */
return VALKEYMODULE_ERR;
}
}
/* create iterator */
stream *s = key->value->ptr;
int rev = flags & VALKEYMODULE_STREAM_ITERATOR_REVERSE;
streamIterator *si = zmalloc(sizeof(*si));
streamIteratorStart(si, s, start ? &lower : NULL, end ? &upper : NULL, rev);
key->iter = si;
key->u.stream.currentid.ms = 0; /* for VM_StreamIteratorDelete() */
key->u.stream.currentid.seq = 0;
key->u.stream.numfieldsleft = 0; /* for VM_StreamIteratorNextField() */
return VALKEYMODULE_OK;
}
/* Stops a stream iterator created using ValkeyModule_StreamIteratorStart() and
* reclaims its memory.
*
* Returns VALKEYMODULE_OK on success. On failure, VALKEYMODULE_ERR is returned
* and `errno` is set as follows:
*
* - EINVAL if called with a NULL key
* - ENOTSUP if the key refers to a value of a type other than stream or if the
* key is empty
* - EBADF if the key was not opened for writing or if no stream iterator is
* associated with the key
*/
int VM_StreamIteratorStop(ValkeyModuleKey *key) {
if (!key) {
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP;
return VALKEYMODULE_ERR;
} else if (!key->iter) {
errno = EBADF;
return VALKEYMODULE_ERR;
}
streamIteratorStop(key->iter);
zfree(key->iter);
key->iter = NULL;
return VALKEYMODULE_OK;
}
/* Finds the next stream entry and returns its stream ID and the number of
* fields.
*
* - `key`: Key for which a stream iterator has been started using
* ValkeyModule_StreamIteratorStart().
* - `id`: The stream ID returned. NULL if you don't care.
* - `numfields`: The number of fields in the found stream entry. NULL if you
* don't care.
*
* Returns VALKEYMODULE_OK and sets `*id` and `*numfields` if an entry was found.
* On failure, VALKEYMODULE_ERR is returned and `errno` is set as follows:
*
* - EINVAL if called with a NULL key
* - ENOTSUP if the key refers to a value of a type other than stream or if the
* key is empty
* - EBADF if no stream iterator is associated with the key
* - ENOENT if there are no more entries in the range of the iterator
*
* In practice, if VM_StreamIteratorNextID() is called after a successful call
* to VM_StreamIteratorStart() and with the same key, it is safe to assume that
* an VALKEYMODULE_ERR return value means that there are no more entries.
*
* Use ValkeyModule_StreamIteratorNextField() to retrieve the fields and values.
* See the example at ValkeyModule_StreamIteratorStart().
*/
int VM_StreamIteratorNextID(ValkeyModuleKey *key, ValkeyModuleStreamID *id, long *numfields) {
if (!key) {
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP;
return VALKEYMODULE_ERR;
} else if (!key->iter) {
errno = EBADF;
return VALKEYMODULE_ERR;
}
streamIterator *si = key->iter;
int64_t *num_ptr = &key->u.stream.numfieldsleft;
streamID *streamid_ptr = &key->u.stream.currentid;
if (streamIteratorGetID(si, streamid_ptr, num_ptr)) {
if (id) {
id->ms = streamid_ptr->ms;
id->seq = streamid_ptr->seq;
}
if (numfields) *numfields = *num_ptr;
return VALKEYMODULE_OK;
} else {
/* No entry found. */
key->u.stream.currentid.ms = 0; /* for VM_StreamIteratorDelete() */
key->u.stream.currentid.seq = 0;
key->u.stream.numfieldsleft = 0; /* for VM_StreamIteratorNextField() */
errno = ENOENT;
return VALKEYMODULE_ERR;
}
}
/* Retrieves the next field of the current stream ID and its corresponding value
* in a stream iteration. This function should be called repeatedly after calling
* ValkeyModule_StreamIteratorNextID() to fetch each field-value pair.
*
* - `key`: Key where a stream iterator has been started.
* - `field_ptr`: This is where the field is returned.
* - `value_ptr`: This is where the value is returned.
*
* Returns VALKEYMODULE_OK and points `*field_ptr` and `*value_ptr` to freshly
* allocated ValkeyModuleString objects. The string objects are freed
* automatically when the callback finishes if automatic memory is enabled. On
* failure, VALKEYMODULE_ERR is returned and `errno` is set as follows:
*
* - EINVAL if called with a NULL key
* - ENOTSUP if the key refers to a value of a type other than stream or if the
* key is empty
* - EBADF if no stream iterator is associated with the key
* - ENOENT if there are no more fields in the current stream entry
*
* In practice, if VM_StreamIteratorNextField() is called after a successful
* call to VM_StreamIteratorNextID() and with the same key, it is safe to assume
* that an VALKEYMODULE_ERR return value means that there are no more fields.
*
* See the example at ValkeyModule_StreamIteratorStart().
*/
int VM_StreamIteratorNextField(ValkeyModuleKey *key, ValkeyModuleString **field_ptr, ValkeyModuleString **value_ptr) {
if (!key) {
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP;
return VALKEYMODULE_ERR;
} else if (!key->iter) {
errno = EBADF;
return VALKEYMODULE_ERR;
} else if (key->u.stream.numfieldsleft <= 0) {
errno = ENOENT;
return VALKEYMODULE_ERR;
}
streamIterator *si = key->iter;
unsigned char *field, *value;
int64_t field_len, value_len;
streamIteratorGetField(si, &field, &value, &field_len, &value_len);
if (field_ptr) {
*field_ptr = createRawStringObject((char *)field, field_len);
autoMemoryAdd(key->ctx, VALKEYMODULE_AM_STRING, *field_ptr);
}
if (value_ptr) {
*value_ptr = createRawStringObject((char *)value, value_len);
autoMemoryAdd(key->ctx, VALKEYMODULE_AM_STRING, *value_ptr);
}
key->u.stream.numfieldsleft--;
return VALKEYMODULE_OK;
}
/* Deletes the current stream entry while iterating.
*
* This function can be called after VM_StreamIteratorNextID() or after any
* calls to VM_StreamIteratorNextField().
*
* Returns VALKEYMODULE_OK on success. On failure, VALKEYMODULE_ERR is returned
* and `errno` is set as follows:
*
* - EINVAL if key is NULL
* - ENOTSUP if the key is empty or is of another type than stream
* - EBADF if the key is not opened for writing, if no iterator has been started
* - ENOENT if the iterator has no current stream entry
*/
int VM_StreamIteratorDelete(ValkeyModuleKey *key) {
if (!key) {
errno = EINVAL;
return VALKEYMODULE_ERR;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP;
return VALKEYMODULE_ERR;
} else if (!(key->mode & VALKEYMODULE_WRITE) || !key->iter) {
errno = EBADF;
return VALKEYMODULE_ERR;
} else if (key->u.stream.currentid.ms == 0 &&
key->u.stream.currentid.seq == 0) {
errno = ENOENT;
return VALKEYMODULE_ERR;
}
streamIterator *si = key->iter;
streamIteratorRemoveEntry(si, &key->u.stream.currentid);
key->u.stream.currentid.ms = 0; /* Make sure repeated Delete() fails */
key->u.stream.currentid.seq = 0;
key->u.stream.numfieldsleft = 0; /* Make sure NextField() fails */
return VALKEYMODULE_OK;
}
/* Trim a stream by length, similar to XTRIM with MAXLEN.
*
* - `key`: Key opened for writing.
* - `flags`: A bitfield of
* - `VALKEYMODULE_STREAM_TRIM_APPROX`: Trim less if it improves performance,
* like XTRIM with `~`.
* - `length`: The number of stream entries to keep after trimming.
*
* Returns the number of entries deleted. On failure, a negative value is
* returned and `errno` is set as follows:
*
* - EINVAL if called with invalid arguments
* - ENOTSUP if the key is empty or of a type other than stream
* - EBADF if the key is not opened for writing
*/
long long VM_StreamTrimByLength(ValkeyModuleKey *key, int flags, long long length) {
if (!key || (flags & ~(VALKEYMODULE_STREAM_TRIM_APPROX)) || length < 0) {
errno = EINVAL;
return -1;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP;
return -1;
} else if (!(key->mode & VALKEYMODULE_WRITE)) {
errno = EBADF;
return -1;
}
int approx = flags & VALKEYMODULE_STREAM_TRIM_APPROX ? 1 : 0;
return streamTrimByLength((stream *)key->value->ptr, length, approx);
}
/* Trim a stream by ID, similar to XTRIM with MINID.
*
* - `key`: Key opened for writing.
* - `flags`: A bitfield of
* - `VALKEYMODULE_STREAM_TRIM_APPROX`: Trim less if it improves performance,
* like XTRIM with `~`.
* - `id`: The smallest stream ID to keep after trimming.
*
* Returns the number of entries deleted. On failure, a negative value is
* returned and `errno` is set as follows:
*
* - EINVAL if called with invalid arguments
* - ENOTSUP if the key is empty or of a type other than stream
* - EBADF if the key is not opened for writing
*/
long long VM_StreamTrimByID(ValkeyModuleKey *key, int flags, ValkeyModuleStreamID *id) {
if (!key || (flags & ~(VALKEYMODULE_STREAM_TRIM_APPROX)) || !id) {
errno = EINVAL;
return -1;
} else if (!key->value || key->value->type != OBJ_STREAM) {
errno = ENOTSUP;
return -1;
} else if (!(key->mode & VALKEYMODULE_WRITE)) {
errno = EBADF;
return -1;
}
int approx = flags & VALKEYMODULE_STREAM_TRIM_APPROX ? 1 : 0;
streamID minid = (streamID){id->ms, id->seq};
return streamTrimByID((stream *)key->value->ptr, minid, approx);
}
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* ## Calling Redis commands from modules
*
* VM_Call() sends a command to Redis. The remaining functions handle the reply.
2016-03-06 13:44:24 +01:00
* -------------------------------------------------------------------------- */
void moduleParseCallReply_Int(ValkeyModuleCallReply *reply);
void moduleParseCallReply_BulkString(ValkeyModuleCallReply *reply);
void moduleParseCallReply_SimpleString(ValkeyModuleCallReply *reply);
void moduleParseCallReply_Array(ValkeyModuleCallReply *reply);
2016-03-06 13:44:24 +01:00
/* Free a Call reply and all the nested replies it contains if it's an
* array. */
void VM_FreeCallReply(ValkeyModuleCallReply *reply) {
/* This is a wrapper for the recursive free reply function. This is needed
* in order to have the first level function to return on nested replies,
* but only if called by the module API. */
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
ValkeyModuleCtx *ctx = NULL;
if(callReplyType(reply) == VALKEYMODULE_REPLY_PROMISE) {
ValkeyModuleAsyncRMCallPromise *promise = callReplyGetPrivateData(reply);
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
ctx = promise->ctx;
freeValkeyModuleAsyncRMCallPromise(promise);
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
} else {
ctx = callReplyGetPrivateData(reply);
}
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
freeCallReply(reply);
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
if (ctx) {
autoMemoryFreed(ctx,VALKEYMODULE_AM_REPLY,reply);
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
}
2016-03-06 13:44:24 +01:00
}
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
/* Return the reply type as one of the following:
*
* - VALKEYMODULE_REPLY_UNKNOWN
* - VALKEYMODULE_REPLY_STRING
* - VALKEYMODULE_REPLY_ERROR
* - VALKEYMODULE_REPLY_INTEGER
* - VALKEYMODULE_REPLY_ARRAY
* - VALKEYMODULE_REPLY_NULL
* - VALKEYMODULE_REPLY_MAP
* - VALKEYMODULE_REPLY_SET
* - VALKEYMODULE_REPLY_BOOL
* - VALKEYMODULE_REPLY_DOUBLE
* - VALKEYMODULE_REPLY_BIG_NUMBER
* - VALKEYMODULE_REPLY_VERBATIM_STRING
* - VALKEYMODULE_REPLY_ATTRIBUTE
* - VALKEYMODULE_REPLY_PROMISE */
int VM_CallReplyType(ValkeyModuleCallReply *reply) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
return callReplyType(reply);
2016-03-06 13:44:24 +01:00
}
/* Return the reply type length, where applicable. */
size_t VM_CallReplyLength(ValkeyModuleCallReply *reply) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
return callReplyGetLen(reply);
2016-03-06 13:44:24 +01:00
}
/* Return the 'idx'-th nested call reply element of an array reply, or NULL
* if the reply type is wrong or the index is out of range. */
ValkeyModuleCallReply *VM_CallReplyArrayElement(ValkeyModuleCallReply *reply, size_t idx) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
return callReplyGetArrayElement(reply, idx);
2016-03-06 13:44:24 +01:00
}
/* Return the `long long` of an integer reply. */
long long VM_CallReplyInteger(ValkeyModuleCallReply *reply) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
return callReplyGetLongLong(reply);
}
/* Return the double value of a double reply. */
double VM_CallReplyDouble(ValkeyModuleCallReply *reply) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
return callReplyGetDouble(reply);
}
/* Return the big number value of a big number reply. */
const char *VM_CallReplyBigNumber(ValkeyModuleCallReply *reply, size_t *len) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
return callReplyGetBigNumber(reply, len);
}
/* Return the value of a verbatim string reply,
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
* An optional output argument can be given to get verbatim reply format. */
const char *VM_CallReplyVerbatim(ValkeyModuleCallReply *reply, size_t *len, const char **format) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
return callReplyGetVerbatim(reply, len, format);
}
/* Return the Boolean value of a Boolean reply. */
int VM_CallReplyBool(ValkeyModuleCallReply *reply) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
return callReplyGetBool(reply);
}
/* Return the 'idx'-th nested call reply element of a set reply, or NULL
* if the reply type is wrong or the index is out of range. */
ValkeyModuleCallReply *VM_CallReplySetElement(ValkeyModuleCallReply *reply, size_t idx) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
return callReplyGetSetElement(reply, idx);
}
/* Retrieve the 'idx'-th key and value of a map reply.
*
* Returns:
* - VALKEYMODULE_OK on success.
* - VALKEYMODULE_ERR if idx out of range or if the reply type is wrong.
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
*
* The `key` and `value` arguments are used to return by reference, and may be
* NULL if not required. */
int VM_CallReplyMapElement(ValkeyModuleCallReply *reply, size_t idx, ValkeyModuleCallReply **key, ValkeyModuleCallReply **val) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
if (callReplyGetMapElement(reply, idx, key, val) == C_OK){
return VALKEYMODULE_OK;
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
}
return VALKEYMODULE_ERR;
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
}
/* Return the attribute of the given reply, or NULL if no attribute exists. */
ValkeyModuleCallReply *VM_CallReplyAttribute(ValkeyModuleCallReply *reply) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
return callReplyGetAttribute(reply);
}
/* Retrieve the 'idx'-th key and value of an attribute reply.
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
*
* Returns:
* - VALKEYMODULE_OK on success.
* - VALKEYMODULE_ERR if idx out of range or if the reply type is wrong.
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
*
* The `key` and `value` arguments are used to return by reference, and may be
* NULL if not required. */
int VM_CallReplyAttributeElement(ValkeyModuleCallReply *reply, size_t idx, ValkeyModuleCallReply **key, ValkeyModuleCallReply **val) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
if (callReplyGetAttributeElement(reply, idx, key, val) == C_OK){
return VALKEYMODULE_OK;
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
}
return VALKEYMODULE_ERR;
2016-03-06 13:44:24 +01:00
}
/* Set unblock handler (callback and private data) on the given promise ValkeyModuleCallReply.
* The given reply must be of promise type (VALKEYMODULE_REPLY_PROMISE). */
void VM_CallReplyPromiseSetUnblockHandler(ValkeyModuleCallReply *reply, ValkeyModuleOnUnblocked on_unblock, void *private_data) {
ValkeyModuleAsyncRMCallPromise *promise = callReplyGetPrivateData(reply);
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
promise->on_unblocked = on_unblock;
promise->private_data = private_data;
}
/* Abort the execution of a given promise ValkeyModuleCallReply.
* return REDMODULE_OK in case the abort was done successfully and VALKEYMODULE_ERR
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
* if its not possible to abort the execution (execution already finished).
* In case the execution was aborted (REDMODULE_OK was returned), the private_data out parameter
* will be set with the value of the private data that was given on 'VM_CallReplyPromiseSetUnblockHandler'
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
* so the caller will be able to release the private data.
*
* If the execution was aborted successfully, it is promised that the unblock handler will not be called.
* That said, it is possible that the abort operation will successes but the operation will still continue.
* This can happened if, for example, a module implements some blocking command and does not respect the
* disconnect callback. For pure Redis commands this can not happened.*/
int VM_CallReplyPromiseAbort(ValkeyModuleCallReply *reply, void **private_data) {
ValkeyModuleAsyncRMCallPromise *promise = callReplyGetPrivateData(reply);
if (!promise->c) return VALKEYMODULE_ERR; /* Promise can not be aborted, either already aborted or already finished. */
if (!(promise->c->flags & CLIENT_BLOCKED)) return VALKEYMODULE_ERR; /* Client is not blocked anymore, can not abort it. */
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
/* Client is still blocked, remove it from any blocking state and release it. */
if (private_data) *private_data = promise->private_data;
promise->private_data = NULL;
promise->on_unblocked = NULL;
unblockClient(promise->c, 0);
moduleReleaseTempClient(promise->c);
return VALKEYMODULE_OK;
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
}
2016-03-06 13:44:24 +01:00
/* Return the pointer and length of a string or error reply. */
const char *VM_CallReplyStringPtr(ValkeyModuleCallReply *reply, size_t *len) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
size_t private_len;
if (!len) len = &private_len;
return callReplyGetString(reply, len);
2016-03-06 13:44:24 +01:00
}
/* Return a new string object from a call reply of type string, error or
* integer. Otherwise (wrong reply type) return NULL. */
ValkeyModuleString *VM_CreateStringFromCallReply(ValkeyModuleCallReply *reply) {
ValkeyModuleCtx* ctx = callReplyGetPrivateData(reply);
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
size_t len;
const char *str;
switch(callReplyType(reply)) {
case VALKEYMODULE_REPLY_STRING:
case VALKEYMODULE_REPLY_ERROR:
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
str = callReplyGetString(reply, &len);
return VM_CreateString(ctx, str, len);
case VALKEYMODULE_REPLY_INTEGER: {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
char buf[64];
int len = ll2string(buf,sizeof(buf),callReplyGetLongLong(reply));
return VM_CreateString(ctx ,buf,len);
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
}
default:
return NULL;
2016-03-06 13:44:24 +01:00
}
}
/* Modifies the user that VM_Call will use (e.g. for ACL checks) */
void VM_SetContextUser(ValkeyModuleCtx *ctx, const ValkeyModuleUser *user) {
ctx->user = user;
}
/* Returns an array of robj pointers, by parsing the format specifier "fmt" as described for
* the VM_Call(), VM_Replicate() and other module APIs. Populates *argcp with the number of
* items (which equals to the length of the allocated argv).
2016-03-06 13:44:24 +01:00
*
* The integer pointed by 'flags' is populated with flags according
* to special modifiers in "fmt".
2016-03-06 13:44:24 +01:00
*
* "!" -> VALKEYMODULE_ARGV_REPLICATE
* "A" -> VALKEYMODULE_ARGV_NO_AOF
* "R" -> VALKEYMODULE_ARGV_NO_REPLICAS
* "3" -> VALKEYMODULE_ARGV_RESP_3
* "0" -> VALKEYMODULE_ARGV_RESP_AUTO
* "C" -> VALKEYMODULE_ARGV_RUN_AS_USER
* "M" -> VALKEYMODULE_ARGV_RESPECT_DENY_OOM
* "K" -> VALKEYMODULE_ARGV_ALLOW_BLOCK
2016-03-06 13:44:24 +01:00
*
* On error (format specifier error) NULL is returned and nothing is
* allocated. On success the argument vector is returned. */
robj **moduleCreateArgvFromUserFormat(const char *cmdname, const char *fmt, int *argcp, int *flags, va_list ap) {
2016-03-06 13:44:24 +01:00
int argc = 0, argv_size, j;
robj **argv = NULL;
/* As a first guess to avoid useless reallocations, size argv to
* hold one argument for each char specifier in 'fmt'. */
argv_size = strlen(fmt)+1; /* +1 because of the command name. */
argv = zrealloc(argv,sizeof(robj*)*argv_size);
/* Build the arguments vector based on the format specifier. */
argv[0] = createStringObject(cmdname,strlen(cmdname));
argc++;
/* Create the client and dispatch the command. */
const char *p = fmt;
while(*p) {
if (*p == 'c') {
char *cstr = va_arg(ap,char*);
argv[argc++] = createStringObject(cstr,strlen(cstr));
} else if (*p == 's') {
robj *obj = va_arg(ap,void*);
if (obj->refcount == OBJ_STATIC_REFCOUNT)
obj = createStringObject(obj->ptr,sdslen(obj->ptr));
else
incrRefCount(obj);
2016-03-06 13:44:24 +01:00
argv[argc++] = obj;
} else if (*p == 'b') {
char *buf = va_arg(ap,char*);
size_t len = va_arg(ap,size_t);
argv[argc++] = createStringObject(buf,len);
} else if (*p == 'l') {
long long ll = va_arg(ap,long long);
argv[argc++] = createStringObjectFromLongLongWithSds(ll);
2016-03-06 13:44:24 +01:00
} else if (*p == 'v') {
2016-04-28 13:12:09 +03:00
/* A vector of strings */
2016-04-28 12:50:55 +03:00
robj **v = va_arg(ap, void*);
size_t vlen = va_arg(ap, size_t);
/* We need to grow argv to hold the vector's elements.
2016-04-28 13:10:00 +03:00
* We resize by vector_len-1 elements, because we held
* one element in argv for the vector already */
argv_size += vlen-1;
2016-04-28 12:50:55 +03:00
argv = zrealloc(argv,sizeof(robj*)*argv_size);
2016-04-28 13:12:09 +03:00
size_t i = 0;
2016-04-28 12:50:55 +03:00
for (i = 0; i < vlen; i++) {
incrRefCount(v[i]);
argv[argc++] = v[i];
}
2016-03-06 13:44:24 +01:00
} else if (*p == '!') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_REPLICATE;
} else if (*p == 'A') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_NO_AOF;
} else if (*p == 'R') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_NO_REPLICAS;
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
} else if (*p == '3') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_RESP_3;
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
} else if (*p == '0') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_RESP_AUTO;
} else if (*p == 'C') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_RUN_AS_USER;
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
} else if (*p == 'S') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_SCRIPT_MODE;
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
} else if (*p == 'W') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_NO_WRITES;
Fix broken protocol in MISCONF error, RM_Yield bugs, RM_Call(EVAL) OOM check bug, and new RM_Call checks. (#10786) * Fix broken protocol when redis can't persist to RDB (general commands, not modules), excessive newline. regression of #10372 (7.0 RC3) * Fix broken protocol when Redis can't persist to AOF (modules and scripts), missing newline. * Fix bug in OOM check of EVAL scripts called from RM_Call. set the cached OOM state for scripts before executing module commands too, so that it can serve scripts that are executed by modules. i.e. in the past EVAL executed by RM_Call could have either falsely fail or falsely succeeded because of a wrong cached OOM state flag. * Fix bugs with RM_Yield: 1. SHUTDOWN should only accept the NOSAVE mode 2. Avoid eviction during yield command processing. 3. Avoid processing master client commands while yielding from another client * Add new two more checks to RM_Call script mode. 1. READONLY You can't write against a read only replica 2. MASTERDOWN Link with MASTER is down and `replica-serve-stale-data` is set to `no` * Add new RM_Call flag to let redis automatically refuse `deny-oom` commands while over the memory limit. * Add tests to cover various errors from Scripts, Modules, Modules calling scripts, and Modules calling commands in script mode. Add tests: * Looks like the MISCONF error was completely uncovered by the tests, add tests for it, including from scripts, and modules * Add tests for NOREPLICAS from scripts * Add tests for the various errors in module RM_Call, including RM_Call that calls EVAL, and RM_call in "eval mode". that includes: NOREPLICAS, READONLY, MASTERDOWN, MISCONF
2022-06-01 13:04:22 +03:00
} else if (*p == 'M') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_RESPECT_DENY_OOM;
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
} else if (*p == 'E') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_CALL_REPLIES_AS_ERRORS;
} else if (*p == 'D') {
if (flags) (*flags) |= (VALKEYMODULE_ARGV_DRY_RUN | VALKEYMODULE_ARGV_CALL_REPLIES_AS_ERRORS);
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
} else if (*p == 'K') {
if (flags) (*flags) |= VALKEYMODULE_ARGV_ALLOW_BLOCK;
2016-03-06 13:44:24 +01:00
} else {
goto fmterr;
}
p++;
}
if (argcp) *argcp = argc;
2016-03-06 13:44:24 +01:00
return argv;
fmterr:
for (j = 0; j < argc; j++)
decrRefCount(argv[j]);
zfree(argv);
return NULL;
}
/* Exported API to call any Redis command from modules.
*
* * **cmdname**: The Redis command to call.
* * **fmt**: A format specifier string for the command's arguments. Each
* of the arguments should be specified by a valid type specification. The
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
* format specifier can also contain the modifiers `!`, `A`, `3` and `R` which
* don't have a corresponding argument.
*
* * `b` -- The argument is a buffer and is immediately followed by another
* argument that is the buffer's length.
* * `c` -- The argument is a pointer to a plain C string (null-terminated).
* * `l` -- The argument is a `long long` integer.
* * `s` -- The argument is a ValkeyModuleString.
* * `v` -- The argument(s) is a vector of ValkeyModuleString.
* * `!` -- Sends the Redis command and its arguments to replicas and AOF.
* * `A` -- Suppress AOF propagation, send only to replicas (requires `!`).
* * `R` -- Suppress replicas propagation, send only to AOF (requires `!`).
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
* * `3` -- Return a RESP3 reply. This will change the command reply.
* e.g., HGETALL returns a map instead of a flat array.
* * `0` -- Return the reply in auto mode, i.e. the reply format will be the
* same as the client attached to the given ValkeyModuleCtx. This will
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
* probably used when you want to pass the reply directly to the client.
* * `C` -- Run a command as the user attached to the context.
* User is either attached automatically via the client that directly
* issued the command and created the context or via VM_SetContextUser.
* If the context is not directly created by an issued command (such as a
* background context and no user was set on it via VM_SetContextUser,
* VM_Call will fail.
* Checks if the command can be executed according to ACL rules and causes
* the command to run as the determined user, so that any future user
* dependent activity, such as ACL checks within scripts will proceed as
* expected.
* Otherwise, the command will run as the Redis unrestricted user.
* * `S` -- Run the command in a script mode, this means that it will raise
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
* an error if a command which are not allowed inside a script
* (flagged with the `deny-script` flag) is invoked (like SHUTDOWN).
* In addition, on script mode, write commands are not allowed if there are
* not enough good replicas (as configured with `min-replicas-to-write`)
* or when the server is unable to persist to the disk.
* * `W` -- Do not allow to run any write command (flagged with the `write` flag).
Fix broken protocol in MISCONF error, RM_Yield bugs, RM_Call(EVAL) OOM check bug, and new RM_Call checks. (#10786) * Fix broken protocol when redis can't persist to RDB (general commands, not modules), excessive newline. regression of #10372 (7.0 RC3) * Fix broken protocol when Redis can't persist to AOF (modules and scripts), missing newline. * Fix bug in OOM check of EVAL scripts called from RM_Call. set the cached OOM state for scripts before executing module commands too, so that it can serve scripts that are executed by modules. i.e. in the past EVAL executed by RM_Call could have either falsely fail or falsely succeeded because of a wrong cached OOM state flag. * Fix bugs with RM_Yield: 1. SHUTDOWN should only accept the NOSAVE mode 2. Avoid eviction during yield command processing. 3. Avoid processing master client commands while yielding from another client * Add new two more checks to RM_Call script mode. 1. READONLY You can't write against a read only replica 2. MASTERDOWN Link with MASTER is down and `replica-serve-stale-data` is set to `no` * Add new RM_Call flag to let redis automatically refuse `deny-oom` commands while over the memory limit. * Add tests to cover various errors from Scripts, Modules, Modules calling scripts, and Modules calling commands in script mode. Add tests: * Looks like the MISCONF error was completely uncovered by the tests, add tests for it, including from scripts, and modules * Add tests for NOREPLICAS from scripts * Add tests for the various errors in module RM_Call, including RM_Call that calls EVAL, and RM_call in "eval mode". that includes: NOREPLICAS, READONLY, MASTERDOWN, MISCONF
2022-06-01 13:04:22 +03:00
* * `M` -- Do not allow `deny-oom` flagged commands when over the memory limit.
* * `E` -- Return error as ValkeyModuleCallReply. If there is an error before
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
* invoking the command, the error is returned using errno mechanism.
* This flag allows to get the error also as an error CallReply with
* relevant error message.
* * 'D' -- A "Dry Run" mode. Return before executing the underlying call().
* If everything succeeded, it will return with a NULL, otherwise it will
* return with a CallReply object denoting the error, as if it was called with
* the 'E' code.
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
* * 'K' -- Allow running blocking commands. If enabled and the command gets blocked, a
* special VALKEYMODULE_REPLY_PROMISE will be returned. This reply type
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
* indicates that the command was blocked and the reply will be given asynchronously.
* The module can use this reply object to set a handler which will be called when
* the command gets unblocked using ValkeyModule_CallReplyPromiseSetUnblockHandler.
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
* The handler must be set immediately after the command invocation (without releasing
* the Redis lock in between). If the handler is not set, the blocking command will
* still continue its execution but the reply will be ignored (fire and forget),
* notice that this is dangerous in case of role change, as explained below.
* The module can use ValkeyModule_CallReplyPromiseAbort to abort the command invocation
* if it was not yet finished (see ValkeyModule_CallReplyPromiseAbort documentation for more
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
* details). It is also the module's responsibility to abort the execution on role change, either by using
* server event (to get notified when the instance becomes a replica) or relying on the disconnect
* callback of the original client. Failing to do so can result in a write operation on a replica.
* Unlike other call replies, promise call reply **must** be freed while the Redis GIL is locked.
* Notice that on unblocking, the only promise is that the unblock handler will be called,
* If the blocking VM_Call caused the module to also block some real client (using VM_BlockClient),
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
* it is the module responsibility to unblock this client on the unblock handler.
* On the unblock handler it is only allowed to perform the following:
* * Calling additional Redis commands using VM_Call
* * Open keys using VM_OpenKey
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
* * Replicate data to the replica or AOF
*
* Specifically, it is not allowed to call any Redis module API which are client related such as:
* * VM_Reply* API's
* * VM_BlockClient
* * VM_GetCurrentUserName
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
*
* * **...**: The actual arguments to the Redis command.
*
* On success a ValkeyModuleCallReply object is returned, otherwise
2016-03-06 13:44:24 +01:00
* NULL is returned and errno is set to the following values:
*
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* * EBADF: wrong format specifier.
* * EINVAL: wrong command arity.
* * ENOENT: command does not exist.
* * EPERM: operation in Cluster instance with key in non local slot.
* * EROFS: operation in Cluster instance when a write command is sent
* in a readonly state.
* * ENETDOWN: operation in Cluster instance when cluster is down.
* * ENOTSUP: No ACL user for the specified module context
* * EACCES: Command cannot be executed, according to ACL rules
Fix broken protocol in MISCONF error, RM_Yield bugs, RM_Call(EVAL) OOM check bug, and new RM_Call checks. (#10786) * Fix broken protocol when redis can't persist to RDB (general commands, not modules), excessive newline. regression of #10372 (7.0 RC3) * Fix broken protocol when Redis can't persist to AOF (modules and scripts), missing newline. * Fix bug in OOM check of EVAL scripts called from RM_Call. set the cached OOM state for scripts before executing module commands too, so that it can serve scripts that are executed by modules. i.e. in the past EVAL executed by RM_Call could have either falsely fail or falsely succeeded because of a wrong cached OOM state flag. * Fix bugs with RM_Yield: 1. SHUTDOWN should only accept the NOSAVE mode 2. Avoid eviction during yield command processing. 3. Avoid processing master client commands while yielding from another client * Add new two more checks to RM_Call script mode. 1. READONLY You can't write against a read only replica 2. MASTERDOWN Link with MASTER is down and `replica-serve-stale-data` is set to `no` * Add new RM_Call flag to let redis automatically refuse `deny-oom` commands while over the memory limit. * Add tests to cover various errors from Scripts, Modules, Modules calling scripts, and Modules calling commands in script mode. Add tests: * Looks like the MISCONF error was completely uncovered by the tests, add tests for it, including from scripts, and modules * Add tests for NOREPLICAS from scripts * Add tests for the various errors in module RM_Call, including RM_Call that calls EVAL, and RM_call in "eval mode". that includes: NOREPLICAS, READONLY, MASTERDOWN, MISCONF
2022-06-01 13:04:22 +03:00
* * ENOSPC: Write or deny-oom command is not allowed
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
* * ESPIPE: Command not allowed on script mode
*
* Example code fragment:
*
* reply = ValkeyModule_Call(ctx,"INCRBY","sc",argv[1],"10");
* if (ValkeyModule_CallReplyType(reply) == VALKEYMODULE_REPLY_INTEGER) {
* long long myval = ValkeyModule_CallReplyInteger(reply);
* // Do something with myval.
* }
*
* This API is documented here: https://redis.io/topics/modules-intro
*/
ValkeyModuleCallReply *VM_Call(ValkeyModuleCtx *ctx, const char *cmdname, const char *fmt, ...) {
2016-03-06 13:44:24 +01:00
client *c = NULL;
robj **argv = NULL;
int argc = 0, flags = 0;
2016-03-06 13:44:24 +01:00
va_list ap;
ValkeyModuleCallReply *reply = NULL;
2016-03-06 13:44:24 +01:00
int replicate = 0; /* Replicate this command? */
int error_as_call_replies = 0; /* return errors as ValkeyModuleCallReply object */
uint64_t cmd_flags;
2016-03-06 13:44:24 +01:00
/* Handle arguments. */
2016-03-06 13:44:24 +01:00
va_start(ap, fmt);
argv = moduleCreateArgvFromUserFormat(cmdname,fmt,&argc,&flags,ap);
replicate = flags & VALKEYMODULE_ARGV_REPLICATE;
error_as_call_replies = flags & VALKEYMODULE_ARGV_CALL_REPLIES_AS_ERRORS;
2016-03-06 13:44:24 +01:00
va_end(ap);
c = moduleAllocTempClient();
Unified MULTI, LUA, and RM_Call with respect to blocking commands (#8025) Blocking command should not be used with MULTI, LUA, and RM_Call. This is because, the caller, who executes the command in this context, expects a reply. Today, LUA and MULTI have a special (and different) treatment to blocking commands: LUA - Most commands are marked with no-script flag which are checked when executing and command from LUA, commands that are not marked (like XREAD) verify that their blocking mode is not used inside LUA (by checking the CLIENT_LUA client flag). MULTI - Command that is going to block, first verify that the client is not inside multi (by checking the CLIENT_MULTI client flag). If the client is inside multi, they return a result which is a match to the empty key with no timeout (for example blpop inside MULTI will act as lpop) For modules that perform RM_Call with blocking command, the returned results type is REDISMODULE_REPLY_UNKNOWN and the caller can not really know what happened. Disadvantages of the current state are: No unified approach, LUA, MULTI, and RM_Call, each has a different treatment Module can not safely execute blocking command (and get reply or error). Though It is true that modules are not like LUA or MULTI and should be smarter not to execute blocking commands on RM_Call, sometimes you want to execute a command base on client input (for example if you create a module that provides a new scripting language like javascript or python). While modules (on modules command) can check for REDISMODULE_CTX_FLAGS_LUA or REDISMODULE_CTX_FLAGS_MULTI to know not to block the client, there is no way to check if the command came from another module using RM_Call. So there is no way for a module to know not to block another module RM_Call execution. This commit adds a way to unify the treatment for blocking clients by introducing a new CLIENT_DENY_BLOCKING client flag. On LUA, MULTI, and RM_Call the new flag turned on to signify that the client should not be blocked. A blocking command verifies that the flag is turned off before blocking. If a blocking command sees that the CLIENT_DENY_BLOCKING flag is on, it's not blocking and return results which are matches to empty key with no timeout (as MULTI does today). The new flag is checked on the following commands: List blocking commands: BLPOP, BRPOP, BRPOPLPUSH, BLMOVE, Zset blocking commands: BZPOPMIN, BZPOPMAX Stream blocking commands: XREAD, XREADGROUP SUBSCRIBE, PSUBSCRIBE, MONITOR In addition, the new flag is turned on inside the AOF client, we do not want to block the AOF client to prevent deadlocks and commands ordering issues (and there is also an existing assert in the code that verifies it). To keep backward compatibility on LUA, all the no-script flags on existing commands were kept untouched. In addition, a LUA special treatment on XREAD and XREADGROUP was kept. To keep backward compatibility on MULTI (which today allows SUBSCRIBE, and PSUBSCRIBE). We added a special treatment on those commands to allow executing them on MULTI. The only backward compatibility issue that this PR introduces is that now MONITOR is not allowed inside MULTI. Tests were added to verify blocking commands are not blocking the client on LUA, MULTI, or RM_Call. Tests were added to verify the module can check for CLIENT_DENY_BLOCKING flag. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Itamar Haber <itamar@redislabs.com>
2020-11-17 18:58:55 +02:00
if (!(flags & VALKEYMODULE_ARGV_ALLOW_BLOCK)) {
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
/* We do not want to allow block, the module do not expect it */
c->flags |= CLIENT_DENY_BLOCKING;
}
c->db = ctx->client->db;
2016-03-06 13:44:24 +01:00
c->argv = argv;
/* We have to assign argv_len, which is equal to argc in that case (VM_Call)
* because we may be calling a command that uses rewriteClientCommandArgument */
c->argc = c->argv_len = argc;
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
c->resp = 2;
if (flags & VALKEYMODULE_ARGV_RESP_3) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
c->resp = 3;
} else if (flags & VALKEYMODULE_ARGV_RESP_AUTO) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
/* Auto mode means to take the same protocol as the ctx client. */
c->resp = ctx->client->resp;
}
if (ctx->module) ctx->module->in_call++;
user *user = NULL;
if (flags & VALKEYMODULE_ARGV_RUN_AS_USER) {
user = ctx->user ? ctx->user->user : ctx->client->user;
if (!user) {
errno = ENOTSUP;
if (error_as_call_replies) {
sds msg = sdsnew("cannot run as user, no user directly attached to context or context's client");
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
c->user = user;
}
2016-03-06 13:44:24 +01:00
/* We handle the above format error only when the client is setup so that
* we can free it normally. */
if (argv == NULL) {
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
/* We do not return a call reply here this is an error that should only
* be catch by the module indicating wrong fmt was given, the module should
* handle this error and decide how to continue. It is not an error that
* should be propagated to the user. */
errno = EBADF;
goto cleanup;
}
2016-03-06 13:44:24 +01:00
/* Call command filters */
moduleCallCommandFilters(c);
/* Lookup command now, after filters had a chance to make modifications
* if necessary.
*/
c->cmd = c->lastcmd = c->realcmd = lookupCommand(c->argv,c->argc);
sds err;
if (!commandCheckExistence(c, error_as_call_replies? &err : NULL)) {
errno = ENOENT;
if (error_as_call_replies)
reply = callReplyCreateError(err, ctx);
goto cleanup;
}
if (!commandCheckArity(c, error_as_call_replies? &err : NULL)) {
2016-03-06 13:44:24 +01:00
errno = EINVAL;
if (error_as_call_replies)
reply = callReplyCreateError(err, ctx);
2016-03-06 13:44:24 +01:00
goto cleanup;
}
cmd_flags = getCommandFlags(c);
if (flags & VALKEYMODULE_ARGV_SCRIPT_MODE) {
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
/* Basically on script mode we want to only allow commands that can
* be executed on scripts (CMD_NOSCRIPT is not set on the command flags) */
if (cmd_flags & CMD_NOSCRIPT) {
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
errno = ESPIPE;
if (error_as_call_replies) {
sds msg = sdscatfmt(sdsempty(), "command '%S' is not allowed on script mode", c->cmd->fullname);
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
}
if (flags & VALKEYMODULE_ARGV_RESPECT_DENY_OOM && server.maxmemory) {
if (cmd_flags & CMD_DENYOOM) {
int oom_state;
if (ctx->flags & VALKEYMODULE_CTX_THREAD_SAFE) {
/* On background thread we can not count on server.pre_command_oom_state.
* Because it is only set on the main thread, in such case we will check
* the actual memory usage. */
oom_state = (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_ERR);
} else {
oom_state = server.pre_command_oom_state;
}
if (oom_state) {
Fix broken protocol in MISCONF error, RM_Yield bugs, RM_Call(EVAL) OOM check bug, and new RM_Call checks. (#10786) * Fix broken protocol when redis can't persist to RDB (general commands, not modules), excessive newline. regression of #10372 (7.0 RC3) * Fix broken protocol when Redis can't persist to AOF (modules and scripts), missing newline. * Fix bug in OOM check of EVAL scripts called from RM_Call. set the cached OOM state for scripts before executing module commands too, so that it can serve scripts that are executed by modules. i.e. in the past EVAL executed by RM_Call could have either falsely fail or falsely succeeded because of a wrong cached OOM state flag. * Fix bugs with RM_Yield: 1. SHUTDOWN should only accept the NOSAVE mode 2. Avoid eviction during yield command processing. 3. Avoid processing master client commands while yielding from another client * Add new two more checks to RM_Call script mode. 1. READONLY You can't write against a read only replica 2. MASTERDOWN Link with MASTER is down and `replica-serve-stale-data` is set to `no` * Add new RM_Call flag to let redis automatically refuse `deny-oom` commands while over the memory limit. * Add tests to cover various errors from Scripts, Modules, Modules calling scripts, and Modules calling commands in script mode. Add tests: * Looks like the MISCONF error was completely uncovered by the tests, add tests for it, including from scripts, and modules * Add tests for NOREPLICAS from scripts * Add tests for the various errors in module RM_Call, including RM_Call that calls EVAL, and RM_call in "eval mode". that includes: NOREPLICAS, READONLY, MASTERDOWN, MISCONF
2022-06-01 13:04:22 +03:00
errno = ENOSPC;
if (error_as_call_replies) {
sds msg = sdsdup(shared.oomerr->ptr);
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
}
} else {
/* if we aren't OOM checking in VM_Call, we want further executions from this client to also not fail on OOM */
c->flags |= CLIENT_ALLOW_OOM;
Fix broken protocol in MISCONF error, RM_Yield bugs, RM_Call(EVAL) OOM check bug, and new RM_Call checks. (#10786) * Fix broken protocol when redis can't persist to RDB (general commands, not modules), excessive newline. regression of #10372 (7.0 RC3) * Fix broken protocol when Redis can't persist to AOF (modules and scripts), missing newline. * Fix bug in OOM check of EVAL scripts called from RM_Call. set the cached OOM state for scripts before executing module commands too, so that it can serve scripts that are executed by modules. i.e. in the past EVAL executed by RM_Call could have either falsely fail or falsely succeeded because of a wrong cached OOM state flag. * Fix bugs with RM_Yield: 1. SHUTDOWN should only accept the NOSAVE mode 2. Avoid eviction during yield command processing. 3. Avoid processing master client commands while yielding from another client * Add new two more checks to RM_Call script mode. 1. READONLY You can't write against a read only replica 2. MASTERDOWN Link with MASTER is down and `replica-serve-stale-data` is set to `no` * Add new RM_Call flag to let redis automatically refuse `deny-oom` commands while over the memory limit. * Add tests to cover various errors from Scripts, Modules, Modules calling scripts, and Modules calling commands in script mode. Add tests: * Looks like the MISCONF error was completely uncovered by the tests, add tests for it, including from scripts, and modules * Add tests for NOREPLICAS from scripts * Add tests for the various errors in module RM_Call, including RM_Call that calls EVAL, and RM_call in "eval mode". that includes: NOREPLICAS, READONLY, MASTERDOWN, MISCONF
2022-06-01 13:04:22 +03:00
}
if (flags & VALKEYMODULE_ARGV_NO_WRITES) {
if (cmd_flags & CMD_WRITE) {
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
errno = ENOSPC;
if (error_as_call_replies) {
sds msg = sdscatfmt(sdsempty(), "Write command '%S' was "
"called while write is not allowed.", c->cmd->fullname);
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
Fix broken protocol in MISCONF error, RM_Yield bugs, RM_Call(EVAL) OOM check bug, and new RM_Call checks. (#10786) * Fix broken protocol when redis can't persist to RDB (general commands, not modules), excessive newline. regression of #10372 (7.0 RC3) * Fix broken protocol when Redis can't persist to AOF (modules and scripts), missing newline. * Fix bug in OOM check of EVAL scripts called from RM_Call. set the cached OOM state for scripts before executing module commands too, so that it can serve scripts that are executed by modules. i.e. in the past EVAL executed by RM_Call could have either falsely fail or falsely succeeded because of a wrong cached OOM state flag. * Fix bugs with RM_Yield: 1. SHUTDOWN should only accept the NOSAVE mode 2. Avoid eviction during yield command processing. 3. Avoid processing master client commands while yielding from another client * Add new two more checks to RM_Call script mode. 1. READONLY You can't write against a read only replica 2. MASTERDOWN Link with MASTER is down and `replica-serve-stale-data` is set to `no` * Add new RM_Call flag to let redis automatically refuse `deny-oom` commands while over the memory limit. * Add tests to cover various errors from Scripts, Modules, Modules calling scripts, and Modules calling commands in script mode. Add tests: * Looks like the MISCONF error was completely uncovered by the tests, add tests for it, including from scripts, and modules * Add tests for NOREPLICAS from scripts * Add tests for the various errors in module RM_Call, including RM_Call that calls EVAL, and RM_call in "eval mode". that includes: NOREPLICAS, READONLY, MASTERDOWN, MISCONF
2022-06-01 13:04:22 +03:00
}
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
Fix broken protocol in MISCONF error, RM_Yield bugs, RM_Call(EVAL) OOM check bug, and new RM_Call checks. (#10786) * Fix broken protocol when redis can't persist to RDB (general commands, not modules), excessive newline. regression of #10372 (7.0 RC3) * Fix broken protocol when Redis can't persist to AOF (modules and scripts), missing newline. * Fix bug in OOM check of EVAL scripts called from RM_Call. set the cached OOM state for scripts before executing module commands too, so that it can serve scripts that are executed by modules. i.e. in the past EVAL executed by RM_Call could have either falsely fail or falsely succeeded because of a wrong cached OOM state flag. * Fix bugs with RM_Yield: 1. SHUTDOWN should only accept the NOSAVE mode 2. Avoid eviction during yield command processing. 3. Avoid processing master client commands while yielding from another client * Add new two more checks to RM_Call script mode. 1. READONLY You can't write against a read only replica 2. MASTERDOWN Link with MASTER is down and `replica-serve-stale-data` is set to `no` * Add new RM_Call flag to let redis automatically refuse `deny-oom` commands while over the memory limit. * Add tests to cover various errors from Scripts, Modules, Modules calling scripts, and Modules calling commands in script mode. Add tests: * Looks like the MISCONF error was completely uncovered by the tests, add tests for it, including from scripts, and modules * Add tests for NOREPLICAS from scripts * Add tests for the various errors in module RM_Call, including RM_Call that calls EVAL, and RM_call in "eval mode". that includes: NOREPLICAS, READONLY, MASTERDOWN, MISCONF
2022-06-01 13:04:22 +03:00
/* Script mode tests */
if (flags & VALKEYMODULE_ARGV_SCRIPT_MODE) {
if (cmd_flags & CMD_WRITE) {
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
/* on script mode, if a command is a write command,
* We will not run it if we encounter disk error
* or we do not have enough replicas */
if (!checkGoodReplicasStatus()) {
Fix broken protocol in MISCONF error, RM_Yield bugs, RM_Call(EVAL) OOM check bug, and new RM_Call checks. (#10786) * Fix broken protocol when redis can't persist to RDB (general commands, not modules), excessive newline. regression of #10372 (7.0 RC3) * Fix broken protocol when Redis can't persist to AOF (modules and scripts), missing newline. * Fix bug in OOM check of EVAL scripts called from RM_Call. set the cached OOM state for scripts before executing module commands too, so that it can serve scripts that are executed by modules. i.e. in the past EVAL executed by RM_Call could have either falsely fail or falsely succeeded because of a wrong cached OOM state flag. * Fix bugs with RM_Yield: 1. SHUTDOWN should only accept the NOSAVE mode 2. Avoid eviction during yield command processing. 3. Avoid processing master client commands while yielding from another client * Add new two more checks to RM_Call script mode. 1. READONLY You can't write against a read only replica 2. MASTERDOWN Link with MASTER is down and `replica-serve-stale-data` is set to `no` * Add new RM_Call flag to let redis automatically refuse `deny-oom` commands while over the memory limit. * Add tests to cover various errors from Scripts, Modules, Modules calling scripts, and Modules calling commands in script mode. Add tests: * Looks like the MISCONF error was completely uncovered by the tests, add tests for it, including from scripts, and modules * Add tests for NOREPLICAS from scripts * Add tests for the various errors in module RM_Call, including RM_Call that calls EVAL, and RM_call in "eval mode". that includes: NOREPLICAS, READONLY, MASTERDOWN, MISCONF
2022-06-01 13:04:22 +03:00
errno = ESPIPE;
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
if (error_as_call_replies) {
sds msg = sdsdup(shared.noreplicaserr->ptr);
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
int deny_write_type = writeCommandsDeniedByDiskError();
int obey_client = (server.current_client && mustObeyClient(server.current_client));
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
if (deny_write_type != DISK_ERROR_TYPE_NONE && !obey_client) {
Fix broken protocol in MISCONF error, RM_Yield bugs, RM_Call(EVAL) OOM check bug, and new RM_Call checks. (#10786) * Fix broken protocol when redis can't persist to RDB (general commands, not modules), excessive newline. regression of #10372 (7.0 RC3) * Fix broken protocol when Redis can't persist to AOF (modules and scripts), missing newline. * Fix bug in OOM check of EVAL scripts called from RM_Call. set the cached OOM state for scripts before executing module commands too, so that it can serve scripts that are executed by modules. i.e. in the past EVAL executed by RM_Call could have either falsely fail or falsely succeeded because of a wrong cached OOM state flag. * Fix bugs with RM_Yield: 1. SHUTDOWN should only accept the NOSAVE mode 2. Avoid eviction during yield command processing. 3. Avoid processing master client commands while yielding from another client * Add new two more checks to RM_Call script mode. 1. READONLY You can't write against a read only replica 2. MASTERDOWN Link with MASTER is down and `replica-serve-stale-data` is set to `no` * Add new RM_Call flag to let redis automatically refuse `deny-oom` commands while over the memory limit. * Add tests to cover various errors from Scripts, Modules, Modules calling scripts, and Modules calling commands in script mode. Add tests: * Looks like the MISCONF error was completely uncovered by the tests, add tests for it, including from scripts, and modules * Add tests for NOREPLICAS from scripts * Add tests for the various errors in module RM_Call, including RM_Call that calls EVAL, and RM_call in "eval mode". that includes: NOREPLICAS, READONLY, MASTERDOWN, MISCONF
2022-06-01 13:04:22 +03:00
errno = ESPIPE;
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
if (error_as_call_replies) {
sds msg = writeCommandsGetDiskErrorMessage(deny_write_type);
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
Fix broken protocol in MISCONF error, RM_Yield bugs, RM_Call(EVAL) OOM check bug, and new RM_Call checks. (#10786) * Fix broken protocol when redis can't persist to RDB (general commands, not modules), excessive newline. regression of #10372 (7.0 RC3) * Fix broken protocol when Redis can't persist to AOF (modules and scripts), missing newline. * Fix bug in OOM check of EVAL scripts called from RM_Call. set the cached OOM state for scripts before executing module commands too, so that it can serve scripts that are executed by modules. i.e. in the past EVAL executed by RM_Call could have either falsely fail or falsely succeeded because of a wrong cached OOM state flag. * Fix bugs with RM_Yield: 1. SHUTDOWN should only accept the NOSAVE mode 2. Avoid eviction during yield command processing. 3. Avoid processing master client commands while yielding from another client * Add new two more checks to RM_Call script mode. 1. READONLY You can't write against a read only replica 2. MASTERDOWN Link with MASTER is down and `replica-serve-stale-data` is set to `no` * Add new RM_Call flag to let redis automatically refuse `deny-oom` commands while over the memory limit. * Add tests to cover various errors from Scripts, Modules, Modules calling scripts, and Modules calling commands in script mode. Add tests: * Looks like the MISCONF error was completely uncovered by the tests, add tests for it, including from scripts, and modules * Add tests for NOREPLICAS from scripts * Add tests for the various errors in module RM_Call, including RM_Call that calls EVAL, and RM_call in "eval mode". that includes: NOREPLICAS, READONLY, MASTERDOWN, MISCONF
2022-06-01 13:04:22 +03:00
if (server.masterhost && server.repl_slave_ro && !obey_client) {
errno = ESPIPE;
if (error_as_call_replies) {
sds msg = sdsdup(shared.roslaveerr->ptr);
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
}
}
if (server.masterhost && server.repl_state != REPL_STATE_CONNECTED &&
server.repl_serve_stale_data == 0 && !(cmd_flags & CMD_STALE)) {
Fix broken protocol in MISCONF error, RM_Yield bugs, RM_Call(EVAL) OOM check bug, and new RM_Call checks. (#10786) * Fix broken protocol when redis can't persist to RDB (general commands, not modules), excessive newline. regression of #10372 (7.0 RC3) * Fix broken protocol when Redis can't persist to AOF (modules and scripts), missing newline. * Fix bug in OOM check of EVAL scripts called from RM_Call. set the cached OOM state for scripts before executing module commands too, so that it can serve scripts that are executed by modules. i.e. in the past EVAL executed by RM_Call could have either falsely fail or falsely succeeded because of a wrong cached OOM state flag. * Fix bugs with RM_Yield: 1. SHUTDOWN should only accept the NOSAVE mode 2. Avoid eviction during yield command processing. 3. Avoid processing master client commands while yielding from another client * Add new two more checks to RM_Call script mode. 1. READONLY You can't write against a read only replica 2. MASTERDOWN Link with MASTER is down and `replica-serve-stale-data` is set to `no` * Add new RM_Call flag to let redis automatically refuse `deny-oom` commands while over the memory limit. * Add tests to cover various errors from Scripts, Modules, Modules calling scripts, and Modules calling commands in script mode. Add tests: * Looks like the MISCONF error was completely uncovered by the tests, add tests for it, including from scripts, and modules * Add tests for NOREPLICAS from scripts * Add tests for the various errors in module RM_Call, including RM_Call that calls EVAL, and RM_call in "eval mode". that includes: NOREPLICAS, READONLY, MASTERDOWN, MISCONF
2022-06-01 13:04:22 +03:00
errno = ESPIPE;
if (error_as_call_replies) {
sds msg = sdsdup(shared.masterdownerr->ptr);
reply = callReplyCreateError(msg, ctx);
}
goto cleanup;
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
}
}
/* Check if the user can run this command according to the current
* ACLs.
*
* If VM_SetContextUser has set a user, that user is used, otherwise
* use the attached client's user. If there is no attached client user and no manually
* set user, an error will be returned */
if (flags & VALKEYMODULE_ARGV_RUN_AS_USER) {
int acl_errpos;
int acl_retval;
acl_retval = ACLCheckAllUserCommandPerm(user,c->cmd,c->argv,c->argc,&acl_errpos);
if (acl_retval != ACL_OK) {
sds object = (acl_retval == ACL_DENIED_CMD) ? sdsdup(c->cmd->fullname) : sdsdup(c->argv[acl_errpos]->ptr);
Cleanup around script_caller, fix tracking of scripts and ACL logging for RM_Call (#11770) * Make it clear that current_client is the root client that was called by external connection * add executing_client which is the client that runs the current command (can be a module or a script) * Remove script_caller that was used for commands that have CLIENT_SCRIPT to get the client that called the script. in most cases, that's the current_client, and in others (when being called from a module), it could be an intermediate client when we actually want the original one used by the external connection. bugfixes: * RM_Call with C flag should log ACL errors with the requested user rather than the one used by the original client, this also solves a crash when RM_Call is used with C flag from a detached thread safe context. * addACLLogEntry would have logged info about the script_caller, but in case the script was issued by a module command we actually want the current_client. the exception is when RM_Call is called from a timer event, in which case we don't have a current_client. behavior changes: * client side tracking for scripts now tracks the keys that are read by the script instead of the keys that are declared by the caller for EVAL other changes: * Log both current_client and executing_client in the crash log. * remove prepareLuaClient and resetLuaClient, being dead code that was forgotten. * remove scriptTimeSnapshot and snapshot_time and instead add cmd_time_snapshot that serves all commands and is reset only when execution nesting starts. * remove code to propagate CLIENT_FORCE_REPL from the executed command to the script caller since scripts aren't propagated anyway these days and anyway this flag wouldn't have had an effect since CLIENT_PREVENT_PROP is added by scriptResetRun. * fix a module GIL violation issue in afterSleep that was introduced in #10300 (unreleased)
2023-02-16 08:07:35 +02:00
addACLLogEntry(ctx->client, acl_retval, ACL_LOG_CTX_MODULE, -1, c->user->name, object);
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
if (error_as_call_replies) {
Unify ACL failure error messaging. (#11160) Motivation: for applications that use RM ACL verification functions, they would want to return errors back to the user, in ways that are consistent with Redis. While investigating how we should return ACL errors to the user, we realized that Redis isn't consistent, and currently returns ACL error strings in 3 primary ways. [For the actual implications of this change, see the "Impact" section at the bottom] 1. how it returns an error when calling a command normally ACL_DENIED_CMD -> "this user has no permissions to run the '%s' command" ACL_DENIED_KEY -> "this user has no permissions to access one of the keys used as arguments" ACL_DENIED_CHANNEL -> "this user has no permissions to access one of the channels used as arguments" 2. how it returns an error when calling via 'acl dryrun' command ACL_DENIED_CMD -> "This user has no permissions to run the '%s' command" ACL_DENIED_KEY -> "This user has no permissions to access the '%s' key" ACL_DENIED_CHANNEL -> "This user has no permissions to access the '%s' channel" 3. how it returns an error via RM_Call (and scripting is similar). ACL_DENIED_CMD -> "can't run this command or subcommand"; ACL_DENIED_KEY -> "can't access at least one of the keys mentioned in the command arguments"; ACL_DENIED_CHANNEL -> "can't publish to the channel mentioned in the command"; In addition, if one wants to use RM_Call's "dry run" capability instead of the RM ACL functions directly, one also sees a different problem than it returns ACL errors with a -ERR, not a -PERM, so it can't be returned directly to the caller. This PR modifies the code to generate a base message in a common manner with the ability to set verbose flag for acl dry run errors, and keep it unset for normal/rm_call/script cases ```c sds getAclErrorMessage(int acl_res, user *user, struct redisCommand *cmd, sds errored_val, int verbose) { switch (acl_res) { case ACL_DENIED_CMD: return sdscatfmt(sdsempty(), "User %S has no permissions to run " "the '%S' command", user->name, cmd->fullname); case ACL_DENIED_KEY: if (verbose) { return sdscatfmt(sdsempty(), "User %S has no permissions to access " "the '%S' key", user->name, errored_val); } else { return sdsnew("No permissions to access a key"); } case ACL_DENIED_CHANNEL: if (verbose) { return sdscatfmt(sdsempty(), "User %S has no permissions to access " "the '%S' channel", user->name, errored_val); } else { return sdsnew("No permissions to access a channel"); } } ``` The caller can append/prepend the message (adding NOPERM for normal/RM_Call or indicating it's within a script). Impact: - Plain commands, as well as scripts and RM_Call now include the user name. - ACL DRYRUN remains the only one that's verbose (mentions the offending channel or key name) - Changes RM_Call ACL errors from being a `-ERR` to being `-NOPERM` (besides for textual changes) **This somewhat a breaking change, but it only affects the RM_Call with both `C` and `E`, or `D`** - Changes ACL errors in scripts textually from being `The user executing the script <old non unified text>` to `ACL failure in script: <new unified text>`
2022-10-16 09:01:37 +03:00
/* verbosity should be same as processCommand() in server.c */
Cleanup around script_caller, fix tracking of scripts and ACL logging for RM_Call (#11770) * Make it clear that current_client is the root client that was called by external connection * add executing_client which is the client that runs the current command (can be a module or a script) * Remove script_caller that was used for commands that have CLIENT_SCRIPT to get the client that called the script. in most cases, that's the current_client, and in others (when being called from a module), it could be an intermediate client when we actually want the original one used by the external connection. bugfixes: * RM_Call with C flag should log ACL errors with the requested user rather than the one used by the original client, this also solves a crash when RM_Call is used with C flag from a detached thread safe context. * addACLLogEntry would have logged info about the script_caller, but in case the script was issued by a module command we actually want the current_client. the exception is when RM_Call is called from a timer event, in which case we don't have a current_client. behavior changes: * client side tracking for scripts now tracks the keys that are read by the script instead of the keys that are declared by the caller for EVAL other changes: * Log both current_client and executing_client in the crash log. * remove prepareLuaClient and resetLuaClient, being dead code that was forgotten. * remove scriptTimeSnapshot and snapshot_time and instead add cmd_time_snapshot that serves all commands and is reset only when execution nesting starts. * remove code to propagate CLIENT_FORCE_REPL from the executed command to the script caller since scripts aren't propagated anyway these days and anyway this flag wouldn't have had an effect since CLIENT_PREVENT_PROP is added by scriptResetRun. * fix a module GIL violation issue in afterSleep that was introduced in #10300 (unreleased)
2023-02-16 08:07:35 +02:00
sds acl_msg = getAclErrorMessage(acl_retval, c->user, c->cmd, c->argv[acl_errpos]->ptr, 0);
Unify ACL failure error messaging. (#11160) Motivation: for applications that use RM ACL verification functions, they would want to return errors back to the user, in ways that are consistent with Redis. While investigating how we should return ACL errors to the user, we realized that Redis isn't consistent, and currently returns ACL error strings in 3 primary ways. [For the actual implications of this change, see the "Impact" section at the bottom] 1. how it returns an error when calling a command normally ACL_DENIED_CMD -> "this user has no permissions to run the '%s' command" ACL_DENIED_KEY -> "this user has no permissions to access one of the keys used as arguments" ACL_DENIED_CHANNEL -> "this user has no permissions to access one of the channels used as arguments" 2. how it returns an error when calling via 'acl dryrun' command ACL_DENIED_CMD -> "This user has no permissions to run the '%s' command" ACL_DENIED_KEY -> "This user has no permissions to access the '%s' key" ACL_DENIED_CHANNEL -> "This user has no permissions to access the '%s' channel" 3. how it returns an error via RM_Call (and scripting is similar). ACL_DENIED_CMD -> "can't run this command or subcommand"; ACL_DENIED_KEY -> "can't access at least one of the keys mentioned in the command arguments"; ACL_DENIED_CHANNEL -> "can't publish to the channel mentioned in the command"; In addition, if one wants to use RM_Call's "dry run" capability instead of the RM ACL functions directly, one also sees a different problem than it returns ACL errors with a -ERR, not a -PERM, so it can't be returned directly to the caller. This PR modifies the code to generate a base message in a common manner with the ability to set verbose flag for acl dry run errors, and keep it unset for normal/rm_call/script cases ```c sds getAclErrorMessage(int acl_res, user *user, struct redisCommand *cmd, sds errored_val, int verbose) { switch (acl_res) { case ACL_DENIED_CMD: return sdscatfmt(sdsempty(), "User %S has no permissions to run " "the '%S' command", user->name, cmd->fullname); case ACL_DENIED_KEY: if (verbose) { return sdscatfmt(sdsempty(), "User %S has no permissions to access " "the '%S' key", user->name, errored_val); } else { return sdsnew("No permissions to access a key"); } case ACL_DENIED_CHANNEL: if (verbose) { return sdscatfmt(sdsempty(), "User %S has no permissions to access " "the '%S' channel", user->name, errored_val); } else { return sdsnew("No permissions to access a channel"); } } ``` The caller can append/prepend the message (adding NOPERM for normal/RM_Call or indicating it's within a script). Impact: - Plain commands, as well as scripts and RM_Call now include the user name. - ACL DRYRUN remains the only one that's verbose (mentions the offending channel or key name) - Changes RM_Call ACL errors from being a `-ERR` to being `-NOPERM` (besides for textual changes) **This somewhat a breaking change, but it only affects the RM_Call with both `C` and `E`, or `D`** - Changes ACL errors in scripts textually from being `The user executing the script <old non unified text>` to `ACL failure in script: <new unified text>`
2022-10-16 09:01:37 +03:00
sds msg = sdscatfmt(sdsempty(), "-NOPERM %S\r\n", acl_msg);
sdsfree(acl_msg);
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
reply = callReplyCreateError(msg, ctx);
}
errno = EACCES;
goto cleanup;
}
}
2016-03-06 13:44:24 +01:00
/* If this is a Redis Cluster node, we need to make sure the module is not
* trying to access non-local keys, with the exception of commands
* received from our master. */
if (server.cluster_enabled && !mustObeyClient(ctx->client)) {
int error_code;
2016-03-06 13:44:24 +01:00
/* Duplicate relevant flags in the module client. */
c->flags &= ~(CLIENT_READONLY|CLIENT_ASKING);
c->flags |= ctx->client->flags & (CLIENT_READONLY|CLIENT_ASKING);
if (getNodeByQuery(c,c->cmd,c->argv,c->argc,NULL,&error_code) !=
2016-03-06 13:44:24 +01:00
server.cluster->myself)
{
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
sds msg = NULL;
if (error_code == CLUSTER_REDIR_DOWN_RO_STATE) {
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
if (error_as_call_replies) {
msg = sdscatfmt(sdsempty(), "Can not execute a write command '%S' while the cluster is down and readonly", c->cmd->fullname);
}
errno = EROFS;
} else if (error_code == CLUSTER_REDIR_DOWN_STATE) {
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
if (error_as_call_replies) {
msg = sdscatfmt(sdsempty(), "Can not execute a command '%S' while the cluster is down", c->cmd->fullname);
}
errno = ENETDOWN;
} else {
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
if (error_as_call_replies) {
msg = sdsnew("Attempted to access a non local key in a cluster node");
}
errno = EPERM;
}
Add new RM_Call flags for script mode, no writes, and error replies. (#10372) The PR extends RM_Call with 3 new capabilities using new flags that are given to RM_Call as part of the `fmt` argument. It aims to assist modules that are getting a list of commands to be executed from the user (not hard coded as part of the module logic), think of a module that implements a new scripting language... * `S` - Run the command in a script mode, this means that it will raise an error if a command which are not allowed inside a script (flaged with the `deny-script` flag) is invoked (like SHUTDOWN). In addition, on script mode, write commands are not allowed if there is not enough good replicas (as configured with `min-replicas-to-write`) and/or a disk error happened. * `W` - no writes mode, Redis will reject any command that is marked with `write` flag. Again can be useful to modules that implement a new scripting language and wants to prevent any write commands. * `E` - Return errors as RedisModuleCallReply. Today the errors that happened before the command was invoked (like unknown commands or acl error) return a NULL reply and set errno. This might be missing important information about the failure and it is also impossible to just pass the error to the user using RM_ReplyWithCallReply. This new flag allows you to get a RedisModuleCallReply object with the relevant error message and treat it as if it was an error that was raised by the command invocation. Tests were added to verify the new code paths. In addition small refactoring was done to share some code between modules, scripts, and `processCommand` function: 1. `getAclErrorMessage` was added to `acl.c` to unified to log message extraction from the acl result 2. `checkGoodReplicasStatus` was added to `replication.c` to check the status of good replicas. It is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`. 3. `writeCommandsGetDiskErrorMessage` was added to `server.c` to get the error message on persistence failure. Again it is used on `scriptVerifyWriteCommandAllow`, `RM_Call`, and `processCommand`.
2022-03-22 14:13:28 +02:00
if (msg) {
reply = callReplyCreateError(msg, ctx);
}
2016-03-06 13:44:24 +01:00
goto cleanup;
}
}
if (flags & VALKEYMODULE_ARGV_DRY_RUN) {
goto cleanup;
}
Fix some issues with modules and MULTI/EXEC (#8617) Bug 1: When a module ctx is freed moduleHandlePropagationAfterCommandCallback is called and handles propagation. We want to prevent it from propagating commands that were not replicated by the same context. Example: 1. module1.foo does: RM_Replicate(cmd1); RM_Call(cmd2); RM_Replicate(cmd3) 2. RM_Replicate(cmd1) propagates MULTI and adds cmd1 to also_propagagte 3. RM_Call(cmd2) create a new ctx, calls call() and destroys the ctx. 4. moduleHandlePropagationAfterCommandCallback is called, calling alsoPropagates EXEC (Note: EXEC is still not written to socket), setting server.in_trnsaction = 0 5. RM_Replicate(cmd3) is called, propagagting yet another MULTI (now we have nested MULTI calls, which is no good) and then cmd3 We must prevent RM_Call(cmd2) from resetting server.in_transaction. REDISMODULE_CTX_MULTI_EMITTED was revived for that purpose. Bug 2: Fix issues with nested RM_Call where some have '!' and some don't. Example: 1. module1.foo does RM_Call of module2.bar without replication (i.e. no '!') 2. module2.bar internally calls RM_Call of INCR with '!' 3. at the end of module1.foo we call RM_ReplicateVerbatim We want the replica/AOF to see only module1.foo and not the INCR from module2.bar Introduced a global replication_allowed flag inside RM_Call to determine whether we need to replicate or not (even if '!' was specified) Other changes: Split beforePropagateMultiOrExec to beforePropagateMulti afterPropagateExec just for better readability
2021-03-10 17:02:17 +01:00
/* We need to use a global replication_allowed flag in order to prevent
* replication of nested VM_Calls. Example:
* 1. module1.foo does VM_Call of module2.bar without replication (i.e. no '!')
* 2. module2.bar internally calls VM_Call of INCR with '!'
* 3. at the end of module1.foo we call VM_ReplicateVerbatim
Fix some issues with modules and MULTI/EXEC (#8617) Bug 1: When a module ctx is freed moduleHandlePropagationAfterCommandCallback is called and handles propagation. We want to prevent it from propagating commands that were not replicated by the same context. Example: 1. module1.foo does: RM_Replicate(cmd1); RM_Call(cmd2); RM_Replicate(cmd3) 2. RM_Replicate(cmd1) propagates MULTI and adds cmd1 to also_propagagte 3. RM_Call(cmd2) create a new ctx, calls call() and destroys the ctx. 4. moduleHandlePropagationAfterCommandCallback is called, calling alsoPropagates EXEC (Note: EXEC is still not written to socket), setting server.in_trnsaction = 0 5. RM_Replicate(cmd3) is called, propagagting yet another MULTI (now we have nested MULTI calls, which is no good) and then cmd3 We must prevent RM_Call(cmd2) from resetting server.in_transaction. REDISMODULE_CTX_MULTI_EMITTED was revived for that purpose. Bug 2: Fix issues with nested RM_Call where some have '!' and some don't. Example: 1. module1.foo does RM_Call of module2.bar without replication (i.e. no '!') 2. module2.bar internally calls RM_Call of INCR with '!' 3. at the end of module1.foo we call RM_ReplicateVerbatim We want the replica/AOF to see only module1.foo and not the INCR from module2.bar Introduced a global replication_allowed flag inside RM_Call to determine whether we need to replicate or not (even if '!' was specified) Other changes: Split beforePropagateMultiOrExec to beforePropagateMulti afterPropagateExec just for better readability
2021-03-10 17:02:17 +01:00
* We want the replica/AOF to see only module1.foo and not the INCR from module2.bar */
int prev_replication_allowed = server.replication_allowed;
server.replication_allowed = replicate && server.replication_allowed;
2016-03-06 13:44:24 +01:00
/* Run the command */
reprocess command when client is unblocked on keys (#11012) *TL;DR* --------------------------------------- Following the discussion over the issue [#7551](https://github.com/redis/redis/issues/7551) We decided to refactor the client blocking code to eliminate some of the code duplications and to rebuild the infrastructure better for future key blocking cases. *In this PR* --------------------------------------- 1. reprocess the command once a client becomes unblocked on key (instead of running custom code for the unblocked path that's different than the one that would have run if blocking wasn't needed) 2. eliminate some (now) irrelevant code for handling unblocking lists/zsets/streams etc... 3. modify some tests to intercept the error in cases of error on reprocess after unblock (see details in the notes section below) 4. replace '$' on the client argv with current stream id. Since once we reprocess the stream XREAD we need to read from the last msg and not wait for new msg in order to prevent endless block loop. 5. Added statistics to the info "Clients" section to report the: * `total_blocking_keys` - number of blocking keys * `total_blocking_keys_on_nokey` - number of blocking keys which have at least 1 client which would like to be unblocked on when the key is deleted. 6. Avoid expiring unblocked key during unblock. Previously we used to lookup the unblocked key which might have been expired during the lookup. Now we lookup the key using NOTOUCH and NOEXPIRE to avoid deleting it at this point, so propagating commands in blocked.c is no longer needed. 7. deprecated command flags. We decided to remove the CMD_CALL_STATS and CMD_CALL_SLOWLOG and make an explicit verification in the call() function in order to decide if stats update should take place. This should simplify the logic and also mitigate existing issues: for example module calls which are triggered as part of AOF loading might still report stats even though they are called during AOF loading. *Behavior changes* --------------------------------------------------- 1. As this implementation prevents writing dedicated code handling unblocked streams/lists/zsets, since we now re-process the command once the client is unblocked some errors will be reported differently. The old implementation used to issue ``UNBLOCKED the stream key no longer exists`` in the following cases: - The stream key has been deleted (ie. calling DEL) - The stream and group existed but the key type was changed by overriding it (ie. with set command) - The key not longer exists after we swapdb with a db which does not contains this key - After swapdb when the new db has this key but with different type. In the new implementation the reported errors will be the same as if the command was processed after effect: **NOGROUP** - in case key no longer exists, or **WRONGTYPE** in case the key was overridden with a different type. 2. Reprocessing the command means that some checks will be reevaluated once the client is unblocked. For example, ACL rules might change since the command originally was executed and will fail once the client is unblocked. Another example is OOM condition checks which might enable the command to run and block but fail the command reprocess once the client is unblocked. 3. One of the changes in this PR is that no command stats are being updated once the command is blocked (all stats will be updated once the client is unblocked). This implies that when we have many clients blocked, users will no longer be able to get that information from the command stats. However the information can still be gathered from the client list. **Client blocking** --------------------------------------------------- the blocking on key will still be triggered the same way as it is done today. in order to block the current client on list of keys, the call to blockForKeys will still need to be made which will perform the same as it is today: * add the client to the list of blocked clients on each key * keep the key with a matching list node (position in the global blocking clients list for that key) in the client private blocking key dict. * flag the client with CLIENT_BLOCKED * update blocking statistics * register the client on the timeout table **Key Unblock** --------------------------------------------------- Unblocking a specific key will be triggered (same as today) by calling signalKeyAsReady. the implementation in that part will stay the same as today - adding the key to the global readyList. The reason to maintain the readyList (as apposed to iterating over all clients blocked on the specific key) is in order to keep the signal operation as short as possible, since it is called during the command processing. The main change is that instead of going through a dedicated code path that operates the blocked command we will just call processPendingCommandsAndResetClient. **ClientUnblock (keys)** --------------------------------------------------- 1. Unblocking clients on keys will be triggered after command is processed and during the beforeSleep 8. the general schema is: 9. For each key *k* in the readyList: ``` For each client *c* which is blocked on *k*: in case either: 1. *k* exists AND the *k* type matches the current client blocking type OR 2. *k* exists and *c* is blocked on module command OR 3. *k* does not exists and *c* was blocked with the flag unblock_on_deleted_key do: 1. remove the client from the list of clients blocked on this key 2. remove the blocking list node from the client blocking key dict 3. remove the client from the timeout list 10. queue the client on the unblocked_clients list 11. *NEW*: call processCommandAndResetClient(c); ``` *NOTE:* for module blocked clients we will still call the moduleUnblockClientByHandle which will queue the client for processing in moduleUnblockedClients list. **Process Unblocked clients** --------------------------------------------------- The process of all unblocked clients is done in the beforeSleep and no change is planned in that part. The general schema will be: For each client *c* in server.unblocked_clients: * remove client from the server.unblocked_clients * set back the client readHandler * continue processing the pending command and input buffer. *Some notes regarding the new implementation* --------------------------------------------------- 1. Although it was proposed, it is currently difficult to remove the read handler from the client while it is blocked. The reason is that a blocked client should be unblocked when it is disconnected, or we might consume data into void. 2. While this PR mainly keep the current blocking logic as-is, there might be some future additions to the infrastructure that we would like to have: - allow non-preemptive blocking of client - sometimes we can think that a new kind of blocking can be expected to not be preempt. for example lets imagine we hold some keys on disk and when a command needs to process them it will block until the keys are uploaded. in this case we will want the client to not disconnect or be unblocked until the process is completed (remove the client read handler, prevent client timeout, disable unblock via debug command etc...). - allow generic blocking based on command declared keys - we might want to add a hook before command processing to check if any of the declared keys require the command to block. this way it would be easier to add new kinds of key-based blocking mechanisms. Co-authored-by: Oran Agra <oran@redislabs.com> Signed-off-by: Ran Shidlansik <ranshid@amazon.com>
2023-01-01 23:35:42 +02:00
int call_flags = CMD_CALL_FROM_MODULE;
2016-03-06 13:44:24 +01:00
if (replicate) {
if (!(flags & VALKEYMODULE_ARGV_NO_AOF))
call_flags |= CMD_CALL_PROPAGATE_AOF;
if (!(flags & VALKEYMODULE_ARGV_NO_REPLICAS))
call_flags |= CMD_CALL_PROPAGATE_REPL;
2016-03-06 13:44:24 +01:00
}
call(c,call_flags);
Fix some issues with modules and MULTI/EXEC (#8617) Bug 1: When a module ctx is freed moduleHandlePropagationAfterCommandCallback is called and handles propagation. We want to prevent it from propagating commands that were not replicated by the same context. Example: 1. module1.foo does: RM_Replicate(cmd1); RM_Call(cmd2); RM_Replicate(cmd3) 2. RM_Replicate(cmd1) propagates MULTI and adds cmd1 to also_propagagte 3. RM_Call(cmd2) create a new ctx, calls call() and destroys the ctx. 4. moduleHandlePropagationAfterCommandCallback is called, calling alsoPropagates EXEC (Note: EXEC is still not written to socket), setting server.in_trnsaction = 0 5. RM_Replicate(cmd3) is called, propagagting yet another MULTI (now we have nested MULTI calls, which is no good) and then cmd3 We must prevent RM_Call(cmd2) from resetting server.in_transaction. REDISMODULE_CTX_MULTI_EMITTED was revived for that purpose. Bug 2: Fix issues with nested RM_Call where some have '!' and some don't. Example: 1. module1.foo does RM_Call of module2.bar without replication (i.e. no '!') 2. module2.bar internally calls RM_Call of INCR with '!' 3. at the end of module1.foo we call RM_ReplicateVerbatim We want the replica/AOF to see only module1.foo and not the INCR from module2.bar Introduced a global replication_allowed flag inside RM_Call to determine whether we need to replicate or not (even if '!' was specified) Other changes: Split beforePropagateMultiOrExec to beforePropagateMulti afterPropagateExec just for better readability
2021-03-10 17:02:17 +01:00
server.replication_allowed = prev_replication_allowed;
2016-03-06 13:44:24 +01:00
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
if (c->flags & CLIENT_BLOCKED) {
serverAssert(flags & VALKEYMODULE_ARGV_ALLOW_BLOCK);
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
serverAssert(ctx->module);
ValkeyModuleAsyncRMCallPromise *promise = zmalloc(sizeof(ValkeyModuleAsyncRMCallPromise));
*promise = (ValkeyModuleAsyncRMCallPromise) {
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
/* We start with ref_count value of 2 because this object is held
* by the promise CallReply and the fake client that was used to execute the command. */
.ref_count = 2,
.module = ctx->module,
.on_unblocked = NULL,
.private_data = NULL,
.c = c,
.ctx = (ctx->flags & VALKEYMODULE_CTX_AUTO_MEMORY) ? ctx : NULL,
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
};
reply = callReplyCreatePromise(promise);
c->bstate.async_rm_call_handle = promise;
if (!(call_flags & CMD_CALL_PROPAGATE_AOF)) {
/* No need for AOF propagation, set the relevant flags of the client */
c->flags |= CLIENT_MODULE_PREVENT_AOF_PROP;
}
if (!(call_flags & CMD_CALL_PROPAGATE_REPL)) {
/* No need for replication propagation, set the relevant flags of the client */
c->flags |= CLIENT_MODULE_PREVENT_REPL_PROP;
}
c = NULL; /* Make sure not to free the client */
} else {
reply = moduleParseReply(c, (ctx->flags & VALKEYMODULE_CTX_AUTO_MEMORY) ? ctx : NULL);
2016-03-06 13:44:24 +01:00
}
cleanup:
if (reply) autoMemoryAdd(ctx,VALKEYMODULE_AM_REPLY,reply);
if (ctx->module) ctx->module->in_call--;
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
if (c) moduleReleaseTempClient(c);
2016-03-06 13:44:24 +01:00
return reply;
}
/* Return a pointer, and a length, to the protocol returned by the command
* that returned the reply object. */
const char *VM_CallReplyProto(ValkeyModuleCallReply *reply, size_t *len) {
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
return callReplyGetProto(reply, len);
2016-03-06 13:44:24 +01:00
}
/* --------------------------------------------------------------------------
* ## Modules data types
*
* When String DMA or using existing data structures is not enough, it is
* possible to create new data types from scratch and export them to
* Redis. The module must provide a set of callbacks for handling the
* new values exported (for example in order to provide RDB saving/loading,
* AOF rewrite, and so forth). In this section we define this API.
* -------------------------------------------------------------------------- */
/* Turn a 9 chars name in the specified charset and a 10 bit encver into
* a single 64 bit unsigned integer that represents this exact module name
* and version. This final number is called a "type ID" and is used when
* writing module exported values to RDB files, in order to re-associate the
* value to the right module to load them during RDB loading.
*
* If the string is not of the right length or the charset is wrong, or
* if encver is outside the unsigned 10 bit integer range, 0 is returned,
* otherwise the function returns the right type ID.
*
* The resulting 64 bit integer is composed as follows:
*
* (high order bits) 6|6|6|6|6|6|6|6|6|10 (low order bits)
*
* The first 6 bits value is the first character, name[0], while the last
* 6 bits value, immediately before the 10 bits integer, is name[8].
* The last 10 bits are the encoding version.
*
* Note that a name and encver combo of "AAAAAAAAA" and 0, will produce
* zero as return value, that is the same we use to signal errors, thus
* this combination is invalid, and also useless since type names should
* try to be vary to avoid collisions. */
const char *ModuleTypeNameCharSet =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789-_";
uint64_t moduleTypeEncodeId(const char *name, int encver) {
/* We use 64 symbols so that we can map each character into 6 bits
* of the final output. */
const char *cset = ModuleTypeNameCharSet;
if (strlen(name) != 9) return 0;
if (encver < 0 || encver > 1023) return 0;
uint64_t id = 0;
for (int j = 0; j < 9; j++) {
char *p = strchr(cset,name[j]);
if (!p) return 0;
unsigned long pos = p-cset;
id = (id << 6) | pos;
}
id = (id << 10) | encver;
return id;
}
/* Search, in the list of exported data types of all the modules registered,
* a type with the same name as the one given. Returns the moduleType
* structure pointer if such a module is found, or NULL otherwise. */
moduleType *moduleTypeLookupModuleByNameInternal(const char *name, int ignore_case) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct ValkeyModule *module = dictGetVal(de);
listIter li;
listNode *ln;
listRewind(module->types,&li);
while((ln = listNext(&li))) {
moduleType *mt = ln->value;
if ((!ignore_case && memcmp(name,mt->name,sizeof(mt->name)) == 0)
|| (ignore_case && !strcasecmp(name, mt->name)))
{
dictReleaseIterator(di);
return mt;
}
}
}
dictReleaseIterator(di);
return NULL;
}
/* Search all registered modules by name, and name is case sensitive */
moduleType *moduleTypeLookupModuleByName(const char *name) {
return moduleTypeLookupModuleByNameInternal(name, 0);
}
/* Search all registered modules by name, but case insensitive */
moduleType *moduleTypeLookupModuleByNameIgnoreCase(const char *name) {
return moduleTypeLookupModuleByNameInternal(name, 1);
}
/* Lookup a module by ID, with caching. This function is used during RDB
* loading. Modules exporting data types should never be able to unload, so
* our cache does not need to expire. */
#define MODULE_LOOKUP_CACHE_SIZE 3
moduleType *moduleTypeLookupModuleByID(uint64_t id) {
static struct {
uint64_t id;
moduleType *mt;
} cache[MODULE_LOOKUP_CACHE_SIZE];
/* Search in cache to start. */
int j;
for (j = 0; j < MODULE_LOOKUP_CACHE_SIZE && cache[j].mt != NULL; j++)
if (cache[j].id == id) return cache[j].mt;
/* Slow module by module lookup. */
moduleType *mt = NULL;
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL && mt == NULL) {
struct ValkeyModule *module = dictGetVal(de);
listIter li;
listNode *ln;
listRewind(module->types,&li);
while((ln = listNext(&li))) {
moduleType *this_mt = ln->value;
/* Compare only the 54 bit module identifier and not the
* encoding version. */
if (this_mt->id >> 10 == id >> 10) {
mt = this_mt;
break;
}
}
}
dictReleaseIterator(di);
/* Add to cache if possible. */
if (mt && j < MODULE_LOOKUP_CACHE_SIZE) {
cache[j].id = id;
cache[j].mt = mt;
}
return mt;
}
/* Turn an (unresolved) module ID into a type name, to show the user an
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
* error when RDB files contain module data we can't load.
* The buffer pointed by 'name' must be 10 bytes at least. The function will
* fill it with a null terminated module name. */
void moduleTypeNameByID(char *name, uint64_t moduleid) {
const char *cset = ModuleTypeNameCharSet;
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
name[9] = '\0';
char *p = name+8;
moduleid >>= 10;
for (int j = 0; j < 9; j++) {
*p-- = cset[moduleid & 63];
moduleid >>= 6;
}
}
/* Return the name of the module that owns the specified moduleType. */
const char *moduleTypeModuleName(moduleType *mt) {
if (!mt || !mt->module) return NULL;
return mt->module->name;
}
/* Return the module name from a module command */
const char *moduleNameFromCommand(struct redisCommand *cmd) {
serverAssert(cmd->proc == ValkeyModuleCommandDispatcher);
ValkeyModuleCommand *cp = cmd->module_cmd;
return cp->module->name;
}
/* Create a copy of a module type value using the copy callback. If failed
* or not supported, produce an error reply and return NULL.
*/
robj *moduleTypeDupOrReply(client *c, robj *fromkey, robj *tokey, int todb, robj *value) {
moduleValue *mv = value->ptr;
moduleType *mt = mv->type;
if (!mt->copy && !mt->copy2) {
addReplyError(c, "not supported for this module key");
return NULL;
}
void *newval = NULL;
if (mt->copy2 != NULL) {
ValkeyModuleKeyOptCtx ctx = {fromkey, tokey, c->db->id, todb};
newval = mt->copy2(&ctx, mv->value);
} else {
newval = mt->copy(fromkey, tokey, mv->value);
}
if (!newval) {
addReplyError(c, "module key failed to copy");
return NULL;
}
return createModuleObject(mt, newval);
}
/* Register a new data type exported by the module. The parameters are the
* following. Please for in depth documentation check the modules API
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
* documentation, especially https://redis.io/topics/modules-native-types.
*
* * **name**: A 9 characters data type name that MUST be unique in the Redis
* Modules ecosystem. Be creative... and there will be no collisions. Use
* the charset A-Z a-z 9-0, plus the two "-_" characters. A good
* idea is to use, for example `<typename>-<vendor>`. For example
* "tree-AntZ" may mean "Tree data structure by @antirez". To use both
* lower case and upper case letters helps in order to prevent collisions.
* * **encver**: Encoding version, which is, the version of the serialization
* that a module used in order to persist data. As long as the "name"
* matches, the RDB loading will be dispatched to the type callbacks
* whatever 'encver' is used, however the module can understand if
* the encoding it must load are of an older version of the module.
* For example the module "tree-AntZ" initially used encver=0. Later
* after an upgrade, it started to serialize data in a different format
* and to register the type with encver=1. However this module may
* still load old data produced by an older version if the rdb_load
* callback is able to check the encver value and act accordingly.
* The encver must be a positive value between 0 and 1023.
*
* * **typemethods_ptr** is a pointer to a ValkeyModuleTypeMethods structure
* that should be populated with the methods callbacks and structure
* version, like in the following example:
*
* ValkeyModuleTypeMethods tm = {
* .version = VALKEYMODULE_TYPE_METHOD_VERSION,
* .rdb_load = myType_RDBLoadCallBack,
* .rdb_save = myType_RDBSaveCallBack,
* .aof_rewrite = myType_AOFRewriteCallBack,
* .free = myType_FreeCallBack,
*
* // Optional fields
* .digest = myType_DigestCallBack,
* .mem_usage = myType_MemUsageCallBack,
* .aux_load = myType_AuxRDBLoadCallBack,
* .aux_save = myType_AuxRDBSaveCallBack,
* .free_effort = myType_FreeEffortCallBack,
* .unlink = myType_UnlinkCallBack,
* .copy = myType_CopyCallback,
* .defrag = myType_DefragCallback
*
* // Enhanced optional fields
* .mem_usage2 = myType_MemUsageCallBack2,
* .free_effort2 = myType_FreeEffortCallBack2,
* .unlink2 = myType_UnlinkCallBack2,
* .copy2 = myType_CopyCallback2,
* }
*
* * **rdb_load**: A callback function pointer that loads data from RDB files.
* * **rdb_save**: A callback function pointer that saves data to RDB files.
* * **aof_rewrite**: A callback function pointer that rewrites data as commands.
* * **digest**: A callback function pointer that is used for `DEBUG DIGEST`.
* * **free**: A callback function pointer that can free a type value.
* * **aux_save**: A callback function pointer that saves out of keyspace data to RDB files.
* 'when' argument is either VALKEYMODULE_AUX_BEFORE_RDB or VALKEYMODULE_AUX_AFTER_RDB.
* * **aux_load**: A callback function pointer that loads out of keyspace data from RDB files.
* Similar to aux_save, returns VALKEYMODULE_OK on success, and ERR otherwise.
* * **free_effort**: A callback function pointer that used to determine whether the module's
* memory needs to be lazy reclaimed. The module should return the complexity involved by
* freeing the value. for example: how many pointers are gonna be freed. Note that if it
* returns 0, we'll always do an async free.
* * **unlink**: A callback function pointer that used to notifies the module that the key has
* been removed from the DB by redis, and may soon be freed by a background thread. Note that
* it won't be called on FLUSHALL/FLUSHDB (both sync and async), and the module can use the
* ValkeyModuleEvent_FlushDB to hook into that.
* * **copy**: A callback function pointer that is used to make a copy of the specified key.
* The module is expected to perform a deep copy of the specified value and return it.
* In addition, hints about the names of the source and destination keys is provided.
* A NULL return value is considered an error and the copy operation fails.
* Note: if the target key exists and is being overwritten, the copy callback will be
* called first, followed by a free callback to the value that is being replaced.
*
* * **defrag**: A callback function pointer that is used to request the module to defrag
* a key. The module should then iterate pointers and call the relevant VM_Defrag*()
* functions to defragment pointers or complex types. The module should continue
* iterating as long as VM_DefragShouldStop() returns a zero value, and return a
* zero value if finished or non-zero value if more work is left to be done. If more work
* needs to be done, VM_DefragCursorSet() and VM_DefragCursorGet() can be used to track
* this work across different calls.
* Normally, the defrag mechanism invokes the callback without a time limit, so
* VM_DefragShouldStop() always returns zero. The "late defrag" mechanism which has
* a time limit and provides cursor support is used only for keys that are determined
* to have significant internal complexity. To determine this, the defrag mechanism
* uses the free_effort callback and the 'active-defrag-max-scan-fields' config directive.
* NOTE: The value is passed as a `void**` and the function is expected to update the
* pointer if the top-level value pointer is defragmented and consequently changes.
*
* * **mem_usage2**: Similar to `mem_usage`, but provides the `ValkeyModuleKeyOptCtx` parameter
* so that meta information such as key name and db id can be obtained, and
* the `sample_size` for size estimation (see MEMORY USAGE command).
* * **free_effort2**: Similar to `free_effort`, but provides the `ValkeyModuleKeyOptCtx` parameter
* so that meta information such as key name and db id can be obtained.
* * **unlink2**: Similar to `unlink`, but provides the `ValkeyModuleKeyOptCtx` parameter
* so that meta information such as key name and db id can be obtained.
* * **copy2**: Similar to `copy`, but provides the `ValkeyModuleKeyOptCtx` parameter
* so that meta information such as key names and db ids can be obtained.
Avoid saving module aux on RDB if no aux data was saved by the module. (#11374) ### Background The issue is that when saving an RDB with module AUX data, the module AUX metadata (moduleid, when, ...) is saved to the RDB even though the module did not saved any actual data. This prevent loading the RDB in the absence of the module (although there is no actual data in the RDB that requires the module to be loaded). ### Solution The solution suggested in this PR is that module AUX will be saved on the RDB only if the module actually saved something during `aux_save` function. To support backward compatibility, we introduce `aux_save2` callback that acts the same as `aux_save` with the tiny change of avoid saving the aux field if no data was actually saved by the module. Modules can use the new API to make sure that if they have no data to save, then it will be possible to load the created RDB even without the module. ### Concerns A module may register for the aux load and save hooks just in order to be notified when saving or loading starts or completed (there are better ways to do that, but it still possible that someone used it). However, if a module didn't save a single field in the save callback, it means it's not allowed to read in the read callback, since it has no way to distinguish between empty and non-empty payloads. furthermore, it means that if the module did that, it must never change it, since it'll break compatibility with it's old RDB files, so this is really not a valid use case. Since some modules (ones who currently save one field indicating an empty payload), need to know if saving an empty payload is valid, and if Redis is gonna ignore an empty payload or store it, we opted to add a new API (rather than change behavior of an existing API and expect modules to check the redis version) ### Technical Details To avoid saving AUX data on RDB, we change the code to first save the AUX metadata (moduleid, when, ...) into a temporary buffer. The buffer is then flushed to the rio at the first time the module makes a write operation inside the `aux_save` function. If the module saves nothing (and `aux_save2` was used), the entire temporary buffer is simply dropped and no data about this AUX field is saved to the RDB. This make it possible to load the RDB even in the absence of the module. Test was added to verify the fix.
2022-10-18 19:45:46 +03:00
* * **aux_save2**: Similar to `aux_save`, but with small semantic change, if the module
* saves nothing on this callback then no data about this aux field will be written to the
* RDB and it will be possible to load the RDB even if the module is not loaded.
*
* Note: the module name "AAAAAAAAA" is reserved and produces an error, it
* happens to be pretty lame as well.
*
* If ValkeyModule_CreateDataType() is called outside of ValkeyModule_OnLoad() function,
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
* there is already a module registering a type with the same name,
* or if the module name or encver is invalid, NULL is returned.
* Otherwise the new type is registered into Redis, and a reference of
* type ValkeyModuleType is returned: the caller of the function should store
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
* this reference into a global variable to make future use of it in the
* modules type API, since a single module may register multiple types.
* Example code fragment:
*
* static ValkeyModuleType *BalancedTreeType;
*
* int ValkeyModule_OnLoad(ValkeyModuleCtx *ctx) {
* // some code here ...
* BalancedTreeType = VM_CreateDataType(...);
* }
*/
moduleType *VM_CreateDataType(ValkeyModuleCtx *ctx, const char *name, int encver, void *typemethods_ptr) {
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
if (!ctx->module->onload)
return NULL;
uint64_t id = moduleTypeEncodeId(name,encver);
if (id == 0) return NULL;
if (moduleTypeLookupModuleByName(name) != NULL) return NULL;
long typemethods_version = ((long*)typemethods_ptr)[0];
if (typemethods_version == 0) return NULL;
struct typemethods {
uint64_t version;
moduleTypeLoadFunc rdb_load;
moduleTypeSaveFunc rdb_save;
moduleTypeRewriteFunc aof_rewrite;
moduleTypeMemUsageFunc mem_usage;
moduleTypeDigestFunc digest;
moduleTypeFreeFunc free;
struct {
moduleTypeAuxLoadFunc aux_load;
moduleTypeAuxSaveFunc aux_save;
int aux_save_triggers;
} v2;
struct {
moduleTypeFreeEffortFunc free_effort;
moduleTypeUnlinkFunc unlink;
moduleTypeCopyFunc copy;
moduleTypeDefragFunc defrag;
} v3;
struct {
moduleTypeMemUsageFunc2 mem_usage2;
moduleTypeFreeEffortFunc2 free_effort2;
moduleTypeUnlinkFunc2 unlink2;
moduleTypeCopyFunc2 copy2;
} v4;
Avoid saving module aux on RDB if no aux data was saved by the module. (#11374) ### Background The issue is that when saving an RDB with module AUX data, the module AUX metadata (moduleid, when, ...) is saved to the RDB even though the module did not saved any actual data. This prevent loading the RDB in the absence of the module (although there is no actual data in the RDB that requires the module to be loaded). ### Solution The solution suggested in this PR is that module AUX will be saved on the RDB only if the module actually saved something during `aux_save` function. To support backward compatibility, we introduce `aux_save2` callback that acts the same as `aux_save` with the tiny change of avoid saving the aux field if no data was actually saved by the module. Modules can use the new API to make sure that if they have no data to save, then it will be possible to load the created RDB even without the module. ### Concerns A module may register for the aux load and save hooks just in order to be notified when saving or loading starts or completed (there are better ways to do that, but it still possible that someone used it). However, if a module didn't save a single field in the save callback, it means it's not allowed to read in the read callback, since it has no way to distinguish between empty and non-empty payloads. furthermore, it means that if the module did that, it must never change it, since it'll break compatibility with it's old RDB files, so this is really not a valid use case. Since some modules (ones who currently save one field indicating an empty payload), need to know if saving an empty payload is valid, and if Redis is gonna ignore an empty payload or store it, we opted to add a new API (rather than change behavior of an existing API and expect modules to check the redis version) ### Technical Details To avoid saving AUX data on RDB, we change the code to first save the AUX metadata (moduleid, when, ...) into a temporary buffer. The buffer is then flushed to the rio at the first time the module makes a write operation inside the `aux_save` function. If the module saves nothing (and `aux_save2` was used), the entire temporary buffer is simply dropped and no data about this AUX field is saved to the RDB. This make it possible to load the RDB even in the absence of the module. Test was added to verify the fix.
2022-10-18 19:45:46 +03:00
struct {
moduleTypeAuxSaveFunc aux_save2;
} v5;
} *tms = (struct typemethods*) typemethods_ptr;
moduleType *mt = zcalloc(sizeof(*mt));
mt->id = id;
mt->module = ctx->module;
mt->rdb_load = tms->rdb_load;
mt->rdb_save = tms->rdb_save;
mt->aof_rewrite = tms->aof_rewrite;
mt->mem_usage = tms->mem_usage;
mt->digest = tms->digest;
mt->free = tms->free;
if (tms->version >= 2) {
mt->aux_load = tms->v2.aux_load;
mt->aux_save = tms->v2.aux_save;
mt->aux_save_triggers = tms->v2.aux_save_triggers;
}
if (tms->version >= 3) {
mt->free_effort = tms->v3.free_effort;
mt->unlink = tms->v3.unlink;
mt->copy = tms->v3.copy;
mt->defrag = tms->v3.defrag;
}
if (tms->version >= 4) {
mt->mem_usage2 = tms->v4.mem_usage2;
mt->unlink2 = tms->v4.unlink2;
mt->free_effort2 = tms->v4.free_effort2;
mt->copy2 = tms->v4.copy2;
}
Avoid saving module aux on RDB if no aux data was saved by the module. (#11374) ### Background The issue is that when saving an RDB with module AUX data, the module AUX metadata (moduleid, when, ...) is saved to the RDB even though the module did not saved any actual data. This prevent loading the RDB in the absence of the module (although there is no actual data in the RDB that requires the module to be loaded). ### Solution The solution suggested in this PR is that module AUX will be saved on the RDB only if the module actually saved something during `aux_save` function. To support backward compatibility, we introduce `aux_save2` callback that acts the same as `aux_save` with the tiny change of avoid saving the aux field if no data was actually saved by the module. Modules can use the new API to make sure that if they have no data to save, then it will be possible to load the created RDB even without the module. ### Concerns A module may register for the aux load and save hooks just in order to be notified when saving or loading starts or completed (there are better ways to do that, but it still possible that someone used it). However, if a module didn't save a single field in the save callback, it means it's not allowed to read in the read callback, since it has no way to distinguish between empty and non-empty payloads. furthermore, it means that if the module did that, it must never change it, since it'll break compatibility with it's old RDB files, so this is really not a valid use case. Since some modules (ones who currently save one field indicating an empty payload), need to know if saving an empty payload is valid, and if Redis is gonna ignore an empty payload or store it, we opted to add a new API (rather than change behavior of an existing API and expect modules to check the redis version) ### Technical Details To avoid saving AUX data on RDB, we change the code to first save the AUX metadata (moduleid, when, ...) into a temporary buffer. The buffer is then flushed to the rio at the first time the module makes a write operation inside the `aux_save` function. If the module saves nothing (and `aux_save2` was used), the entire temporary buffer is simply dropped and no data about this AUX field is saved to the RDB. This make it possible to load the RDB even in the absence of the module. Test was added to verify the fix.
2022-10-18 19:45:46 +03:00
if (tms->version >= 5) {
mt->aux_save2 = tms->v5.aux_save2;
}
memcpy(mt->name,name,sizeof(mt->name));
listAddNodeTail(ctx->module->types,mt);
return mt;
}
/* If the key is open for writing, set the specified module type object
* as the value of the key, deleting the old value if any.
* On success VALKEYMODULE_OK is returned. If the key is not open for
* writing or there is an active iterator, VALKEYMODULE_ERR is returned. */
int VM_ModuleTypeSetValue(ValkeyModuleKey *key, moduleType *mt, void *value) {
if (!(key->mode & VALKEYMODULE_WRITE) || key->iter) return VALKEYMODULE_ERR;
VM_DeleteKey(key);
robj *o = createModuleObject(mt,value);
setKey(key->ctx->client,key->db,key->key,o,SETKEY_NO_SIGNAL);
decrRefCount(o);
key->value = o;
return VALKEYMODULE_OK;
}
/* Assuming ValkeyModule_KeyType() returned VALKEYMODULE_KEYTYPE_MODULE on
2018-09-17 14:13:46 +03:00
* the key, returns the module type pointer of the value stored at key.
*
* If the key is NULL, is not associated with a module type, or is empty,
* then NULL is returned instead. */
moduleType *VM_ModuleTypeGetType(ValkeyModuleKey *key) {
if (key == NULL ||
key->value == NULL ||
VM_KeyType(key) != VALKEYMODULE_KEYTYPE_MODULE) return NULL;
moduleValue *mv = key->value->ptr;
return mv->type;
}
/* Assuming ValkeyModule_KeyType() returned VALKEYMODULE_KEYTYPE_MODULE on
* the key, returns the module type low-level value stored at key, as
* it was set by the user via ValkeyModule_ModuleTypeSetValue().
*
* If the key is NULL, is not associated with a module type, or is empty,
* then NULL is returned instead. */
void *VM_ModuleTypeGetValue(ValkeyModuleKey *key) {
if (key == NULL ||
key->value == NULL ||
VM_KeyType(key) != VALKEYMODULE_KEYTYPE_MODULE) return NULL;
moduleValue *mv = key->value->ptr;
return mv->value;
}
/* --------------------------------------------------------------------------
* ## RDB loading and saving functions
* -------------------------------------------------------------------------- */
/* Called when there is a load error in the context of a module. On some
* modules this cannot be recovered, but if the module declared capability
* to handle errors, we'll raise a flag rather than exiting. */
void moduleRDBLoadError(ValkeyModuleIO *io) {
if (io->type->module->options & VALKEYMODULE_OPTIONS_HANDLE_IO_ERRORS) {
io->error = 1;
return;
}
serverPanic(
"Error loading data from RDB (short read or EOF). "
"Read performed by module '%s' about type '%s' "
"after reading '%llu' bytes of a value "
"for key named: '%s'.",
io->type->module->name,
io->type->name,
(unsigned long long)io->bytes,
io->key? (char*)io->key->ptr: "(null)");
}
/* Returns 0 if there's at least one registered data type that did not declare
* VALKEYMODULE_OPTIONS_HANDLE_IO_ERRORS, in which case diskless loading should
* be avoided since it could cause data loss. */
int moduleAllDatatypesHandleErrors(void) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct ValkeyModule *module = dictGetVal(de);
if (listLength(module->types) &&
!(module->options & VALKEYMODULE_OPTIONS_HANDLE_IO_ERRORS))
{
dictReleaseIterator(di);
return 0;
}
}
dictReleaseIterator(di);
return 1;
}
/* Returns 0 if module did not declare VALKEYMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD, in which case
Replica keep serving data during repl-diskless-load=swapdb for better availability (#9323) For diskless replication in swapdb mode, considering we already spend replica memory having a backup of current db to restore in case of failure, we can have the following benefits by instead swapping database only in case we succeeded in transferring db from master: - Avoid `LOADING` response during failed and successful synchronization for cases where the replica is already up and running with data. - Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping. - This could be implemented also for disk replication with similar benefits if consumers are willing to spend the extra memory usage. General notes: - The concept of `backupDb` becomes `tempDb` for clarity. - Async loading mode will only kick in if the replica is syncing from a master that has the same repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline. - New property in INFO: `async_loading` to differentiate from the blocking loading - Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db and the tempDb that is passed around. - Because this is affecting replicas only, we assume that if they are not readonly and write commands during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET here anyways to avoid complications. Considerations for review: - We have many cases where server.loading flag is used and even though I tried my best, there may be cases where async_loading should be checked as well and cases where it shouldn't (would require very good understanding of whole code) - Several places that had different behavior depending on the loading flag where actually meant to just handle commands coming from the AOF client differently than ones coming from real clients, changed to check CLIENT_ID_AOF instead. **Additional for Release Notes** - Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't contribute on triggering next database SAVE - New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING - Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event. Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED, ABORTED and COMPLETED. - New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions to allow modules to declare they support the diskless replication with async loading (when absent, we fall back to disk-based loading). Co-authored-by: Eduardo Semprebon <edus@saxobank.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2021-11-04 09:46:50 +01:00
* diskless async loading should be avoided because module doesn't know there can be traffic during
* database full resynchronization. */
int moduleAllModulesHandleReplAsyncLoad(void) {
Replica keep serving data during repl-diskless-load=swapdb for better availability (#9323) For diskless replication in swapdb mode, considering we already spend replica memory having a backup of current db to restore in case of failure, we can have the following benefits by instead swapping database only in case we succeeded in transferring db from master: - Avoid `LOADING` response during failed and successful synchronization for cases where the replica is already up and running with data. - Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping. - This could be implemented also for disk replication with similar benefits if consumers are willing to spend the extra memory usage. General notes: - The concept of `backupDb` becomes `tempDb` for clarity. - Async loading mode will only kick in if the replica is syncing from a master that has the same repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline. - New property in INFO: `async_loading` to differentiate from the blocking loading - Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db and the tempDb that is passed around. - Because this is affecting replicas only, we assume that if they are not readonly and write commands during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET here anyways to avoid complications. Considerations for review: - We have many cases where server.loading flag is used and even though I tried my best, there may be cases where async_loading should be checked as well and cases where it shouldn't (would require very good understanding of whole code) - Several places that had different behavior depending on the loading flag where actually meant to just handle commands coming from the AOF client differently than ones coming from real clients, changed to check CLIENT_ID_AOF instead. **Additional for Release Notes** - Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't contribute on triggering next database SAVE - New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING - Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event. Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED, ABORTED and COMPLETED. - New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions to allow modules to declare they support the diskless replication with async loading (when absent, we fall back to disk-based loading). Co-authored-by: Eduardo Semprebon <edus@saxobank.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2021-11-04 09:46:50 +01:00
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct ValkeyModule *module = dictGetVal(de);
if (!(module->options & VALKEYMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD)) {
Replica keep serving data during repl-diskless-load=swapdb for better availability (#9323) For diskless replication in swapdb mode, considering we already spend replica memory having a backup of current db to restore in case of failure, we can have the following benefits by instead swapping database only in case we succeeded in transferring db from master: - Avoid `LOADING` response during failed and successful synchronization for cases where the replica is already up and running with data. - Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping. - This could be implemented also for disk replication with similar benefits if consumers are willing to spend the extra memory usage. General notes: - The concept of `backupDb` becomes `tempDb` for clarity. - Async loading mode will only kick in if the replica is syncing from a master that has the same repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline. - New property in INFO: `async_loading` to differentiate from the blocking loading - Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db and the tempDb that is passed around. - Because this is affecting replicas only, we assume that if they are not readonly and write commands during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET here anyways to avoid complications. Considerations for review: - We have many cases where server.loading flag is used and even though I tried my best, there may be cases where async_loading should be checked as well and cases where it shouldn't (would require very good understanding of whole code) - Several places that had different behavior depending on the loading flag where actually meant to just handle commands coming from the AOF client differently than ones coming from real clients, changed to check CLIENT_ID_AOF instead. **Additional for Release Notes** - Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't contribute on triggering next database SAVE - New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING - Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event. Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED, ABORTED and COMPLETED. - New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions to allow modules to declare they support the diskless replication with async loading (when absent, we fall back to disk-based loading). Co-authored-by: Eduardo Semprebon <edus@saxobank.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2021-11-04 09:46:50 +01:00
dictReleaseIterator(di);
return 0;
}
}
dictReleaseIterator(di);
return 1;
}
/* Returns true if any previous IO API failed.
* for `Load*` APIs the VALKEYMODULE_OPTIONS_HANDLE_IO_ERRORS flag must be set with
* ValkeyModule_SetModuleOptions first. */
int VM_IsIOError(ValkeyModuleIO *io) {
return io->error;
}
static int flushValkeyModuleIOBuffer(ValkeyModuleIO *io) {
Avoid saving module aux on RDB if no aux data was saved by the module. (#11374) ### Background The issue is that when saving an RDB with module AUX data, the module AUX metadata (moduleid, when, ...) is saved to the RDB even though the module did not saved any actual data. This prevent loading the RDB in the absence of the module (although there is no actual data in the RDB that requires the module to be loaded). ### Solution The solution suggested in this PR is that module AUX will be saved on the RDB only if the module actually saved something during `aux_save` function. To support backward compatibility, we introduce `aux_save2` callback that acts the same as `aux_save` with the tiny change of avoid saving the aux field if no data was actually saved by the module. Modules can use the new API to make sure that if they have no data to save, then it will be possible to load the created RDB even without the module. ### Concerns A module may register for the aux load and save hooks just in order to be notified when saving or loading starts or completed (there are better ways to do that, but it still possible that someone used it). However, if a module didn't save a single field in the save callback, it means it's not allowed to read in the read callback, since it has no way to distinguish between empty and non-empty payloads. furthermore, it means that if the module did that, it must never change it, since it'll break compatibility with it's old RDB files, so this is really not a valid use case. Since some modules (ones who currently save one field indicating an empty payload), need to know if saving an empty payload is valid, and if Redis is gonna ignore an empty payload or store it, we opted to add a new API (rather than change behavior of an existing API and expect modules to check the redis version) ### Technical Details To avoid saving AUX data on RDB, we change the code to first save the AUX metadata (moduleid, when, ...) into a temporary buffer. The buffer is then flushed to the rio at the first time the module makes a write operation inside the `aux_save` function. If the module saves nothing (and `aux_save2` was used), the entire temporary buffer is simply dropped and no data about this AUX field is saved to the RDB. This make it possible to load the RDB even in the absence of the module. Test was added to verify the fix.
2022-10-18 19:45:46 +03:00
if (!io->pre_flush_buffer) return 0;
/* We have data that must be flushed before saving the current data.
* Lets flush it. */
sds pre_flush_buffer = io->pre_flush_buffer;
io->pre_flush_buffer = NULL;
ssize_t retval = rdbWriteRaw(io->rio, pre_flush_buffer, sdslen(pre_flush_buffer));
sdsfree(pre_flush_buffer);
if (retval >= 0) io->bytes += retval;
return retval;
}
/* Save an unsigned 64 bit value into the RDB file. This function should only
* be called in the context of the rdb_save method of modules implementing new
* data types. */
void VM_SaveUnsigned(ValkeyModuleIO *io, uint64_t value) {
if (io->error) return;
if (flushValkeyModuleIOBuffer(io) == -1) goto saveerr;
/* Save opcode. */
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
int retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_UINT);
if (retval == -1) goto saveerr;
io->bytes += retval;
/* Save value. */
retval = rdbSaveLen(io->rio, value);
if (retval == -1) goto saveerr;
io->bytes += retval;
return;
saveerr:
io->error = 1;
}
/* Load an unsigned 64 bit value from the RDB file. This function should only
* be called in the context of the `rdb_load` method of modules implementing
* new data types. */
uint64_t VM_LoadUnsigned(ValkeyModuleIO *io) {
if (io->error) return 0;
uint64_t opcode = rdbLoadLen(io->rio,NULL);
if (opcode != RDB_MODULE_OPCODE_UINT) goto loaderr;
uint64_t value;
int retval = rdbLoadLenByRef(io->rio, NULL, &value);
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
if (retval == -1) goto loaderr;
return value;
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
loaderr:
moduleRDBLoadError(io);
return 0;
}
/* Like ValkeyModule_SaveUnsigned() but for signed 64 bit values. */
void VM_SaveSigned(ValkeyModuleIO *io, int64_t value) {
union {uint64_t u; int64_t i;} conv;
conv.i = value;
VM_SaveUnsigned(io,conv.u);
}
/* Like ValkeyModule_LoadUnsigned() but for signed 64 bit values. */
int64_t VM_LoadSigned(ValkeyModuleIO *io) {
union {uint64_t u; int64_t i;} conv;
conv.u = VM_LoadUnsigned(io);
return conv.i;
}
/* In the context of the rdb_save method of a module type, saves a
* string into the RDB file taking as input a ValkeyModuleString.
*
* The string can be later loaded with ValkeyModule_LoadString() or
* other Load family functions expecting a serialized string inside
* the RDB file. */
void VM_SaveString(ValkeyModuleIO *io, ValkeyModuleString *s) {
if (io->error) return;
if (flushValkeyModuleIOBuffer(io) == -1) goto saveerr;
/* Save opcode. */
ssize_t retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_STRING);
if (retval == -1) goto saveerr;
io->bytes += retval;
/* Save value. */
retval = rdbSaveStringObject(io->rio, s);
if (retval == -1) goto saveerr;
io->bytes += retval;
return;
saveerr:
io->error = 1;
}
/* Like ValkeyModule_SaveString() but takes a raw C pointer and length
* as input. */
void VM_SaveStringBuffer(ValkeyModuleIO *io, const char *str, size_t len) {
if (io->error) return;
if (flushValkeyModuleIOBuffer(io) == -1) goto saveerr;
/* Save opcode. */
ssize_t retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_STRING);
if (retval == -1) goto saveerr;
io->bytes += retval;
/* Save value. */
retval = rdbSaveRawString(io->rio, (unsigned char*)str,len);
if (retval == -1) goto saveerr;
io->bytes += retval;
return;
saveerr:
io->error = 1;
}
/* Implements VM_LoadString() and VM_LoadStringBuffer() */
void *moduleLoadString(ValkeyModuleIO *io, int plain, size_t *lenptr) {
if (io->error) return NULL;
uint64_t opcode = rdbLoadLen(io->rio,NULL);
if (opcode != RDB_MODULE_OPCODE_STRING) goto loaderr;
void *s = rdbGenericLoadStringObject(io->rio,
plain ? RDB_LOAD_PLAIN : RDB_LOAD_NONE, lenptr);
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
if (s == NULL) goto loaderr;
return s;
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
loaderr:
moduleRDBLoadError(io);
return NULL;
}
/* In the context of the rdb_load method of a module data type, loads a string
* from the RDB file, that was previously saved with ValkeyModule_SaveString()
* functions family.
*
* The returned string is a newly allocated ValkeyModuleString object, and
* the user should at some point free it with a call to ValkeyModule_FreeString().
*
* If the data structure does not store strings as ValkeyModuleString objects,
* the similar function ValkeyModule_LoadStringBuffer() could be used instead. */
ValkeyModuleString *VM_LoadString(ValkeyModuleIO *io) {
return moduleLoadString(io,0,NULL);
}
/* Like ValkeyModule_LoadString() but returns a heap allocated string that
* was allocated with ValkeyModule_Alloc(), and can be resized or freed with
* ValkeyModule_Realloc() or ValkeyModule_Free().
*
* The size of the string is stored at '*lenptr' if not NULL.
2019-09-05 16:25:06 +01:00
* The returned string is not automatically NULL terminated, it is loaded
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
* exactly as it was stored inside the RDB file. */
char *VM_LoadStringBuffer(ValkeyModuleIO *io, size_t *lenptr) {
return moduleLoadString(io,1,lenptr);
}
/* In the context of the rdb_save method of a module data type, saves a double
* value to the RDB file. The double can be a valid number, a NaN or infinity.
* It is possible to load back the value with ValkeyModule_LoadDouble(). */
void VM_SaveDouble(ValkeyModuleIO *io, double value) {
if (io->error) return;
if (flushValkeyModuleIOBuffer(io) == -1) goto saveerr;
/* Save opcode. */
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
int retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_DOUBLE);
if (retval == -1) goto saveerr;
io->bytes += retval;
/* Save value. */
retval = rdbSaveBinaryDoubleValue(io->rio, value);
if (retval == -1) goto saveerr;
io->bytes += retval;
return;
saveerr:
io->error = 1;
}
/* In the context of the rdb_save method of a module data type, loads back the
* double value saved by ValkeyModule_SaveDouble(). */
double VM_LoadDouble(ValkeyModuleIO *io) {
if (io->error) return 0;
uint64_t opcode = rdbLoadLen(io->rio,NULL);
if (opcode != RDB_MODULE_OPCODE_DOUBLE) goto loaderr;
double value;
int retval = rdbLoadBinaryDoubleValue(io->rio, &value);
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
if (retval == -1) goto loaderr;
return value;
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
loaderr:
moduleRDBLoadError(io);
return 0;
}
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
/* In the context of the rdb_save method of a module data type, saves a float
* value to the RDB file. The float can be a valid number, a NaN or infinity.
* It is possible to load back the value with ValkeyModule_LoadFloat(). */
void VM_SaveFloat(ValkeyModuleIO *io, float value) {
if (io->error) return;
if (flushValkeyModuleIOBuffer(io) == -1) goto saveerr;
/* Save opcode. */
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
int retval = rdbSaveLen(io->rio, RDB_MODULE_OPCODE_FLOAT);
if (retval == -1) goto saveerr;
io->bytes += retval;
/* Save value. */
retval = rdbSaveBinaryFloatValue(io->rio, value);
if (retval == -1) goto saveerr;
io->bytes += retval;
return;
saveerr:
io->error = 1;
}
/* In the context of the rdb_save method of a module data type, loads back the
* float value saved by ValkeyModule_SaveFloat(). */
float VM_LoadFloat(ValkeyModuleIO *io) {
if (io->error) return 0;
uint64_t opcode = rdbLoadLen(io->rio,NULL);
if (opcode != RDB_MODULE_OPCODE_FLOAT) goto loaderr;
float value;
int retval = rdbLoadBinaryFloatValue(io->rio, &value);
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
if (retval == -1) goto loaderr;
return value;
RDB modules values serialization format version 2. The original RDB serialization format was not parsable without the module loaded, becuase the structure was managed only by the module itself. Moreover RDB is a streaming protocol in the sense that it is both produce di an append-only fashion, and is also sometimes directly sent to the socket (in the case of diskless replication). The fact that modules values cannot be parsed without the relevant module loaded is a problem in many ways: RDB checking tools must have loaded modules even for doing things not involving the value at all, like splitting an RDB into N RDBs by key or alike, or just checking the RDB for sanity. In theory module values could be just a blob of data with a prefixed length in order for us to be able to skip it. However prefixing the values with a length would mean one of the following: 1. To be able to write some data at a previous offset. This breaks stremaing. 2. To bufferize values before outputting them. This breaks performances. 3. To have some chunked RDB output format. This breaks simplicity. Moreover, the above solution, still makes module values a totally opaque matter, with the fowllowing problems: 1. The RDB check tool can just skip the value without being able to at least check the general structure. For datasets composed mostly of modules values this means to just check the outer level of the RDB not actually doing any checko on most of the data itself. 2. It is not possible to do any recovering or processing of data for which a module no longer exists in the future, or is unknown. So this commit implements a different solution. The modules RDB serialization API is composed if well defined calls to store integers, floats, doubles or strings. After this commit, the parts generated by the module API have a one-byte prefix for each of the above emitted parts, and there is a final EOF byte as well. So even if we don't know exactly how to interpret a module value, we can always parse it at an high level, check the overall structure, understand the types used to store the information, and easily skip the whole value. The change is backward compatible: older RDB files can be still loaded since the new encoding has a new RDB type: MODULE_2 (of value 7). The commit also implements the ability to check RDB files for sanity taking advantage of the new feature.
2017-06-27 13:09:33 +02:00
loaderr:
moduleRDBLoadError(io);
return 0;
}
/* In the context of the rdb_save method of a module data type, saves a long double
* value to the RDB file. The double can be a valid number, a NaN or infinity.
* It is possible to load back the value with ValkeyModule_LoadLongDouble(). */
void VM_SaveLongDouble(ValkeyModuleIO *io, long double value) {
if (io->error) return;
char buf[MAX_LONG_DOUBLE_CHARS];
/* Long double has different number of bits in different platforms, so we
* save it as a string type. */
size_t len = ld2string(buf,sizeof(buf),value,LD_STR_HEX);
VM_SaveStringBuffer(io,buf,len);
}
/* In the context of the rdb_save method of a module data type, loads back the
* long double value saved by ValkeyModule_SaveLongDouble(). */
long double VM_LoadLongDouble(ValkeyModuleIO *io) {
if (io->error) return 0;
long double value;
size_t len;
char* str = VM_LoadStringBuffer(io,&len);
if (!str) return 0;
string2ld(str,len,&value);
VM_Free(str);
return value;
}
/* Iterate over modules, and trigger rdb aux saving for the ones modules types
* who asked for it. */
ssize_t rdbSaveModulesAux(rio *rdb, int when) {
size_t total_written = 0;
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct ValkeyModule *module = dictGetVal(de);
listIter li;
listNode *ln;
listRewind(module->types,&li);
while((ln = listNext(&li))) {
moduleType *mt = ln->value;
Avoid saving module aux on RDB if no aux data was saved by the module. (#11374) ### Background The issue is that when saving an RDB with module AUX data, the module AUX metadata (moduleid, when, ...) is saved to the RDB even though the module did not saved any actual data. This prevent loading the RDB in the absence of the module (although there is no actual data in the RDB that requires the module to be loaded). ### Solution The solution suggested in this PR is that module AUX will be saved on the RDB only if the module actually saved something during `aux_save` function. To support backward compatibility, we introduce `aux_save2` callback that acts the same as `aux_save` with the tiny change of avoid saving the aux field if no data was actually saved by the module. Modules can use the new API to make sure that if they have no data to save, then it will be possible to load the created RDB even without the module. ### Concerns A module may register for the aux load and save hooks just in order to be notified when saving or loading starts or completed (there are better ways to do that, but it still possible that someone used it). However, if a module didn't save a single field in the save callback, it means it's not allowed to read in the read callback, since it has no way to distinguish between empty and non-empty payloads. furthermore, it means that if the module did that, it must never change it, since it'll break compatibility with it's old RDB files, so this is really not a valid use case. Since some modules (ones who currently save one field indicating an empty payload), need to know if saving an empty payload is valid, and if Redis is gonna ignore an empty payload or store it, we opted to add a new API (rather than change behavior of an existing API and expect modules to check the redis version) ### Technical Details To avoid saving AUX data on RDB, we change the code to first save the AUX metadata (moduleid, when, ...) into a temporary buffer. The buffer is then flushed to the rio at the first time the module makes a write operation inside the `aux_save` function. If the module saves nothing (and `aux_save2` was used), the entire temporary buffer is simply dropped and no data about this AUX field is saved to the RDB. This make it possible to load the RDB even in the absence of the module. Test was added to verify the fix.
2022-10-18 19:45:46 +03:00
if ((!mt->aux_save && !mt->aux_save2) || !(mt->aux_save_triggers & when))
continue;
ssize_t ret = rdbSaveSingleModuleAux(rdb, when, mt);
if (ret==-1) {
dictReleaseIterator(di);
return -1;
}
total_written += ret;
}
}
dictReleaseIterator(di);
return total_written;
}
2017-07-06 10:29:19 +02:00
/* --------------------------------------------------------------------------
* ## Key digest API (DEBUG DIGEST interface for modules types)
2017-07-06 10:29:19 +02:00
* -------------------------------------------------------------------------- */
/* Add a new element to the digest. This function can be called multiple times
* one element after the other, for all the elements that constitute a given
* data structure. The function call must be followed by the call to
* `ValkeyModule_DigestEndSequence` eventually, when all the elements that are
2017-07-06 10:29:19 +02:00
* always in a given order are added. See the Redis Modules data types
* documentation for more info. However this is a quick example that uses Redis
* data types as an example.
*
* To add a sequence of unordered elements (for example in the case of a Redis
* Set), the pattern to use is:
*
* foreach element {
* AddElement(element);
* EndSequence();
* }
2017-07-06 10:29:19 +02:00
*
* Because Sets are not ordered, so every element added has a position that
* does not depend from the other. However if instead our elements are
* ordered in pairs, like field-value pairs of a Hash, then one should
2017-07-06 10:29:19 +02:00
* use:
*
* foreach key,value {
* AddElement(key);
* AddElement(value);
* EndSequence();
* }
2017-07-06 10:29:19 +02:00
*
* Because the key and value will be always in the above order, while instead
* the single key-value pairs, can appear in any position into a Redis hash.
*
* A list of ordered elements would be implemented with:
*
* foreach element {
* AddElement(element);
* }
* EndSequence();
2017-07-06 10:29:19 +02:00
*
*/
void VM_DigestAddStringBuffer(ValkeyModuleDigest *md, const char *ele, size_t len) {
2017-07-06 10:29:19 +02:00
mixDigest(md->o,ele,len);
}
/* Like `ValkeyModule_DigestAddStringBuffer()` but takes a `long long` as input
2017-07-06 10:29:19 +02:00
* that gets converted into a string before adding it to the digest. */
void VM_DigestAddLongLong(ValkeyModuleDigest *md, long long ll) {
2017-07-06 10:29:19 +02:00
char buf[LONG_STR_SIZE];
size_t len = ll2string(buf,sizeof(buf),ll);
mixDigest(md->o,buf,len);
}
/* See the documentation for `ValkeyModule_DigestAddElement()`. */
void VM_DigestEndSequence(ValkeyModuleDigest *md) {
2017-07-06 10:29:19 +02:00
xorDigest(md->x,md->o,sizeof(md->o));
memset(md->o,0,sizeof(md->o));
}
/* Decode a serialized representation of a module data type 'mt', in a specific encoding version 'encver'
* from string 'str' and return a newly allocated value, or NULL if decoding failed.
*
* This call basically reuses the 'rdb_load' callback which module data types
* implement in order to allow a module to arbitrarily serialize/de-serialize
* keys, similar to how the Redis 'DUMP' and 'RESTORE' commands are implemented.
*
* Modules should generally use the VALKEYMODULE_OPTIONS_HANDLE_IO_ERRORS flag and
* make sure the de-serialization code properly checks and handles IO errors
* (freeing allocated buffers and returning a NULL).
*
* If this is NOT done, Redis will handle corrupted (or just truncated) serialized
* data by producing an error message and terminating the process.
*/
void *VM_LoadDataTypeFromStringEncver(const ValkeyModuleString *str, const moduleType *mt, int encver) {
rio payload;
ValkeyModuleIO io;
void *ret;
rioInitWithBuffer(&payload, str->ptr);
moduleInitIOContext(io,(moduleType *)mt,&payload,NULL,-1);
/* All VM_Save*() calls always write a version 2 compatible format, so we
* need to make sure we read the same.
*/
ret = mt->rdb_load(&io,encver);
if (io.ctx) {
moduleFreeContext(io.ctx);
zfree(io.ctx);
}
return ret;
}
/* Similar to VM_LoadDataTypeFromStringEncver, original version of the API, kept
* for backward compatibility.
*/
void *VM_LoadDataTypeFromString(const ValkeyModuleString *str, const moduleType *mt) {
return VM_LoadDataTypeFromStringEncver(str, mt, 0);
}
/* Encode a module data type 'mt' value 'data' into serialized form, and return it
* as a newly allocated ValkeyModuleString.
*
* This call basically reuses the 'rdb_save' callback which module data types
* implement in order to allow a module to arbitrarily serialize/de-serialize
* keys, similar to how the Redis 'DUMP' and 'RESTORE' commands are implemented.
*/
ValkeyModuleString *VM_SaveDataTypeToString(ValkeyModuleCtx *ctx, void *data, const moduleType *mt) {
rio payload;
ValkeyModuleIO io;
rioInitWithBuffer(&payload,sdsempty());
moduleInitIOContext(io,(moduleType *)mt,&payload,NULL,-1);
mt->rdb_save(&io,data);
if (io.ctx) {
moduleFreeContext(io.ctx);
zfree(io.ctx);
}
if (io.error) {
return NULL;
} else {
robj *str = createObject(OBJ_STRING,payload.io.buffer.ptr);
if (ctx != NULL) autoMemoryAdd(ctx,VALKEYMODULE_AM_STRING,str);
return str;
}
}
/* Returns the name of the key currently being processed. */
const ValkeyModuleString *VM_GetKeyNameFromDigest(ValkeyModuleDigest *dig) {
return dig->key;
}
/* Returns the database id of the key currently being processed. */
int VM_GetDbIdFromDigest(ValkeyModuleDigest *dig) {
return dig->dbid;
}
/* --------------------------------------------------------------------------
* ## AOF API for modules data types
* -------------------------------------------------------------------------- */
/* Emits a command into the AOF during the AOF rewriting process. This function
* is only called in the context of the aof_rewrite method of data types exported
* by a module. The command works exactly like ValkeyModule_Call() in the way
* the parameters are passed, but it does not return anything as the error
* handling is performed by Redis itself. */
void VM_EmitAOF(ValkeyModuleIO *io, const char *cmdname, const char *fmt, ...) {
if (io->error) return;
struct redisCommand *cmd;
robj **argv = NULL;
int argc = 0, flags = 0, j;
va_list ap;
cmd = lookupCommandByCString((char*)cmdname);
if (!cmd) {
serverLog(LL_WARNING,
"Fatal: AOF method for module data type '%s' tried to "
"emit unknown command '%s'",
io->type->name, cmdname);
io->error = 1;
errno = EINVAL;
return;
}
/* Emit the arguments into the AOF in Redis protocol format. */
va_start(ap, fmt);
argv = moduleCreateArgvFromUserFormat(cmdname,fmt,&argc,&flags,ap);
va_end(ap);
if (argv == NULL) {
serverLog(LL_WARNING,
"Fatal: AOF method for module data type '%s' tried to "
"call ValkeyModule_EmitAOF() with wrong format specifiers '%s'",
io->type->name, fmt);
io->error = 1;
errno = EINVAL;
return;
}
/* Bulk count. */
if (!io->error && rioWriteBulkCount(io->rio,'*',argc) == 0)
io->error = 1;
/* Arguments. */
for (j = 0; j < argc; j++) {
if (!io->error && rioWriteBulkObject(io->rio,argv[j]) == 0)
io->error = 1;
decrRefCount(argv[j]);
}
zfree(argv);
return;
}
/* --------------------------------------------------------------------------
* ## IO context handling
* -------------------------------------------------------------------------- */
ValkeyModuleCtx *VM_GetContextFromIO(ValkeyModuleIO *io) {
if (io->ctx) return io->ctx; /* Can't have more than one... */
io->ctx = zmalloc(sizeof(ValkeyModuleCtx));
moduleCreateContext(io->ctx, io->type->module, VALKEYMODULE_CTX_NONE);
return io->ctx;
}
/* Returns the name of the key currently being processed.
* There is no guarantee that the key name is always available, so this may return NULL.
2016-11-30 21:47:02 +02:00
*/
const ValkeyModuleString *VM_GetKeyNameFromIO(ValkeyModuleIO *io) {
2016-11-30 21:47:02 +02:00
return io->key;
}
/* Returns a ValkeyModuleString with the name of the key from ValkeyModuleKey. */
const ValkeyModuleString *VM_GetKeyNameFromModuleKey(ValkeyModuleKey *key) {
return key ? key->key : NULL;
}
/* Returns a database id of the key from ValkeyModuleKey. */
int VM_GetDbIdFromModuleKey(ValkeyModuleKey *key) {
return key ? key->db->id : -1;
}
/* Returns the database id of the key currently being processed.
* There is no guarantee that this info is always available, so this may return -1.
*/
int VM_GetDbIdFromIO(ValkeyModuleIO *io) {
return io->dbid;
}
/* --------------------------------------------------------------------------
* ## Logging
* -------------------------------------------------------------------------- */
/* This is the low level function implementing both:
*
* VM_Log()
* VM_LogIOError()
*
*/
void moduleLogRaw(ValkeyModule *module, const char *levelstr, const char *fmt, va_list ap) {
char msg[LOG_MAX_LEN];
size_t name_len;
int level;
if (!strcasecmp(levelstr,"debug")) level = LL_DEBUG;
else if (!strcasecmp(levelstr,"verbose")) level = LL_VERBOSE;
else if (!strcasecmp(levelstr,"notice")) level = LL_NOTICE;
else if (!strcasecmp(levelstr,"warning")) level = LL_WARNING;
else level = LL_VERBOSE; /* Default. */
2018-12-13 13:57:38 +01:00
if (level < server.verbosity) return;
name_len = snprintf(msg, sizeof(msg),"<%s> ", module? module->name: "module");
vsnprintf(msg + name_len, sizeof(msg) - name_len, fmt, ap);
serverLogRaw(level,msg);
}
/* Produces a log message to the standard Redis log, the format accepts
* printf-alike specifiers, while level is a string describing the log
* level to use when emitting the log, and must be one of the following:
*
* * "debug" (`VALKEYMODULE_LOGLEVEL_DEBUG`)
* * "verbose" (`VALKEYMODULE_LOGLEVEL_VERBOSE`)
* * "notice" (`VALKEYMODULE_LOGLEVEL_NOTICE`)
* * "warning" (`VALKEYMODULE_LOGLEVEL_WARNING`)
*
* If the specified log level is invalid, verbose is used by default.
* There is a fixed limit to the length of the log line this function is able
2018-06-21 22:08:09 +08:00
* to emit, this limit is not specified but is guaranteed to be more than
* a few lines of text.
*
* The ctx argument may be NULL if cannot be provided in the context of the
* caller for instance threads or callbacks, in which case a generic "module"
* will be used instead of the module name.
*/
void VM_Log(ValkeyModuleCtx *ctx, const char *levelstr, const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
moduleLogRaw(ctx? ctx->module: NULL,levelstr,fmt,ap);
va_end(ap);
}
/* Log errors from RDB / AOF serialization callbacks.
*
* This function should be used when a callback is returning a critical
* error to the caller since cannot load or save the data for some
* critical reason. */
void VM_LogIOError(ValkeyModuleIO *io, const char *levelstr, const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
moduleLogRaw(io->type->module,levelstr,fmt,ap);
va_end(ap);
}
2018-06-03 15:37:48 +03:00
/* Redis-like assert function.
*
* The macro `ValkeyModule_Assert(expression)` is recommended, rather than
* calling this function directly.
2018-06-03 15:37:48 +03:00
*
* A failed assertion will shut down the server and produce logging information
* that looks identical to information generated by Redis itself.
*/
void VM__Assert(const char *estr, const char *file, int line) {
2018-06-03 15:37:48 +03:00
_serverAssert(estr, file, line);
}
2019-10-24 14:24:55 +03:00
/* Allows adding event to the latency monitor to be observed by the LATENCY
* command. The call is skipped if the latency is smaller than the configured
* latency-monitor-threshold. */
void VM_LatencyAddSample(const char *event, mstime_t latency) {
2019-10-24 14:24:55 +03:00
if (latency >= server.latency_monitor_threshold)
latencyAddSample(event, latency);
}
/* --------------------------------------------------------------------------
* ## Blocking clients from modules
*
* For a guide about blocking commands in modules, see
* https://redis.io/topics/modules-blocking-ops.
* -------------------------------------------------------------------------- */
/* This is called from blocked.c in order to unblock a client: may be called
* for multiple reasons while the client is in the middle of being blocked
* because the client is terminated, but is also called for cleanup when a
* client is unblocked in a clean way after replaying.
*
* What we do here is just to set the client to NULL in the redis module
* blocked client handle. This way if the client is terminated while there
* is a pending threaded operation involving the blocked client, we'll know
* that the client no longer exists and no reply callback should be called.
*
* The structure ValkeyModuleBlockedClient will be always deallocated when
* running the list of clients blocked by a module that need to be unblocked. */
void unblockClientFromModule(client *c) {
ValkeyModuleBlockedClient *bc = c->bstate.module_blocked_handle;
/* Call the disconnection callback if any. Note that
* bc->disconnect_callback is set to NULL if the client gets disconnected
* by the module itself or because of a timeout, so the callback will NOT
* get called if this is not an actual disconnection event. */
if (bc->disconnect_callback) {
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, bc->module, VALKEYMODULE_CTX_NONE);
ctx.blocked_privdata = bc->privdata;
ctx.client = bc->client;
bc->disconnect_callback(&ctx,bc);
moduleFreeContext(&ctx);
}
/* If we made it here and client is still blocked it means that the command
* timed-out, client was killed or disconnected and disconnect_callback was
* not implemented (or it was, but VM_UnblockClient was not called from
* within it, as it should).
* We must call moduleUnblockClient in order to free privdata and
* ValkeyModuleBlockedClient.
*
* Note that we only do that for clients that are blocked on keys, for which
* the contract is that the module should not call VM_UnblockClient under
* normal circumstances.
* Clients implementing threads and working with private data should be
* aware that calling VM_UnblockClient for every blocked client is their
* responsibility, and if they fail to do so memory may leak. Ideally they
* should implement the disconnect and timeout callbacks and call
* VM_UnblockClient, but any other way is also acceptable. */
if (bc->blocked_on_keys && !bc->unblocked)
moduleUnblockClient(c);
bc->client = NULL;
}
/* Block a client in the context of a module: this function implements both
* VM_BlockClient() and VM_BlockClientOnKeys() depending on the fact the
* keys are passed or not.
*
* When not blocking for keys, the keys, numkeys, and privdata parameters are
* not needed. The privdata in that case must be NULL, since later is
* VM_UnblockClient() that will provide some private data that the reply
* callback will receive.
*
* Instead when blocking for keys, normally VM_UnblockClient() will not be
* called (because the client will unblock when the key is modified), so
* 'privdata' should be provided in that case, so that once the client is
* unlocked and the reply callback is called, it will receive its associated
* private data.
*
* Even when blocking on keys, VM_UnblockClient() can be called however, but
* in that case the privdata argument is disregarded, because we pass the
* reply callback the privdata that is set here while blocking.
*
*/
ValkeyModuleBlockedClient *moduleBlockClient(ValkeyModuleCtx *ctx, ValkeyModuleCmdFunc reply_callback,
ValkeyModuleAuthCallback auth_reply_callback,
ValkeyModuleCmdFunc timeout_callback, void (*free_privdata)(ValkeyModuleCtx*,void*),
long long timeout_ms, ValkeyModuleString **keys, int numkeys, void *privdata,
Blocked module clients should be aware when a key is deleted (#11310) The use case is a module that wants to implement a blocking command on a key that necessarily exists and wants to unblock the client in case the key is deleted (much like what we implemented for XREADGROUP in #10306) New module API: * RedisModule_BlockClientOnKeysWithFlags Flags: * REDISMODULE_BLOCK_UNBLOCK_NONE * REDISMODULE_BLOCK_UNBLOCK_DELETED ### Detailed description of code changes blocked.c: 1. Both module and stream functions are called whether the key exists or not, regardless of its type. We do that in order to allow modules/stream to unblock the client in case the key is no longer present or has changed type (the behavior for streams didn't change, just code that moved into serveClientsBlockedOnStreamKey) 2. Make sure afterCommand is called in serveClientsBlockedOnKeyByModule, in order to propagate actions from moduleTryServeClientBlockedOnKey. 3. handleClientsBlockedOnKeys: call propagatePendingCommands directly after lookupKeyReadWithFlags to prevent a possible lazy-expire DEL from being mixed with any command propagated by the preceding functions. 4. blockForKeys: Caller can specifiy that it wants to be awakened if key is deleted. Minor optimizations (use dictAddRaw). 5. signalKeyAsReady became signalKeyAsReadyLogic which can take a boolean in case the key is deleted. It will only signal if there's at least one client that awaits key deletion (to save calls to handleClientsBlockedOnKeys). Minor optimizations (use dictAddRaw) db.c: 1. scanDatabaseForDeletedStreams is now scanDatabaseForDeletedKeys and will signalKeyAsReady for any key that was removed from the database or changed type. It is the responsibility of the code in blocked.c to ignore or act on deleted/type-changed keys. 2. Use the new signalDeletedKeyAsReady where needed blockedonkey.c + tcl: 1. Added test of new capabilities (FSL.BPOPGT now requires the key to exist in order to work)
2022-10-18 18:50:02 +02:00
int flags) {
client *c = ctx->client;
int islua = scriptIsRunning();
int ismulti = server.in_exec;
Modules: don't crash when Lua calls a module blocking command. Lua scripting does not support calling blocking commands, however all the native Redis commands are flagged as "s" (no scripting flag), so this is not possible at all. With modules there is no such mechanism in order to flag a command as non callable by the Lua scripting engine, moreover we cannot trust the modules users from complying all the times: it is likely that modules will be released to have blocking commands without such commands being flagged correctly, even if we provide a way to signal this fact. This commit attempts to address the problem in a short term way, by detecting that a module is trying to block in the context of the Lua scripting engine client, and preventing to do this. The module will actually believe to block as usually, but what happens is that the Lua script receives an error immediately, and the background call is ignored by the Redis engine (if not for the cleanup callbacks, once it unblocks). Long term, the more likely solution, is to introduce a new call called RedisModule_GetClientFlags(), so that a command can detect if the caller is a Lua script, and return an error, or avoid blocking at all. Being the blocking API experimental right now, more work is needed in this regard in order to reach a level well blocking module commands and all the other Redis subsystems interact peacefully. Now the effect is like the following: 127.0.0.1:6379> eval "redis.call('hello.block',1,5000)" 0 (error) ERR Error running script (call to f_b5ba35ff97bc1ef23debc4d6e9fd802da187ed53): @user_script:1: ERR Blocking module command called from Lua script This commit fixes issue #4127 in the short term.
2017-07-23 12:55:37 +02:00
c->bstate.module_blocked_handle = zmalloc(sizeof(ValkeyModuleBlockedClient));
ValkeyModuleBlockedClient *bc = c->bstate.module_blocked_handle;
ctx->module->blocked_clients++;
Modules: don't crash when Lua calls a module blocking command. Lua scripting does not support calling blocking commands, however all the native Redis commands are flagged as "s" (no scripting flag), so this is not possible at all. With modules there is no such mechanism in order to flag a command as non callable by the Lua scripting engine, moreover we cannot trust the modules users from complying all the times: it is likely that modules will be released to have blocking commands without such commands being flagged correctly, even if we provide a way to signal this fact. This commit attempts to address the problem in a short term way, by detecting that a module is trying to block in the context of the Lua scripting engine client, and preventing to do this. The module will actually believe to block as usually, but what happens is that the Lua script receives an error immediately, and the background call is ignored by the Redis engine (if not for the cleanup callbacks, once it unblocks). Long term, the more likely solution, is to introduce a new call called RedisModule_GetClientFlags(), so that a command can detect if the caller is a Lua script, and return an error, or avoid blocking at all. Being the blocking API experimental right now, more work is needed in this regard in order to reach a level well blocking module commands and all the other Redis subsystems interact peacefully. Now the effect is like the following: 127.0.0.1:6379> eval "redis.call('hello.block',1,5000)" 0 (error) ERR Error running script (call to f_b5ba35ff97bc1ef23debc4d6e9fd802da187ed53): @user_script:1: ERR Blocking module command called from Lua script This commit fixes issue #4127 in the short term.
2017-07-23 12:55:37 +02:00
/* We need to handle the invalid operation of calling modules blocking
* commands from Lua or MULTI. We actually create an already aborted
* (client set to NULL) blocked client handle, and actually reply with
* an error. */
bc->client = (islua || ismulti) ? NULL : c;
bc->module = ctx->module;
bc->reply_callback = reply_callback;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
bc->auth_reply_cb = auth_reply_callback;
bc->timeout_callback = timeout_callback;
bc->disconnect_callback = NULL; /* Set by VM_SetDisconnectCallback() */
bc->free_privdata = free_privdata;
bc->privdata = privdata;
bc->reply_client = moduleAllocTempClient();
bc->thread_safe_ctx_client = moduleAllocTempClient();
if (bc->client)
bc->reply_client->resp = bc->client->resp;
bc->dbid = c->db->id;
bc->blocked_on_keys = keys != NULL;
bc->unblocked = 0;
bc->background_timer = 0;
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
bc->background_duration = 0;
mstime_t timeout = 0;
if (timeout_ms) {
mstime_t now = mstime();
if (timeout_ms > LLONG_MAX - now) {
c->bstate.module_blocked_handle = NULL;
addReplyError(c, "timeout is out of range"); /* 'timeout_ms+now' would overflow */
return bc;
}
timeout = timeout_ms + now;
}
if (islua || ismulti) {
reprocess command when client is unblocked on keys (#11012) *TL;DR* --------------------------------------- Following the discussion over the issue [#7551](https://github.com/redis/redis/issues/7551) We decided to refactor the client blocking code to eliminate some of the code duplications and to rebuild the infrastructure better for future key blocking cases. *In this PR* --------------------------------------- 1. reprocess the command once a client becomes unblocked on key (instead of running custom code for the unblocked path that's different than the one that would have run if blocking wasn't needed) 2. eliminate some (now) irrelevant code for handling unblocking lists/zsets/streams etc... 3. modify some tests to intercept the error in cases of error on reprocess after unblock (see details in the notes section below) 4. replace '$' on the client argv with current stream id. Since once we reprocess the stream XREAD we need to read from the last msg and not wait for new msg in order to prevent endless block loop. 5. Added statistics to the info "Clients" section to report the: * `total_blocking_keys` - number of blocking keys * `total_blocking_keys_on_nokey` - number of blocking keys which have at least 1 client which would like to be unblocked on when the key is deleted. 6. Avoid expiring unblocked key during unblock. Previously we used to lookup the unblocked key which might have been expired during the lookup. Now we lookup the key using NOTOUCH and NOEXPIRE to avoid deleting it at this point, so propagating commands in blocked.c is no longer needed. 7. deprecated command flags. We decided to remove the CMD_CALL_STATS and CMD_CALL_SLOWLOG and make an explicit verification in the call() function in order to decide if stats update should take place. This should simplify the logic and also mitigate existing issues: for example module calls which are triggered as part of AOF loading might still report stats even though they are called during AOF loading. *Behavior changes* --------------------------------------------------- 1. As this implementation prevents writing dedicated code handling unblocked streams/lists/zsets, since we now re-process the command once the client is unblocked some errors will be reported differently. The old implementation used to issue ``UNBLOCKED the stream key no longer exists`` in the following cases: - The stream key has been deleted (ie. calling DEL) - The stream and group existed but the key type was changed by overriding it (ie. with set command) - The key not longer exists after we swapdb with a db which does not contains this key - After swapdb when the new db has this key but with different type. In the new implementation the reported errors will be the same as if the command was processed after effect: **NOGROUP** - in case key no longer exists, or **WRONGTYPE** in case the key was overridden with a different type. 2. Reprocessing the command means that some checks will be reevaluated once the client is unblocked. For example, ACL rules might change since the command originally was executed and will fail once the client is unblocked. Another example is OOM condition checks which might enable the command to run and block but fail the command reprocess once the client is unblocked. 3. One of the changes in this PR is that no command stats are being updated once the command is blocked (all stats will be updated once the client is unblocked). This implies that when we have many clients blocked, users will no longer be able to get that information from the command stats. However the information can still be gathered from the client list. **Client blocking** --------------------------------------------------- the blocking on key will still be triggered the same way as it is done today. in order to block the current client on list of keys, the call to blockForKeys will still need to be made which will perform the same as it is today: * add the client to the list of blocked clients on each key * keep the key with a matching list node (position in the global blocking clients list for that key) in the client private blocking key dict. * flag the client with CLIENT_BLOCKED * update blocking statistics * register the client on the timeout table **Key Unblock** --------------------------------------------------- Unblocking a specific key will be triggered (same as today) by calling signalKeyAsReady. the implementation in that part will stay the same as today - adding the key to the global readyList. The reason to maintain the readyList (as apposed to iterating over all clients blocked on the specific key) is in order to keep the signal operation as short as possible, since it is called during the command processing. The main change is that instead of going through a dedicated code path that operates the blocked command we will just call processPendingCommandsAndResetClient. **ClientUnblock (keys)** --------------------------------------------------- 1. Unblocking clients on keys will be triggered after command is processed and during the beforeSleep 8. the general schema is: 9. For each key *k* in the readyList: ``` For each client *c* which is blocked on *k*: in case either: 1. *k* exists AND the *k* type matches the current client blocking type OR 2. *k* exists and *c* is blocked on module command OR 3. *k* does not exists and *c* was blocked with the flag unblock_on_deleted_key do: 1. remove the client from the list of clients blocked on this key 2. remove the blocking list node from the client blocking key dict 3. remove the client from the timeout list 10. queue the client on the unblocked_clients list 11. *NEW*: call processCommandAndResetClient(c); ``` *NOTE:* for module blocked clients we will still call the moduleUnblockClientByHandle which will queue the client for processing in moduleUnblockedClients list. **Process Unblocked clients** --------------------------------------------------- The process of all unblocked clients is done in the beforeSleep and no change is planned in that part. The general schema will be: For each client *c* in server.unblocked_clients: * remove client from the server.unblocked_clients * set back the client readHandler * continue processing the pending command and input buffer. *Some notes regarding the new implementation* --------------------------------------------------- 1. Although it was proposed, it is currently difficult to remove the read handler from the client while it is blocked. The reason is that a blocked client should be unblocked when it is disconnected, or we might consume data into void. 2. While this PR mainly keep the current blocking logic as-is, there might be some future additions to the infrastructure that we would like to have: - allow non-preemptive blocking of client - sometimes we can think that a new kind of blocking can be expected to not be preempt. for example lets imagine we hold some keys on disk and when a command needs to process them it will block until the keys are uploaded. in this case we will want the client to not disconnect or be unblocked until the process is completed (remove the client read handler, prevent client timeout, disable unblock via debug command etc...). - allow generic blocking based on command declared keys - we might want to add a hook before command processing to check if any of the declared keys require the command to block. this way it would be easier to add new kinds of key-based blocking mechanisms. Co-authored-by: Oran Agra <oran@redislabs.com> Signed-off-by: Ran Shidlansik <ranshid@amazon.com>
2023-01-01 23:35:42 +02:00
c->bstate.module_blocked_handle = NULL;
addReplyError(c, islua ?
"Blocking module command called from Lua script" :
"Blocking module command called from transaction");
} else if (ctx->flags & VALKEYMODULE_CTX_BLOCKED_REPLY) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
c->bstate.module_blocked_handle = NULL;
addReplyError(c, "Blocking module command called from a Reply callback context");
} else if (!auth_reply_callback && clientHasModuleAuthInProgress(c)) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
c->bstate.module_blocked_handle = NULL;
addReplyError(c, "Clients undergoing module based authentication can only be blocked on auth");
Modules: don't crash when Lua calls a module blocking command. Lua scripting does not support calling blocking commands, however all the native Redis commands are flagged as "s" (no scripting flag), so this is not possible at all. With modules there is no such mechanism in order to flag a command as non callable by the Lua scripting engine, moreover we cannot trust the modules users from complying all the times: it is likely that modules will be released to have blocking commands without such commands being flagged correctly, even if we provide a way to signal this fact. This commit attempts to address the problem in a short term way, by detecting that a module is trying to block in the context of the Lua scripting engine client, and preventing to do this. The module will actually believe to block as usually, but what happens is that the Lua script receives an error immediately, and the background call is ignored by the Redis engine (if not for the cleanup callbacks, once it unblocks). Long term, the more likely solution, is to introduce a new call called RedisModule_GetClientFlags(), so that a command can detect if the caller is a Lua script, and return an error, or avoid blocking at all. Being the blocking API experimental right now, more work is needed in this regard in order to reach a level well blocking module commands and all the other Redis subsystems interact peacefully. Now the effect is like the following: 127.0.0.1:6379> eval "redis.call('hello.block',1,5000)" 0 (error) ERR Error running script (call to f_b5ba35ff97bc1ef23debc4d6e9fd802da187ed53): @user_script:1: ERR Blocking module command called from Lua script This commit fixes issue #4127 in the short term.
2017-07-23 12:55:37 +02:00
} else {
if (keys) {
blockForKeys(c,BLOCKED_MODULE,keys,numkeys,timeout,flags&VALKEYMODULE_BLOCK_UNBLOCK_DELETED);
} else {
c->bstate.timeout = timeout;
blockClient(c,BLOCKED_MODULE);
}
Modules: don't crash when Lua calls a module blocking command. Lua scripting does not support calling blocking commands, however all the native Redis commands are flagged as "s" (no scripting flag), so this is not possible at all. With modules there is no such mechanism in order to flag a command as non callable by the Lua scripting engine, moreover we cannot trust the modules users from complying all the times: it is likely that modules will be released to have blocking commands without such commands being flagged correctly, even if we provide a way to signal this fact. This commit attempts to address the problem in a short term way, by detecting that a module is trying to block in the context of the Lua scripting engine client, and preventing to do this. The module will actually believe to block as usually, but what happens is that the Lua script receives an error immediately, and the background call is ignored by the Redis engine (if not for the cleanup callbacks, once it unblocks). Long term, the more likely solution, is to introduce a new call called RedisModule_GetClientFlags(), so that a command can detect if the caller is a Lua script, and return an error, or avoid blocking at all. Being the blocking API experimental right now, more work is needed in this regard in order to reach a level well blocking module commands and all the other Redis subsystems interact peacefully. Now the effect is like the following: 127.0.0.1:6379> eval "redis.call('hello.block',1,5000)" 0 (error) ERR Error running script (call to f_b5ba35ff97bc1ef23debc4d6e9fd802da187ed53): @user_script:1: ERR Blocking module command called from Lua script This commit fixes issue #4127 in the short term.
2017-07-23 12:55:37 +02:00
}
return bc;
}
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
/* This API registers a callback to execute in addition to normal password based authentication.
* Multiple callbacks can be registered across different modules. When a Module is unloaded, all the
* auth callbacks registered by it are unregistered.
* The callbacks are attempted (in the order of most recently registered first) when the AUTH/HELLO
* (with AUTH field provided) commands are called.
* The callbacks will be called with a module context along with a username and a password, and are
* expected to take one of the following actions:
* (1) Authenticate - Use the VM_AuthenticateClient* API and return VALKEYMODULE_AUTH_HANDLED.
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
* This will immediately end the auth chain as successful and add the OK reply.
* (2) Deny Authentication - Return VALKEYMODULE_AUTH_HANDLED without authenticating or blocking the
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
* client. Optionally, `err` can be set to a custom error message and `err` will be automatically
* freed by the server.
* This will immediately end the auth chain as unsuccessful and add the ERR reply.
* (3) Block a client on authentication - Use the VM_BlockClientOnAuth API and return
* VALKEYMODULE_AUTH_HANDLED. Here, the client will be blocked until the VM_UnblockClient API is used
* which will trigger the auth reply callback (provided through the VM_BlockClientOnAuth).
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
* In this reply callback, the Module should authenticate, deny or skip handling authentication.
* (4) Skip handling Authentication - Return VALKEYMODULE_AUTH_NOT_HANDLED without blocking the
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
* client. This will allow the engine to attempt the next module auth callback.
* If none of the callbacks authenticate or deny auth, then password based auth is attempted and
* will authenticate or add failure logs and reply to the clients accordingly.
*
* Note: If a client is disconnected while it was in the middle of blocking module auth, that
* occurrence of the AUTH or HELLO command will not be tracked in the INFO command stats.
*
* The following is an example of how non-blocking module based authentication can be used:
*
* int auth_cb(ValkeyModuleCtx *ctx, ValkeyModuleString *username, ValkeyModuleString *password, ValkeyModuleString **err) {
* const char *user = ValkeyModule_StringPtrLen(username, NULL);
* const char *pwd = ValkeyModule_StringPtrLen(password, NULL);
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
* if (!strcmp(user,"foo") && !strcmp(pwd,"valid_password")) {
* ValkeyModule_AuthenticateClientWithACLUser(ctx, "foo", 3, NULL, NULL, NULL);
* return VALKEYMODULE_AUTH_HANDLED;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
* }
*
* else if (!strcmp(user,"foo") && !strcmp(pwd,"wrong_password")) {
* ValkeyModuleString *log = ValkeyModule_CreateString(ctx, "Module Auth", 11);
* ValkeyModule_ACLAddLogEntryByUserName(ctx, username, log, VALKEYMODULE_ACL_LOG_AUTH);
* ValkeyModule_FreeString(ctx, log);
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
* const char *err_msg = "Auth denied by Misc Module.";
* *err = ValkeyModule_CreateString(ctx, err_msg, strlen(err_msg));
* return VALKEYMODULE_AUTH_HANDLED;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
* }
* return VALKEYMODULE_AUTH_NOT_HANDLED;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
* }
*
* int ValkeyModule_OnLoad(ValkeyModuleCtx *ctx, ValkeyModuleString **argv, int argc) {
* if (ValkeyModule_Init(ctx,"authmodule",1,VALKEYMODULE_APIVER_1)== VALKEYMODULE_ERR)
* return VALKEYMODULE_ERR;
* ValkeyModule_RegisterAuthCallback(ctx, auth_cb);
* return VALKEYMODULE_OK;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
* }
*/
void VM_RegisterAuthCallback(ValkeyModuleCtx *ctx, ValkeyModuleAuthCallback cb) {
ValkeyModuleAuthCtx *auth_ctx = zmalloc(sizeof(ValkeyModuleAuthCtx));
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
auth_ctx->module = ctx->module;
auth_ctx->auth_cb = cb;
listAddNodeHead(moduleAuthCallbacks, auth_ctx);
}
/* Helper function to invoke the free private data callback of a Module blocked client. */
void moduleInvokeFreePrivDataCallback(client *c, ValkeyModuleBlockedClient *bc) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
if (bc->privdata && bc->free_privdata) {
ValkeyModuleCtx ctx;
int ctx_flags = c == NULL ? VALKEYMODULE_CTX_BLOCKED_DISCONNECTED : VALKEYMODULE_CTX_NONE;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
moduleCreateContext(&ctx, bc->module, ctx_flags);
ctx.blocked_privdata = bc->privdata;
ctx.client = bc->client;
bc->free_privdata(&ctx,bc->privdata);
moduleFreeContext(&ctx);
}
}
/* Unregisters all the module auth callbacks that have been registered by this Module. */
void moduleUnregisterAuthCBs(ValkeyModule *module) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
listIter li;
listNode *ln;
listRewind(moduleAuthCallbacks, &li);
while ((ln = listNext(&li))) {
ValkeyModuleAuthCtx *ctx = listNodeValue(ln);
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
if (ctx->module == module) {
listDelNode(moduleAuthCallbacks, ln);
zfree(ctx);
}
}
}
/* Search for & attempt next module auth callback after skipping the ones already attempted.
* Returns the result of the module auth callback. */
int attemptNextAuthCb(client *c, robj *username, robj *password, robj **err) {
int handle_next_callback = c->module_auth_ctx == NULL;
ValkeyModuleAuthCtx *cur_auth_ctx = NULL;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
listNode *ln;
listIter li;
listRewind(moduleAuthCallbacks, &li);
int result = VALKEYMODULE_AUTH_NOT_HANDLED;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
while((ln = listNext(&li))) {
cur_auth_ctx = listNodeValue(ln);
/* Skip over the previously attempted auth contexts. */
if (!handle_next_callback) {
handle_next_callback = cur_auth_ctx == c->module_auth_ctx;
continue;
}
/* Remove the module auth complete flag before we attempt the next cb. */
c->flags &= ~CLIENT_MODULE_AUTH_HAS_RESULT;
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, cur_auth_ctx->module, VALKEYMODULE_CTX_NONE);
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
ctx.client = c;
*err = NULL;
c->module_auth_ctx = cur_auth_ctx;
result = cur_auth_ctx->auth_cb(&ctx, username, password, err);
moduleFreeContext(&ctx);
if (result == VALKEYMODULE_AUTH_HANDLED) break;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
/* If Auth was not handled (allowed/denied/blocked) by the Module, try the next auth cb. */
}
return result;
}
/* Helper function to handle a reprocessed unblocked auth client.
* Returns VALKEYMODULE_AUTH_NOT_HANDLED if the client was not reprocessed after a blocking module
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
* auth operation.
* Otherwise, we attempt the auth reply callback & the free priv data callback, update fields and
* return the result of the reply callback. */
int attemptBlockedAuthReplyCallback(client *c, robj *username, robj *password, robj **err) {
int result = VALKEYMODULE_AUTH_NOT_HANDLED;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
if (!c->module_blocked_client) return result;
ValkeyModuleBlockedClient *bc = (ValkeyModuleBlockedClient *) c->module_blocked_client;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
bc->client = c;
if (bc->auth_reply_cb) {
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, bc->module, VALKEYMODULE_CTX_BLOCKED_REPLY);
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
ctx.blocked_privdata = bc->privdata;
ctx.blocked_ready_key = NULL;
ctx.client = bc->client;
ctx.blocked_client = bc;
result = bc->auth_reply_cb(&ctx, username, password, err);
moduleFreeContext(&ctx);
}
moduleInvokeFreePrivDataCallback(c, bc);
c->module_blocked_client = NULL;
c->lastcmd->microseconds += bc->background_duration;
bc->module->blocked_clients--;
zfree(bc);
return result;
}
/* Helper function to attempt Module based authentication through module auth callbacks.
* Here, the Module is expected to authenticate the client using the ValkeyModule APIs and to add ACL
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
* logs in case of errors.
* Returns one of the following codes:
* AUTH_OK - Indicates that a module handled and authenticated the client.
* AUTH_ERR - Indicates that a module handled and denied authentication for this client.
* AUTH_NOT_HANDLED - Indicates that authentication was not handled by any Module and that
* normal password based authentication can be attempted next.
* AUTH_BLOCKED - Indicates module authentication is in progress through a blocking implementation.
* In this case, authentication is handled here again after the client is unblocked / reprocessed. */
int checkModuleAuthentication(client *c, robj *username, robj *password, robj **err) {
if (!listLength(moduleAuthCallbacks)) return AUTH_NOT_HANDLED;
int result = attemptBlockedAuthReplyCallback(c, username, password, err);
if (result == VALKEYMODULE_AUTH_NOT_HANDLED) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
result = attemptNextAuthCb(c, username, password, err);
}
if (c->flags & CLIENT_BLOCKED) {
/* Modules are expected to return VALKEYMODULE_AUTH_HANDLED when blocking clients. */
serverAssert(result == VALKEYMODULE_AUTH_HANDLED);
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
return AUTH_BLOCKED;
}
c->module_auth_ctx = NULL;
if (result == VALKEYMODULE_AUTH_NOT_HANDLED) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
c->flags &= ~CLIENT_MODULE_AUTH_HAS_RESULT;
return AUTH_NOT_HANDLED;
}
if (c->flags & CLIENT_MODULE_AUTH_HAS_RESULT) {
c->flags &= ~CLIENT_MODULE_AUTH_HAS_RESULT;
if (c->authenticated) return AUTH_OK;
}
return AUTH_ERR;
}
/* This function is called from module.c in order to check if a module
* blocked for BLOCKED_MODULE and subtype 'on keys' (bc->blocked_on_keys true)
* can really be unblocked, since the module was able to serve the client.
* If the callback returns VALKEYMODULE_OK, then the client can be unblocked,
* otherwise the client remains blocked and we'll retry again when one of
* the keys it blocked for becomes "ready" again.
* This function returns 1 if client was served (and should be unblocked) */
int moduleTryServeClientBlockedOnKey(client *c, robj *key) {
int served = 0;
ValkeyModuleBlockedClient *bc = c->bstate.module_blocked_handle;
/* Protect against re-processing: don't serve clients that are already
* in the unblocking list for any reason (including VM_UnblockClient()
* explicit call). See #6798. */
if (bc->unblocked) return 0;
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, bc->module, VALKEYMODULE_CTX_BLOCKED_REPLY);
ctx.blocked_ready_key = key;
ctx.blocked_privdata = bc->privdata;
ctx.client = bc->client;
ctx.blocked_client = bc;
if (bc->reply_callback(&ctx,(void**)c->argv,c->argc) == VALKEYMODULE_OK)
served = 1;
moduleFreeContext(&ctx);
return served;
}
/* Block a client in the context of a blocking command, returning a handle
* which will be used, later, in order to unblock the client with a call to
* ValkeyModule_UnblockClient(). The arguments specify callback functions
* and a timeout after which the client is unblocked.
*
* The callbacks are called in the following contexts:
*
* reply_callback: called after a successful ValkeyModule_UnblockClient()
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
* call in order to reply to the client and unblock it.
*
* timeout_callback: called when the timeout is reached or if `CLIENT UNBLOCK`
* is invoked, in order to send an error to the client.
*
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
* free_privdata: called in order to free the private data that is passed
* by ValkeyModule_UnblockClient() call.
*
* Note: ValkeyModule_UnblockClient should be called for every blocked client,
* even if client was killed, timed-out or disconnected. Failing to do so
* will result in memory leaks.
*
* There are some cases where ValkeyModule_BlockClient() cannot be used:
*
* 1. If the client is a Lua script.
* 2. If the client is executing a MULTI block.
*
* In these cases, a call to ValkeyModule_BlockClient() will **not** block the
* client, but instead produce a specific error reply.
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
*
* A module that registers a timeout_callback function can also be unblocked
* using the `CLIENT UNBLOCK` command, which will trigger the timeout callback.
* If a callback function is not registered, then the blocked client will be
* treated as if it is not in a blocked state and `CLIENT UNBLOCK` will return
* a zero value.
*
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
* Measuring background time: By default the time spent in the blocked command
* is not account for the total command duration. To include such time you should
* use VM_BlockedClientMeasureTimeStart() and VM_BlockedClientMeasureTimeEnd() one,
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
* or multiple times within the blocking command background work.
*/
ValkeyModuleBlockedClient *VM_BlockClient(ValkeyModuleCtx *ctx, ValkeyModuleCmdFunc reply_callback,
ValkeyModuleCmdFunc timeout_callback, void (*free_privdata)(ValkeyModuleCtx*,void*),
Blocked module clients should be aware when a key is deleted (#11310) The use case is a module that wants to implement a blocking command on a key that necessarily exists and wants to unblock the client in case the key is deleted (much like what we implemented for XREADGROUP in #10306) New module API: * RedisModule_BlockClientOnKeysWithFlags Flags: * REDISMODULE_BLOCK_UNBLOCK_NONE * REDISMODULE_BLOCK_UNBLOCK_DELETED ### Detailed description of code changes blocked.c: 1. Both module and stream functions are called whether the key exists or not, regardless of its type. We do that in order to allow modules/stream to unblock the client in case the key is no longer present or has changed type (the behavior for streams didn't change, just code that moved into serveClientsBlockedOnStreamKey) 2. Make sure afterCommand is called in serveClientsBlockedOnKeyByModule, in order to propagate actions from moduleTryServeClientBlockedOnKey. 3. handleClientsBlockedOnKeys: call propagatePendingCommands directly after lookupKeyReadWithFlags to prevent a possible lazy-expire DEL from being mixed with any command propagated by the preceding functions. 4. blockForKeys: Caller can specifiy that it wants to be awakened if key is deleted. Minor optimizations (use dictAddRaw). 5. signalKeyAsReady became signalKeyAsReadyLogic which can take a boolean in case the key is deleted. It will only signal if there's at least one client that awaits key deletion (to save calls to handleClientsBlockedOnKeys). Minor optimizations (use dictAddRaw) db.c: 1. scanDatabaseForDeletedStreams is now scanDatabaseForDeletedKeys and will signalKeyAsReady for any key that was removed from the database or changed type. It is the responsibility of the code in blocked.c to ignore or act on deleted/type-changed keys. 2. Use the new signalDeletedKeyAsReady where needed blockedonkey.c + tcl: 1. Added test of new capabilities (FSL.BPOPGT now requires the key to exist in order to work)
2022-10-18 18:50:02 +02:00
long long timeout_ms) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
return moduleBlockClient(ctx,reply_callback,NULL,timeout_callback,free_privdata,timeout_ms, NULL,0,NULL,0);
}
/* Block the current client for module authentication in the background. If module auth is not in
* progress on the client, the API returns NULL. Otherwise, the client is blocked and the VM_BlockedClient
* is returned similar to the VM_BlockClient API.
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
* Note: Only use this API from the context of a module auth callback. */
ValkeyModuleBlockedClient *VM_BlockClientOnAuth(ValkeyModuleCtx *ctx, ValkeyModuleAuthCallback reply_callback,
void (*free_privdata)(ValkeyModuleCtx*,void*)) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
if (!clientHasModuleAuthInProgress(ctx->client)) {
addReplyError(ctx->client, "Module blocking client on auth when not currently undergoing module authentication");
return NULL;
}
ValkeyModuleBlockedClient *bc = moduleBlockClient(ctx,NULL,reply_callback,NULL,free_privdata,0, NULL,0,NULL,0);
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
if (ctx->client->flags & CLIENT_BLOCKED) {
ctx->client->flags |= CLIENT_PENDING_COMMAND;
}
return bc;
}
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
/* Get the private data that was previusely set on a blocked client */
void *VM_BlockClientGetPrivateData(ValkeyModuleBlockedClient *blocked_client) {
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
return blocked_client->privdata;
}
/* Set private data on a blocked client */
void VM_BlockClientSetPrivateData(ValkeyModuleBlockedClient *blocked_client, void *private_data) {
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
blocked_client->privdata = private_data;
}
/* This call is similar to ValkeyModule_BlockClient(), however in this case we
* don't just block the client, but also ask Redis to unblock it automatically
* once certain keys become "ready", that is, contain more data.
*
* Basically this is similar to what a typical Redis command usually does,
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
* like BLPOP or BZPOPMAX: the client blocks if it cannot be served ASAP,
* and later when the key receives new data (a list push for instance), the
* client is unblocked and served.
*
* However in the case of this module API, when the client is unblocked?
*
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
* 1. If you block on a key of a type that has blocking operations associated,
* like a list, a sorted set, a stream, and so forth, the client may be
* unblocked once the relevant key is targeted by an operation that normally
* unblocks the native blocking operations for that type. So if we block
* on a list key, an RPUSH command may unblock our client and so forth.
* 2. If you are implementing your native data type, or if you want to add new
* unblocking conditions in addition to "1", you can call the modules API
* ValkeyModule_SignalKeyAsReady().
*
* Anyway we can't be sure if the client should be unblocked just because the
* key is signaled as ready: for instance a successive operation may change the
* key, or a client in queue before this one can be served, modifying the key
* as well and making it empty again. So when a client is blocked with
* ValkeyModule_BlockClientOnKeys() the reply callback is not called after
* VM_UnblockClient() is called, but every time a key is signaled as ready:
* if the reply callback can serve the client, it returns VALKEYMODULE_OK
* and the client is unblocked, otherwise it will return VALKEYMODULE_ERR
* and we'll try again later.
*
* The reply callback can access the key that was signaled as ready by
* calling the API ValkeyModule_GetBlockedClientReadyKey(), that returns
* just the string name of the key as a ValkeyModuleString object.
*
* Thanks to this system we can setup complex blocking scenarios, like
* unblocking a client only if a list contains at least 5 items or other
* more fancy logics.
*
* Note that another difference with ValkeyModule_BlockClient(), is that here
* we pass the private data directly when blocking the client: it will
* be accessible later in the reply callback. Normally when blocking with
* ValkeyModule_BlockClient() the private data to reply to the client is
* passed when calling ValkeyModule_UnblockClient() but here the unblocking
* is performed by Redis itself, so we need to have some private data before
* hand. The private data is used to store any information about the specific
* unblocking operation that you are implementing. Such information will be
* freed using the free_privdata callback provided by the user.
*
* However the reply callback will be able to access the argument vector of
* the command, so the private data is often not needed.
*
* Note: Under normal circumstances ValkeyModule_UnblockClient should not be
* called for clients that are blocked on keys (Either the key will
* become ready or a timeout will occur). If for some reason you do want
* to call ValkeyModule_UnblockClient it is possible: Client will be
* handled as if it were timed-out (You must implement the timeout
* callback in that case).
*/
ValkeyModuleBlockedClient *VM_BlockClientOnKeys(ValkeyModuleCtx *ctx, ValkeyModuleCmdFunc reply_callback,
ValkeyModuleCmdFunc timeout_callback, void (*free_privdata)(ValkeyModuleCtx*,void*),
long long timeout_ms, ValkeyModuleString **keys, int numkeys, void *privdata) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
return moduleBlockClient(ctx,reply_callback,NULL,timeout_callback,free_privdata,timeout_ms, keys,numkeys,privdata,0);
Blocked module clients should be aware when a key is deleted (#11310) The use case is a module that wants to implement a blocking command on a key that necessarily exists and wants to unblock the client in case the key is deleted (much like what we implemented for XREADGROUP in #10306) New module API: * RedisModule_BlockClientOnKeysWithFlags Flags: * REDISMODULE_BLOCK_UNBLOCK_NONE * REDISMODULE_BLOCK_UNBLOCK_DELETED ### Detailed description of code changes blocked.c: 1. Both module and stream functions are called whether the key exists or not, regardless of its type. We do that in order to allow modules/stream to unblock the client in case the key is no longer present or has changed type (the behavior for streams didn't change, just code that moved into serveClientsBlockedOnStreamKey) 2. Make sure afterCommand is called in serveClientsBlockedOnKeyByModule, in order to propagate actions from moduleTryServeClientBlockedOnKey. 3. handleClientsBlockedOnKeys: call propagatePendingCommands directly after lookupKeyReadWithFlags to prevent a possible lazy-expire DEL from being mixed with any command propagated by the preceding functions. 4. blockForKeys: Caller can specifiy that it wants to be awakened if key is deleted. Minor optimizations (use dictAddRaw). 5. signalKeyAsReady became signalKeyAsReadyLogic which can take a boolean in case the key is deleted. It will only signal if there's at least one client that awaits key deletion (to save calls to handleClientsBlockedOnKeys). Minor optimizations (use dictAddRaw) db.c: 1. scanDatabaseForDeletedStreams is now scanDatabaseForDeletedKeys and will signalKeyAsReady for any key that was removed from the database or changed type. It is the responsibility of the code in blocked.c to ignore or act on deleted/type-changed keys. 2. Use the new signalDeletedKeyAsReady where needed blockedonkey.c + tcl: 1. Added test of new capabilities (FSL.BPOPGT now requires the key to exist in order to work)
2022-10-18 18:50:02 +02:00
}
/* Same as ValkeyModule_BlockClientOnKeys, but can take VALKEYMODULE_BLOCK_* flags
* Can be either VALKEYMODULE_BLOCK_UNBLOCK_DEFAULT, which means default behavior (same
* as calling ValkeyModule_BlockClientOnKeys)
Blocked module clients should be aware when a key is deleted (#11310) The use case is a module that wants to implement a blocking command on a key that necessarily exists and wants to unblock the client in case the key is deleted (much like what we implemented for XREADGROUP in #10306) New module API: * RedisModule_BlockClientOnKeysWithFlags Flags: * REDISMODULE_BLOCK_UNBLOCK_NONE * REDISMODULE_BLOCK_UNBLOCK_DELETED ### Detailed description of code changes blocked.c: 1. Both module and stream functions are called whether the key exists or not, regardless of its type. We do that in order to allow modules/stream to unblock the client in case the key is no longer present or has changed type (the behavior for streams didn't change, just code that moved into serveClientsBlockedOnStreamKey) 2. Make sure afterCommand is called in serveClientsBlockedOnKeyByModule, in order to propagate actions from moduleTryServeClientBlockedOnKey. 3. handleClientsBlockedOnKeys: call propagatePendingCommands directly after lookupKeyReadWithFlags to prevent a possible lazy-expire DEL from being mixed with any command propagated by the preceding functions. 4. blockForKeys: Caller can specifiy that it wants to be awakened if key is deleted. Minor optimizations (use dictAddRaw). 5. signalKeyAsReady became signalKeyAsReadyLogic which can take a boolean in case the key is deleted. It will only signal if there's at least one client that awaits key deletion (to save calls to handleClientsBlockedOnKeys). Minor optimizations (use dictAddRaw) db.c: 1. scanDatabaseForDeletedStreams is now scanDatabaseForDeletedKeys and will signalKeyAsReady for any key that was removed from the database or changed type. It is the responsibility of the code in blocked.c to ignore or act on deleted/type-changed keys. 2. Use the new signalDeletedKeyAsReady where needed blockedonkey.c + tcl: 1. Added test of new capabilities (FSL.BPOPGT now requires the key to exist in order to work)
2022-10-18 18:50:02 +02:00
*
* The flags is a bit mask of these:
*
* - `VALKEYMODULE_BLOCK_UNBLOCK_DELETED`: The clients should to be awakened in case any of `keys` are deleted.
Blocked module clients should be aware when a key is deleted (#11310) The use case is a module that wants to implement a blocking command on a key that necessarily exists and wants to unblock the client in case the key is deleted (much like what we implemented for XREADGROUP in #10306) New module API: * RedisModule_BlockClientOnKeysWithFlags Flags: * REDISMODULE_BLOCK_UNBLOCK_NONE * REDISMODULE_BLOCK_UNBLOCK_DELETED ### Detailed description of code changes blocked.c: 1. Both module and stream functions are called whether the key exists or not, regardless of its type. We do that in order to allow modules/stream to unblock the client in case the key is no longer present or has changed type (the behavior for streams didn't change, just code that moved into serveClientsBlockedOnStreamKey) 2. Make sure afterCommand is called in serveClientsBlockedOnKeyByModule, in order to propagate actions from moduleTryServeClientBlockedOnKey. 3. handleClientsBlockedOnKeys: call propagatePendingCommands directly after lookupKeyReadWithFlags to prevent a possible lazy-expire DEL from being mixed with any command propagated by the preceding functions. 4. blockForKeys: Caller can specifiy that it wants to be awakened if key is deleted. Minor optimizations (use dictAddRaw). 5. signalKeyAsReady became signalKeyAsReadyLogic which can take a boolean in case the key is deleted. It will only signal if there's at least one client that awaits key deletion (to save calls to handleClientsBlockedOnKeys). Minor optimizations (use dictAddRaw) db.c: 1. scanDatabaseForDeletedStreams is now scanDatabaseForDeletedKeys and will signalKeyAsReady for any key that was removed from the database or changed type. It is the responsibility of the code in blocked.c to ignore or act on deleted/type-changed keys. 2. Use the new signalDeletedKeyAsReady where needed blockedonkey.c + tcl: 1. Added test of new capabilities (FSL.BPOPGT now requires the key to exist in order to work)
2022-10-18 18:50:02 +02:00
* Mostly useful for commands that require the key to exist (like XREADGROUP)
*/
ValkeyModuleBlockedClient *VM_BlockClientOnKeysWithFlags(ValkeyModuleCtx *ctx, ValkeyModuleCmdFunc reply_callback,
ValkeyModuleCmdFunc timeout_callback, void (*free_privdata)(ValkeyModuleCtx*,void*),
long long timeout_ms, ValkeyModuleString **keys, int numkeys, void *privdata,
Blocked module clients should be aware when a key is deleted (#11310) The use case is a module that wants to implement a blocking command on a key that necessarily exists and wants to unblock the client in case the key is deleted (much like what we implemented for XREADGROUP in #10306) New module API: * RedisModule_BlockClientOnKeysWithFlags Flags: * REDISMODULE_BLOCK_UNBLOCK_NONE * REDISMODULE_BLOCK_UNBLOCK_DELETED ### Detailed description of code changes blocked.c: 1. Both module and stream functions are called whether the key exists or not, regardless of its type. We do that in order to allow modules/stream to unblock the client in case the key is no longer present or has changed type (the behavior for streams didn't change, just code that moved into serveClientsBlockedOnStreamKey) 2. Make sure afterCommand is called in serveClientsBlockedOnKeyByModule, in order to propagate actions from moduleTryServeClientBlockedOnKey. 3. handleClientsBlockedOnKeys: call propagatePendingCommands directly after lookupKeyReadWithFlags to prevent a possible lazy-expire DEL from being mixed with any command propagated by the preceding functions. 4. blockForKeys: Caller can specifiy that it wants to be awakened if key is deleted. Minor optimizations (use dictAddRaw). 5. signalKeyAsReady became signalKeyAsReadyLogic which can take a boolean in case the key is deleted. It will only signal if there's at least one client that awaits key deletion (to save calls to handleClientsBlockedOnKeys). Minor optimizations (use dictAddRaw) db.c: 1. scanDatabaseForDeletedStreams is now scanDatabaseForDeletedKeys and will signalKeyAsReady for any key that was removed from the database or changed type. It is the responsibility of the code in blocked.c to ignore or act on deleted/type-changed keys. 2. Use the new signalDeletedKeyAsReady where needed blockedonkey.c + tcl: 1. Added test of new capabilities (FSL.BPOPGT now requires the key to exist in order to work)
2022-10-18 18:50:02 +02:00
int flags) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
return moduleBlockClient(ctx,reply_callback,NULL,timeout_callback,free_privdata,timeout_ms, keys,numkeys,privdata,flags);
}
2019-10-30 10:20:28 +01:00
/* This function is used in order to potentially unblock a client blocked
* on keys with ValkeyModule_BlockClientOnKeys(). When this function is called,
Blocked module clients should be aware when a key is deleted (#11310) The use case is a module that wants to implement a blocking command on a key that necessarily exists and wants to unblock the client in case the key is deleted (much like what we implemented for XREADGROUP in #10306) New module API: * RedisModule_BlockClientOnKeysWithFlags Flags: * REDISMODULE_BLOCK_UNBLOCK_NONE * REDISMODULE_BLOCK_UNBLOCK_DELETED ### Detailed description of code changes blocked.c: 1. Both module and stream functions are called whether the key exists or not, regardless of its type. We do that in order to allow modules/stream to unblock the client in case the key is no longer present or has changed type (the behavior for streams didn't change, just code that moved into serveClientsBlockedOnStreamKey) 2. Make sure afterCommand is called in serveClientsBlockedOnKeyByModule, in order to propagate actions from moduleTryServeClientBlockedOnKey. 3. handleClientsBlockedOnKeys: call propagatePendingCommands directly after lookupKeyReadWithFlags to prevent a possible lazy-expire DEL from being mixed with any command propagated by the preceding functions. 4. blockForKeys: Caller can specifiy that it wants to be awakened if key is deleted. Minor optimizations (use dictAddRaw). 5. signalKeyAsReady became signalKeyAsReadyLogic which can take a boolean in case the key is deleted. It will only signal if there's at least one client that awaits key deletion (to save calls to handleClientsBlockedOnKeys). Minor optimizations (use dictAddRaw) db.c: 1. scanDatabaseForDeletedStreams is now scanDatabaseForDeletedKeys and will signalKeyAsReady for any key that was removed from the database or changed type. It is the responsibility of the code in blocked.c to ignore or act on deleted/type-changed keys. 2. Use the new signalDeletedKeyAsReady where needed blockedonkey.c + tcl: 1. Added test of new capabilities (FSL.BPOPGT now requires the key to exist in order to work)
2022-10-18 18:50:02 +02:00
* all the clients blocked for this key will get their reply_callback called. */
void VM_SignalKeyAsReady(ValkeyModuleCtx *ctx, ValkeyModuleString *key) {
signalKeyAsReady(ctx->client->db, key, OBJ_MODULE);
2019-10-30 10:20:28 +01:00
}
/* Implements VM_UnblockClient() and moduleUnblockClient(). */
int moduleUnblockClientByHandle(ValkeyModuleBlockedClient *bc, void *privdata) {
pthread_mutex_lock(&moduleUnblockedClientsMutex);
if (!bc->blocked_on_keys) bc->privdata = privdata;
bc->unblocked = 1;
2022-01-11 20:00:56 +03:00
if (listLength(moduleUnblockedClients) == 0) {
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
if (write(server.module_pipe[1],"A",1) != 1) {
2022-01-11 20:00:56 +03:00
/* Ignore the error, this is best-effort. */
}
}
2022-01-11 20:00:56 +03:00
listAddNodeTail(moduleUnblockedClients,bc);
pthread_mutex_unlock(&moduleUnblockedClientsMutex);
return VALKEYMODULE_OK;
}
/* This API is used by the Redis core to unblock a client that was blocked
* by a module. */
void moduleUnblockClient(client *c) {
ValkeyModuleBlockedClient *bc = c->bstate.module_blocked_handle;
moduleUnblockClientByHandle(bc,NULL);
}
/* Return true if the client 'c' was blocked by a module using
* VM_BlockClientOnKeys(). */
int moduleClientIsBlockedOnKeys(client *c) {
ValkeyModuleBlockedClient *bc = c->bstate.module_blocked_handle;
return bc->blocked_on_keys;
}
/* Unblock a client blocked by `ValkeyModule_BlockedClient`. This will trigger
* the reply callbacks to be called in order to reply to the client.
* The 'privdata' argument will be accessible by the reply callback, so
* the caller of this function can pass any value that is needed in order to
* actually reply to the client.
*
* A common usage for 'privdata' is a thread that computes something that
* needs to be passed to the client, included but not limited some slow
* to compute reply or some reply obtained via networking.
*
* Note 1: this function can be called from threads spawned by the module.
*
* Note 2: when we unblock a client that is blocked for keys using the API
* ValkeyModule_BlockClientOnKeys(), the privdata argument here is not used.
* Unblocking a client that was blocked for keys using this API will still
* require the client to get some reply, so the function will use the
* "timeout" handler in order to do so (The privdata provided in
* ValkeyModule_BlockClientOnKeys() is accessible from the timeout
* callback via VM_GetBlockedClientPrivateData). */
int VM_UnblockClient(ValkeyModuleBlockedClient *bc, void *privdata) {
if (bc->blocked_on_keys) {
/* In theory the user should always pass the timeout handler as an
* argument, but better to be safe than sorry. */
if (bc->timeout_callback == NULL) return VALKEYMODULE_ERR;
if (bc->unblocked) return VALKEYMODULE_OK;
if (bc->client) moduleBlockedClientTimedOut(bc->client);
}
moduleUnblockClientByHandle(bc,privdata);
return VALKEYMODULE_OK;
}
2016-10-13 16:57:40 +02:00
/* Abort a blocked client blocking operation: the client will be unblocked
* without firing any callback. */
int VM_AbortBlock(ValkeyModuleBlockedClient *bc) {
2016-10-13 16:57:40 +02:00
bc->reply_callback = NULL;
bc->disconnect_callback = NULL;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
bc->auth_reply_cb = NULL;
return VM_UnblockClient(bc,NULL);
2016-10-13 16:57:40 +02:00
}
/* Set a callback that will be called if a blocked client disconnects
* before the module has a chance to call ValkeyModule_UnblockClient()
*
* Usually what you want to do there, is to cleanup your module state
* so that you can call ValkeyModule_UnblockClient() safely, otherwise
* the client will remain blocked forever if the timeout is large.
*
* Notes:
*
* 1. It is not safe to call Reply* family functions here, it is also
* useless since the client is gone.
*
* 2. This callback is not called if the client disconnects because of
* a timeout. In such a case, the client is unblocked automatically
* and the timeout callback is called.
*/
void VM_SetDisconnectCallback(ValkeyModuleBlockedClient *bc, ValkeyModuleDisconnectFunc callback) {
bc->disconnect_callback = callback;
}
/* This function will check the moduleUnblockedClients queue in order to
* call the reply callback and really unblock the client.
*
* Clients end into this list because of calls to VM_UnblockClient(),
* however it is possible that while the module was doing work for the
* blocked client, it was terminated by Redis (for timeout or other reasons).
* When this happens the ValkeyModuleBlockedClient structure in the queue
* will have the 'client' field set to NULL. */
void moduleHandleBlockedClients(void) {
listNode *ln;
ValkeyModuleBlockedClient *bc;
pthread_mutex_lock(&moduleUnblockedClientsMutex);
while (listLength(moduleUnblockedClients)) {
ln = listFirst(moduleUnblockedClients);
bc = ln->value;
client *c = bc->client;
listDelNode(moduleUnblockedClients,ln);
pthread_mutex_unlock(&moduleUnblockedClientsMutex);
/* Release the lock during the loop, as long as we don't
* touch the shared list. */
/* Call the reply callback if the client is valid and we have
* any callback. However the callback is not called if the client
* was blocked on keys (VM_BlockClientOnKeys()), because we already
* called such callback in moduleTryServeClientBlockedOnKey() when
* the key was signaled as ready. */
long long prev_error_replies = server.stat_total_error_replies;
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
uint64_t reply_us = 0;
if (c && !bc->blocked_on_keys && bc->reply_callback) {
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, bc->module, VALKEYMODULE_CTX_BLOCKED_REPLY);
ctx.blocked_privdata = bc->privdata;
ctx.blocked_ready_key = NULL;
ctx.client = bc->client;
ctx.blocked_client = bc;
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
monotime replyTimer;
elapsedStart(&replyTimer);
bc->reply_callback(&ctx,(void**)c->argv,c->argc);
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
reply_us = elapsedUs(replyTimer);
moduleFreeContext(&ctx);
}
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
/* Hold onto the blocked client if module auth is in progress. The reply callback is invoked
* when the client is reprocessed. */
if (c && clientHasModuleAuthInProgress(c)) {
c->module_blocked_client = bc;
} else {
/* Free privdata if any. */
moduleInvokeFreePrivDataCallback(c, bc);
}
/* It is possible that this blocked client object accumulated
* replies to send to the client in a thread safe context.
* We need to glue such replies to the client output buffer and
* free the temporary client we just used for the replies. */
if (c) AddReplyFromClient(c, bc->reply_client);
2022-01-11 20:00:56 +03:00
moduleReleaseTempClient(bc->reply_client);
moduleReleaseTempClient(bc->thread_safe_ctx_client);
/* Update stats now that we've finished the blocking operation.
* This needs to be out of the reply callback above given that a
* module might not define any callback and still do blocking ops.
*/
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
if (c && !clientHasModuleAuthInProgress(c) && !bc->blocked_on_keys) {
updateStatsOnUnblock(c, bc->background_duration, reply_us, server.stat_total_error_replies != prev_error_replies);
}
if (c != NULL) {
/* Before unblocking the client, set the disconnect callback
* to NULL, because if we reached this point, the client was
* properly unblocked by the module. */
bc->disconnect_callback = NULL;
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
unblockClient(c, 1);
/* Update the wait offset, we don't know if this blocked client propagated anything,
* currently we rather not add any API for that, so we just assume it did. */
c->woff = server.master_repl_offset;
/* Put the client in the list of clients that need to write
* if there are pending replies here. This is needed since
* during a non blocking command the client may receive output. */
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
if (!clientHasModuleAuthInProgress(c) && clientHasPendingReplies(c) &&
!(c->flags & CLIENT_PENDING_WRITE))
{
c->flags |= CLIENT_PENDING_WRITE;
listLinkNodeHead(server.clients_pending_write, &c->clients_pending_write_node);
}
}
/* Free 'bc' only after unblocking the client, since it is
* referenced in the client blocking context, and must be valid
* when calling unblockClient(). */
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
if (!(c && clientHasModuleAuthInProgress(c))) {
bc->module->blocked_clients--;
zfree(bc);
}
/* Lock again before to iterate the loop. */
pthread_mutex_lock(&moduleUnblockedClientsMutex);
}
pthread_mutex_unlock(&moduleUnblockedClientsMutex);
}
/* Check if the specified client can be safely timed out using
* moduleBlockedClientTimedOut().
*/
int moduleBlockedClientMayTimeout(client *c) {
reprocess command when client is unblocked on keys (#11012) *TL;DR* --------------------------------------- Following the discussion over the issue [#7551](https://github.com/redis/redis/issues/7551) We decided to refactor the client blocking code to eliminate some of the code duplications and to rebuild the infrastructure better for future key blocking cases. *In this PR* --------------------------------------- 1. reprocess the command once a client becomes unblocked on key (instead of running custom code for the unblocked path that's different than the one that would have run if blocking wasn't needed) 2. eliminate some (now) irrelevant code for handling unblocking lists/zsets/streams etc... 3. modify some tests to intercept the error in cases of error on reprocess after unblock (see details in the notes section below) 4. replace '$' on the client argv with current stream id. Since once we reprocess the stream XREAD we need to read from the last msg and not wait for new msg in order to prevent endless block loop. 5. Added statistics to the info "Clients" section to report the: * `total_blocking_keys` - number of blocking keys * `total_blocking_keys_on_nokey` - number of blocking keys which have at least 1 client which would like to be unblocked on when the key is deleted. 6. Avoid expiring unblocked key during unblock. Previously we used to lookup the unblocked key which might have been expired during the lookup. Now we lookup the key using NOTOUCH and NOEXPIRE to avoid deleting it at this point, so propagating commands in blocked.c is no longer needed. 7. deprecated command flags. We decided to remove the CMD_CALL_STATS and CMD_CALL_SLOWLOG and make an explicit verification in the call() function in order to decide if stats update should take place. This should simplify the logic and also mitigate existing issues: for example module calls which are triggered as part of AOF loading might still report stats even though they are called during AOF loading. *Behavior changes* --------------------------------------------------- 1. As this implementation prevents writing dedicated code handling unblocked streams/lists/zsets, since we now re-process the command once the client is unblocked some errors will be reported differently. The old implementation used to issue ``UNBLOCKED the stream key no longer exists`` in the following cases: - The stream key has been deleted (ie. calling DEL) - The stream and group existed but the key type was changed by overriding it (ie. with set command) - The key not longer exists after we swapdb with a db which does not contains this key - After swapdb when the new db has this key but with different type. In the new implementation the reported errors will be the same as if the command was processed after effect: **NOGROUP** - in case key no longer exists, or **WRONGTYPE** in case the key was overridden with a different type. 2. Reprocessing the command means that some checks will be reevaluated once the client is unblocked. For example, ACL rules might change since the command originally was executed and will fail once the client is unblocked. Another example is OOM condition checks which might enable the command to run and block but fail the command reprocess once the client is unblocked. 3. One of the changes in this PR is that no command stats are being updated once the command is blocked (all stats will be updated once the client is unblocked). This implies that when we have many clients blocked, users will no longer be able to get that information from the command stats. However the information can still be gathered from the client list. **Client blocking** --------------------------------------------------- the blocking on key will still be triggered the same way as it is done today. in order to block the current client on list of keys, the call to blockForKeys will still need to be made which will perform the same as it is today: * add the client to the list of blocked clients on each key * keep the key with a matching list node (position in the global blocking clients list for that key) in the client private blocking key dict. * flag the client with CLIENT_BLOCKED * update blocking statistics * register the client on the timeout table **Key Unblock** --------------------------------------------------- Unblocking a specific key will be triggered (same as today) by calling signalKeyAsReady. the implementation in that part will stay the same as today - adding the key to the global readyList. The reason to maintain the readyList (as apposed to iterating over all clients blocked on the specific key) is in order to keep the signal operation as short as possible, since it is called during the command processing. The main change is that instead of going through a dedicated code path that operates the blocked command we will just call processPendingCommandsAndResetClient. **ClientUnblock (keys)** --------------------------------------------------- 1. Unblocking clients on keys will be triggered after command is processed and during the beforeSleep 8. the general schema is: 9. For each key *k* in the readyList: ``` For each client *c* which is blocked on *k*: in case either: 1. *k* exists AND the *k* type matches the current client blocking type OR 2. *k* exists and *c* is blocked on module command OR 3. *k* does not exists and *c* was blocked with the flag unblock_on_deleted_key do: 1. remove the client from the list of clients blocked on this key 2. remove the blocking list node from the client blocking key dict 3. remove the client from the timeout list 10. queue the client on the unblocked_clients list 11. *NEW*: call processCommandAndResetClient(c); ``` *NOTE:* for module blocked clients we will still call the moduleUnblockClientByHandle which will queue the client for processing in moduleUnblockedClients list. **Process Unblocked clients** --------------------------------------------------- The process of all unblocked clients is done in the beforeSleep and no change is planned in that part. The general schema will be: For each client *c* in server.unblocked_clients: * remove client from the server.unblocked_clients * set back the client readHandler * continue processing the pending command and input buffer. *Some notes regarding the new implementation* --------------------------------------------------- 1. Although it was proposed, it is currently difficult to remove the read handler from the client while it is blocked. The reason is that a blocked client should be unblocked when it is disconnected, or we might consume data into void. 2. While this PR mainly keep the current blocking logic as-is, there might be some future additions to the infrastructure that we would like to have: - allow non-preemptive blocking of client - sometimes we can think that a new kind of blocking can be expected to not be preempt. for example lets imagine we hold some keys on disk and when a command needs to process them it will block until the keys are uploaded. in this case we will want the client to not disconnect or be unblocked until the process is completed (remove the client read handler, prevent client timeout, disable unblock via debug command etc...). - allow generic blocking based on command declared keys - we might want to add a hook before command processing to check if any of the declared keys require the command to block. this way it would be easier to add new kinds of key-based blocking mechanisms. Co-authored-by: Oran Agra <oran@redislabs.com> Signed-off-by: Ran Shidlansik <ranshid@amazon.com>
2023-01-01 23:35:42 +02:00
if (c->bstate.btype != BLOCKED_MODULE)
return 1;
ValkeyModuleBlockedClient *bc = c->bstate.module_blocked_handle;
return (bc && bc->timeout_callback != NULL);
}
/* Called when our client timed out. After this function unblockClient()
* is called, and it will invalidate the blocked client. So this function
* does not need to do any cleanup. Eventually the module will call the
* API to unblock the client and the memory will be released. */
void moduleBlockedClientTimedOut(client *c) {
ValkeyModuleBlockedClient *bc = c->bstate.module_blocked_handle;
/* Protect against re-processing: don't serve clients that are already
* in the unblocking list for any reason (including VM_UnblockClient()
* explicit call). See #6798. */
if (bc->unblocked) return;
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, bc->module, VALKEYMODULE_CTX_BLOCKED_TIMEOUT);
ctx.client = bc->client;
ctx.blocked_client = bc;
ctx.blocked_privdata = bc->privdata;
long long prev_error_replies = server.stat_total_error_replies;
bc->timeout_callback(&ctx,(void**)c->argv,c->argc);
moduleFreeContext(&ctx);
reprocess command when client is unblocked on keys (#11012) *TL;DR* --------------------------------------- Following the discussion over the issue [#7551](https://github.com/redis/redis/issues/7551) We decided to refactor the client blocking code to eliminate some of the code duplications and to rebuild the infrastructure better for future key blocking cases. *In this PR* --------------------------------------- 1. reprocess the command once a client becomes unblocked on key (instead of running custom code for the unblocked path that's different than the one that would have run if blocking wasn't needed) 2. eliminate some (now) irrelevant code for handling unblocking lists/zsets/streams etc... 3. modify some tests to intercept the error in cases of error on reprocess after unblock (see details in the notes section below) 4. replace '$' on the client argv with current stream id. Since once we reprocess the stream XREAD we need to read from the last msg and not wait for new msg in order to prevent endless block loop. 5. Added statistics to the info "Clients" section to report the: * `total_blocking_keys` - number of blocking keys * `total_blocking_keys_on_nokey` - number of blocking keys which have at least 1 client which would like to be unblocked on when the key is deleted. 6. Avoid expiring unblocked key during unblock. Previously we used to lookup the unblocked key which might have been expired during the lookup. Now we lookup the key using NOTOUCH and NOEXPIRE to avoid deleting it at this point, so propagating commands in blocked.c is no longer needed. 7. deprecated command flags. We decided to remove the CMD_CALL_STATS and CMD_CALL_SLOWLOG and make an explicit verification in the call() function in order to decide if stats update should take place. This should simplify the logic and also mitigate existing issues: for example module calls which are triggered as part of AOF loading might still report stats even though they are called during AOF loading. *Behavior changes* --------------------------------------------------- 1. As this implementation prevents writing dedicated code handling unblocked streams/lists/zsets, since we now re-process the command once the client is unblocked some errors will be reported differently. The old implementation used to issue ``UNBLOCKED the stream key no longer exists`` in the following cases: - The stream key has been deleted (ie. calling DEL) - The stream and group existed but the key type was changed by overriding it (ie. with set command) - The key not longer exists after we swapdb with a db which does not contains this key - After swapdb when the new db has this key but with different type. In the new implementation the reported errors will be the same as if the command was processed after effect: **NOGROUP** - in case key no longer exists, or **WRONGTYPE** in case the key was overridden with a different type. 2. Reprocessing the command means that some checks will be reevaluated once the client is unblocked. For example, ACL rules might change since the command originally was executed and will fail once the client is unblocked. Another example is OOM condition checks which might enable the command to run and block but fail the command reprocess once the client is unblocked. 3. One of the changes in this PR is that no command stats are being updated once the command is blocked (all stats will be updated once the client is unblocked). This implies that when we have many clients blocked, users will no longer be able to get that information from the command stats. However the information can still be gathered from the client list. **Client blocking** --------------------------------------------------- the blocking on key will still be triggered the same way as it is done today. in order to block the current client on list of keys, the call to blockForKeys will still need to be made which will perform the same as it is today: * add the client to the list of blocked clients on each key * keep the key with a matching list node (position in the global blocking clients list for that key) in the client private blocking key dict. * flag the client with CLIENT_BLOCKED * update blocking statistics * register the client on the timeout table **Key Unblock** --------------------------------------------------- Unblocking a specific key will be triggered (same as today) by calling signalKeyAsReady. the implementation in that part will stay the same as today - adding the key to the global readyList. The reason to maintain the readyList (as apposed to iterating over all clients blocked on the specific key) is in order to keep the signal operation as short as possible, since it is called during the command processing. The main change is that instead of going through a dedicated code path that operates the blocked command we will just call processPendingCommandsAndResetClient. **ClientUnblock (keys)** --------------------------------------------------- 1. Unblocking clients on keys will be triggered after command is processed and during the beforeSleep 8. the general schema is: 9. For each key *k* in the readyList: ``` For each client *c* which is blocked on *k*: in case either: 1. *k* exists AND the *k* type matches the current client blocking type OR 2. *k* exists and *c* is blocked on module command OR 3. *k* does not exists and *c* was blocked with the flag unblock_on_deleted_key do: 1. remove the client from the list of clients blocked on this key 2. remove the blocking list node from the client blocking key dict 3. remove the client from the timeout list 10. queue the client on the unblocked_clients list 11. *NEW*: call processCommandAndResetClient(c); ``` *NOTE:* for module blocked clients we will still call the moduleUnblockClientByHandle which will queue the client for processing in moduleUnblockedClients list. **Process Unblocked clients** --------------------------------------------------- The process of all unblocked clients is done in the beforeSleep and no change is planned in that part. The general schema will be: For each client *c* in server.unblocked_clients: * remove client from the server.unblocked_clients * set back the client readHandler * continue processing the pending command and input buffer. *Some notes regarding the new implementation* --------------------------------------------------- 1. Although it was proposed, it is currently difficult to remove the read handler from the client while it is blocked. The reason is that a blocked client should be unblocked when it is disconnected, or we might consume data into void. 2. While this PR mainly keep the current blocking logic as-is, there might be some future additions to the infrastructure that we would like to have: - allow non-preemptive blocking of client - sometimes we can think that a new kind of blocking can be expected to not be preempt. for example lets imagine we hold some keys on disk and when a command needs to process them it will block until the keys are uploaded. in this case we will want the client to not disconnect or be unblocked until the process is completed (remove the client read handler, prevent client timeout, disable unblock via debug command etc...). - allow generic blocking based on command declared keys - we might want to add a hook before command processing to check if any of the declared keys require the command to block. this way it would be easier to add new kinds of key-based blocking mechanisms. Co-authored-by: Oran Agra <oran@redislabs.com> Signed-off-by: Ran Shidlansik <ranshid@amazon.com>
2023-01-01 23:35:42 +02:00
updateStatsOnUnblock(c, bc->background_duration, 0, server.stat_total_error_replies != prev_error_replies);
/* For timeout events, we do not want to call the disconnect callback,
2018-09-17 14:13:46 +03:00
* because the blocked client will be automatically disconnected in
* this case, and the user can still hook using the timeout callback. */
bc->disconnect_callback = NULL;
}
/* Return non-zero if a module command was called in order to fill the
* reply for a blocked client. */
int VM_IsBlockedReplyRequest(ValkeyModuleCtx *ctx) {
return (ctx->flags & VALKEYMODULE_CTX_BLOCKED_REPLY) != 0;
}
/* Return non-zero if a module command was called in order to fill the
* reply for a blocked client that timed out. */
int VM_IsBlockedTimeoutRequest(ValkeyModuleCtx *ctx) {
return (ctx->flags & VALKEYMODULE_CTX_BLOCKED_TIMEOUT) != 0;
}
/* Get the private data set by ValkeyModule_UnblockClient() */
void *VM_GetBlockedClientPrivateData(ValkeyModuleCtx *ctx) {
return ctx->blocked_privdata;
}
/* Get the key that is ready when the reply callback is called in the context
* of a client blocked by ValkeyModule_BlockClientOnKeys(). */
ValkeyModuleString *VM_GetBlockedClientReadyKey(ValkeyModuleCtx *ctx) {
return ctx->blocked_ready_key;
}
/* Get the blocked client associated with a given context.
* This is useful in the reply and timeout callbacks of blocked clients,
* before sometimes the module has the blocked client handle references
* around, and wants to cleanup it. */
ValkeyModuleBlockedClient *VM_GetBlockedClientHandle(ValkeyModuleCtx *ctx) {
return ctx->blocked_client;
}
/* Return true if when the free callback of a blocked client is called,
* the reason for the client to be unblocked is that it disconnected
* while it was blocked. */
int VM_BlockedClientDisconnected(ValkeyModuleCtx *ctx) {
return (ctx->flags & VALKEYMODULE_CTX_BLOCKED_DISCONNECTED) != 0;
}
/* --------------------------------------------------------------------------
* ## Thread Safe Contexts
* -------------------------------------------------------------------------- */
/* Return a context which can be used inside threads to make Redis context
* calls with certain modules APIs. If 'bc' is not NULL then the module will
* be bound to a blocked client, and it will be possible to use the
* `ValkeyModule_Reply*` family of functions to accumulate a reply for when the
* client will be unblocked. Otherwise the thread safe context will be
* detached by a specific client.
*
* To call non-reply APIs, the thread safe context must be prepared with:
*
* ValkeyModule_ThreadSafeContextLock(ctx);
* ... make your call here ...
* ValkeyModule_ThreadSafeContextUnlock(ctx);
*
* This is not needed when using `ValkeyModule_Reply*` functions, assuming
* that a blocked client was used when the context was created, otherwise
* no ValkeyModule_Reply* call should be made at all.
*
* NOTE: If you're creating a detached thread safe context (bc is NULL),
* consider using `VM_GetDetachedThreadSafeContext` which will also retain
* the module ID and thus be more useful for logging. */
ValkeyModuleCtx *VM_GetThreadSafeContext(ValkeyModuleBlockedClient *bc) {
ValkeyModuleCtx *ctx = zmalloc(sizeof(*ctx));
ValkeyModule *module = bc ? bc->module : NULL;
int flags = VALKEYMODULE_CTX_THREAD_SAFE;
2022-01-11 20:00:56 +03:00
/* Creating a new client object is costly. To avoid that, we have an
* internal pool of client objects. In blockClient(), a client object is
* assigned to bc->thread_safe_ctx_client to be used for the thread safe
* context.
* For detached thread safe contexts, we create a new client object.
* Otherwise, as this function can be called from different threads, we
* would need to synchronize access to internal pool of client objects.
* Assuming creating detached context is rare and not that performance
* critical, we avoid synchronizing access to the client pool by creating
* a new client */
if (!bc) flags |= VALKEYMODULE_CTX_NEW_CLIENT;
2022-01-11 20:00:56 +03:00
moduleCreateContext(ctx, module, flags);
/* Even when the context is associated with a blocked client, we can't
2022-01-11 20:00:56 +03:00
* access it safely from another thread, so we use a fake client here
* in order to keep things like the currently selected database and similar
* things. */
if (bc) {
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
ctx->blocked_client = bc;
2022-01-11 20:00:56 +03:00
ctx->client = bc->thread_safe_ctx_client;
selectDb(ctx->client,bc->dbid);
if (bc->client) {
ctx->client->id = bc->client->id;
ctx->client->resp = bc->client->resp;
}
}
return ctx;
}
/* Return a detached thread safe context that is not associated with any
* specific blocked client, but is associated with the module's context.
*
* This is useful for modules that wish to hold a global context over
* a long term, for purposes such as logging. */
ValkeyModuleCtx *VM_GetDetachedThreadSafeContext(ValkeyModuleCtx *ctx) {
ValkeyModuleCtx *new_ctx = zmalloc(sizeof(*new_ctx));
2022-01-11 20:00:56 +03:00
/* We create a new client object for the detached context.
* See VM_GetThreadSafeContext() for more information */
2022-01-11 20:00:56 +03:00
moduleCreateContext(new_ctx, ctx->module,
VALKEYMODULE_CTX_THREAD_SAFE|VALKEYMODULE_CTX_NEW_CLIENT);
return new_ctx;
}
/* Release a thread safe context. */
void VM_FreeThreadSafeContext(ValkeyModuleCtx *ctx) {
moduleFreeContext(ctx);
zfree(ctx);
}
void moduleGILAfterLock(void) {
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
/* We should never get here if we already inside a module
* code block which already opened a context. */
serverAssert(server.execution_nesting == 0);
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
/* Bump up the nesting level to prevent immediate propagation
* of possible VM_Call from th thread */
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
enterExecutionUnit(1, 0);
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
}
/* Acquire the server lock before executing a thread safe API call.
* This is not needed for `ValkeyModule_Reply*` calls when there is
* a blocked client connected to the thread safe context. */
void VM_ThreadSafeContextLock(ValkeyModuleCtx *ctx) {
UNUSED(ctx);
moduleAcquireGIL();
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
moduleGILAfterLock();
}
/* Similar to VM_ThreadSafeContextLock but this function
* would not block if the server lock is already acquired.
*
* If successful (lock acquired) VALKEYMODULE_OK is returned,
* otherwise VALKEYMODULE_ERR is returned and errno is set
* accordingly. */
int VM_ThreadSafeContextTryLock(ValkeyModuleCtx *ctx) {
UNUSED(ctx);
int res = moduleTryAcquireGIL();
if(res != 0) {
errno = res;
return VALKEYMODULE_ERR;
}
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
moduleGILAfterLock();
return VALKEYMODULE_OK;
}
void moduleGILBeforeUnlock(void) {
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
/* We should never get here if we already inside a module
* code block which already opened a context, except
* the bump-up from moduleGILAcquired. */
serverAssert(server.execution_nesting == 1);
/* Restore nesting level and propagate pending commands
* (because it's unclear when thread safe contexts are
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
* released we have to propagate here). */
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
exitExecutionUnit();
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
postExecutionUnitOperations();
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
}
/* Release the server lock after a thread safe API call was executed. */
void VM_ThreadSafeContextUnlock(ValkeyModuleCtx *ctx) {
UNUSED(ctx);
Sort out mess around propagation and MULTI/EXEC (#9890) The mess: Some parts use alsoPropagate for late propagation, others using an immediate one (propagate()), causing edge cases, ugly/hacky code, and the tendency for bugs The basic idea is that all commands are propagated via alsoPropagate (i.e. added to a list) and the top-most call() is responsible for going over that list and actually propagating them (and wrapping them in MULTI/EXEC if there's more than one command). This is done in the new function, propagatePendingCommands. Callers to propagatePendingCommands: 1. top-most call() (we want all nested call()s to add to the also_propagate array and just the top-most one to propagate them) - via `afterCommand` 2. handleClientsBlockedOnKeys: it is out of call() context and it may propagate stuff - via `afterCommand`. 3. handleClientsBlockedOnKeys edge case: if the looked-up key is already expired, we will propagate the expire but will not unblock any client so `afterCommand` isn't called. in that case, we have to propagate the deletion explicitly. 4. cron stuff: active-expire and eviction may also propagate stuff 5. modules: the module API allows to propagate stuff from just about anywhere (timers, keyspace notifications, threads). I could have tried to catch all the out-of-call-context places but it seemed easier to handle it in one place: when we free the context. in the spirit of what was done in call(), only the top-most freeing of a module context may cause propagation. 6. modules: when using a thread-safe ctx it's not clear when/if the ctx will be freed. we do know that the module must lock the GIL before calling RM_Replicate/RM_Call so we propagate the pending commands when releasing the GIL. A "known limitation", which were actually a bug, was fixed because of this commit (see propagate.tcl): When using a mix of RM_Call with `!` and RM_Replicate, the command would propagate out-of-order: first all the commands from RM_Call, and then the ones from RM_Replicate Another thing worth mentioning is that if, in the past, a client would issue a MULTI/EXEC with just one write command the server would blindly propagate the MULTI/EXEC too, even though it's redundant. not anymore. This commit renames propagate() to propagateNow() in order to cause conflicts in pending PRs. propagatePendingCommands is the only caller of propagateNow, which is now a static, internal helper function. Optimizations: 1. alsoPropagate will not add stuff to also_propagate if there's no AOF and replicas 2. alsoPropagate reallocs also_propagagte exponentially, to save calls to memmove Bugfixes: 1. CONFIG SET can create evictions, sending notifications which can cause to dirty++ with modules. we need to prevent it from propagating to AOF/replicas 2. We need to set current_client in RM_Call. buggy scenario: - CONFIG SET maxmemory, eviction notifications, module hook calls RM_Call - assertion in lookupKey crashes, because current_client has CONFIG SET, which isn't CMD_WRITE 3. minor: in eviction, call propagateDeletion after notification, like active-expire and all commands (we always send a notification before propagating the command)
2021-12-22 23:03:48 +01:00
moduleGILBeforeUnlock();
moduleReleaseGIL();
}
void moduleAcquireGIL(void) {
pthread_mutex_lock(&moduleGIL);
}
int moduleTryAcquireGIL(void) {
return pthread_mutex_trylock(&moduleGIL);
}
void moduleReleaseGIL(void) {
pthread_mutex_unlock(&moduleGIL);
}
/* --------------------------------------------------------------------------
* ## Module Keyspace Notifications API
* -------------------------------------------------------------------------- */
/* Subscribe to keyspace notifications. This is a low-level version of the
2018-07-30 16:18:56 +03:00
* keyspace-notifications API. A module can register callbacks to be notified
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
* when keyspace events occur.
*
* Notification events are filtered by their type (string events, set events,
2018-07-30 16:18:56 +03:00
* etc), and the subscriber callback receives only events that match a specific
* mask of event types.
*
* When subscribing to notifications with ValkeyModule_SubscribeToKeyspaceEvents
2017-11-27 23:27:20 +02:00
* the module must provide an event type-mask, denoting the events the subscriber
* is interested in. This can be an ORed mask of any of the following flags:
*
* - VALKEYMODULE_NOTIFY_GENERIC: Generic commands like DEL, EXPIRE, RENAME
* - VALKEYMODULE_NOTIFY_STRING: String events
* - VALKEYMODULE_NOTIFY_LIST: List events
* - VALKEYMODULE_NOTIFY_SET: Set events
* - VALKEYMODULE_NOTIFY_HASH: Hash events
* - VALKEYMODULE_NOTIFY_ZSET: Sorted Set events
* - VALKEYMODULE_NOTIFY_EXPIRED: Expiration events
* - VALKEYMODULE_NOTIFY_EVICTED: Eviction events
* - VALKEYMODULE_NOTIFY_STREAM: Stream events
* - VALKEYMODULE_NOTIFY_MODULE: Module types events
* - VALKEYMODULE_NOTIFY_KEYMISS: Key-miss events
Fix replication inconsistency on modules that uses key space notifications (#10969) Fix replication inconsistency on modules that uses key space notifications. ### The Problem In general, key space notifications are invoked after the command logic was executed (this is not always the case, we will discuss later about specific command that do not follow this rules). For example, the `set x 1` will trigger a `set` notification that will be invoked after the `set` logic was performed, so if the notification logic will try to fetch `x`, it will see the new data that was written. Consider the scenario on which the notification logic performs some write commands. for example, the notification logic increase some counter, `incr x{counter}`, indicating how many times `x` was changed. The logical order by which the logic was executed is has follow: ``` set x 1 incr x{counter} ``` The issue is that the `set x 1` command is added to the replication buffer at the end of the command invocation (specifically after the key space notification logic was invoked and performed the `incr` command). The replication/aof sees the commands in the wrong order: ``` incr x{counter} set x 1 ``` In this specific example the order is less important. But if, for example, the notification would have deleted `x` then we would end up with primary-replica inconsistency. ### The Solution Put the command that cause the notification in its rightful place. In the above example, the `set x 1` command logic was executed before the notification logic, so it should be added to the replication buffer before the commands that is invoked by the notification logic. To achieve this, without a major code refactoring, we save a placeholder in the replication buffer, when finishing invoking the command logic we check if the command need to be replicated, and if it does, we use the placeholder to add it to the replication buffer instead of appending it to the end. To be efficient and not allocating memory on each command to save the placeholder, the replication buffer array was modified to reuse memory (instead of allocating it each time we want to replicate commands). Also, to avoid saving a placeholder when not needed, we do it only for WRITE or MAY_REPLICATE commands. #### Additional Fixes * Expire and Eviction notifications: * Expire/Eviction logical order was to first perform the Expire/Eviction and then the notification logic. The replication buffer got this in the other way around (first notification effect and then the `del` command). The PR fixes this issue. * The notification effect and the `del` command was not wrap with `multi-exec` (if needed). The PR also fix this issue. * SPOP command: * On spop, the `spop` notification was fired before the command logic was executed. The change in this PR would have cause the replication order to be change (first `spop` command and then notification `logic`) although the logical order is first the notification logic and then the `spop` logic. The right fix would have been to move the notification to be fired after the command was executed (like all the other commands), but this can be considered a breaking change. To overcome this, the PR keeps the current behavior and changes the `spop` code to keep the right logical order when pushing commands to the replication buffer. Another PR will follow to fix the SPOP properly and match it to the other command (we split it to 2 separate PR's so it will be easy to cherry-pick this PR to 7.0 if we chose to). #### Unhanded Known Limitations * key miss event: * On key miss event, if a module performed some write command on the event (using `RM_Call`), the `dirty` counter would increase and the read command that cause the key miss event would be replicated to the replication and aof. This problem can also happened on a write command that open some keys but eventually decides not to perform any action. We decided not to handle this problem on this PR because the solution is complex and will cause additional risks in case we will want to cherry-pick this PR. We should decide if we want to handle it in future PR's. For now, modules writers is advice not to perform any write commands on key miss event. #### Testing * We already have tests to cover cases where a notification is invoking write commands that are also added to the replication buffer, the tests was modified to verify that the replica gets the command in the correct logical order. * Test was added to verify that `spop` behavior was kept unchanged. * Test was added to verify key miss event behave as expected. * Test was added to verify the changes do not break lazy expiration. #### Additional Changes * `propagateNow` function can accept a special dbid, -1, indicating not to replicate `select`. We use this to replicate `multi/exec` on `propagatePendingCommands` function. The side effect of this change is that now the `select` command will appear inside the `multi/exec` block on the replication stream (instead of outside of the `multi/exec` block). Tests was modified to match this new behavior.
2022-08-18 10:16:32 +03:00
* Notice, key-miss event is the only type
* of event that is fired from within a read command.
* Performing VM_Call with a write command from within
Fix replication inconsistency on modules that uses key space notifications (#10969) Fix replication inconsistency on modules that uses key space notifications. ### The Problem In general, key space notifications are invoked after the command logic was executed (this is not always the case, we will discuss later about specific command that do not follow this rules). For example, the `set x 1` will trigger a `set` notification that will be invoked after the `set` logic was performed, so if the notification logic will try to fetch `x`, it will see the new data that was written. Consider the scenario on which the notification logic performs some write commands. for example, the notification logic increase some counter, `incr x{counter}`, indicating how many times `x` was changed. The logical order by which the logic was executed is has follow: ``` set x 1 incr x{counter} ``` The issue is that the `set x 1` command is added to the replication buffer at the end of the command invocation (specifically after the key space notification logic was invoked and performed the `incr` command). The replication/aof sees the commands in the wrong order: ``` incr x{counter} set x 1 ``` In this specific example the order is less important. But if, for example, the notification would have deleted `x` then we would end up with primary-replica inconsistency. ### The Solution Put the command that cause the notification in its rightful place. In the above example, the `set x 1` command logic was executed before the notification logic, so it should be added to the replication buffer before the commands that is invoked by the notification logic. To achieve this, without a major code refactoring, we save a placeholder in the replication buffer, when finishing invoking the command logic we check if the command need to be replicated, and if it does, we use the placeholder to add it to the replication buffer instead of appending it to the end. To be efficient and not allocating memory on each command to save the placeholder, the replication buffer array was modified to reuse memory (instead of allocating it each time we want to replicate commands). Also, to avoid saving a placeholder when not needed, we do it only for WRITE or MAY_REPLICATE commands. #### Additional Fixes * Expire and Eviction notifications: * Expire/Eviction logical order was to first perform the Expire/Eviction and then the notification logic. The replication buffer got this in the other way around (first notification effect and then the `del` command). The PR fixes this issue. * The notification effect and the `del` command was not wrap with `multi-exec` (if needed). The PR also fix this issue. * SPOP command: * On spop, the `spop` notification was fired before the command logic was executed. The change in this PR would have cause the replication order to be change (first `spop` command and then notification `logic`) although the logical order is first the notification logic and then the `spop` logic. The right fix would have been to move the notification to be fired after the command was executed (like all the other commands), but this can be considered a breaking change. To overcome this, the PR keeps the current behavior and changes the `spop` code to keep the right logical order when pushing commands to the replication buffer. Another PR will follow to fix the SPOP properly and match it to the other command (we split it to 2 separate PR's so it will be easy to cherry-pick this PR to 7.0 if we chose to). #### Unhanded Known Limitations * key miss event: * On key miss event, if a module performed some write command on the event (using `RM_Call`), the `dirty` counter would increase and the read command that cause the key miss event would be replicated to the replication and aof. This problem can also happened on a write command that open some keys but eventually decides not to perform any action. We decided not to handle this problem on this PR because the solution is complex and will cause additional risks in case we will want to cherry-pick this PR. We should decide if we want to handle it in future PR's. For now, modules writers is advice not to perform any write commands on key miss event. #### Testing * We already have tests to cover cases where a notification is invoking write commands that are also added to the replication buffer, the tests was modified to verify that the replica gets the command in the correct logical order. * Test was added to verify that `spop` behavior was kept unchanged. * Test was added to verify key miss event behave as expected. * Test was added to verify the changes do not break lazy expiration. #### Additional Changes * `propagateNow` function can accept a special dbid, -1, indicating not to replicate `select`. We use this to replicate `multi/exec` on `propagatePendingCommands` function. The side effect of this change is that now the `select` command will appear inside the `multi/exec` block on the replication stream (instead of outside of the `multi/exec` block). Tests was modified to match this new behavior.
2022-08-18 10:16:32 +03:00
* this notification is wrong and discourage. It will
* cause the read command that trigger the event to be
* replicated to the AOF/Replica.
* - VALKEYMODULE_NOTIFY_ALL: All events (Excluding VALKEYMODULE_NOTIFY_KEYMISS)
* - VALKEYMODULE_NOTIFY_LOADED: A special notification available only for modules,
* indicates that the key was loaded from persistence.
* Notice, when this event fires, the given key
* can not be retained, use VM_CreateStringFromString
* instead.
*
* We do not distinguish between key events and keyspace events, and it is up
* to the module to filter the actions taken based on the key.
*
* The subscriber signature is:
*
* int (*ValkeyModuleNotificationFunc) (ValkeyModuleCtx *ctx, int type,
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* const char *event,
* ValkeyModuleString *key);
*
* `type` is the event type bit, that must match the mask given at registration
* time. The event string is the actual command being executed, and key is the
* relevant Redis key.
*
2017-11-27 23:27:20 +02:00
* Notification callback gets executed with a redis context that can not be
* used to send anything to the client, and has the db number where the event
2018-07-01 13:24:50 +08:00
* occurred as its selected db number.
*
* Notice that it is not necessary to enable notifications in valkey.conf for
* module notifications to work.
*
* Warning: the notification callbacks are performed in a synchronous manner,
* so notification callbacks must to be fast, or they would slow Redis down.
* If you need to take long actions, use threads to offload them.
*
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
* Moreover, the fact that the notification is executed synchronously means
* that the notification code will be executed in the middle on Redis logic
* (commands logic, eviction, expire). Changing the key space while the logic
* runs is dangerous and discouraged. In order to react to key space events with
* write actions, please refer to `VM_AddPostNotificationJob`.
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
*
* See https://redis.io/topics/notifications for more information.
*/
int VM_SubscribeToKeyspaceEvents(ValkeyModuleCtx *ctx, int types, ValkeyModuleNotificationFunc callback) {
ValkeyModuleKeyspaceSubscriber *sub = zmalloc(sizeof(*sub));
sub->module = ctx->module;
sub->event_mask = types;
sub->notify_callback = callback;
sub->active = 0;
listAddNodeTail(moduleKeyspaceSubscribers, sub);
return VALKEYMODULE_OK;
}
void firePostExecutionUnitJobs(void) {
/* Avoid propagation of commands.
* In that way, postExecutionUnitOperations will prevent
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
* recursive calls to firePostExecutionUnitJobs.
* This is a special case where we need to increase 'execution_nesting'
* but we do not want to update the cached time */
enterExecutionUnit(0, 0);
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
while (listLength(modulePostExecUnitJobs) > 0) {
listNode *ln = listFirst(modulePostExecUnitJobs);
ValkeyModulePostExecUnitJob *job = listNodeValue(ln);
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
listDelNode(modulePostExecUnitJobs, ln);
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, job->module, VALKEYMODULE_CTX_TEMP_CLIENT);
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
selectDb(ctx.client, job->dbid);
job->callback(&ctx, job->pd);
if (job->free_pd) job->free_pd(job->pd);
moduleFreeContext(&ctx);
zfree(job);
}
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
exitExecutionUnit();
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
}
/* When running inside a key space notification callback, it is dangerous and highly discouraged to perform any write
* operation (See `VM_SubscribeToKeyspaceEvents`). In order to still perform write actions in this scenario,
* Redis provides `VM_AddPostNotificationJob` API. The API allows to register a job callback which Redis will call
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
* when the following condition are promised to be fulfilled:
* 1. It is safe to perform any write operation.
* 2. The job will be called atomically along side the key space notification.
*
* Notice, one job might trigger key space notifications that will trigger more jobs.
* This raises a concerns of entering an infinite loops, we consider infinite loops
* as a logical bug that need to be fixed in the module, an attempt to protect against
* infinite loops by halting the execution could result in violation of the feature correctness
* and so Redis will make no attempt to protect the module from infinite loops.
*
* 'free_pd' can be NULL and in such case will not be used.
*
* Return VALKEYMODULE_OK on success and VALKEYMODULE_ERR if was called while loading data from disk (AOF or RDB) or
* if the instance is a readonly replica. */
int VM_AddPostNotificationJob(ValkeyModuleCtx *ctx, ValkeyModulePostNotificationJobFunc callback, void *privdata, void (*free_privdata)(void*)) {
if (server.loading|| (server.masterhost && server.repl_slave_ro)) {
return VALKEYMODULE_ERR;
}
ValkeyModulePostExecUnitJob *job = zmalloc(sizeof(*job));
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
job->module = ctx->module;
job->callback = callback;
job->pd = privdata;
job->free_pd = free_privdata;
job->dbid = ctx->client->db->id;
listAddNodeTail(modulePostExecUnitJobs, job);
return VALKEYMODULE_OK;
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
}
/* Get the configured bitmap of notify-keyspace-events (Could be used
* for additional filtering in ValkeyModuleNotificationFunc) */
int VM_GetNotifyKeyspaceEvents(void) {
return server.notify_keyspace_events;
}
/* Expose notifyKeyspaceEvent to modules */
int VM_NotifyKeyspaceEvent(ValkeyModuleCtx *ctx, int type, const char *event, ValkeyModuleString *key) {
if (!ctx || !ctx->client)
return VALKEYMODULE_ERR;
notifyKeyspaceEvent(type, (char *)event, key, ctx->client->db->id);
return VALKEYMODULE_OK;
}
/* Dispatcher for keyspace notifications to module subscriber functions.
* This gets called only if at least one module requested to be notified on
* keyspace notifications */
void moduleNotifyKeyspaceEvent(int type, const char *event, robj *key, int dbid) {
/* Don't do anything if there aren't any subscribers */
if (listLength(moduleKeyspaceSubscribers) == 0) return;
/* Ugly hack to handle modules which use write commands from within
* notify_callback, which they should NOT do!
* Modules should use ValkeyModules_AddPostNotificationJob instead.
*
* Anyway, we want any propagated commands from within notify_callback
* to be propagated inside a MULTI/EXEC together with the original
* command that caused the KSN.
* Note that it's only relevant for KSNs which are not generated from within
* call(), for example active-expiry and eviction (because anyway
* execution_nesting is incremented from within call())
*
* In order to do that we increment the execution_nesting counter, thus
* preventing postExecutionUnitOperations (from within moduleFreeContext)
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
* from propagating commands from CB.
*
* This is a special case where we need to increase 'execution_nesting'
* but we do not want to update the cached time */
enterExecutionUnit(0, 0);
listIter li;
listNode *ln;
listRewind(moduleKeyspaceSubscribers,&li);
/* Remove irrelevant flags from the type mask */
type &= ~(NOTIFY_KEYEVENT | NOTIFY_KEYSPACE);
while((ln = listNext(&li))) {
ValkeyModuleKeyspaceSubscriber *sub = ln->value;
2022-01-11 20:00:56 +03:00
/* Only notify subscribers on events matching the registration,
* and avoid subscribers triggering themselves */
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
if ((sub->event_mask & type) &&
(sub->active == 0 || (sub->module->options & VALKEYMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS))) {
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, sub->module, VALKEYMODULE_CTX_TEMP_CLIENT);
selectDb(ctx.client, dbid);
2018-07-30 16:18:56 +03:00
/* mark the handler as active to avoid reentrant loops.
* If the subscriber performs an action triggering itself,
* it will not be notified about it. */
sub->active = 1;
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
server.lazy_expire_disabled++;
sub->notify_callback(&ctx, type, event, key);
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
server.lazy_expire_disabled--;
sub->active = 0;
moduleFreeContext(&ctx);
}
}
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
exitExecutionUnit();
}
2018-07-01 13:24:50 +08:00
/* Unsubscribe any notification subscribers this module has upon unloading */
void moduleUnsubscribeNotifications(ValkeyModule *module) {
listIter li;
listNode *ln;
listRewind(moduleKeyspaceSubscribers,&li);
while((ln = listNext(&li))) {
ValkeyModuleKeyspaceSubscriber *sub = ln->value;
if (sub->module == module) {
listDelNode(moduleKeyspaceSubscribers, ln);
zfree(sub);
}
}
}
/* --------------------------------------------------------------------------
* ## Modules Cluster API
* -------------------------------------------------------------------------- */
/* The Cluster message callback function pointer type. */
typedef void (*ValkeyModuleClusterMessageReceiver)(ValkeyModuleCtx *ctx, const char *sender_id, uint8_t type, const unsigned char *payload, uint32_t len);
/* This structure identifies a registered caller: it must match a given module
* ID, for a given message type. The callback function is just the function
* that was registered as receiver. */
typedef struct moduleClusterReceiver {
uint64_t module_id;
ValkeyModuleClusterMessageReceiver callback;
struct ValkeyModule *module;
struct moduleClusterReceiver *next;
} moduleClusterReceiver;
typedef struct moduleClusterNodeInfo {
int flags;
char ip[NET_IP_STR_LEN];
int port;
char master_id[40]; /* Only if flags & VALKEYMODULE_NODE_PRIMARY is true. */
} mdouleClusterNodeInfo;
/* We have an array of message types: each bucket is a linked list of
* configured receivers. */
static moduleClusterReceiver *clusterReceivers[UINT8_MAX];
/* Dispatch the message to the right module receiver. */
void moduleCallClusterReceivers(const char *sender_id, uint64_t module_id, uint8_t type, const unsigned char *payload, uint32_t len) {
moduleClusterReceiver *r = clusterReceivers[type];
while(r) {
if (r->module_id == module_id) {
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, r->module, VALKEYMODULE_CTX_TEMP_CLIENT);
r->callback(&ctx,sender_id,type,payload,len);
moduleFreeContext(&ctx);
return;
}
r = r->next;
}
}
/* Register a callback receiver for cluster messages of type 'type'. If there
* was already a registered callback, this will replace the callback function
* with the one provided, otherwise if the callback is set to NULL and there
* is already a callback for this function, the callback is unregistered
* (so this API call is also used in order to delete the receiver). */
void VM_RegisterClusterMessageReceiver(ValkeyModuleCtx *ctx, uint8_t type, ValkeyModuleClusterMessageReceiver callback) {
if (!server.cluster_enabled) return;
uint64_t module_id = moduleTypeEncodeId(ctx->module->name,0);
moduleClusterReceiver *r = clusterReceivers[type], *prev = NULL;
while(r) {
if (r->module_id == module_id) {
/* Found! Set or delete. */
if (callback) {
r->callback = callback;
} else {
/* Delete the receiver entry if the user is setting
* it to NULL. Just unlink the receiver node from the
* linked list. */
if (prev)
prev->next = r->next;
else
clusterReceivers[type]->next = r->next;
zfree(r);
}
return;
}
prev = r;
r = r->next;
}
/* Not found, let's add it. */
if (callback) {
r = zmalloc(sizeof(*r));
r->module_id = module_id;
r->module = ctx->module;
r->callback = callback;
r->next = clusterReceivers[type];
clusterReceivers[type] = r;
}
}
/* Send a message to all the nodes in the cluster if `target` is NULL, otherwise
* at the specified target, which is a VALKEYMODULE_NODE_ID_LEN bytes node ID, as
* returned by the receiver callback or by the nodes iteration functions.
*
* The function returns VALKEYMODULE_OK if the message was successfully sent,
* otherwise if the node is not connected or such node ID does not map to any
* known cluster node, VALKEYMODULE_ERR is returned. */
int VM_SendClusterMessage(ValkeyModuleCtx *ctx, const char *target_id, uint8_t type, const char *msg, uint32_t len) {
if (!server.cluster_enabled) return VALKEYMODULE_ERR;
uint64_t module_id = moduleTypeEncodeId(ctx->module->name,0);
if (clusterSendModuleMessageToTarget(target_id,module_id,type,msg,len) == C_OK)
return VALKEYMODULE_OK;
else
return VALKEYMODULE_ERR;
}
/* Return an array of string pointers, each string pointer points to a cluster
* node ID of exactly VALKEYMODULE_NODE_ID_LEN bytes (without any null term).
* The number of returned node IDs is stored into `*numnodes`.
* However if this function is called by a module not running an a Redis
* instance with Redis Cluster enabled, NULL is returned instead.
*
* The IDs returned can be used with ValkeyModule_GetClusterNodeInfo() in order
* to get more information about single node.
*
* The array returned by this function must be freed using the function
* ValkeyModule_FreeClusterNodesList().
*
* Example:
*
* size_t count, j;
* char **ids = ValkeyModule_GetClusterNodesList(ctx,&count);
* for (j = 0; j < count; j++) {
* ValkeyModule_Log(ctx,"notice","Node %.*s",
* VALKEYMODULE_NODE_ID_LEN,ids[j]);
* }
* ValkeyModule_FreeClusterNodesList(ids);
*/
char **VM_GetClusterNodesList(ValkeyModuleCtx *ctx, size_t *numnodes) {
UNUSED(ctx);
if (!server.cluster_enabled) return NULL;
size_t count = dictSize(server.cluster->nodes);
char **ids = zmalloc((count+1)*VALKEYMODULE_NODE_ID_LEN);
dictIterator *di = dictGetIterator(server.cluster->nodes);
dictEntry *de;
int j = 0;
while((de = dictNext(di)) != NULL) {
clusterNode *node = dictGetVal(de);
if (node->flags & (CLUSTER_NODE_NOADDR|CLUSTER_NODE_HANDSHAKE)) continue;
ids[j] = zmalloc(VALKEYMODULE_NODE_ID_LEN);
memcpy(ids[j],node->name,VALKEYMODULE_NODE_ID_LEN);
j++;
}
*numnodes = j;
ids[j] = NULL; /* Null term so that FreeClusterNodesList does not need
* to also get the count argument. */
dictReleaseIterator(di);
return ids;
}
/* Free the node list obtained with ValkeyModule_GetClusterNodesList. */
void VM_FreeClusterNodesList(char **ids) {
if (ids == NULL) return;
for (int j = 0; ids[j]; j++) zfree(ids[j]);
zfree(ids);
}
/* Return this node ID (VALKEYMODULE_CLUSTER_ID_LEN bytes) or NULL if the cluster
* is disabled. */
const char *VM_GetMyClusterID(void) {
if (!server.cluster_enabled) return NULL;
return server.cluster->myself->name;
}
/* Return the number of nodes in the cluster, regardless of their state
* (handshake, noaddress, ...) so that the number of active nodes may actually
* be smaller, but not greater than this number. If the instance is not in
* cluster mode, zero is returned. */
size_t VM_GetClusterSize(void) {
if (!server.cluster_enabled) return 0;
return dictSize(server.cluster->nodes);
}
/* Populate the specified info for the node having as ID the specified 'id',
* then returns VALKEYMODULE_OK. Otherwise if the format of node ID is invalid
* or the node ID does not exist from the POV of this local node, VALKEYMODULE_ERR
* is returned.
*
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* The arguments `ip`, `master_id`, `port` and `flags` can be NULL in case we don't
* need to populate back certain info. If an `ip` and `master_id` (only populated
* if the instance is a slave) are specified, they point to buffers holding
* at least VALKEYMODULE_NODE_ID_LEN bytes. The strings written back as `ip`
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* and `master_id` are not null terminated.
*
* The list of flags reported is the following:
*
* * VALKEYMODULE_NODE_MYSELF: This node
* * VALKEYMODULE_NODE_PRIMARY: The node is a primary
* * VALKEYMODULE_NODE_REPLICA: The node is a replica
* * VALKEYMODULE_NODE_PFAIL: We see the node as failing
* * VALKEYMODULE_NODE_FAIL: The cluster agrees the node is failing
* * VALKEYMODULE_NODE_NOFAILOVER: The slave is configured to never failover
*/
int VM_GetClusterNodeInfo(ValkeyModuleCtx *ctx, const char *id, char *ip, char *master_id, int *port, int *flags) {
UNUSED(ctx);
clusterNode *node = clusterLookupNode(id, strlen(id));
if (node == NULL ||
node->flags & (CLUSTER_NODE_NOADDR|CLUSTER_NODE_HANDSHAKE))
{
return VALKEYMODULE_ERR;
}
Avoid using unsafe C functions (#10932) replace use of: sprintf --> snprintf strcpy/strncpy --> redis_strlcpy strcat/strncat --> redis_strlcat **why are we making this change?** Much of the code uses some unsafe variants or deprecated buffer handling functions. While most cases are probably not presenting any issue on the known path programming errors and unterminated strings might lead to potential buffer overflows which are not covered by tests. **As part of this PR we change** 1. added implementation for redis_strlcpy and redis_strlcat based on the strl implementation: https://linux.die.net/man/3/strl 2. change all occurrences of use of sprintf with use of snprintf 3. change occurrences of use of strcpy/strncpy with redis_strlcpy 4. change occurrences of use of strcat/strncat with redis_strlcat 5. change the behavior of ll2string/ull2string/ld2string so that it will always place null termination ('\0') on the output buffer in the first index. this was done in order to make the use of these functions more safe in cases were the user will not check the output returned by them (for example in rdbRemoveTempFile) 6. we added a compiler directive to issue a deprecation error in case a use of sprintf/strcpy/strcat is found during compilation which will result in error during compile time. However keep in mind that since the deprecation attribute is not supported on all compilers, this is expected to fail during push workflows. **NOTE:** while this is only an initial milestone. We might also consider using the *_s implementation provided by the C11 Extensions (however not yet widly supported). I would also suggest to start looking at static code analyzers to track unsafe use cases. For example LLVM clang checker supports security.insecureAPI.DeprecatedOrUnsafeBufferHandling which can help locate unsafe function usage. https://clang.llvm.org/docs/analyzer/checkers.html#security-insecureapi-deprecatedorunsafebufferhandling-c The main reason not to onboard it at this stage is that the alternative excepted by clang is to use the C11 extensions which are not always supported by stdlib.
2022-07-18 10:56:26 +03:00
if (ip) redis_strlcpy(ip,node->ip,NET_IP_STR_LEN);
if (master_id) {
/* If the information is not available, the function will set the
* field to zero bytes, so that when the field can't be populated the
* function kinda remains predictable. */
if (node->flags & CLUSTER_NODE_SLAVE && node->slaveof)
memcpy(master_id,node->slaveof->name,VALKEYMODULE_NODE_ID_LEN);
else
memset(master_id,0,VALKEYMODULE_NODE_ID_LEN);
}
Support TLS service when "tls-cluster" is not enabled and persist both plain and TLS port in nodes.conf (#12233) Originally, when "tls-cluster" is enabled, `port` is set to TLS port. In order to support non-TLS clients, `pport` is used to propagate TCP port across cluster nodes. However when "tls-cluster" is disabled, `port` is set to TCP port, and `pport` is not used, which means the cluster cannot provide TLS service unless "tls-cluster" is on. ``` typedef struct { // ... uint16_t port; /* Latest known clients port (TLS or plain). */ uint16_t pport; /* Latest known clients plaintext port. Only used if the main clients port is for TLS. */ // ... } clusterNode; ``` ``` typedef struct { // ... uint16_t port; /* TCP base port number. */ uint16_t pport; /* Sender TCP plaintext port, if base port is TLS */ // ... } clusterMsg; ``` This PR renames `port` and `pport` in `clusterNode` to `tcp_port` and `tls_port`, to record both ports no matter "tls-cluster" is enabled or disabled. This allows to provide TLS service to clients when "tls-cluster" is disabled: when displaying cluster topology, or giving `MOVED` error, server can provide TLS or TCP port according to client's connection type, no matter what type of connection cluster bus is using. For backwards compatibility, `port` and `pport` in `clusterMsg` are preserved, when "tls-cluster" is enabled, `port` is set to TLS port and `pport` is set to TCP port, when "tls-cluster" is disabled, `port` is set to TCP port and `pport` is set to TLS port (instead of 0). Also, in the nodes.conf file, a new aux field displaying an extra port is added to complete the persisted info. We may have `tls_port=xxxxx` or `tcp_port=xxxxx` in the aux field, to complete the cluster topology, while the other port is stored in the normal `<ip>:<port>` field. The format is shown below. ``` <node-id> <ip>:<tcp_port>@<cport>,<hostname>,shard-id=...,tls-port=6379 myself,master - 0 0 0 connected 0-1000 ``` Or we can switch the position of two ports, both can be correctly resolved. ``` <node-id> <ip>:<tls_port>@<cport>,<hostname>,shard-id=...,tcp-port=6379 myself,master - 0 0 0 connected 0-1000 ```
2023-06-26 22:43:38 +08:00
if (port) *port = getNodeDefaultClientPort(node);
/* As usually we have to remap flags for modules, in order to ensure
* we can provide binary compatibility. */
if (flags) {
*flags = 0;
if (node->flags & CLUSTER_NODE_MYSELF) *flags |= VALKEYMODULE_NODE_MYSELF;
if (node->flags & CLUSTER_NODE_MASTER) *flags |= VALKEYMODULE_NODE_PRIMARY;
if (node->flags & CLUSTER_NODE_SLAVE) *flags |= VALKEYMODULE_NODE_REPLICA;
if (node->flags & CLUSTER_NODE_PFAIL) *flags |= VALKEYMODULE_NODE_PFAIL;
if (node->flags & CLUSTER_NODE_FAIL) *flags |= VALKEYMODULE_NODE_FAIL;
if (node->flags & CLUSTER_NODE_NOFAILOVER) *flags |= VALKEYMODULE_NODE_NOFAILOVER;
}
return VALKEYMODULE_OK;
}
/* Set Redis Cluster flags in order to change the normal behavior of
* Redis Cluster, especially with the goal of disabling certain functions.
* This is useful for modules that use the Cluster API in order to create
* a different distributed system, but still want to use the Redis Cluster
* message bus. Flags that can be set:
*
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* * CLUSTER_MODULE_FLAG_NO_FAILOVER
* * CLUSTER_MODULE_FLAG_NO_REDIRECTION
*
* With the following effects:
*
* * NO_FAILOVER: prevent Redis Cluster slaves from failing over a dead master.
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* Also disables the replica migration feature.
*
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* * NO_REDIRECTION: Every node will accept any key, without trying to perform
* partitioning according to the Redis Cluster algorithm.
* Slots information will still be propagated across the
* cluster, but without effect. */
void VM_SetClusterFlags(ValkeyModuleCtx *ctx, uint64_t flags) {
UNUSED(ctx);
if (flags & VALKEYMODULE_CLUSTER_FLAG_NO_FAILOVER)
server.cluster_module_flags |= CLUSTER_MODULE_FLAG_NO_FAILOVER;
if (flags & VALKEYMODULE_CLUSTER_FLAG_NO_REDIRECTION)
server.cluster_module_flags |= CLUSTER_MODULE_FLAG_NO_REDIRECTION;
}
/* --------------------------------------------------------------------------
* ## Modules Timers API
*
* Module timers are a high precision "green timers" abstraction where
* every module can register even millions of timers without problems, even if
* the actual event loop will just have a single timer that is used to awake the
* module timers subsystem in order to process the next event.
*
* All the timers are stored into a radix tree, ordered by expire time, when
* the main Redis event loop timer callback is called, we try to process all
* the timers already expired one after the other. Then we re-enter the event
* loop registering a timer that will expire when the next to process module
* timer will expire.
*
* Every time the list of active timers drops to zero, we unregister the
* main event loop timer, so that there is no overhead when such feature is
* not used.
* -------------------------------------------------------------------------- */
static rax *Timers; /* The radix tree of all the timers sorted by expire. */
long long aeTimer = -1; /* Main event loop (ae.c) timer identifier. */
typedef void (*ValkeyModuleTimerProc)(ValkeyModuleCtx *ctx, void *data);
/* The timer descriptor, stored as value in the radix tree. */
typedef struct ValkeyModuleTimer {
ValkeyModule *module; /* Module reference. */
ValkeyModuleTimerProc callback; /* The callback to invoke on expire. */
void *data; /* Private data for the callback. */
2018-10-04 17:02:10 +03:30
int dbid; /* Database number selected by the original client. */
} ValkeyModuleTimer;
/* This is the timer handler that is called by the main event loop. We schedule
* this timer to be called when the nearest of our module timers will expire. */
int moduleTimerHandler(struct aeEventLoop *eventLoop, long long id, void *clientData) {
UNUSED(eventLoop);
UNUSED(id);
UNUSED(clientData);
/* To start let's try to fire all the timers already expired. */
raxIterator ri;
raxStart(&ri,Timers);
uint64_t now = ustime();
long long next_period = 0;
while(1) {
raxSeek(&ri,"^",NULL,0);
if (!raxNext(&ri)) break;
uint64_t expiretime;
memcpy(&expiretime,ri.key,sizeof(expiretime));
expiretime = ntohu64(expiretime);
if (now >= expiretime) {
ValkeyModuleTimer *timer = ri.data;
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx,timer->module,VALKEYMODULE_CTX_TEMP_CLIENT);
2018-10-04 17:02:10 +03:30
selectDb(ctx.client, timer->dbid);
timer->callback(&ctx,timer->data);
moduleFreeContext(&ctx);
raxRemove(Timers,(unsigned char*)ri.key,ri.key_len,NULL);
zfree(timer);
} else {
/* We call ustime() again instead of using the cached 'now' so that
* 'next_period' isn't affected by the time it took to execute
* previous calls to 'callback.
* We need to cast 'expiretime' so that the compiler will not treat
* the difference as unsigned (Causing next_period to be huge) in
* case expiretime < ustime() */
next_period = ((long long)expiretime-ustime())/1000; /* Scale to milliseconds. */
break;
}
}
raxStop(&ri);
/* Reschedule the next timer or cancel it. */
if (next_period <= 0) next_period = 1;
if (raxSize(Timers) > 0) {
return next_period;
} else {
aeTimer = -1;
return AE_NOMORE;
}
}
/* Create a new timer that will fire after `period` milliseconds, and will call
* the specified function using `data` as argument. The returned timer ID can be
* used to get information from the timer or to stop it before it fires.
* Note that for the common use case of a repeating timer (Re-registration
* of the timer inside the ValkeyModuleTimerProc callback) it matters when
* this API is called:
* If it is called at the beginning of 'callback' it means
* the event will triggered every 'period'.
* If it is called at the end of 'callback' it means
* there will 'period' milliseconds gaps between events.
* (If the time it takes to execute 'callback' is negligible the two
* statements above mean the same) */
ValkeyModuleTimerID VM_CreateTimer(ValkeyModuleCtx *ctx, mstime_t period, ValkeyModuleTimerProc callback, void *data) {
ValkeyModuleTimer *timer = zmalloc(sizeof(*timer));
timer->module = ctx->module;
timer->callback = callback;
timer->data = data;
timer->dbid = ctx->client ? ctx->client->db->id : 0;
uint64_t expiretime = ustime()+period*1000;
uint64_t key;
while(1) {
key = htonu64(expiretime);
if (raxFind(Timers, (unsigned char*)&key,sizeof(key)) == raxNotFound) {
raxInsert(Timers,(unsigned char*)&key,sizeof(key),timer,NULL);
break;
} else {
expiretime++;
}
}
/* We need to install the main event loop timer if it's not already
* installed, or we may need to refresh its period if we just installed
* a timer that will expire sooner than any other else (i.e. the timer
* we just installed is the first timer in the Timers rax). */
if (aeTimer != -1) {
raxIterator ri;
raxStart(&ri,Timers);
raxSeek(&ri,"^",NULL,0);
raxNext(&ri);
if (memcmp(ri.key,&key,sizeof(key)) == 0) {
/* This is the first key, we need to re-install the timer according
* to the just added event. */
aeDeleteTimeEvent(server.el,aeTimer);
aeTimer = -1;
}
raxStop(&ri);
}
/* If we have no main timer (the old one was invalidated, or this is the
* first module timer we have), install one. */
if (aeTimer == -1)
aeTimer = aeCreateTimeEvent(server.el,period,moduleTimerHandler,NULL,NULL);
return key;
}
/* Stop a timer, returns VALKEYMODULE_OK if the timer was found, belonged to the
* calling module, and was stopped, otherwise VALKEYMODULE_ERR is returned.
* If not NULL, the data pointer is set to the value of the data argument when
* the timer was created. */
int VM_StopTimer(ValkeyModuleCtx *ctx, ValkeyModuleTimerID id, void **data) {
ValkeyModuleTimer *timer = raxFind(Timers,(unsigned char*)&id,sizeof(id));
if (timer == raxNotFound || timer->module != ctx->module)
return VALKEYMODULE_ERR;
if (data) *data = timer->data;
raxRemove(Timers,(unsigned char*)&id,sizeof(id),NULL);
zfree(timer);
return VALKEYMODULE_OK;
}
/* Obtain information about a timer: its remaining time before firing
* (in milliseconds), and the private data pointer associated with the timer.
* If the timer specified does not exist or belongs to a different module
* no information is returned and the function returns VALKEYMODULE_ERR, otherwise
* VALKEYMODULE_OK is returned. The arguments remaining or data can be NULL if
* the caller does not need certain information. */
int VM_GetTimerInfo(ValkeyModuleCtx *ctx, ValkeyModuleTimerID id, uint64_t *remaining, void **data) {
ValkeyModuleTimer *timer = raxFind(Timers,(unsigned char*)&id,sizeof(id));
if (timer == raxNotFound || timer->module != ctx->module)
return VALKEYMODULE_ERR;
if (remaining) {
int64_t rem = ntohu64(id)-ustime();
if (rem < 0) rem = 0;
*remaining = rem/1000; /* Scale to milliseconds. */
}
if (data) *data = timer->data;
return VALKEYMODULE_OK;
}
/* Query timers to see if any timer belongs to the module.
* Return 1 if any timer was found, otherwise 0 would be returned. */
int moduleHoldsTimer(struct ValkeyModule *module) {
raxIterator iter;
int found = 0;
raxStart(&iter,Timers);
raxSeek(&iter,"^",NULL,0);
while (raxNext(&iter)) {
ValkeyModuleTimer *timer = iter.data;
if (timer->module == module) {
found = 1;
break;
}
}
raxStop(&iter);
return found;
}
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
/* --------------------------------------------------------------------------
* ## Modules EventLoop API
* --------------------------------------------------------------------------*/
typedef struct EventLoopData {
ValkeyModuleEventLoopFunc rFunc;
ValkeyModuleEventLoopFunc wFunc;
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
void *user_data;
} EventLoopData;
typedef struct EventLoopOneShot {
ValkeyModuleEventLoopOneShotFunc func;
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
void *user_data;
} EventLoopOneShot;
list *moduleEventLoopOneShots;
static pthread_mutex_t moduleEventLoopMutex = PTHREAD_MUTEX_INITIALIZER;
static int eventLoopToAeMask(int mask) {
int aeMask = 0;
if (mask & VALKEYMODULE_EVENTLOOP_READABLE)
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
aeMask |= AE_READABLE;
if (mask & VALKEYMODULE_EVENTLOOP_WRITABLE)
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
aeMask |= AE_WRITABLE;
return aeMask;
}
static int eventLoopFromAeMask(int ae_mask) {
int mask = 0;
if (ae_mask & AE_READABLE)
mask |= VALKEYMODULE_EVENTLOOP_READABLE;
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
if (ae_mask & AE_WRITABLE)
mask |= VALKEYMODULE_EVENTLOOP_WRITABLE;
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
return mask;
}
static void eventLoopCbReadable(struct aeEventLoop *ae, int fd, void *user_data, int ae_mask) {
UNUSED(ae);
EventLoopData *data = user_data;
data->rFunc(fd, data->user_data, eventLoopFromAeMask(ae_mask));
}
static void eventLoopCbWritable(struct aeEventLoop *ae, int fd, void *user_data, int ae_mask) {
UNUSED(ae);
EventLoopData *data = user_data;
data->wFunc(fd, data->user_data, eventLoopFromAeMask(ae_mask));
}
/* Add a pipe / socket event to the event loop.
*
* * `mask` must be one of the following values:
*
* * `VALKEYMODULE_EVENTLOOP_READABLE`
* * `VALKEYMODULE_EVENTLOOP_WRITABLE`
* * `VALKEYMODULE_EVENTLOOP_READABLE | VALKEYMODULE_EVENTLOOP_WRITABLE`
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
*
* On success VALKEYMODULE_OK is returned, otherwise
* VALKEYMODULE_ERR is returned and errno is set to the following values:
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
*
* * ERANGE: `fd` is negative or higher than `maxclients` Redis config.
* * EINVAL: `callback` is NULL or `mask` value is invalid.
*
* `errno` might take other values in case of an internal error.
*
* Example:
*
* void onReadable(int fd, void *user_data, int mask) {
* char buf[32];
* int bytes = read(fd,buf,sizeof(buf));
* printf("Read %d bytes \n", bytes);
* }
* VM_EventLoopAdd(fd, VALKEYMODULE_EVENTLOOP_READABLE, onReadable, NULL);
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
*/
int VM_EventLoopAdd(int fd, int mask, ValkeyModuleEventLoopFunc func, void *user_data) {
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
if (fd < 0 || fd >= aeGetSetSize(server.el)) {
errno = ERANGE;
return VALKEYMODULE_ERR;
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
}
if (!func || mask & ~(VALKEYMODULE_EVENTLOOP_READABLE |
VALKEYMODULE_EVENTLOOP_WRITABLE)) {
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
errno = EINVAL;
return VALKEYMODULE_ERR;
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
}
/* We are going to register stub callbacks to 'ae' for two reasons:
*
* - "ae" callback signature is different from ValkeyModuleEventLoopCallback,
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
* that will be handled it in our stub callbacks.
* - We need to remap 'mask' value to provide binary compatibility.
*
* For the stub callbacks, saving user 'callback' and 'user_data' in an
* EventLoopData object and passing it to ae, later, we'll extract
* 'callback' and 'user_data' from that.
*/
EventLoopData *data = aeGetFileClientData(server.el, fd);
if (!data)
data = zcalloc(sizeof(*data));
aeFileProc *aeProc;
if (mask & VALKEYMODULE_EVENTLOOP_READABLE)
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
aeProc = eventLoopCbReadable;
else
aeProc = eventLoopCbWritable;
int aeMask = eventLoopToAeMask(mask);
if (aeCreateFileEvent(server.el, fd, aeMask, aeProc, data) != AE_OK) {
if (aeGetFileEvents(server.el, fd) == AE_NONE)
zfree(data);
return VALKEYMODULE_ERR;
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
}
data->user_data = user_data;
if (mask & VALKEYMODULE_EVENTLOOP_READABLE)
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
data->rFunc = func;
if (mask & VALKEYMODULE_EVENTLOOP_WRITABLE)
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
data->wFunc = func;
errno = 0;
return VALKEYMODULE_OK;
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
}
/* Delete a pipe / socket event from the event loop.
*
* * `mask` must be one of the following values:
*
* * `VALKEYMODULE_EVENTLOOP_READABLE`
* * `VALKEYMODULE_EVENTLOOP_WRITABLE`
* * `VALKEYMODULE_EVENTLOOP_READABLE | VALKEYMODULE_EVENTLOOP_WRITABLE`
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
*
* On success VALKEYMODULE_OK is returned, otherwise
* VALKEYMODULE_ERR is returned and errno is set to the following values:
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
*
* * ERANGE: `fd` is negative or higher than `maxclients` Redis config.
* * EINVAL: `mask` value is invalid.
*/
int VM_EventLoopDel(int fd, int mask) {
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
if (fd < 0 || fd >= aeGetSetSize(server.el)) {
errno = ERANGE;
return VALKEYMODULE_ERR;
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
}
if (mask & ~(VALKEYMODULE_EVENTLOOP_READABLE |
VALKEYMODULE_EVENTLOOP_WRITABLE)) {
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
errno = EINVAL;
return VALKEYMODULE_ERR;
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
}
/* After deleting the event, if fd does not have any registered event
* anymore, we can free the EventLoopData object. */
EventLoopData *data = aeGetFileClientData(server.el, fd);
aeDeleteFileEvent(server.el, fd, eventLoopToAeMask(mask));
if (aeGetFileEvents(server.el, fd) == AE_NONE)
zfree(data);
errno = 0;
return VALKEYMODULE_OK;
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
}
/* This function can be called from other threads to trigger callback on Redis
* main thread. On success VALKEYMODULE_OK is returned. If `func` is NULL
* VALKEYMODULE_ERR is returned and errno is set to EINVAL.
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
*/
int VM_EventLoopAddOneShot(ValkeyModuleEventLoopOneShotFunc func, void *user_data) {
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
if (!func) {
errno = EINVAL;
return VALKEYMODULE_ERR;
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
}
EventLoopOneShot *oneshot = zmalloc(sizeof(*oneshot));
oneshot->func = func;
oneshot->user_data = user_data;
pthread_mutex_lock(&moduleEventLoopMutex);
if (!moduleEventLoopOneShots) moduleEventLoopOneShots = listCreate();
listAddNodeTail(moduleEventLoopOneShots, oneshot);
pthread_mutex_unlock(&moduleEventLoopMutex);
if (write(server.module_pipe[1],"A",1) != 1) {
/* Pipe is non-blocking, write() may fail if it's full. */
}
errno = 0;
return VALKEYMODULE_OK;
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
}
/* This function will check the moduleEventLoopOneShots queue in order to
* call the callback for the registered oneshot events. */
static void eventLoopHandleOneShotEvents(void) {
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
pthread_mutex_lock(&moduleEventLoopMutex);
if (moduleEventLoopOneShots) {
while (listLength(moduleEventLoopOneShots)) {
listNode *ln = listFirst(moduleEventLoopOneShots);
EventLoopOneShot *oneshot = ln->value;
listDelNode(moduleEventLoopOneShots, ln);
/* Unlock mutex before the callback. Another oneshot event can be
* added in the callback, it will need to lock the mutex. */
pthread_mutex_unlock(&moduleEventLoopMutex);
oneshot->func(oneshot->user_data);
zfree(oneshot);
/* Lock again for the next iteration */
pthread_mutex_lock(&moduleEventLoopMutex);
}
}
pthread_mutex_unlock(&moduleEventLoopMutex);
}
/* --------------------------------------------------------------------------
* ## Modules ACL API
*
* Implements a hook into the authentication and authorization within Redis.
* --------------------------------------------------------------------------*/
2019-12-17 07:28:55 +00:00
/* This function is called when a client's user has changed and invokes the
* client's user changed callback if it was set. This callback should
* cleanup any state the module was tracking about this client.
*
* A client's user can be changed through the AUTH command, module
2019-12-17 07:28:55 +00:00
* authentication, and when a client is freed. */
void moduleNotifyUserChanged(client *c) {
if (c->auth_callback) {
c->auth_callback(c->id, c->auth_callback_privdata);
/* The callback will fire exactly once, even if the user remains
2019-12-17 07:28:55 +00:00
* the same. It is expected to completely clean up the state
* so all references are cleared here. */
c->auth_callback = NULL;
c->auth_callback_privdata = NULL;
c->auth_module = NULL;
}
}
void revokeClientAuthentication(client *c) {
2019-12-17 07:28:55 +00:00
/* Freeing the client would result in moduleNotifyUserChanged() to be
* called later, however since we use revokeClientAuthentication() also
* in moduleFreeAuthenticatedClients() to implement module unloading, we
* do this action ASAP: this way if the module is unloaded, when the client
* is eventually freed we don't rely on the module to still exist. */
moduleNotifyUserChanged(c);
c->user = DefaultUser;
c->authenticated = 0;
Don't write replies if close the client ASAP (#7202) Before this commit, we would have continued to add replies to the reply buffer even if client output buffer limit is reached, so the used memory would keep increasing over the configured limit. What's more, we shouldn’t write any reply to the client if it is set 'CLIENT_CLOSE_ASAP' flag because that doesn't conform to its definition and we will close all clients flagged with 'CLIENT_CLOSE_ASAP' in ‘beforeSleep’. Because of code execution order, before this, we may firstly write to part of the replies to the socket before disconnecting it, but in fact, we may can’t send the full replies to clients since OS socket buffer is limited. But this unexpected behavior makes some commands work well, for instance ACL DELUSER, if the client deletes the current user, we need to send reply to client and close the connection, but before, we close the client firstly and write the reply to reply buffer. secondly, we shouldn't do this despite the fact it works well in most cases. We add a flag 'CLIENT_CLOSE_AFTER_COMMAND' to mark clients, this flag means we will close the client after executing commands and send all entire replies, so that we can write replies to reply buffer during executing commands, send replies to clients, and close them later. We also fix some implicit problems. If client output buffer limit is enforced in 'multi/exec', all commands will be executed completely in redis and clients will not read any reply instead of partial replies. Even more, if the client executes 'ACL deluser' the using user in 'multi/exec', it will not read the replies after 'ACL deluser' just like before executing 'client kill' itself in 'multi/exec'. We added some tests for output buffer limit breach during multi-exec and using a pipeline of many small commands rather than one with big response. Co-authored-by: Oran Agra <oran@redislabs.com>
2020-09-24 21:01:41 +08:00
/* We will write replies to this client later, so we can't close it
* directly even if async. */
if (c == server.current_client) {
c->flags |= CLIENT_CLOSE_AFTER_COMMAND;
} else {
freeClientAsync(c);
}
}
/* Cleanup all clients that have been authenticated with this module. This
* is called from onUnload() to give the module a chance to cleanup any
2019-12-17 07:28:55 +00:00
* resources associated with clients it has authenticated. */
static void moduleFreeAuthenticatedClients(ValkeyModule *module) {
listIter li;
listNode *ln;
listRewind(server.clients,&li);
while ((ln = listNext(&li)) != NULL) {
client *c = listNodeValue(ln);
if (!c->auth_module) continue;
ValkeyModule *auth_module = (ValkeyModule *) c->auth_module;
if (auth_module == module) {
revokeClientAuthentication(c);
}
}
}
/* Creates a Redis ACL user that the module can use to authenticate a client.
* After obtaining the user, the module should set what such user can do
* using the VM_SetUserACL() function. Once configured, the user
* can be used in order to authenticate a connection, with the specified
* ACL rules, using the ValkeyModule_AuthClientWithUser() function.
*
* Note that:
*
* * Users created here are not listed by the ACL command.
* * Users created here are not checked for duplicated name, so it's up to
* the module calling this function to take care of not creating users
* with the same name.
* * The created user can be used to authenticate multiple Redis connections.
*
* The caller can later free the user using the function
* VM_FreeModuleUser(). When this function is called, if there are
* still clients authenticated with this user, they are disconnected.
* The function to free the user should only be used when the caller really
* wants to invalidate the user to define a new one with different
* capabilities. */
ValkeyModuleUser *VM_CreateModuleUser(const char *name) {
ValkeyModuleUser *new_user = zmalloc(sizeof(ValkeyModuleUser));
new_user->user = ACLCreateUnlinkedUser();
new_user->free_user = 1;
/* Free the previous temporarily assigned name to assign the new one */
sdsfree(new_user->user->name);
new_user->user->name = sdsnew(name);
return new_user;
}
/* Frees a given user and disconnects all of the clients that have been
* authenticated with it. See VM_CreateModuleUser for detailed usage.*/
int VM_FreeModuleUser(ValkeyModuleUser *user) {
if (user->free_user)
ACLFreeUserAndKillClients(user->user);
zfree(user);
return VALKEYMODULE_OK;
}
/* Sets the permissions of a user created through the redis module
* interface. The syntax is the same as ACL SETUSER, so refer to the
* documentation in acl.c for more information. See VM_CreateModuleUser
* for detailed usage.
*
* Returns VALKEYMODULE_OK on success and VALKEYMODULE_ERR on failure
* and will set an errno describing why the operation failed. */
int VM_SetModuleUserACL(ValkeyModuleUser *user, const char* acl) {
return ACLSetUser(user->user, acl, -1);
}
/* Sets the permission of a user with a complete ACL string, such as one
* would use on the redis ACL SETUSER command line API. This differs from
* VM_SetModuleUserACL, which only takes single ACL operations at a time.
*
* Returns VALKEYMODULE_OK on success and VALKEYMODULE_ERR on failure
* if a ValkeyModuleString is provided in error, a string describing the error
* will be returned */
int VM_SetModuleUserACLString(ValkeyModuleCtx *ctx, ValkeyModuleUser *user, const char *acl, ValkeyModuleString **error) {
serverAssert(user != NULL);
int argc;
sds *argv = sdssplitargs(acl, &argc);
sds err = ACLStringSetUser(user->user, NULL, argv, argc);
sdsfreesplitres(argv, argc);
if (err) {
if (error) {
*error = createObject(OBJ_STRING, err);
if (ctx != NULL) autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, *error);
} else {
sdsfree(err);
}
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
}
/* Get the ACL string for a given user
* Returns a ValkeyModuleString
*/
ValkeyModuleString *VM_GetModuleUserACLString(ValkeyModuleUser *user) {
serverAssert(user != NULL);
return ACLDescribeUser(user->user);
}
/* Retrieve the user name of the client connection behind the current context.
* The user name can be used later, in order to get a ValkeyModuleUser.
* See more information in VM_GetModuleUserFromUserName.
*
* The returned string must be released with ValkeyModule_FreeString() or by
* enabling automatic memory management. */
ValkeyModuleString *VM_GetCurrentUserName(ValkeyModuleCtx *ctx) {
return VM_CreateString(ctx,ctx->client->user->name,sdslen(ctx->client->user->name));
}
/* A ValkeyModuleUser can be used to check if command, key or channel can be executed or
* accessed according to the ACLs rules associated with that user.
* When a Module wants to do ACL checks on a general ACL user (not created by VM_CreateModuleUser),
* it can get the ValkeyModuleUser from this API, based on the user name retrieved by VM_GetCurrentUserName.
*
* Since a general ACL user can be deleted at any time, this ValkeyModuleUser should be used only in the context
* where this function was called. In order to do ACL checks out of that context, the Module can store the user name,
* and call this API at any other context.
*
* Returns NULL if the user is disabled or the user does not exist.
* The caller should later free the user using the function VM_FreeModuleUser().*/
ValkeyModuleUser *VM_GetModuleUserFromUserName(ValkeyModuleString *name) {
/* First, verify that the user exist */
user *acl_user = ACLGetUserByName(name->ptr, sdslen(name->ptr));
if (acl_user == NULL) {
return NULL;
}
ValkeyModuleUser *new_user = zmalloc(sizeof(ValkeyModuleUser));
new_user->user = acl_user;
new_user->free_user = 0;
return new_user;
}
/* Checks if the command can be executed by the user, according to the ACLs associated with it.
*
* On success a VALKEYMODULE_OK is returned, otherwise
* VALKEYMODULE_ERR is returned and errno is set to the following values:
*
* * ENOENT: Specified command does not exist.
* * EACCES: Command cannot be executed, according to ACL rules
*/
int VM_ACLCheckCommandPermissions(ValkeyModuleUser *user, ValkeyModuleString **argv, int argc) {
int keyidxptr;
struct redisCommand *cmd;
/* Find command */
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
if ((cmd = lookupCommand(argv, argc)) == NULL) {
errno = ENOENT;
return VALKEYMODULE_ERR;
}
if (ACLCheckAllUserCommandPerm(user->user, cmd, argv, argc, &keyidxptr) != ACL_OK) {
errno = EACCES;
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
}
/* Check if the key can be accessed by the user according to the ACLs attached to the user
* and the flags representing the key access. The flags are the same that are used in the
* keyspec for logical operations. These flags are documented in ValkeyModule_SetCommandInfo as
* the VALKEYMODULE_CMD_KEY_ACCESS, VALKEYMODULE_CMD_KEY_UPDATE, VALKEYMODULE_CMD_KEY_INSERT,
* and VALKEYMODULE_CMD_KEY_DELETE flags.
*
* If no flags are supplied, the user is still required to have some access to the key for
* this command to return successfully.
*
* If the user is able to access the key then VALKEYMODULE_OK is returned, otherwise
* VALKEYMODULE_ERR is returned and errno is set to one of the following values:
*
* * EINVAL: The provided flags are invalid.
* * EACCESS: The user does not have permission to access the key.
*/
int VM_ACLCheckKeyPermissions(ValkeyModuleUser *user, ValkeyModuleString *key, int flags) {
const int allow_mask = (VALKEYMODULE_CMD_KEY_ACCESS
| VALKEYMODULE_CMD_KEY_INSERT
| VALKEYMODULE_CMD_KEY_DELETE
| VALKEYMODULE_CMD_KEY_UPDATE);
if ((flags & allow_mask) != flags) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
int keyspec_flags = moduleConvertKeySpecsFlags(flags, 0);
if (ACLUserCheckKeyPerm(user->user, key->ptr, sdslen(key->ptr), keyspec_flags) != ACL_OK) {
errno = EACCES;
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
}
/* Check if the pubsub channel can be accessed by the user based off of the given
* access flags. See VM_ChannelAtPosWithFlags for more information about the
* possible flags that can be passed in.
*
* If the user is able to access the pubsub channel then VALKEYMODULE_OK is returned, otherwise
* VALKEYMODULE_ERR is returned and errno is set to one of the following values:
*
* * EINVAL: The provided flags are invalid.
* * EACCESS: The user does not have permission to access the pubsub channel.
*/
int VM_ACLCheckChannelPermissions(ValkeyModuleUser *user, ValkeyModuleString *ch, int flags) {
const int allow_mask = (VALKEYMODULE_CMD_CHANNEL_PUBLISH
| VALKEYMODULE_CMD_CHANNEL_SUBSCRIBE
| VALKEYMODULE_CMD_CHANNEL_UNSUBSCRIBE
| VALKEYMODULE_CMD_CHANNEL_PATTERN);
if ((flags & allow_mask) != flags) {
errno = EINVAL;
return VALKEYMODULE_ERR;
}
/* Unsubscribe permissions are currently always allowed. */
if (flags & VALKEYMODULE_CMD_CHANNEL_UNSUBSCRIBE){
return VALKEYMODULE_OK;
}
int is_pattern = flags & VALKEYMODULE_CMD_CHANNEL_PATTERN;
if (ACLUserCheckChannelPerm(user->user, ch->ptr, is_pattern) != ACL_OK)
return VALKEYMODULE_ERR;
return VALKEYMODULE_OK;
}
/* Helper function to map a ValkeyModuleACLLogEntryReason to ACL Log entry reason. */
int moduleGetACLLogEntryReason(ValkeyModuleACLLogEntryReason reason) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
int acl_reason = 0;
switch (reason) {
case VALKEYMODULE_ACL_LOG_AUTH: acl_reason = ACL_DENIED_AUTH; break;
case VALKEYMODULE_ACL_LOG_KEY: acl_reason = ACL_DENIED_KEY; break;
case VALKEYMODULE_ACL_LOG_CHANNEL: acl_reason = ACL_DENIED_CHANNEL; break;
case VALKEYMODULE_ACL_LOG_CMD: acl_reason = ACL_DENIED_CMD; break;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
default: break;
}
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
return acl_reason;
}
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
/* Adds a new entry in the ACL log.
* Returns VALKEYMODULE_OK on success and VALKEYMODULE_ERR on error.
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
*
* For more information about ACL log, please refer to https://redis.io/commands/acl-log */
int VM_ACLAddLogEntry(ValkeyModuleCtx *ctx, ValkeyModuleUser *user, ValkeyModuleString *object, ValkeyModuleACLLogEntryReason reason) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
int acl_reason = moduleGetACLLogEntryReason(reason);
if (!acl_reason) return VALKEYMODULE_ERR;
addACLLogEntry(ctx->client, acl_reason, ACL_LOG_CTX_MODULE, -1, user->user->name, sdsdup(object->ptr));
return VALKEYMODULE_OK;
}
/* Adds a new entry in the ACL log with the `username` ValkeyModuleString provided.
* Returns VALKEYMODULE_OK on success and VALKEYMODULE_ERR on error.
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
*
* For more information about ACL log, please refer to https://redis.io/commands/acl-log */
int VM_ACLAddLogEntryByUserName(ValkeyModuleCtx *ctx, ValkeyModuleString *username, ValkeyModuleString *object, ValkeyModuleACLLogEntryReason reason) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
int acl_reason = moduleGetACLLogEntryReason(reason);
if (!acl_reason) return VALKEYMODULE_ERR;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
addACLLogEntry(ctx->client, acl_reason, ACL_LOG_CTX_MODULE, -1, username->ptr, sdsdup(object->ptr));
return VALKEYMODULE_OK;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
}
/* Authenticate the client associated with the context with
* the provided user. Returns VALKEYMODULE_OK on success and
* VALKEYMODULE_ERR on error.
*
* This authentication can be tracked with the optional callback and private
* data fields. The callback will be called whenever the user of the client
* changes. This callback should be used to cleanup any state that is being
* kept in the module related to the client authentication. It will only be
* called once, even when the user hasn't changed, in order to allow for a
* new callback to be specified. If this authentication does not need to be
* tracked, pass in NULL for the callback and privdata.
*
* If client_id is not NULL, it will be filled with the id of the client
* that was authenticated. This can be used with the
* VM_DeauthenticateAndCloseClient() API in order to deauthenticate a
* previously authenticated client if the authentication is no longer valid.
*
* For expensive authentication operations, it is recommended to block the
2019-12-17 07:28:55 +00:00
* client and do the authentication in the background and then attach the user
* to the client in a threadsafe context. */
static int authenticateClientWithUser(ValkeyModuleCtx *ctx, user *user, ValkeyModuleUserChangedFunc callback, void *privdata, uint64_t *client_id) {
if (user->flags & USER_FLAG_DISABLED) {
return VALKEYMODULE_ERR;
}
/* Avoid settings which are meaningless and will be lost */
if (!ctx->client || (ctx->client->flags & CLIENT_MODULE)) {
return VALKEYMODULE_ERR;
}
moduleNotifyUserChanged(ctx->client);
ctx->client->user = user;
ctx->client->authenticated = 1;
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
if (clientHasModuleAuthInProgress(ctx->client)) {
ctx->client->flags |= CLIENT_MODULE_AUTH_HAS_RESULT;
}
if (callback) {
ctx->client->auth_callback = callback;
ctx->client->auth_callback_privdata = privdata;
ctx->client->auth_module = ctx->module;
}
if (client_id) {
*client_id = ctx->client->id;
}
return VALKEYMODULE_OK;
}
/* Authenticate the current context's user with the provided redis acl user.
* Returns VALKEYMODULE_ERR if the user is disabled.
*
2019-12-17 07:28:55 +00:00
* See authenticateClientWithUser for information about callback, client_id,
* and general usage for authentication. */
int VM_AuthenticateClientWithUser(ValkeyModuleCtx *ctx, ValkeyModuleUser *module_user, ValkeyModuleUserChangedFunc callback, void *privdata, uint64_t *client_id) {
return authenticateClientWithUser(ctx, module_user->user, callback, privdata, client_id);
}
/* Authenticate the current context's user with the provided redis acl user.
* Returns VALKEYMODULE_ERR if the user is disabled or the user does not exist.
*
2019-12-17 07:28:55 +00:00
* See authenticateClientWithUser for information about callback, client_id,
* and general usage for authentication. */
int VM_AuthenticateClientWithACLUser(ValkeyModuleCtx *ctx, const char *name, size_t len, ValkeyModuleUserChangedFunc callback, void *privdata, uint64_t *client_id) {
user *acl_user = ACLGetUserByName(name, len);
if (!acl_user) {
return VALKEYMODULE_ERR;
}
return authenticateClientWithUser(ctx, acl_user, callback, privdata, client_id);
}
/* Deauthenticate and close the client. The client resources will not be
* immediately freed, but will be cleaned up in a background job. This is
* the recommended way to deauthenticate a client since most clients can't
* handle users becoming deauthenticated. Returns VALKEYMODULE_ERR when the
* client doesn't exist and VALKEYMODULE_OK when the operation was successful.
*
* The client ID is returned from the VM_AuthenticateClientWithUser and
* VM_AuthenticateClientWithACLUser APIs, but can be obtained through
* the CLIENT api or through server events.
*
* This function is not thread safe, and must be executed within the context
* of a command or thread safe context. */
int VM_DeauthenticateAndCloseClient(ValkeyModuleCtx *ctx, uint64_t client_id) {
UNUSED(ctx);
client *c = lookupClientByID(client_id);
if (c == NULL) return VALKEYMODULE_ERR;
/* Revoke also marks client to be closed ASAP */
revokeClientAuthentication(c);
return VALKEYMODULE_OK;
}
/* Redact the client command argument specified at the given position. Redacted arguments
* are obfuscated in user facing commands such as SLOWLOG or MONITOR, as well as
* never being written to server logs. This command may be called multiple times on the
* same position.
*
* Note that the command name, position 0, can not be redacted.
*
* Returns VALKEYMODULE_OK if the argument was redacted and VALKEYMODULE_ERR if there
* was an invalid parameter passed in or the position is outside the client
* argument range. */
int VM_RedactClientCommandArgument(ValkeyModuleCtx *ctx, int pos) {
if (!ctx || !ctx->client || pos <= 0 || ctx->client->argc <= pos) {
return VALKEYMODULE_ERR;
}
redactClientCommandArgument(ctx->client, pos);
return VALKEYMODULE_OK;
}
/* Return the X.509 client-side certificate used by the client to authenticate
* this connection.
*
* The return value is an allocated ValkeyModuleString that is a X.509 certificate
* encoded in PEM (Base64) format. It should be freed (or auto-freed) by the caller.
*
* A NULL value is returned in the following conditions:
*
* - Connection ID does not exist
* - Connection is not a TLS connection
* - Connection is a TLS connection but no client certificate was used
*/
ValkeyModuleString *VM_GetClientCertificate(ValkeyModuleCtx *ctx, uint64_t client_id) {
client *c = lookupClientByID(client_id);
if (c == NULL) return NULL;
sds cert = connGetPeerCert(c->conn);
if (!cert) return NULL;
ValkeyModuleString *s = createObject(OBJ_STRING, cert);
if (ctx != NULL) autoMemoryAdd(ctx, VALKEYMODULE_AM_STRING, s);
return s;
}
/* --------------------------------------------------------------------------
* ## Modules Dictionary API
*
* Implements a sorted dictionary (actually backed by a radix tree) with
* the usual get / set / del / num-items API, together with an iterator
* capable of going back and forth.
* -------------------------------------------------------------------------- */
/* Create a new dictionary. The 'ctx' pointer can be the current module context
* or NULL, depending on what you want. Please follow the following rules:
*
* 1. Use a NULL context if you plan to retain a reference to this dictionary
* that will survive the time of the module callback where you created it.
* 2. Use a NULL context if no context is available at the time you are creating
* the dictionary (of course...).
* 3. However use the current callback context as 'ctx' argument if the
* dictionary time to live is just limited to the callback scope. In this
* case, if enabled, you can enjoy the automatic memory management that will
* reclaim the dictionary memory, as well as the strings returned by the
* Next / Prev dictionary iterator calls.
*/
ValkeyModuleDict *VM_CreateDict(ValkeyModuleCtx *ctx) {
struct ValkeyModuleDict *d = zmalloc(sizeof(*d));
d->rax = raxNew();
if (ctx != NULL) autoMemoryAdd(ctx,VALKEYMODULE_AM_DICT,d);
return d;
}
/* Free a dictionary created with VM_CreateDict(). You need to pass the
* context pointer 'ctx' only if the dictionary was created using the
* context instead of passing NULL. */
void VM_FreeDict(ValkeyModuleCtx *ctx, ValkeyModuleDict *d) {
if (ctx != NULL) autoMemoryFreed(ctx,VALKEYMODULE_AM_DICT,d);
raxFree(d->rax);
zfree(d);
}
/* Return the size of the dictionary (number of keys). */
uint64_t VM_DictSize(ValkeyModuleDict *d) {
return raxSize(d->rax);
}
/* Store the specified key into the dictionary, setting its value to the
* pointer 'ptr'. If the key was added with success, since it did not
* already exist, VALKEYMODULE_OK is returned. Otherwise if the key already
* exists the function returns VALKEYMODULE_ERR. */
int VM_DictSetC(ValkeyModuleDict *d, void *key, size_t keylen, void *ptr) {
int retval = raxTryInsert(d->rax,key,keylen,ptr,NULL);
return (retval == 1) ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* Like ValkeyModule_DictSetC() but will replace the key with the new
* value if the key already exists. */
int VM_DictReplaceC(ValkeyModuleDict *d, void *key, size_t keylen, void *ptr) {
int retval = raxInsert(d->rax,key,keylen,ptr,NULL);
return (retval == 1) ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* Like ValkeyModule_DictSetC() but takes the key as a ValkeyModuleString. */
int VM_DictSet(ValkeyModuleDict *d, ValkeyModuleString *key, void *ptr) {
return VM_DictSetC(d,key->ptr,sdslen(key->ptr),ptr);
}
/* Like ValkeyModule_DictReplaceC() but takes the key as a ValkeyModuleString. */
int VM_DictReplace(ValkeyModuleDict *d, ValkeyModuleString *key, void *ptr) {
return VM_DictReplaceC(d,key->ptr,sdslen(key->ptr),ptr);
}
/* Return the value stored at the specified key. The function returns NULL
* both in the case the key does not exist, or if you actually stored
* NULL at key. So, optionally, if the 'nokey' pointer is not NULL, it will
* be set by reference to 1 if the key does not exist, or to 0 if the key
* exists. */
void *VM_DictGetC(ValkeyModuleDict *d, void *key, size_t keylen, int *nokey) {
void *res = raxFind(d->rax,key,keylen);
if (nokey) *nokey = (res == raxNotFound);
2018-10-01 13:57:25 +03:30
return (res == raxNotFound) ? NULL : res;
}
/* Like ValkeyModule_DictGetC() but takes the key as a ValkeyModuleString. */
void *VM_DictGet(ValkeyModuleDict *d, ValkeyModuleString *key, int *nokey) {
return VM_DictGetC(d,key->ptr,sdslen(key->ptr),nokey);
}
/* Remove the specified key from the dictionary, returning VALKEYMODULE_OK if
* the key was found and deleted, or VALKEYMODULE_ERR if instead there was
* no such key in the dictionary. When the operation is successful, if
* 'oldval' is not NULL, then '*oldval' is set to the value stored at the
* key before it was deleted. Using this feature it is possible to get
* a pointer to the value (for instance in order to release it), without
* having to call ValkeyModule_DictGet() before deleting the key. */
int VM_DictDelC(ValkeyModuleDict *d, void *key, size_t keylen, void *oldval) {
int retval = raxRemove(d->rax,key,keylen,oldval);
return retval ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* Like ValkeyModule_DictDelC() but gets the key as a ValkeyModuleString. */
int VM_DictDel(ValkeyModuleDict *d, ValkeyModuleString *key, void *oldval) {
return VM_DictDelC(d,key->ptr,sdslen(key->ptr),oldval);
}
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
/* Return an iterator, setup in order to start iterating from the specified
* key by applying the operator 'op', which is just a string specifying the
* comparison operator to use in order to seek the first element. The
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
* operators available are:
*
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* * `^` -- Seek the first (lexicographically smaller) key.
* * `$` -- Seek the last (lexicographically bigger) key.
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* * `>` -- Seek the first element greater than the specified key.
* * `>=` -- Seek the first element greater or equal than the specified key.
* * `<` -- Seek the first element smaller than the specified key.
* * `<=` -- Seek the first element smaller or equal than the specified key.
* * `==` -- Seek the first element matching exactly the specified key.
*
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* Note that for `^` and `$` the passed key is not used, and the user may
* just pass NULL with a length of 0.
*
* If the element to start the iteration cannot be seeked based on the
* key and operator passed, ValkeyModule_DictNext() / Prev() will just return
* VALKEYMODULE_ERR at the first call, otherwise they'll produce elements.
*/
ValkeyModuleDictIter *VM_DictIteratorStartC(ValkeyModuleDict *d, const char *op, void *key, size_t keylen) {
ValkeyModuleDictIter *di = zmalloc(sizeof(*di));
di->dict = d;
raxStart(&di->ri,d->rax);
raxSeek(&di->ri,op,key,keylen);
return di;
}
/* Exactly like ValkeyModule_DictIteratorStartC, but the key is passed as a
* ValkeyModuleString. */
ValkeyModuleDictIter *VM_DictIteratorStart(ValkeyModuleDict *d, const char *op, ValkeyModuleString *key) {
return VM_DictIteratorStartC(d,op,key->ptr,sdslen(key->ptr));
}
/* Release the iterator created with ValkeyModule_DictIteratorStart(). This call
* is mandatory otherwise a memory leak is introduced in the module. */
void VM_DictIteratorStop(ValkeyModuleDictIter *di) {
raxStop(&di->ri);
zfree(di);
}
/* After its creation with ValkeyModule_DictIteratorStart(), it is possible to
* change the currently selected element of the iterator by using this
* API call. The result based on the operator and key is exactly like
* the function ValkeyModule_DictIteratorStart(), however in this case the
* return value is just VALKEYMODULE_OK in case the seeked element was found,
* or VALKEYMODULE_ERR in case it was not possible to seek the specified
* element. It is possible to reseek an iterator as many times as you want. */
int VM_DictIteratorReseekC(ValkeyModuleDictIter *di, const char *op, void *key, size_t keylen) {
return raxSeek(&di->ri,op,key,keylen);
}
/* Like ValkeyModule_DictIteratorReseekC() but takes the key as a
* ValkeyModuleString. */
int VM_DictIteratorReseek(ValkeyModuleDictIter *di, const char *op, ValkeyModuleString *key) {
return VM_DictIteratorReseekC(di,op,key->ptr,sdslen(key->ptr));
}
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
/* Return the current item of the dictionary iterator `di` and steps to the
* next element. If the iterator already yield the last element and there
* are no other elements to return, NULL is returned, otherwise a pointer
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* to a string representing the key is provided, and the `*keylen` length
* is set by reference (if keylen is not NULL). The `*dataptr`, if not NULL
* is set to the value of the pointer stored at the returned key as auxiliary
* data (as set by the ValkeyModule_DictSet API).
*
* Usage example:
*
* ... create the iterator here ...
* char *key;
* void *data;
* while((key = ValkeyModule_DictNextC(iter,&keylen,&data)) != NULL) {
* printf("%.*s %p\n", (int)keylen, key, data);
* }
*
* The returned pointer is of type void because sometimes it makes sense
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* to cast it to a `char*` sometimes to an unsigned `char*` depending on the
* fact it contains or not binary data, so this API ends being more
* comfortable to use.
*
* The validity of the returned pointer is until the next call to the
* next/prev iterator step. Also the pointer is no longer valid once the
* iterator is released. */
void *VM_DictNextC(ValkeyModuleDictIter *di, size_t *keylen, void **dataptr) {
if (!raxNext(&di->ri)) return NULL;
if (keylen) *keylen = di->ri.key_len;
if (dataptr) *dataptr = di->ri.data;
return di->ri.key;
}
/* This function is exactly like ValkeyModule_DictNext() but after returning
* the currently selected element in the iterator, it selects the previous
* element (lexicographically smaller) instead of the next one. */
void *VM_DictPrevC(ValkeyModuleDictIter *di, size_t *keylen, void **dataptr) {
if (!raxPrev(&di->ri)) return NULL;
if (keylen) *keylen = di->ri.key_len;
if (dataptr) *dataptr = di->ri.data;
return di->ri.key;
}
/* Like ValkeyModuleNextC(), but instead of returning an internally allocated
* buffer and key length, it returns directly a module string object allocated
* in the specified context 'ctx' (that may be NULL exactly like for the main
* API ValkeyModule_CreateString).
*
* The returned string object should be deallocated after use, either manually
* or by using a context that has automatic memory management active. */
ValkeyModuleString *VM_DictNext(ValkeyModuleCtx *ctx, ValkeyModuleDictIter *di, void **dataptr) {
size_t keylen;
void *key = VM_DictNextC(di,&keylen,dataptr);
if (key == NULL) return NULL;
return VM_CreateString(ctx,key,keylen);
}
/* Like ValkeyModule_DictNext() but after returning the currently selected
* element in the iterator, it selects the previous element (lexicographically
* smaller) instead of the next one. */
ValkeyModuleString *VM_DictPrev(ValkeyModuleCtx *ctx, ValkeyModuleDictIter *di, void **dataptr) {
size_t keylen;
void *key = VM_DictPrevC(di,&keylen,dataptr);
if (key == NULL) return NULL;
return VM_CreateString(ctx,key,keylen);
}
/* Compare the element currently pointed by the iterator to the specified
* element given by key/keylen, according to the operator 'op' (the set of
* valid operators are the same valid for ValkeyModule_DictIteratorStart).
* If the comparison is successful the command returns VALKEYMODULE_OK
* otherwise VALKEYMODULE_ERR is returned.
*
* This is useful when we want to just emit a lexicographical range, so
* in the loop, as we iterate elements, we can also check if we are still
* on range.
*
* The function return VALKEYMODULE_ERR if the iterator reached the
* end of elements condition as well. */
int VM_DictCompareC(ValkeyModuleDictIter *di, const char *op, void *key, size_t keylen) {
if (raxEOF(&di->ri)) return VALKEYMODULE_ERR;
int res = raxCompare(&di->ri,op,key,keylen);
return res ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* Like ValkeyModule_DictCompareC but gets the key to compare with the current
* iterator key as a ValkeyModuleString. */
int VM_DictCompare(ValkeyModuleDictIter *di, const char *op, ValkeyModuleString *key) {
if (raxEOF(&di->ri)) return VALKEYMODULE_ERR;
int res = raxCompare(&di->ri,op,key->ptr,sdslen(key->ptr));
return res ? VALKEYMODULE_OK : VALKEYMODULE_ERR;
}
/* --------------------------------------------------------------------------
* ## Modules Info fields
* -------------------------------------------------------------------------- */
int VM_InfoEndDictField(ValkeyModuleInfoCtx *ctx);
/* Used to start a new section, before adding any fields. the section name will
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* be prefixed by `<modulename>_` and must only include A-Z,a-z,0-9.
* NULL or empty string indicates the default section (only `<modulename>`) is used.
* When return value is VALKEYMODULE_ERR, the section should and will be skipped. */
int VM_InfoAddSection(ValkeyModuleInfoCtx *ctx, const char *name) {
sds full_name = sdsdup(ctx->module->name);
if (name != NULL && strlen(name) > 0)
full_name = sdscatfmt(full_name, "_%s", name);
/* Implicitly end dicts, instead of returning an error which is likely un checked. */
if (ctx->in_dict_field)
VM_InfoEndDictField(ctx);
/* proceed only if:
* 1) no section was requested (emit all)
* 2) the module name was requested (emit all)
* 3) this specific section was requested. */
if (ctx->requested_sections) {
if ((!full_name || !dictFind(ctx->requested_sections, full_name)) &&
(!dictFind(ctx->requested_sections, ctx->module->name)))
{
sdsfree(full_name);
ctx->in_section = 0;
return VALKEYMODULE_ERR;
}
}
if (ctx->sections++) ctx->info = sdscat(ctx->info,"\r\n");
ctx->info = sdscatfmt(ctx->info, "# %S\r\n", full_name);
ctx->in_section = 1;
sdsfree(full_name);
return VALKEYMODULE_OK;
}
/* Starts a dict field, similar to the ones in INFO KEYSPACE. Use normal
* ValkeyModule_InfoAddField* functions to add the items to this field, and
* terminate with ValkeyModule_InfoEndDictField. */
int VM_InfoBeginDictField(ValkeyModuleInfoCtx *ctx, const char *name) {
if (!ctx->in_section)
return VALKEYMODULE_ERR;
/* Implicitly end dicts, instead of returning an error which is likely un checked. */
if (ctx->in_dict_field)
VM_InfoEndDictField(ctx);
char *tmpmodname, *tmpname;
ctx->info = sdscatfmt(ctx->info,
"%s_%s:",
getSafeInfoString(ctx->module->name, strlen(ctx->module->name), &tmpmodname),
getSafeInfoString(name, strlen(name), &tmpname));
if (tmpmodname != NULL) zfree(tmpmodname);
if (tmpname != NULL) zfree(tmpname);
ctx->in_dict_field = 1;
return VALKEYMODULE_OK;
}
/* Ends a dict field, see ValkeyModule_InfoBeginDictField */
int VM_InfoEndDictField(ValkeyModuleInfoCtx *ctx) {
if (!ctx->in_dict_field)
return VALKEYMODULE_ERR;
/* trim the last ',' if found. */
if (ctx->info[sdslen(ctx->info)-1]==',')
sdsIncrLen(ctx->info, -1);
ctx->info = sdscat(ctx->info, "\r\n");
ctx->in_dict_field = 0;
return VALKEYMODULE_OK;
}
/* Used by ValkeyModuleInfoFunc to add info fields.
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* Each field will be automatically prefixed by `<modulename>_`.
* Field names or values must not include `\r\n` or `:`. */
int VM_InfoAddFieldString(ValkeyModuleInfoCtx *ctx, const char *field, ValkeyModuleString *value) {
if (!ctx->in_section)
return VALKEYMODULE_ERR;
if (ctx->in_dict_field) {
ctx->info = sdscatfmt(ctx->info,
"%s=%S,",
field,
(sds)value->ptr);
return VALKEYMODULE_OK;
}
ctx->info = sdscatfmt(ctx->info,
"%s_%s:%S\r\n",
ctx->module->name,
field,
(sds)value->ptr);
return VALKEYMODULE_OK;
}
/* See ValkeyModule_InfoAddFieldString(). */
int VM_InfoAddFieldCString(ValkeyModuleInfoCtx *ctx, const char *field, const char *value) {
if (!ctx->in_section)
return VALKEYMODULE_ERR;
if (ctx->in_dict_field) {
ctx->info = sdscatfmt(ctx->info,
"%s=%s,",
field,
value);
return VALKEYMODULE_OK;
}
ctx->info = sdscatfmt(ctx->info,
"%s_%s:%s\r\n",
ctx->module->name,
field,
value);
return VALKEYMODULE_OK;
}
/* See ValkeyModule_InfoAddFieldString(). */
int VM_InfoAddFieldDouble(ValkeyModuleInfoCtx *ctx, const char *field, double value) {
if (!ctx->in_section)
return VALKEYMODULE_ERR;
if (ctx->in_dict_field) {
ctx->info = sdscatprintf(ctx->info,
"%s=%.17g,",
field,
value);
return VALKEYMODULE_OK;
}
ctx->info = sdscatprintf(ctx->info,
"%s_%s:%.17g\r\n",
ctx->module->name,
field,
value);
return VALKEYMODULE_OK;
}
/* See ValkeyModule_InfoAddFieldString(). */
int VM_InfoAddFieldLongLong(ValkeyModuleInfoCtx *ctx, const char *field, long long value) {
if (!ctx->in_section)
return VALKEYMODULE_ERR;
if (ctx->in_dict_field) {
ctx->info = sdscatfmt(ctx->info,
"%s=%I,",
field,
value);
return VALKEYMODULE_OK;
}
ctx->info = sdscatfmt(ctx->info,
"%s_%s:%I\r\n",
ctx->module->name,
field,
value);
return VALKEYMODULE_OK;
}
/* See ValkeyModule_InfoAddFieldString(). */
int VM_InfoAddFieldULongLong(ValkeyModuleInfoCtx *ctx, const char *field, unsigned long long value) {
if (!ctx->in_section)
return VALKEYMODULE_ERR;
if (ctx->in_dict_field) {
ctx->info = sdscatfmt(ctx->info,
"%s=%U,",
field,
value);
return VALKEYMODULE_OK;
}
ctx->info = sdscatfmt(ctx->info,
"%s_%s:%U\r\n",
ctx->module->name,
field,
value);
return VALKEYMODULE_OK;
}
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
/* Registers callback for the INFO command. The callback should add INFO fields
* by calling the `ValkeyModule_InfoAddField*()` functions. */
int VM_RegisterInfoFunc(ValkeyModuleCtx *ctx, ValkeyModuleInfoFunc cb) {
ctx->module->info_cb = cb;
return VALKEYMODULE_OK;
}
sds modulesCollectInfo(sds info, dict *sections_dict, int for_crash_report, int sections) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct ValkeyModule *module = dictGetVal(de);
if (!module->info_cb)
continue;
ValkeyModuleInfoCtx info_ctx = {module, sections_dict, info, sections, 0, 0};
module->info_cb(&info_ctx, for_crash_report);
/* Implicitly end dicts (no way to handle errors, and we must add the newline). */
if (info_ctx.in_dict_field)
VM_InfoEndDictField(&info_ctx);
info = info_ctx.info;
sections = info_ctx.sections;
}
dictReleaseIterator(di);
return info;
}
/* Get information about the server similar to the one that returns from the
* INFO command. This function takes an optional 'section' argument that may
* be NULL. The return value holds the output and can be used with
* ValkeyModule_ServerInfoGetField and alike to get the individual fields.
* When done, it needs to be freed with ValkeyModule_FreeServerInfo or with the
* automatic memory management mechanism if enabled. */
ValkeyModuleServerInfoData *VM_GetServerInfo(ValkeyModuleCtx *ctx, const char *section) {
struct ValkeyModuleServerInfoData *d = zmalloc(sizeof(*d));
d->rax = raxNew();
if (ctx != NULL) autoMemoryAdd(ctx,VALKEYMODULE_AM_INFO,d);
int all = 0, everything = 0;
robj *argv[1];
argv[0] = section ? createStringObject(section, strlen(section)) : NULL;
dict *section_dict = genInfoSectionDict(argv, section ? 1 : 0, NULL, &all, &everything);
sds info = genRedisInfoString(section_dict, all, everything);
int totlines, i;
sds *lines = sdssplitlen(info, sdslen(info), "\r\n", 2, &totlines);
for(i=0; i<totlines; i++) {
sds line = lines[i];
if (line[0]=='#') continue;
char *sep = strchr(line, ':');
if (!sep) continue;
unsigned char *key = (unsigned char*)line;
size_t keylen = (intptr_t)sep-(intptr_t)line;
sds val = sdsnewlen(sep+1,sdslen(line)-((intptr_t)sep-(intptr_t)line)-1);
if (!raxTryInsert(d->rax,key,keylen,val,NULL))
sdsfree(val);
}
sdsfree(info);
sdsfreesplitres(lines,totlines);
releaseInfoSectionDict(section_dict);
if(argv[0]) decrRefCount(argv[0]);
return d;
}
/* Free data created with VM_GetServerInfo(). You need to pass the
* context pointer 'ctx' only if the dictionary was created using the
* context instead of passing NULL. */
void VM_FreeServerInfo(ValkeyModuleCtx *ctx, ValkeyModuleServerInfoData *data) {
if (ctx != NULL) autoMemoryFreed(ctx,VALKEYMODULE_AM_INFO,data);
raxFreeWithCallback(data->rax, (void(*)(void*))sdsfree);
zfree(data);
}
/* Get the value of a field from data collected with VM_GetServerInfo(). You
* need to pass the context pointer 'ctx' only if you want to use auto memory
* mechanism to release the returned string. Return value will be NULL if the
* field was not found. */
ValkeyModuleString *VM_ServerInfoGetField(ValkeyModuleCtx *ctx, ValkeyModuleServerInfoData *data, const char* field) {
sds val = raxFind(data->rax, (unsigned char *)field, strlen(field));
if (val == raxNotFound) return NULL;
ValkeyModuleString *o = createStringObject(val,sdslen(val));
if (ctx != NULL) autoMemoryAdd(ctx,VALKEYMODULE_AM_STRING,o);
return o;
}
/* Similar to VM_ServerInfoGetField, but returns a char* which should not be freed but the caller. */
const char *VM_ServerInfoGetFieldC(ValkeyModuleServerInfoData *data, const char* field) {
2019-11-04 07:57:52 +02:00
sds val = raxFind(data->rax, (unsigned char *)field, strlen(field));
if (val == raxNotFound) return NULL;
return val;
}
/* Get the value of a field from data collected with VM_GetServerInfo(). If the
* field is not found, or is not numerical or out of range, return value will be
* 0, and the optional out_err argument will be set to VALKEYMODULE_ERR. */
long long VM_ServerInfoGetFieldSigned(ValkeyModuleServerInfoData *data, const char* field, int *out_err) {
long long ll;
sds val = raxFind(data->rax, (unsigned char *)field, strlen(field));
if (val == raxNotFound) {
if (out_err) *out_err = VALKEYMODULE_ERR;
return 0;
}
if (!string2ll(val,sdslen(val),&ll)) {
if (out_err) *out_err = VALKEYMODULE_ERR;
return 0;
}
if (out_err) *out_err = VALKEYMODULE_OK;
return ll;
}
/* Get the value of a field from data collected with VM_GetServerInfo(). If the
* field is not found, or is not numerical or out of range, return value will be
* 0, and the optional out_err argument will be set to VALKEYMODULE_ERR. */
unsigned long long VM_ServerInfoGetFieldUnsigned(ValkeyModuleServerInfoData *data, const char* field, int *out_err) {
unsigned long long ll;
sds val = raxFind(data->rax, (unsigned char *)field, strlen(field));
if (val == raxNotFound) {
if (out_err) *out_err = VALKEYMODULE_ERR;
return 0;
}
if (!string2ull(val,&ll)) {
if (out_err) *out_err = VALKEYMODULE_ERR;
return 0;
}
if (out_err) *out_err = VALKEYMODULE_OK;
return ll;
}
/* Get the value of a field from data collected with VM_GetServerInfo(). If the
* field is not found, or is not a double, return value will be 0, and the
* optional out_err argument will be set to VALKEYMODULE_ERR. */
double VM_ServerInfoGetFieldDouble(ValkeyModuleServerInfoData *data, const char* field, int *out_err) {
double dbl;
sds val = raxFind(data->rax, (unsigned char *)field, strlen(field));
if (val == raxNotFound) {
if (out_err) *out_err = VALKEYMODULE_ERR;
return 0;
}
if (!string2d(val,sdslen(val),&dbl)) {
if (out_err) *out_err = VALKEYMODULE_ERR;
return 0;
}
if (out_err) *out_err = VALKEYMODULE_OK;
return dbl;
}
/* --------------------------------------------------------------------------
* ## Modules utility APIs
* -------------------------------------------------------------------------- */
/* Return random bytes using SHA1 in counter mode with a /dev/urandom
* initialized seed. This function is fast so can be used to generate
* many bytes without any effect on the operating system entropy pool.
* Currently this function is not thread safe. */
void VM_GetRandomBytes(unsigned char *dst, size_t len) {
getRandomBytes(dst,len);
}
/* Like ValkeyModule_GetRandomBytes() but instead of setting the string to
* random bytes the string is set to random characters in the in the
* hex charset [0-9a-f]. */
void VM_GetRandomHexChars(char *dst, size_t len) {
getRandomHexChars(dst,len);
}
/* --------------------------------------------------------------------------
* ## Modules API exporting / importing
* -------------------------------------------------------------------------- */
/* This function is called by a module in order to export some API with a
* given name. Other modules will be able to use this API by calling the
* symmetrical function VM_GetSharedAPI() and casting the return value to
* the right function pointer.
*
* The function will return VALKEYMODULE_OK if the name is not already taken,
* otherwise VALKEYMODULE_ERR will be returned and no operation will be
* performed.
*
* IMPORTANT: the apiname argument should be a string literal with static
* lifetime. The API relies on the fact that it will always be valid in
* the future. */
int VM_ExportSharedAPI(ValkeyModuleCtx *ctx, const char *apiname, void *func) {
ValkeyModuleSharedAPI *sapi = zmalloc(sizeof(*sapi));
sapi->module = ctx->module;
sapi->func = func;
if (dictAdd(server.sharedapi, (char*)apiname, sapi) != DICT_OK) {
zfree(sapi);
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
}
/* Request an exported API pointer. The return value is just a void pointer
* that the caller of this function will be required to cast to the right
* function pointer, so this is a private contract between modules.
*
* If the requested API is not available then NULL is returned. Because
* modules can be loaded at different times with different order, this
* function calls should be put inside some module generic API registering
* step, that is called every time a module attempts to execute a
* command that requires external APIs: if some API cannot be resolved, the
* command should return an error.
*
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
* Here is an example:
*
* int ... myCommandImplementation(void) {
* if (getExternalAPIs() == 0) {
* reply with an error here if we cannot have the APIs
* }
* // Use the API:
* myFunctionPointer(foo);
* }
*
* And the function registerAPI() is:
*
* int getExternalAPIs(void) {
* static int api_loaded = 0;
* if (api_loaded != 0) return 1; // APIs already resolved.
*
* myFunctionPointer = ValkeyModule_GetSharedAPI("...");
* if (myFunctionPointer == NULL) return 0;
*
* return 1;
* }
*/
void *VM_GetSharedAPI(ValkeyModuleCtx *ctx, const char *apiname) {
dictEntry *de = dictFind(server.sharedapi, apiname);
if (de == NULL) return NULL;
ValkeyModuleSharedAPI *sapi = dictGetVal(de);
if (listSearchKey(sapi->module->usedby,ctx->module) == NULL) {
listAddNodeTail(sapi->module->usedby,ctx->module);
listAddNodeTail(ctx->module->using,sapi->module);
}
return sapi->func;
}
/* Remove all the APIs registered by the specified module. Usually you
* want this when the module is going to be unloaded. This function
* assumes that's caller responsibility to make sure the APIs are not
* used by other modules.
*
* The number of unregistered APIs is returned. */
int moduleUnregisterSharedAPI(ValkeyModule *module) {
int count = 0;
dictIterator *di = dictGetSafeIterator(server.sharedapi);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
const char *apiname = dictGetKey(de);
ValkeyModuleSharedAPI *sapi = dictGetVal(de);
if (sapi->module == module) {
dictDelete(server.sharedapi,apiname);
zfree(sapi);
count++;
}
}
dictReleaseIterator(di);
return count;
}
/* Remove the specified module as an user of APIs of ever other module.
* This is usually called when a module is unloaded.
*
* Returns the number of modules this module was using APIs from. */
int moduleUnregisterUsedAPI(ValkeyModule *module) {
listIter li;
listNode *ln;
int count = 0;
listRewind(module->using,&li);
while((ln = listNext(&li))) {
ValkeyModule *used = ln->value;
listNode *ln = listSearchKey(used->usedby,module);
if (ln) {
listDelNode(used->usedby,ln);
count++;
}
}
return count;
}
/* Unregister all filters registered by a module.
* This is called when a module is being unloaded.
*
* Returns the number of filters unregistered. */
int moduleUnregisterFilters(ValkeyModule *module) {
listIter li;
listNode *ln;
int count = 0;
listRewind(module->filters,&li);
while((ln = listNext(&li))) {
ValkeyModuleCommandFilter *filter = ln->value;
listNode *ln = listSearchKey(moduleCommandFilters,filter);
if (ln) {
listDelNode(moduleCommandFilters,ln);
count++;
}
zfree(filter);
}
return count;
}
2018-02-23 16:19:37 +02:00
/* --------------------------------------------------------------------------
* ## Module Command Filter API
2018-02-23 16:19:37 +02:00
* -------------------------------------------------------------------------- */
/* Register a new command filter function.
*
* Command filtering makes it possible for modules to extend Redis by plugging
* into the execution flow of all commands.
*
* A registered filter gets called before Redis executes *any* command. This
* includes both core Redis commands and commands registered by any module. The
* filter applies in all execution paths including:
*
* 1. Invocation by a client.
* 2. Invocation through `ValkeyModule_Call()` by any module.
* 3. Invocation through Lua `redis.call()`.
* 4. Replication of a command from a master.
*
* The filter executes in a special filter context, which is different and more
* limited than a ValkeyModuleCtx. Because the filter affects any command, it
* must be implemented in a very efficient way to reduce the performance impact
* on Redis. All Redis Module API calls that require a valid context (such as
* `ValkeyModule_Call()`, `ValkeyModule_OpenKey()`, etc.) are not supported in a
* filter context.
*
* The `ValkeyModuleCommandFilterCtx` can be used to inspect or modify the
* executed command and its arguments. As the filter executes before Redis
* begins processing the command, any change will affect the way the command is
* processed. For example, a module can override Redis commands this way:
*
* 1. Register a `MODULE.SET` command which implements an extended version of
* the Redis `SET` command.
* 2. Register a command filter which detects invocation of `SET` on a specific
* pattern of keys. Once detected, the filter will replace the first
* argument from `SET` to `MODULE.SET`.
* 3. When filter execution is complete, Redis considers the new command name
* and therefore executes the module's own command.
*
* Note that in the above use case, if `MODULE.SET` itself uses
* `ValkeyModule_Call()` the filter will be applied on that call as well. If
* that is not desired, the `VALKEYMODULE_CMDFILTER_NOSELF` flag can be set when
* registering the filter.
*
* The `VALKEYMODULE_CMDFILTER_NOSELF` flag prevents execution flows that
* originate from the module's own `VM_Call()` from reaching the filter. This
* flag is effective for all execution flows, including nested ones, as long as
* the execution begins from the module's command context or a thread-safe
* context that is associated with a blocking command.
*
* Detached thread-safe contexts are *not* associated with the module and cannot
* be protected by this flag.
*
* If multiple filters are registered (by the same or different modules), they
* are executed in the order of registration.
2018-02-23 16:19:37 +02:00
*/
ValkeyModuleCommandFilter *VM_RegisterCommandFilter(ValkeyModuleCtx *ctx, ValkeyModuleCommandFilterFunc callback, int flags) {
ValkeyModuleCommandFilter *filter = zmalloc(sizeof(*filter));
2018-02-23 16:19:37 +02:00
filter->module = ctx->module;
filter->callback = callback;
filter->flags = flags;
2018-02-23 16:19:37 +02:00
listAddNodeTail(moduleCommandFilters, filter);
listAddNodeTail(ctx->module->filters, filter);
return filter;
}
/* Unregister a command filter.
*/
int VM_UnregisterCommandFilter(ValkeyModuleCtx *ctx, ValkeyModuleCommandFilter *filter) {
listNode *ln;
/* A module can only remove its own filters */
if (filter->module != ctx->module) return VALKEYMODULE_ERR;
ln = listSearchKey(moduleCommandFilters,filter);
if (!ln) return VALKEYMODULE_ERR;
listDelNode(moduleCommandFilters,ln);
ln = listSearchKey(ctx->module->filters,filter);
if (!ln) return VALKEYMODULE_ERR; /* Shouldn't happen */
listDelNode(ctx->module->filters,ln);
zfree(filter);
return VALKEYMODULE_OK;
2018-02-23 16:19:37 +02:00
}
void moduleCallCommandFilters(client *c) {
if (listLength(moduleCommandFilters) == 0) return;
listIter li;
listNode *ln;
listRewind(moduleCommandFilters,&li);
ValkeyModuleCommandFilterCtx filter = {
2018-02-23 16:19:37 +02:00
.argv = c->argv,
.argv_len = c->argv_len,
.argc = c->argc,
.c = c
2018-02-23 16:19:37 +02:00
};
while((ln = listNext(&li))) {
ValkeyModuleCommandFilter *f = ln->value;
2018-02-23 16:19:37 +02:00
/* Skip filter if VALKEYMODULE_CMDFILTER_NOSELF is set and module is
* currently processing a command.
*/
if ((f->flags & VALKEYMODULE_CMDFILTER_NOSELF) && f->module->in_call) continue;
/* Call filter */
2019-03-18 23:05:52 +02:00
f->callback(&filter);
2018-02-23 16:19:37 +02:00
}
2019-03-18 23:05:52 +02:00
c->argv = filter.argv;
c->argv_len = filter.argv_len;
2019-03-18 23:05:52 +02:00
c->argc = filter.argc;
2018-02-23 16:19:37 +02:00
}
/* Return the number of arguments a filtered command has. The number of
* arguments include the command itself.
*/
int VM_CommandFilterArgsCount(ValkeyModuleCommandFilterCtx *fctx)
{
return fctx->argc;
}
/* Return the specified command argument. The first argument (position 0) is
* the command itself, and the rest are user-provided args.
*/
ValkeyModuleString *VM_CommandFilterArgGet(ValkeyModuleCommandFilterCtx *fctx, int pos)
{
if (pos < 0 || pos >= fctx->argc) return NULL;
return fctx->argv[pos];
}
/* Modify the filtered command by inserting a new argument at the specified
* position. The specified ValkeyModuleString argument may be used by Redis
* after the filter context is destroyed, so it must not be auto-memory
* allocated, freed or used elsewhere.
*/
int VM_CommandFilterArgInsert(ValkeyModuleCommandFilterCtx *fctx, int pos, ValkeyModuleString *arg)
{
int i;
if (pos < 0 || pos > fctx->argc) return VALKEYMODULE_ERR;
if (fctx->argv_len < fctx->argc+1) {
fctx->argv_len = fctx->argc+1;
fctx->argv = zrealloc(fctx->argv, fctx->argv_len*sizeof(ValkeyModuleString *));
}
for (i = fctx->argc; i > pos; i--) {
fctx->argv[i] = fctx->argv[i-1];
}
fctx->argv[pos] = arg;
fctx->argc++;
return VALKEYMODULE_OK;
}
/* Modify the filtered command by replacing an existing argument with a new one.
* The specified ValkeyModuleString argument may be used by Redis after the
* filter context is destroyed, so it must not be auto-memory allocated, freed
* or used elsewhere.
*/
int VM_CommandFilterArgReplace(ValkeyModuleCommandFilterCtx *fctx, int pos, ValkeyModuleString *arg)
{
if (pos < 0 || pos >= fctx->argc) return VALKEYMODULE_ERR;
decrRefCount(fctx->argv[pos]);
fctx->argv[pos] = arg;
return VALKEYMODULE_OK;
}
/* Modify the filtered command by deleting an argument at the specified
* position.
*/
int VM_CommandFilterArgDelete(ValkeyModuleCommandFilterCtx *fctx, int pos)
{
int i;
if (pos < 0 || pos >= fctx->argc) return VALKEYMODULE_ERR;
decrRefCount(fctx->argv[pos]);
for (i = pos; i < fctx->argc-1; i++) {
fctx->argv[i] = fctx->argv[i+1];
}
fctx->argc--;
return VALKEYMODULE_OK;
}
/* Get Client ID for client that issued the command we are filtering */
unsigned long long VM_CommandFilterGetClientId(ValkeyModuleCommandFilterCtx *fctx) {
return fctx->c->id;
}
/* For a given pointer allocated via ValkeyModule_Alloc() or
* ValkeyModule_Realloc(), return the amount of memory allocated for it.
2019-11-21 10:01:49 +01:00
* Note that this may be different (larger) than the memory we allocated
* with the allocation calls, since sometimes the underlying allocator
* will allocate more memory.
*/
size_t VM_MallocSize(void* ptr) {
return zmalloc_size(ptr);
}
/* Similar to VM_MallocSize, the difference is that VM_MallocUsableSize
* returns the usable size of memory by the module. */
size_t VM_MallocUsableSize(void *ptr) {
Use dummy allocator to make accesses defined as per standard (#11982) ## Issue When we use GCC-12 later or clang 9.0 later to build with `-D_FORTIFY_SOURCE=3`, we can see the following buffer overflow: ``` === REDIS BUG REPORT START: Cut & paste starting from here === 6263:M 06 Apr 2023 08:59:12.915 # Redis 255.255.255 crashed by signal: 6, si_code: -6 6263:M 06 Apr 2023 08:59:12.915 # Crashed running the instruction at: 0x7f03d59efa7c ------ STACK TRACE ------ EIP: /lib/x86_64-linux-gnu/libc.so.6(pthread_kill+0x12c)[0x7f03d59efa7c] Backtrace: /lib/x86_64-linux-gnu/libc.so.6(+0x42520)[0x7f03d599b520] /lib/x86_64-linux-gnu/libc.so.6(pthread_kill+0x12c)[0x7f03d59efa7c] /lib/x86_64-linux-gnu/libc.so.6(raise+0x16)[0x7f03d599b476] /lib/x86_64-linux-gnu/libc.so.6(abort+0xd3)[0x7f03d59817f3] /lib/x86_64-linux-gnu/libc.so.6(+0x896f6)[0x7f03d59e26f6] /lib/x86_64-linux-gnu/libc.so.6(__fortify_fail+0x2a)[0x7f03d5a8f76a] /lib/x86_64-linux-gnu/libc.so.6(+0x1350c6)[0x7f03d5a8e0c6] src/redis-server 127.0.0.1:25111(+0xd5e80)[0x557cddd3be80] src/redis-server 127.0.0.1:25111(feedReplicationBufferWithObject+0x78)[0x557cddd3c768] src/redis-server 127.0.0.1:25111(replicationFeedSlaves+0x1a4)[0x557cddd3cbc4] src/redis-server 127.0.0.1:25111(+0x8721a)[0x557cddced21a] src/redis-server 127.0.0.1:25111(call+0x47a)[0x557cddcf38ea] src/redis-server 127.0.0.1:25111(processCommand+0xbf4)[0x557cddcf4aa4] src/redis-server 127.0.0.1:25111(processInputBuffer+0xe6)[0x557cddd22216] src/redis-server 127.0.0.1:25111(readQueryFromClient+0x3a8)[0x557cddd22898] src/redis-server 127.0.0.1:25111(+0x1b9134)[0x557cdde1f134] src/redis-server 127.0.0.1:25111(aeMain+0x119)[0x557cddce5349] src/redis-server 127.0.0.1:25111(main+0x466)[0x557cddcd6716] /lib/x86_64-linux-gnu/libc.so.6(+0x29d90)[0x7f03d5982d90] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80)[0x7f03d5982e40] src/redis-server 127.0.0.1:25111(_start+0x25)[0x557cddcd7025] ``` The main reason is that when FORTIFY_SOURCE is enabled, GCC or clang will enhance some common functions, such as `strcpy`, `memcpy`, `fgets`, etc, so that they can detect buffer overflow errors and stop program execution, thus improving the safety of the program. We use `zmalloc_usable_size()` everywhere to use memory blocks, but that is an abuse since the malloc_usable_size() isn't meant for this kind of use, it is for diagnostics only. That is also why the behavior is flaky when built with _FORTIFY_SOURCE, the compiler can sense that we reach outside the allocated block and SIGABRT. ### Solution If we need to use the additional memory we got, we need to use a dummy realloc with `alloc_size` attribute and no inlining, (see `extend_to_usable`) to let the compiler see the large of memory we need to use. This can either be an implicit call inside `z*usable` that returns the size, so that the caller doesn't have any other worry, or it can be a normal zmalloc call which means that if the caller wants to use zmalloc_usable_size it must also use extend_to_usable. ### Changes This PR does the following: 1) rename the current z[try]malloc_usable family to z[try]malloc_internal and don't expose them to users outside zmalloc.c, 2) expose a new set of `z[*]_usable` family that use z[*]_internal and `extend_to_usable()` implicitly, the caller gets the size of the allocation and it is safe to use. 3) go over all the users of `zmalloc_usable_size` and convert them to use the `z[*]_usable` family if possible. 4) in the places where the caller can't use `z[*]_usable` and store the real size, and must still rely on zmalloc_usable_size, we still make sure that the allocation used `z[*]_usable` (which has a call to `extend_to_usable()`) and ignores the returning size, this way a later call to `zmalloc_usable_size` is still safe. [4] was done for module.c and listpack.c, all the others places (sds, reply proto list, replication backlog, client->buf) are using [3]. Co-authored-by: Oran Agra <oran@redislabs.com>
2023-04-11 01:38:40 +08:00
/* It is safe to use 'zmalloc_usable_size()' to manipulate additional
* memory space, as we guarantee that the compiler can recognize this
* after 'VM_Alloc', 'VM_TryAlloc', 'VM_Realloc', or 'VM_Calloc'. */
return zmalloc_usable_size(ptr);
}
/* Same as VM_MallocSize, except it works on ValkeyModuleString pointers.
*/
size_t VM_MallocSizeString(ValkeyModuleString* str) {
serverAssert(str->type == OBJ_STRING);
return sizeof(*str) + getStringObjectSdsUsedMemory(str);
}
/* Same as VM_MallocSize, except it works on ValkeyModuleDict pointers.
* Note that the returned value is only the overhead of the underlying structures,
* it does not include the allocation size of the keys and values.
*/
size_t VM_MallocSizeDict(ValkeyModuleDict* dict) {
size_t size = sizeof(ValkeyModuleDict) + sizeof(rax);
size += dict->rax->numnodes * sizeof(raxNode);
/* For more info about this weird line, see streamRadixTreeMemoryUsage */
size += dict->rax->numnodes * sizeof(long)*30;
return size;
}
2019-11-21 10:01:49 +01:00
/* Return the a number between 0 to 1 indicating the amount of memory
* currently used, relative to the Redis "maxmemory" configuration.
*
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* * 0 - No memory limit configured.
* * Between 0 and 1 - The percentage of the memory used normalized in 0-1 range.
* * Exactly 1 - Memory limit reached.
* * Greater 1 - More memory used than the configured limit.
*/
float VM_GetUsedMemoryRatio(void){
float level;
getMaxmemoryState(NULL, NULL, NULL, &level);
return level;
}
/* --------------------------------------------------------------------------
* ## Scanning keyspace and hashes
* -------------------------------------------------------------------------- */
typedef void (*ValkeyModuleScanCB)(ValkeyModuleCtx *ctx, ValkeyModuleString *keyname, ValkeyModuleKey *key, void *privdata);
typedef struct {
ValkeyModuleCtx *ctx;
void* user_data;
ValkeyModuleScanCB fn;
} ScanCBData;
typedef struct ValkeyModuleScanCursor{
unsigned long cursor;
int done;
}ValkeyModuleScanCursor;
static void moduleScanCallback(void *privdata, const dictEntry *de) {
ScanCBData *data = privdata;
sds key = dictGetKey(de);
robj* val = dictGetVal(de);
ValkeyModuleString *keyname = createObject(OBJ_STRING,sdsdup(key));
/* Setup the key handle. */
ValkeyModuleKey kp = {0};
moduleInitKey(&kp, data->ctx, keyname, val, VALKEYMODULE_READ);
data->fn(data->ctx, keyname, &kp, data->user_data);
moduleCloseKey(&kp);
decrRefCount(keyname);
}
/* Create a new cursor to be used with ValkeyModule_Scan */
ValkeyModuleScanCursor *VM_ScanCursorCreate(void) {
ValkeyModuleScanCursor* cursor = zmalloc(sizeof(*cursor));
cursor->cursor = 0;
cursor->done = 0;
return cursor;
}
/* Restart an existing cursor. The keys will be rescanned. */
void VM_ScanCursorRestart(ValkeyModuleScanCursor *cursor) {
cursor->cursor = 0;
cursor->done = 0;
}
/* Destroy the cursor struct. */
void VM_ScanCursorDestroy(ValkeyModuleScanCursor *cursor) {
zfree(cursor);
}
/* Scan API that allows a module to scan all the keys and value in
* the selected db.
*
* Callback for scan implementation.
*
* void scan_callback(ValkeyModuleCtx *ctx, ValkeyModuleString *keyname,
* ValkeyModuleKey *key, void *privdata);
*
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* - `ctx`: the redis module context provided to for the scan.
* - `keyname`: owned by the caller and need to be retained if used after this
* function.
* - `key`: holds info on the key and value, it is provided as best effort, in
* some cases it might be NULL, in which case the user should (can) use
* ValkeyModule_OpenKey() (and CloseKey too).
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* when it is provided, it is owned by the caller and will be free when the
* callback returns.
* - `privdata`: the user data provided to ValkeyModule_Scan().
*
* The way it should be used:
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
*
* ValkeyModuleScanCursor *c = ValkeyModule_ScanCursorCreate();
* while(ValkeyModule_Scan(ctx, c, callback, privateData));
* ValkeyModule_ScanCursorDestroy(c);
*
* It is also possible to use this API from another thread while the lock
* is acquired during the actual call to VM_Scan:
*
* ValkeyModuleScanCursor *c = ValkeyModule_ScanCursorCreate();
* ValkeyModule_ThreadSafeContextLock(ctx);
* while(ValkeyModule_Scan(ctx, c, callback, privateData)){
* ValkeyModule_ThreadSafeContextUnlock(ctx);
* // do some background job
* ValkeyModule_ThreadSafeContextLock(ctx);
* }
* ValkeyModule_ScanCursorDestroy(c);
*
* The function will return 1 if there are more elements to scan and
* 0 otherwise, possibly setting errno if the call failed.
*
* It is also possible to restart an existing cursor using VM_ScanCursorRestart.
*
* IMPORTANT: This API is very similar to the Redis SCAN command from the
* point of view of the guarantees it provides. This means that the API
* may report duplicated keys, but guarantees to report at least one time
* every key that was there from the start to the end of the scanning process.
*
* NOTE: If you do database changes within the callback, you should be aware
* that the internal state of the database may change. For instance it is safe
* to delete or modify the current key, but may not be safe to delete any
* other key.
* Moreover playing with the Redis keyspace while iterating may have the
* effect of returning more duplicates. A safe pattern is to store the keys
* names you want to modify elsewhere, and perform the actions on the keys
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
* later when the iteration is complete. However this can cost a lot of
* memory, so it may make sense to just operate on the current key when
* possible during the iteration, given that this is safe. */
int VM_Scan(ValkeyModuleCtx *ctx, ValkeyModuleScanCursor *cursor, ValkeyModuleScanCB fn, void *privdata) {
if (cursor->done) {
errno = ENOENT;
return 0;
}
int ret = 1;
ScanCBData data = { ctx, privdata, fn };
cursor->cursor = dictScan(ctx->client->db->dict, cursor->cursor, moduleScanCallback, &data);
if (cursor->cursor == 0) {
cursor->done = 1;
ret = 0;
}
errno = 0;
return ret;
}
typedef void (*ValkeyModuleScanKeyCB)(ValkeyModuleKey *key, ValkeyModuleString *field, ValkeyModuleString *value, void *privdata);
typedef struct {
ValkeyModuleKey *key;
void* user_data;
ValkeyModuleScanKeyCB fn;
} ScanKeyCBData;
static void moduleScanKeyCallback(void *privdata, const dictEntry *de) {
ScanKeyCBData *data = privdata;
sds key = dictGetKey(de);
robj *o = data->key->value;
robj *field = createStringObject(key, sdslen(key));
robj *value = NULL;
if (o->type == OBJ_SET) {
value = NULL;
} else if (o->type == OBJ_HASH) {
sds val = dictGetVal(de);
value = createStringObject(val, sdslen(val));
} else if (o->type == OBJ_ZSET) {
double *val = (double*)dictGetVal(de);
value = createStringObjectFromLongDouble(*val, 0);
}
data->fn(data->key, field, value, data->user_data);
decrRefCount(field);
if (value) decrRefCount(value);
}
/* Scan api that allows a module to scan the elements in a hash, set or sorted set key
*
* Callback for scan implementation.
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
*
* void scan_callback(ValkeyModuleKey *key, ValkeyModuleString* field, ValkeyModuleString* value, void *privdata);
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
*
* - key - the redis key context provided to for the scan.
* - field - field name, owned by the caller and need to be retained if used
* after this function.
* - value - value string or NULL for set type, owned by the caller and need to
* be retained if used after this function.
* - privdata - the user data provided to ValkeyModule_ScanKey.
*
* The way it should be used:
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
*
* ValkeyModuleScanCursor *c = ValkeyModule_ScanCursorCreate();
* ValkeyModuleKey *key = ValkeyModule_OpenKey(...)
* while(ValkeyModule_ScanKey(key, c, callback, privateData));
* ValkeyModule_CloseKey(key);
* ValkeyModule_ScanCursorDestroy(c);
*
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
* It is also possible to use this API from another thread while the lock is acquired during
* the actual call to VM_ScanKey, and re-opening the key each time:
*
* ValkeyModuleScanCursor *c = ValkeyModule_ScanCursorCreate();
* ValkeyModule_ThreadSafeContextLock(ctx);
* ValkeyModuleKey *key = ValkeyModule_OpenKey(...)
* while(ValkeyModule_ScanKey(ctx, c, callback, privateData)){
* ValkeyModule_CloseKey(key);
* ValkeyModule_ThreadSafeContextUnlock(ctx);
* // do some background job
* ValkeyModule_ThreadSafeContextLock(ctx);
* ValkeyModuleKey *key = ValkeyModule_OpenKey(...)
* }
* ValkeyModule_CloseKey(key);
* ValkeyModule_ScanCursorDestroy(c);
*
* The function will return 1 if there are more elements to scan and 0 otherwise,
* possibly setting errno if the call failed.
* It is also possible to restart an existing cursor using VM_ScanCursorRestart.
*
* NOTE: Certain operations are unsafe while iterating the object. For instance
* while the API guarantees to return at least one time all the elements that
* are present in the data structure consistently from the start to the end
* of the iteration (see HSCAN and similar commands documentation), the more
* you play with the elements, the more duplicates you may get. In general
* deleting the current element of the data structure is safe, while removing
* the key you are iterating is not safe. */
int VM_ScanKey(ValkeyModuleKey *key, ValkeyModuleScanCursor *cursor, ValkeyModuleScanKeyCB fn, void *privdata) {
if (key == NULL || key->value == NULL) {
errno = EINVAL;
return 0;
}
dict *ht = NULL;
robj *o = key->value;
if (o->type == OBJ_SET) {
if (o->encoding == OBJ_ENCODING_HT)
ht = o->ptr;
} else if (o->type == OBJ_HASH) {
if (o->encoding == OBJ_ENCODING_HT)
ht = o->ptr;
} else if (o->type == OBJ_ZSET) {
if (o->encoding == OBJ_ENCODING_SKIPLIST)
ht = ((zset *)o->ptr)->dict;
} else {
errno = EINVAL;
return 0;
}
if (cursor->done) {
errno = ENOENT;
return 0;
}
int ret = 1;
if (ht) {
ScanKeyCBData data = { key, privdata, fn };
cursor->cursor = dictScan(ht, cursor->cursor, moduleScanKeyCallback, &data);
if (cursor->cursor == 0) {
cursor->done = 1;
ret = 0;
}
} else if (o->type == OBJ_SET) {
setTypeIterator *si = setTypeInitIterator(o);
sds sdsele;
while ((sdsele = setTypeNextObject(si)) != NULL) {
robj *field = createObject(OBJ_STRING, sdsele);
fn(key, field, NULL, privdata);
decrRefCount(field);
}
setTypeReleaseIterator(si);
cursor->cursor = 1;
cursor->done = 1;
ret = 0;
} else if (o->type == OBJ_ZSET || o->type == OBJ_HASH) {
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
unsigned char *p = lpSeek(o->ptr,0);
unsigned char *vstr;
unsigned int vlen;
long long vll;
while(p) {
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
vstr = lpGetValue(p,&vlen,&vll);
robj *field = (vstr != NULL) ?
createStringObject((char*)vstr,vlen) :
createStringObjectFromLongLongWithSds(vll);
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
p = lpNext(o->ptr,p);
vstr = lpGetValue(p,&vlen,&vll);
robj *value = (vstr != NULL) ?
createStringObject((char*)vstr,vlen) :
createStringObjectFromLongLongWithSds(vll);
fn(key, field, value, privdata);
Replace all usage of ziplist with listpack for t_zset (#9366) Part two of implementing #8702 (zset), after #8887. ## Description of the feature Replaced all uses of ziplist with listpack in t_zset, and optimized some of the code to optimize performance. ## Rdb format changes New `RDB_TYPE_ZSET_LISTPACK` rdb type. ## Rdb loading improvements: 1) Pre-expansion of dict for validation of duplicate data for listpack and ziplist. 2) Simplifying the release of empty key objects when RDB loading. 3) Unify ziplist and listpack data verify methods for zset and hash, and move code to rdb.c. ## Interface changes 1) New `zset-max-listpack-entries` config is an alias for `zset-max-ziplist-entries` (same with `zset-max-listpack-value`). 2) OBJECT ENCODING will return listpack instead of ziplist. ## Listpack improvements: 1) Add `lpDeleteRange` and `lpDeleteRangeWithEntry` functions to delete a range of entries from listpack. 2) Improve the performance of `lpCompare`, converting from string to integer is faster than converting from integer to string. 3) Replace `snprintf` with `ll2string` to improve performance in converting numbers to strings in `lpGet()`. ## Zset improvements: 1) Improve the performance of `zzlFind` method, use `lpFind` instead of `lpCompare` in a loop. 2) Use `lpDeleteRangeWithEntry` instead of `lpDelete` twice to delete a element of zset. ## Tests 1) Add some unittests for `lpDeleteRange` and `lpDeleteRangeWithEntry` function. 2) Add zset RDB loading test. 3) Add benchmark test for `lpCompare` and `ziplsitCompare`. 4) Add empty listpack zset corrupt dump test.
2021-09-09 23:18:53 +08:00
p = lpNext(o->ptr,p);
decrRefCount(field);
decrRefCount(value);
}
cursor->cursor = 1;
cursor->done = 1;
ret = 0;
}
errno = 0;
return ret;
}
/* --------------------------------------------------------------------------
* ## Module fork API
* -------------------------------------------------------------------------- */
/* Create a background child process with the current frozen snapshot of the
* main process where you can do some processing in the background without
* affecting / freezing the traffic and no need for threads and GIL locking.
* Note that Redis allows for only one concurrent fork.
* When the child wants to exit, it should call ValkeyModule_ExitFromChild.
* If the parent wants to kill the child it should call ValkeyModule_KillForkChild
* The done handler callback will be executed on the parent process when the
* child existed (but not when killed)
* Return: -1 on failure, on success the parent process will get a positive PID
* of the child, and the child process will get 0.
*/
int VM_Fork(ValkeyModuleForkDoneHandler cb, void *user_data) {
pid_t childpid;
if ((childpid = redisFork(CHILD_TYPE_MODULE)) == 0) {
/* Child */
redisSetProcTitle("redis-module-fork");
} else if (childpid == -1) {
serverLog(LL_WARNING,"Can't fork for module: %s", strerror(errno));
} else {
/* Parent */
moduleForkInfo.done_handler = cb;
moduleForkInfo.done_handler_user_data = user_data;
serverLog(LL_VERBOSE, "Module fork started pid: %ld ", (long) childpid);
}
return childpid;
}
/* The module is advised to call this function from the fork child once in a while,
* so that it can report progress and COW memory to the parent which will be
* reported in INFO.
* The `progress` argument should between 0 and 1, or -1 when not available. */
void VM_SendChildHeartbeat(double progress) {
sendChildInfoGeneric(CHILD_INFO_TYPE_CURRENT_INFO, 0, progress, "Module fork");
}
/* Call from the child process when you want to terminate it.
* retcode will be provided to the done handler executed on the parent process.
*/
int VM_ExitFromChild(int retcode) {
sendChildCowInfo(CHILD_INFO_TYPE_MODULE_COW_SIZE, "Module fork");
exitFromChild(retcode);
return VALKEYMODULE_OK;
}
/* Kill the active module forked child, if there is one active and the
* pid matches, and returns C_OK. Otherwise if there is no active module
* child or the pid does not match, return C_ERR without doing anything. */
int TerminateModuleForkChild(int child_pid, int wait) {
/* Module child should be active and pid should match. */
if (server.child_type != CHILD_TYPE_MODULE ||
server.child_pid != child_pid) return C_ERR;
int statloc;
serverLog(LL_VERBOSE,"Killing running module fork child: %ld",
(long) server.child_pid);
if (kill(server.child_pid,SIGUSR1) != -1 && wait) {
while(waitpid(server.child_pid, &statloc, 0) !=
server.child_pid);
}
/* Reset the buffer accumulating changes while the child saves. */
resetChildState();
moduleForkInfo.done_handler = NULL;
moduleForkInfo.done_handler_user_data = NULL;
return C_OK;
}
/* Can be used to kill the forked child process from the parent process.
* child_pid would be the return value of ValkeyModule_Fork. */
int VM_KillForkChild(int child_pid) {
/* Kill module child, wait for child exit. */
if (TerminateModuleForkChild(child_pid,1) == C_OK)
return VALKEYMODULE_OK;
else
return VALKEYMODULE_ERR;
}
void ModuleForkDoneHandler(int exitcode, int bysignal) {
serverLog(LL_NOTICE,
"Module fork exited pid: %ld, retcode: %d, bysignal: %d",
(long) server.child_pid, exitcode, bysignal);
if (moduleForkInfo.done_handler) {
moduleForkInfo.done_handler(exitcode, bysignal,
moduleForkInfo.done_handler_user_data);
}
moduleForkInfo.done_handler = NULL;
moduleForkInfo.done_handler_user_data = NULL;
}
/* --------------------------------------------------------------------------
* ## Server hooks implementation
* -------------------------------------------------------------------------- */
/* This must be synced with VALKEYMODULE_EVENT_*
* We use -1 (MAX_UINT64) to denote that this event doesn't have
* a data structure associated with it. We use MAX_UINT64 on purpose,
* in order to pass the check in ValkeyModule_SubscribeToServerEvent. */
static uint64_t moduleEventVersions[] = {
VALKEYMODULE_REPLICATIONINFO_VERSION, /* VALKEYMODULE_EVENT_REPLICATION_ROLE_CHANGED */
-1, /* VALKEYMODULE_EVENT_PERSISTENCE */
VALKEYMODULE_FLUSHINFO_VERSION, /* VALKEYMODULE_EVENT_FLUSHDB */
-1, /* VALKEYMODULE_EVENT_LOADING */
VALKEYMODULE_CLIENTINFO_VERSION, /* VALKEYMODULE_EVENT_CLIENT_CHANGE */
-1, /* VALKEYMODULE_EVENT_SHUTDOWN */
-1, /* VALKEYMODULE_EVENT_REPLICA_CHANGE */
-1, /* VALKEYMODULE_EVENT_PRIMARY_LINK_CHANGE */
VALKEYMODULE_CRON_LOOP_VERSION, /* VALKEYMODULE_EVENT_CRON_LOOP */
VALKEYMODULE_MODULE_CHANGE_VERSION, /* VALKEYMODULE_EVENT_MODULE_CHANGE */
VALKEYMODULE_LOADING_PROGRESS_VERSION, /* VALKEYMODULE_EVENT_LOADING_PROGRESS */
VALKEYMODULE_SWAPDBINFO_VERSION, /* VALKEYMODULE_EVENT_SWAPDB */
-1, /* VALKEYMODULE_EVENT_REPL_BACKUP */
-1, /* VALKEYMODULE_EVENT_FORK_CHILD */
-1, /* VALKEYMODULE_EVENT_REPL_ASYNC_LOAD */
-1, /* VALKEYMODULE_EVENT_EVENTLOOP */
-1, /* VALKEYMODULE_EVENT_CONFIG */
VALKEYMODULE_KEYINFO_VERSION, /* VALKEYMODULE_EVENT_KEY */
};
/* Register to be notified, via a callback, when the specified server event
* happens. The callback is called with the event as argument, and an additional
* argument which is a void pointer and should be cased to a specific type
* that is event-specific (but many events will just use NULL since they do not
* have additional information to pass to the callback).
*
* If the callback is NULL and there was a previous subscription, the module
* will be unsubscribed. If there was a previous subscription and the callback
* is not null, the old callback will be replaced with the new one.
*
2019-10-21 17:51:18 +02:00
* The callback must be of this type:
*
* int (*ValkeyModuleEventCallback)(ValkeyModuleCtx *ctx,
* ValkeyModuleEvent eid,
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* uint64_t subevent,
* void *data);
2019-10-21 17:51:18 +02:00
*
* The 'ctx' is a normal Redis module context that the callback can use in
* order to call other modules APIs. The 'eid' is the event itself, this
* is only useful in the case the module subscribed to multiple events: using
* the 'id' field of this structure it is possible to check if the event
* is one of the events we registered with this callback. The 'subevent' field
* depends on the event that fired.
*
* Finally the 'data' pointer may be populated, only for certain events, with
* more relevant data.
*
* Here is a list of events you can use as 'eid' and related sub events:
*
* * ValkeyModuleEvent_ReplicationRoleChanged:
*
* This event is called when the instance switches from master
* to replica or the other way around, however the event is
* also called when the replica remains a replica but starts to
* replicate with a different master.
*
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_REPLROLECHANGED_NOW_PRIMARY`
* * `VALKEYMODULE_SUBEVENT_REPLROLECHANGED_NOW_REPLICA`
*
* The 'data' field can be casted by the callback to a
* `ValkeyModuleReplicationInfo` structure with the following fields:
*
* int master; // true if master, false if replica
* char *masterhost; // master instance hostname for NOW_REPLICA
* int masterport; // master instance port for NOW_REPLICA
* char *replid1; // Main replication ID
* char *replid2; // Secondary replication ID
* uint64_t repl1_offset; // Main replication offset
* uint64_t repl2_offset; // Offset of replid2 validity
*
* * ValkeyModuleEvent_Persistence
*
* This event is called when RDB saving or AOF rewriting starts
* and ends. The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_PERSISTENCE_RDB_START`
* * `VALKEYMODULE_SUBEVENT_PERSISTENCE_AOF_START`
* * `VALKEYMODULE_SUBEVENT_PERSISTENCE_SYNC_RDB_START`
* * `VALKEYMODULE_SUBEVENT_PERSISTENCE_SYNC_AOF_START`
* * `VALKEYMODULE_SUBEVENT_PERSISTENCE_ENDED`
* * `VALKEYMODULE_SUBEVENT_PERSISTENCE_FAILED`
*
* The above events are triggered not just when the user calls the
* relevant commands like BGSAVE, but also when a saving operation
* or AOF rewriting occurs because of internal server triggers.
* The SYNC_RDB_START sub events are happening in the foreground due to
* SAVE command, FLUSHALL, or server shutdown, and the other RDB and
* AOF sub events are executed in a background fork child, so any
* action the module takes can only affect the generated AOF or RDB,
* but will not be reflected in the parent process and affect connected
* clients and commands. Also note that the AOF_START sub event may end
* up saving RDB content in case of an AOF with rdb-preamble.
*
* * ValkeyModuleEvent_FlushDB
*
* The FLUSHALL, FLUSHDB or an internal flush (for instance
* because of replication, after the replica synchronization)
* happened. The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_FLUSHDB_START`
* * `VALKEYMODULE_SUBEVENT_FLUSHDB_END`
*
* The data pointer can be casted to a ValkeyModuleFlushInfo
* structure with the following fields:
*
* int32_t async; // True if the flush is done in a thread.
* // See for instance FLUSHALL ASYNC.
* // In this case the END callback is invoked
* // immediately after the database is put
* // in the free list of the thread.
* int32_t dbnum; // Flushed database number, -1 for all the DBs
* // in the case of the FLUSHALL operation.
*
* The start event is called *before* the operation is initiated, thus
* allowing the callback to call DBSIZE or other operation on the
* yet-to-free keyspace.
*
* * ValkeyModuleEvent_Loading
*
* Called on loading operations: at startup when the server is
* started, but also after a first synchronization when the
* replica is loading the RDB file from the master.
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_LOADING_RDB_START`
* * `VALKEYMODULE_SUBEVENT_LOADING_AOF_START`
* * `VALKEYMODULE_SUBEVENT_LOADING_REPL_START`
* * `VALKEYMODULE_SUBEVENT_LOADING_ENDED`
* * `VALKEYMODULE_SUBEVENT_LOADING_FAILED`
*
* Note that AOF loading may start with an RDB data in case of
* rdb-preamble, in which case you'll only receive an AOF_START event.
*
* * ValkeyModuleEvent_ClientChange
*
* Called when a client connects or disconnects.
* The data pointer can be casted to a ValkeyModuleClientInfo
* structure, documented in ValkeyModule_GetClientInfoById().
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_CLIENT_CHANGE_CONNECTED`
* * `VALKEYMODULE_SUBEVENT_CLIENT_CHANGE_DISCONNECTED`
*
* * ValkeyModuleEvent_Shutdown
*
* The server is shutting down. No subevents are available.
*
* * ValkeyModuleEvent_ReplicaChange
*
* This event is called when the instance (that can be both a
* master or a replica) get a new online replica, or lose a
* replica since it gets disconnected.
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_REPLICA_CHANGE_ONLINE`
* * `VALKEYMODULE_SUBEVENT_REPLICA_CHANGE_OFFLINE`
*
* No additional information is available so far: future versions
* of Redis will have an API in order to enumerate the replicas
* connected and their state.
*
* * ValkeyModuleEvent_CronLoop
*
* This event is called every time Redis calls the serverCron()
* function in order to do certain bookkeeping. Modules that are
* required to do operations from time to time may use this callback.
* Normally Redis calls this function 10 times per second, but
* this changes depending on the "hz" configuration.
* No sub events are available.
2019-10-21 17:51:18 +02:00
*
* The data pointer can be casted to a ValkeyModuleCronLoop
* structure with the following fields:
*
* int32_t hz; // Approximate number of events per second.
*
* * ValkeyModuleEvent_PrimaryLinkChange
*
* This is called for replicas in order to notify when the
* replication link becomes functional (up) with our master,
* or when it goes down. Note that the link is not considered
* up when we just connected to the master, but only if the
* replication is happening correctly.
* The following sub events are available:
2019-10-21 17:51:18 +02:00
*
* * `VALKEYMODULE_SUBEVENT_PRIMARY_LINK_UP`
* * `VALKEYMODULE_SUBEVENT_PRIMARY_LINK_DOWN`
*
* * ValkeyModuleEvent_ModuleChange
*
* This event is called when a new module is loaded or one is unloaded.
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_MODULE_LOADED`
* * `VALKEYMODULE_SUBEVENT_MODULE_UNLOADED`
*
* The data pointer can be casted to a ValkeyModuleModuleChange
* structure with the following fields:
*
* const char* module_name; // Name of module loaded or unloaded.
* int32_t module_version; // Module version.
*
* * ValkeyModuleEvent_LoadingProgress
*
* This event is called repeatedly called while an RDB or AOF file
* is being loaded.
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_LOADING_PROGRESS_RDB`
* * `VALKEYMODULE_SUBEVENT_LOADING_PROGRESS_AOF`
*
* The data pointer can be casted to a ValkeyModuleLoadingProgress
* structure with the following fields:
*
* int32_t hz; // Approximate number of events per second.
* int32_t progress; // Approximate progress between 0 and 1024,
* // or -1 if unknown.
2019-10-21 17:51:18 +02:00
*
* * ValkeyModuleEvent_SwapDB
2020-09-20 06:36:20 -04:00
*
* This event is called when a SWAPDB command has been successfully
* Executed.
* For this event call currently there is no subevents available.
2020-09-20 06:36:20 -04:00
*
* The data pointer can be casted to a ValkeyModuleSwapDbInfo
* structure with the following fields:
2020-09-20 06:36:20 -04:00
*
* int32_t dbnum_first; // Swap Db first dbnum
* int32_t dbnum_second; // Swap Db second dbnum
2020-09-20 06:36:20 -04:00
*
* * ValkeyModuleEvent_ReplBackup
Replica keep serving data during repl-diskless-load=swapdb for better availability (#9323) For diskless replication in swapdb mode, considering we already spend replica memory having a backup of current db to restore in case of failure, we can have the following benefits by instead swapping database only in case we succeeded in transferring db from master: - Avoid `LOADING` response during failed and successful synchronization for cases where the replica is already up and running with data. - Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping. - This could be implemented also for disk replication with similar benefits if consumers are willing to spend the extra memory usage. General notes: - The concept of `backupDb` becomes `tempDb` for clarity. - Async loading mode will only kick in if the replica is syncing from a master that has the same repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline. - New property in INFO: `async_loading` to differentiate from the blocking loading - Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db and the tempDb that is passed around. - Because this is affecting replicas only, we assume that if they are not readonly and write commands during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET here anyways to avoid complications. Considerations for review: - We have many cases where server.loading flag is used and even though I tried my best, there may be cases where async_loading should be checked as well and cases where it shouldn't (would require very good understanding of whole code) - Several places that had different behavior depending on the loading flag where actually meant to just handle commands coming from the AOF client differently than ones coming from real clients, changed to check CLIENT_ID_AOF instead. **Additional for Release Notes** - Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't contribute on triggering next database SAVE - New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING - Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event. Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED, ABORTED and COMPLETED. - New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions to allow modules to declare they support the diskless replication with async loading (when absent, we fall back to disk-based loading). Co-authored-by: Eduardo Semprebon <edus@saxobank.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2021-11-04 09:46:50 +01:00
*
* WARNING: Replication Backup events are deprecated since Redis 7.0 and are never fired.
* See ValkeyModuleEvent_ReplAsyncLoad for understanding how Async Replication Loading events
Replica keep serving data during repl-diskless-load=swapdb for better availability (#9323) For diskless replication in swapdb mode, considering we already spend replica memory having a backup of current db to restore in case of failure, we can have the following benefits by instead swapping database only in case we succeeded in transferring db from master: - Avoid `LOADING` response during failed and successful synchronization for cases where the replica is already up and running with data. - Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping. - This could be implemented also for disk replication with similar benefits if consumers are willing to spend the extra memory usage. General notes: - The concept of `backupDb` becomes `tempDb` for clarity. - Async loading mode will only kick in if the replica is syncing from a master that has the same repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline. - New property in INFO: `async_loading` to differentiate from the blocking loading - Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db and the tempDb that is passed around. - Because this is affecting replicas only, we assume that if they are not readonly and write commands during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET here anyways to avoid complications. Considerations for review: - We have many cases where server.loading flag is used and even though I tried my best, there may be cases where async_loading should be checked as well and cases where it shouldn't (would require very good understanding of whole code) - Several places that had different behavior depending on the loading flag where actually meant to just handle commands coming from the AOF client differently than ones coming from real clients, changed to check CLIENT_ID_AOF instead. **Additional for Release Notes** - Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't contribute on triggering next database SAVE - New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING - Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event. Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED, ABORTED and COMPLETED. - New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions to allow modules to declare they support the diskless replication with async loading (when absent, we fall back to disk-based loading). Co-authored-by: Eduardo Semprebon <edus@saxobank.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2021-11-04 09:46:50 +01:00
* are now triggered when repl-diskless-load is set to swapdb.
*
Replica keep serving data during repl-diskless-load=swapdb for better availability (#9323) For diskless replication in swapdb mode, considering we already spend replica memory having a backup of current db to restore in case of failure, we can have the following benefits by instead swapping database only in case we succeeded in transferring db from master: - Avoid `LOADING` response during failed and successful synchronization for cases where the replica is already up and running with data. - Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping. - This could be implemented also for disk replication with similar benefits if consumers are willing to spend the extra memory usage. General notes: - The concept of `backupDb` becomes `tempDb` for clarity. - Async loading mode will only kick in if the replica is syncing from a master that has the same repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline. - New property in INFO: `async_loading` to differentiate from the blocking loading - Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db and the tempDb that is passed around. - Because this is affecting replicas only, we assume that if they are not readonly and write commands during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET here anyways to avoid complications. Considerations for review: - We have many cases where server.loading flag is used and even though I tried my best, there may be cases where async_loading should be checked as well and cases where it shouldn't (would require very good understanding of whole code) - Several places that had different behavior depending on the loading flag where actually meant to just handle commands coming from the AOF client differently than ones coming from real clients, changed to check CLIENT_ID_AOF instead. **Additional for Release Notes** - Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't contribute on triggering next database SAVE - New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING - Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event. Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED, ABORTED and COMPLETED. - New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions to allow modules to declare they support the diskless replication with async loading (when absent, we fall back to disk-based loading). Co-authored-by: Eduardo Semprebon <edus@saxobank.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2021-11-04 09:46:50 +01:00
* Called when repl-diskless-load config is set to swapdb,
2022-03-09 19:55:17 +08:00
* And redis needs to backup the current database for the
* possibility to be restored later. A module with global data and
* maybe with aux_load and aux_save callbacks may need to use this
* notification to backup / restore / discard its globals.
* The following sub events are available:
2020-09-20 06:36:20 -04:00
*
* * `VALKEYMODULE_SUBEVENT_REPL_BACKUP_CREATE`
* * `VALKEYMODULE_SUBEVENT_REPL_BACKUP_RESTORE`
* * `VALKEYMODULE_SUBEVENT_REPL_BACKUP_DISCARD`
Replica keep serving data during repl-diskless-load=swapdb for better availability (#9323) For diskless replication in swapdb mode, considering we already spend replica memory having a backup of current db to restore in case of failure, we can have the following benefits by instead swapping database only in case we succeeded in transferring db from master: - Avoid `LOADING` response during failed and successful synchronization for cases where the replica is already up and running with data. - Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping. - This could be implemented also for disk replication with similar benefits if consumers are willing to spend the extra memory usage. General notes: - The concept of `backupDb` becomes `tempDb` for clarity. - Async loading mode will only kick in if the replica is syncing from a master that has the same repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline. - New property in INFO: `async_loading` to differentiate from the blocking loading - Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db and the tempDb that is passed around. - Because this is affecting replicas only, we assume that if they are not readonly and write commands during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET here anyways to avoid complications. Considerations for review: - We have many cases where server.loading flag is used and even though I tried my best, there may be cases where async_loading should be checked as well and cases where it shouldn't (would require very good understanding of whole code) - Several places that had different behavior depending on the loading flag where actually meant to just handle commands coming from the AOF client differently than ones coming from real clients, changed to check CLIENT_ID_AOF instead. **Additional for Release Notes** - Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't contribute on triggering next database SAVE - New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING - Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event. Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED, ABORTED and COMPLETED. - New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions to allow modules to declare they support the diskless replication with async loading (when absent, we fall back to disk-based loading). Co-authored-by: Eduardo Semprebon <edus@saxobank.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2021-11-04 09:46:50 +01:00
*
* * ValkeyModuleEvent_ReplAsyncLoad
Replica keep serving data during repl-diskless-load=swapdb for better availability (#9323) For diskless replication in swapdb mode, considering we already spend replica memory having a backup of current db to restore in case of failure, we can have the following benefits by instead swapping database only in case we succeeded in transferring db from master: - Avoid `LOADING` response during failed and successful synchronization for cases where the replica is already up and running with data. - Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping. - This could be implemented also for disk replication with similar benefits if consumers are willing to spend the extra memory usage. General notes: - The concept of `backupDb` becomes `tempDb` for clarity. - Async loading mode will only kick in if the replica is syncing from a master that has the same repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline. - New property in INFO: `async_loading` to differentiate from the blocking loading - Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db and the tempDb that is passed around. - Because this is affecting replicas only, we assume that if they are not readonly and write commands during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET here anyways to avoid complications. Considerations for review: - We have many cases where server.loading flag is used and even though I tried my best, there may be cases where async_loading should be checked as well and cases where it shouldn't (would require very good understanding of whole code) - Several places that had different behavior depending on the loading flag where actually meant to just handle commands coming from the AOF client differently than ones coming from real clients, changed to check CLIENT_ID_AOF instead. **Additional for Release Notes** - Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't contribute on triggering next database SAVE - New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING - Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event. Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED, ABORTED and COMPLETED. - New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions to allow modules to declare they support the diskless replication with async loading (when absent, we fall back to disk-based loading). Co-authored-by: Eduardo Semprebon <edus@saxobank.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2021-11-04 09:46:50 +01:00
*
* Called when repl-diskless-load config is set to swapdb and a replication with a master of same
* data set history (matching replication ID) occurs.
* In which case redis serves current data set while loading new database in memory from socket.
* Modules must have declared they support this mechanism in order to activate it, through
* VALKEYMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD flag.
Replica keep serving data during repl-diskless-load=swapdb for better availability (#9323) For diskless replication in swapdb mode, considering we already spend replica memory having a backup of current db to restore in case of failure, we can have the following benefits by instead swapping database only in case we succeeded in transferring db from master: - Avoid `LOADING` response during failed and successful synchronization for cases where the replica is already up and running with data. - Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping. - This could be implemented also for disk replication with similar benefits if consumers are willing to spend the extra memory usage. General notes: - The concept of `backupDb` becomes `tempDb` for clarity. - Async loading mode will only kick in if the replica is syncing from a master that has the same repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline. - New property in INFO: `async_loading` to differentiate from the blocking loading - Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db and the tempDb that is passed around. - Because this is affecting replicas only, we assume that if they are not readonly and write commands during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET here anyways to avoid complications. Considerations for review: - We have many cases where server.loading flag is used and even though I tried my best, there may be cases where async_loading should be checked as well and cases where it shouldn't (would require very good understanding of whole code) - Several places that had different behavior depending on the loading flag where actually meant to just handle commands coming from the AOF client differently than ones coming from real clients, changed to check CLIENT_ID_AOF instead. **Additional for Release Notes** - Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't contribute on triggering next database SAVE - New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING - Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event. Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED, ABORTED and COMPLETED. - New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions to allow modules to declare they support the diskless replication with async loading (when absent, we fall back to disk-based loading). Co-authored-by: Eduardo Semprebon <edus@saxobank.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2021-11-04 09:46:50 +01:00
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_REPL_ASYNC_LOAD_STARTED`
* * `VALKEYMODULE_SUBEVENT_REPL_ASYNC_LOAD_ABORTED`
* * `VALKEYMODULE_SUBEVENT_REPL_ASYNC_LOAD_COMPLETED`
2020-09-20 06:36:20 -04:00
*
* * ValkeyModuleEvent_ForkChild
*
* Called when a fork child (AOFRW, RDBSAVE, module fork...) is born/dies
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_FORK_CHILD_BORN`
* * `VALKEYMODULE_SUBEVENT_FORK_CHILD_DIED`
*
* * ValkeyModuleEvent_EventLoop
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
*
* Called on each event loop iteration, once just before the event loop goes
* to sleep or just after it wakes up.
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP`
* * `VALKEYMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP`
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
*
* * ValkeyModule_Event_Config
*
* Called when a configuration event happens
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_CONFIG_CHANGE`
*
* The data pointer can be casted to a ValkeyModuleConfigChange
* structure with the following fields:
*
* const char **config_names; // An array of C string pointers containing the
* // name of each modified configuration item
* uint32_t num_changes; // The number of elements in the config_names array
*
* * ValkeyModule_Event_Key
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
*
* Called when a key is removed from the keyspace. We can't modify any key in
* the event.
* The following sub events are available:
*
* * `VALKEYMODULE_SUBEVENT_KEY_DELETED`
* * `VALKEYMODULE_SUBEVENT_KEY_EXPIRED`
* * `VALKEYMODULE_SUBEVENT_KEY_EVICTED`
* * `VALKEYMODULE_SUBEVENT_KEY_OVERWRITTEN`
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
*
* The data pointer can be casted to a ValkeyModuleKeyInfo
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
* structure with the following fields:
*
* ValkeyModuleKey *key; // Key name
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
*
* The function returns VALKEYMODULE_OK if the module was successfully subscribed
* for the specified event. If the API is called from a wrong context or unsupported event
* is given then VALKEYMODULE_ERR is returned. */
int VM_SubscribeToServerEvent(ValkeyModuleCtx *ctx, ValkeyModuleEvent event, ValkeyModuleEventCallback callback) {
ValkeyModuleEventListener *el;
/* Protect in case of calls from contexts without a module reference. */
if (ctx->module == NULL) return VALKEYMODULE_ERR;
if (event.id >= _VALKEYMODULE_EVENT_NEXT) return VALKEYMODULE_ERR;
if (event.dataver > moduleEventVersions[event.id]) return VALKEYMODULE_ERR; /* Module compiled with a newer valkeymodule.h than we support */
/* Search an event matching this module and event ID. */
listIter li;
listNode *ln;
listRewind(ValkeyModule_EventListeners,&li);
while((ln = listNext(&li))) {
el = ln->value;
if (el->module == ctx->module && el->event.id == event.id)
break; /* Matching event found. */
}
/* Modify or remove the event listener if we already had one. */
if (ln) {
if (callback == NULL) {
listDelNode(ValkeyModule_EventListeners,ln);
zfree(el);
} else {
el->callback = callback; /* Update the callback with the new one. */
}
return VALKEYMODULE_OK;
}
/* No event found, we need to add a new one. */
el = zmalloc(sizeof(*el));
el->module = ctx->module;
el->event = event;
el->callback = callback;
listAddNodeTail(ValkeyModule_EventListeners,el);
return VALKEYMODULE_OK;
}
/**
* For a given server event and subevent, return zero if the
* subevent is not supported and non-zero otherwise.
*/
int VM_IsSubEventSupported(ValkeyModuleEvent event, int64_t subevent) {
switch (event.id) {
case VALKEYMODULE_EVENT_REPLICATION_ROLE_CHANGED:
return subevent < _VALKEYMODULE_EVENT_REPLROLECHANGED_NEXT;
case VALKEYMODULE_EVENT_PERSISTENCE:
return subevent < _VALKEYMODULE_SUBEVENT_PERSISTENCE_NEXT;
case VALKEYMODULE_EVENT_FLUSHDB:
return subevent < _VALKEYMODULE_SUBEVENT_FLUSHDB_NEXT;
case VALKEYMODULE_EVENT_LOADING:
return subevent < _VALKEYMODULE_SUBEVENT_LOADING_NEXT;
case VALKEYMODULE_EVENT_CLIENT_CHANGE:
return subevent < _VALKEYMODULE_SUBEVENT_CLIENT_CHANGE_NEXT;
case VALKEYMODULE_EVENT_SHUTDOWN:
return subevent < _VALKEYMODULE_SUBEVENT_SHUTDOWN_NEXT;
case VALKEYMODULE_EVENT_REPLICA_CHANGE:
return subevent < _VALKEYMODULE_EVENT_REPLROLECHANGED_NEXT;
case VALKEYMODULE_EVENT_PRIMARY_LINK_CHANGE:
return subevent < _VALKEYMODULE_SUBEVENT_PRIMARY_NEXT;
case VALKEYMODULE_EVENT_CRON_LOOP:
return subevent < _VALKEYMODULE_SUBEVENT_CRON_LOOP_NEXT;
case VALKEYMODULE_EVENT_MODULE_CHANGE:
return subevent < _VALKEYMODULE_SUBEVENT_MODULE_NEXT;
case VALKEYMODULE_EVENT_LOADING_PROGRESS:
return subevent < _VALKEYMODULE_SUBEVENT_LOADING_PROGRESS_NEXT;
case VALKEYMODULE_EVENT_SWAPDB:
return subevent < _VALKEYMODULE_SUBEVENT_SWAPDB_NEXT;
case VALKEYMODULE_EVENT_REPL_ASYNC_LOAD:
return subevent < _VALKEYMODULE_SUBEVENT_REPL_ASYNC_LOAD_NEXT;
case VALKEYMODULE_EVENT_FORK_CHILD:
return subevent < _VALKEYMODULE_SUBEVENT_FORK_CHILD_NEXT;
case VALKEYMODULE_EVENT_EVENTLOOP:
return subevent < _VALKEYMODULE_SUBEVENT_EVENTLOOP_NEXT;
case VALKEYMODULE_EVENT_CONFIG:
return subevent < _VALKEYMODULE_SUBEVENT_CONFIG_NEXT;
case VALKEYMODULE_EVENT_KEY:
return subevent < _VALKEYMODULE_SUBEVENT_KEY_NEXT;
default:
break;
}
return 0;
}
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
typedef struct KeyInfo {
int32_t dbnum;
ValkeyModuleString *key;
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
robj *value;
int mode;
} KeyInfo;
2019-10-21 17:51:18 +02:00
/* This is called by the Redis internals every time we want to fire an
* event that can be intercepted by some module. The pointer 'data' is useful
2019-10-21 17:51:18 +02:00
* in order to populate the event-specific structure when needed, in order
* to return the structure with more information to the callback.
*
* 'eid' and 'subid' are just the main event ID and the sub event associated
* with the event, depending on what exactly happened. */
void moduleFireServerEvent(uint64_t eid, int subid, void *data) {
/* Fast path to return ASAP if there is nothing to do, avoiding to
* setup the iterator and so forth: we want this call to be extremely
* cheap if there are no registered modules. */
if (listLength(ValkeyModule_EventListeners) == 0) return;
2019-10-21 17:51:18 +02:00
listIter li;
listNode *ln;
listRewind(ValkeyModule_EventListeners,&li);
2019-10-21 17:51:18 +02:00
while((ln = listNext(&li))) {
ValkeyModuleEventListener *el = ln->value;
if (el->event.id == eid) {
ValkeyModuleCtx ctx;
if (eid == VALKEYMODULE_EVENT_CLIENT_CHANGE) {
/* In the case of client changes, we're pushing the real client
* so the event handler can mutate it if needed. For example,
* to change its authentication state in a way that does not
* depend on specific commands executed later.
*/
moduleCreateContext(&ctx,el->module,VALKEYMODULE_CTX_NONE);
ctx.client = (client *) data;
} else {
moduleCreateContext(&ctx,el->module,VALKEYMODULE_CTX_TEMP_CLIENT);
}
2019-10-21 17:51:18 +02:00
void *moduledata = NULL;
ValkeyModuleClientInfoV1 civ1;
ValkeyModuleReplicationInfoV1 riv1;
ValkeyModuleModuleChangeV1 mcv1;
ValkeyModuleKey key;
ValkeyModuleKeyInfoV1 ki = {VALKEYMODULE_KEYINFO_VERSION, &key};
2019-10-24 10:51:03 +02:00
/* Event specific context and data pointer setup. */
if (eid == VALKEYMODULE_EVENT_CLIENT_CHANGE) {
serverAssert(modulePopulateClientInfoStructure(&civ1,data, el->event.dataver) == VALKEYMODULE_OK);
moduledata = &civ1;
} else if (eid == VALKEYMODULE_EVENT_REPLICATION_ROLE_CHANGED) {
serverAssert(modulePopulateReplicationInfoStructure(&riv1,el->event.dataver) == VALKEYMODULE_OK);
moduledata = &riv1;
} else if (eid == VALKEYMODULE_EVENT_FLUSHDB) {
2019-10-23 10:37:04 +02:00
moduledata = data;
ValkeyModuleFlushInfoV1 *fi = data;
if (fi->dbnum != -1)
selectDb(ctx.client, fi->dbnum);
} else if (eid == VALKEYMODULE_EVENT_MODULE_CHANGE) {
ValkeyModule *m = data;
2022-01-11 20:00:56 +03:00
if (m == el->module) {
moduleFreeContext(&ctx);
continue;
2022-01-11 20:00:56 +03:00
}
mcv1.version = VALKEYMODULE_MODULE_CHANGE_VERSION;
mcv1.module_name = m->name;
mcv1.module_version = m->ver;
moduledata = &mcv1;
} else if (eid == VALKEYMODULE_EVENT_LOADING_PROGRESS) {
moduledata = data;
} else if (eid == VALKEYMODULE_EVENT_CRON_LOOP) {
moduledata = data;
} else if (eid == VALKEYMODULE_EVENT_SWAPDB) {
2020-09-20 06:36:20 -04:00
moduledata = data;
} else if (eid == VALKEYMODULE_EVENT_CONFIG) {
moduledata = data;
} else if (eid == VALKEYMODULE_EVENT_KEY) {
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
KeyInfo *info = data;
selectDb(ctx.client, info->dbnum);
moduleInitKey(&key, &ctx, info->key, info->value, info->mode);
moduledata = &ki;
2019-10-21 17:51:18 +02:00
}
el->module->in_hook++;
2019-10-21 17:51:18 +02:00
el->callback(&ctx,el->event,subid,moduledata);
el->module->in_hook--;
if (eid == VALKEYMODULE_EVENT_KEY) {
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
moduleCloseKey(&key);
}
2019-10-21 17:51:18 +02:00
moduleFreeContext(&ctx);
}
}
}
/* Remove all the listeners for this module: this is used before unloading
* a module. */
void moduleUnsubscribeAllServerEvents(ValkeyModule *module) {
ValkeyModuleEventListener *el;
listIter li;
listNode *ln;
listRewind(ValkeyModule_EventListeners,&li);
while((ln = listNext(&li))) {
el = ln->value;
if (el->module == module) {
listDelNode(ValkeyModule_EventListeners,ln);
zfree(el);
}
}
}
void processModuleLoadingProgressEvent(int is_aof) {
long long now = server.ustime;
static long long next_event = 0;
if (now >= next_event) {
/* Fire the loading progress modules end event. */
int progress = -1;
if (server.loading_total_bytes)
progress = (server.loading_loaded_bytes<<10) / server.loading_total_bytes;
ValkeyModuleLoadingProgressV1 fi = {VALKEYMODULE_LOADING_PROGRESS_VERSION,
server.hz,
progress};
moduleFireServerEvent(VALKEYMODULE_EVENT_LOADING_PROGRESS,
is_aof?
VALKEYMODULE_SUBEVENT_LOADING_PROGRESS_AOF:
VALKEYMODULE_SUBEVENT_LOADING_PROGRESS_RDB,
&fi);
/* decide when the next event should fire. */
next_event = now + 1000000 / server.hz;
}
}
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
/* When a key is deleted (in dbAsyncDelete/dbSyncDelete/setKey), it
* will be called to tell the module which key is about to be released. */
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
void moduleNotifyKeyUnlink(robj *key, robj *val, int dbid, int flags) {
server.lazy_expire_disabled++;
int subevent = VALKEYMODULE_SUBEVENT_KEY_DELETED;
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
if (flags & DB_FLAG_KEY_EXPIRED) {
subevent = VALKEYMODULE_SUBEVENT_KEY_EXPIRED;
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
} else if (flags & DB_FLAG_KEY_EVICTED) {
subevent = VALKEYMODULE_SUBEVENT_KEY_EVICTED;
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
} else if (flags & DB_FLAG_KEY_OVERWRITE) {
subevent = VALKEYMODULE_SUBEVENT_KEY_OVERWRITTEN;
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
}
KeyInfo info = {dbid, key, val, VALKEYMODULE_READ};
moduleFireServerEvent(VALKEYMODULE_EVENT_KEY, subevent, &info);
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
if (val->type == OBJ_MODULE) {
moduleValue *mv = val->ptr;
moduleType *mt = mv->type;
/* We prefer to use the enhanced version. */
if (mt->unlink2 != NULL) {
ValkeyModuleKeyOptCtx ctx = {key, NULL, dbid, -1};
mt->unlink2(&ctx,mv->value);
} else if (mt->unlink != NULL) {
mt->unlink(key,mv->value);
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
}
}
Add a special notification unlink available only for modules (#9406) Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
2022-11-30 17:56:36 +08:00
server.lazy_expire_disabled--;
}
/* Return the free_effort of the module, it will automatically choose to call
* `free_effort` or `free_effort2`, and the default return value is 1.
* value of 0 means very high effort (always asynchronous freeing). */
size_t moduleGetFreeEffort(robj *key, robj *val, int dbid) {
moduleValue *mv = val->ptr;
moduleType *mt = mv->type;
size_t effort = 1;
/* We prefer to use the enhanced version. */
if (mt->free_effort2 != NULL) {
ValkeyModuleKeyOptCtx ctx = {key, NULL, dbid, -1};
effort = mt->free_effort2(&ctx,mv->value);
} else if (mt->free_effort != NULL) {
effort = mt->free_effort(key,mv->value);
}
return effort;
}
/* Return the memory usage of the module, it will automatically choose to call
* `mem_usage` or `mem_usage2`, and the default return value is 0. */
size_t moduleGetMemUsage(robj *key, robj *val, size_t sample_size, int dbid) {
moduleValue *mv = val->ptr;
moduleType *mt = mv->type;
size_t size = 0;
/* We prefer to use the enhanced version. */
if (mt->mem_usage2 != NULL) {
ValkeyModuleKeyOptCtx ctx = {key, NULL, dbid, -1};
size = mt->mem_usage2(&ctx, mv->value, sample_size);
} else if (mt->mem_usage != NULL) {
size = mt->mem_usage(mv->value);
}
return size;
}
2016-03-06 13:44:24 +01:00
/* --------------------------------------------------------------------------
* Modules API internals
* -------------------------------------------------------------------------- */
/* server.moduleapi dictionary type. Only uses plain C strings since
* this gets queries from modules. */
Use SipHash hash function to mitigate HashDos attempts. This change attempts to switch to an hash function which mitigates the effects of the HashDoS attack (denial of service attack trying to force data structures to worst case behavior) while at the same time providing Redis with an hash function that does not expect the input data to be word aligned, a condition no longer true now that sds.c strings have a varialbe length header. Note that it is possible sometimes that even using an hash function for which collisions cannot be generated without knowing the seed, special implementation details or the exposure of the seed in an indirect way (for example the ability to add elements to a Set and check the return in which Redis returns them with SMEMBERS) may make the attacker's life simpler in the process of trying to guess the correct seed, however the next step would be to switch to a log(N) data structure when too many items in a single bucket are detected: this seems like an overkill in the case of Redis. SPEED REGRESION TESTS: In order to verify that switching from MurmurHash to SipHash had no impact on speed, a set of benchmarks involving fast insertion of 5 million of keys were performed. The result shows Redis with SipHash in high pipelining conditions to be about 4% slower compared to using the previous hash function. However this could partially be related to the fact that the current implementation does not attempt to hash whole words at a time but reads single bytes, in order to have an output which is endian-netural and at the same time working on systems where unaligned memory accesses are a problem. Further X86 specific optimizations should be tested, the function may easily get at the same level of MurMurHash2 if a few optimizations are performed.
2017-02-20 16:09:54 +01:00
uint64_t dictCStringKeyHash(const void *key) {
2016-03-06 13:44:24 +01:00
return dictGenHashFunction((unsigned char*)key, strlen((char*)key));
}
int dictCStringKeyCompare(dict *d, const void *key1, const void *key2) {
UNUSED(d);
2016-03-06 13:44:24 +01:00
return strcmp(key1,key2) == 0;
}
dictType moduleAPIDictType = {
dictCStringKeyHash, /* hash function */
NULL, /* key dup */
NULL, /* val dup */
dictCStringKeyCompare, /* key compare */
NULL, /* key destructor */
Limit the main db and expires dictionaries to expand (#7954) As we know, redis may reject user's requests or evict some keys if used memory is over maxmemory. Dictionaries expanding may make things worse, some big dictionaries, such as main db and expires dict, may eat huge memory at once for allocating a new big hash table and be far more than maxmemory after expanding. There are related issues: #4213 #4583 More details, when expand dict in redis, we will allocate a new big ht[1] that generally is double of ht[0], The size of ht[1] will be very big if ht[0] already is big. For db dict, if we have more than 64 million keys, we need to cost 1GB for ht[1] when dict expands. If the sum of used memory and new hash table of dict needed exceeds maxmemory, we shouldn't allow the dict to expand. Because, if we enable keys eviction, we still couldn't add much more keys after eviction and rehashing, what's worse, redis will keep less keys when redis only remains a little memory for storing new hash table instead of users' data. Moreover users can't write data in redis if disable keys eviction. What this commit changed ? Add a new member function expandAllowed for dict type, it provide a way for caller to allow expand or not. We expose two parameters for this function: more memory needed for expanding and dict current load factor, users can implement a function to make a decision by them. For main db dict and expires dict type, these dictionaries may be very big and cost huge memory for expanding, so we implement a judgement function: we can stop dict to expand provisionally if used memory will be over maxmemory after dict expands, but to guarantee the performance of redis, we still allow dict to expand if dict load factor exceeds the safe load factor. Add test cases to verify we don't allow main db to expand when left memory is not enough, so that avoid keys eviction. Other changes: For new hash table size when expand. Before this commit, the size is that double used of dict and later _dictNextPower. Actually we aim to control a dict load factor between 0.5 and 1.0. Now we replace *2 with +1, since the first check is that used >= size, the outcome of before will usually be the same as _dictNextPower(used+1). The only case where it'll differ is when dict_can_resize is false during fork, so that later the _dictNextPower(used*2) will cause the dict to jump to *4 (i.e. _dictNextPower(1025*2) will return 4096). Fix rehash test cases due to changing algorithm of new hash table size when expand.
2020-12-06 17:53:04 +08:00
NULL, /* val destructor */
NULL /* allow to expand */
2016-03-06 13:44:24 +01:00
};
int moduleRegisterApi(const char *funcname, void *funcptr) {
return dictAdd(server.moduleapi, (char*)funcname, funcptr);
}
/* Register Module APIs under both ValkeyModule_ and ValkeyModule_ namespaces
* so that legacy Redis module binaries can continue to function */
2016-03-06 13:44:24 +01:00
#define REGISTER_API(name) \
moduleRegisterApi("ValkeyModule_" #name, (void *)(unsigned long)VM_ ## name);\
moduleRegisterApi("RedisModule_" #name, (void *)(unsigned long)VM_ ## name);\
2016-03-06 13:44:24 +01:00
/* Global initialization at Redis startup. */
void moduleRegisterCoreAPI(void);
2022-01-11 20:00:56 +03:00
/* Currently, this function is just a placeholder for the module system
* initialization steps that need to be run after server initialization.
* A previous issue, selectDb() in createClient() requires that server.db has
* been initialized, see #7323. */
void moduleInitModulesSystemLast(void) {
}
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
dictType sdsKeyValueHashDictType = {
dictSdsCaseHash, /* hash function */
NULL, /* key dup */
NULL, /* val dup */
dictSdsKeyCaseCompare, /* key compare */
dictSdsDestructor, /* key destructor */
dictSdsDestructor, /* val destructor */
NULL /* allow to expand */
};
2016-03-06 13:44:24 +01:00
void moduleInitModulesSystem(void) {
moduleUnblockedClients = listCreate();
2016-03-06 13:44:24 +01:00
server.loadmodule_queue = listCreate();
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
server.module_configs_queue = dictCreate(&sdsKeyValueHashDictType);
modules = dictCreate(&modulesDictType);
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
moduleAuthCallbacks = listCreate();
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
/* Set up the keyspace notification subscriber list and static client */
moduleKeyspaceSubscribers = listCreate();
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
modulePostExecUnitJobs = listCreate();
2018-02-23 16:19:37 +02:00
/* Set up filter list */
moduleCommandFilters = listCreate();
2016-03-06 13:44:24 +01:00
moduleRegisterCoreAPI();
/* Create a pipe for module threads to be able to wake up the redis main thread.
* Make the pipe non blocking. This is just a best effort aware mechanism
* and we do not want to block not in the read nor in the write half.
* Enable close-on-exec flag on pipes in case of the fork-exec system calls in
* sentinels or redis servers. */
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
if (anetPipe(server.module_pipe, O_CLOEXEC|O_NONBLOCK, O_CLOEXEC|O_NONBLOCK) == -1) {
serverLog(LL_WARNING,
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
"Can't create the pipe for module threads: %s", strerror(errno));
exit(1);
}
/* Create the timers radix tree. */
Timers = raxNew();
/* Setup the event listeners data structures. */
ValkeyModule_EventListeners = listCreate();
/* Making sure moduleEventVersions is synced with the number of events. */
serverAssert(sizeof(moduleEventVersions)/sizeof(moduleEventVersions[0]) == _VALKEYMODULE_EVENT_NEXT);
/* Our thread-safe contexts GIL must start with already locked:
* it is just unlocked when it's safe. */
pthread_mutex_lock(&moduleGIL);
2016-03-06 13:44:24 +01:00
}
2022-01-11 20:00:56 +03:00
void modulesCron(void) {
/* Check number of temporary clients in the pool and free the unused ones
* since the last cron. moduleTempClientMinCount tracks minimum count of
* clients in the pool since the last cron. This is the number of clients
* that we didn't use for the last cron period. */
/* Limit the max client count to be freed at once to avoid latency spikes.*/
int iteration = 50;
/* We are freeing clients if we have more than 8 unused clients. Keeping
* small amount of clients to avoid client allocation costs if temporary
* clients are required after some idle period. */
const unsigned int min_client = 8;
while (iteration > 0 && moduleTempClientCount > 0 && moduleTempClientMinCount > min_client) {
client *c = moduleTempClients[--moduleTempClientCount];
freeClient(c);
iteration--;
moduleTempClientMinCount--;
}
moduleTempClientMinCount = moduleTempClientCount;
/* Shrink moduleTempClients array itself if it is wasting some space */
if (moduleTempClientCap > 32 && moduleTempClientCap > moduleTempClientCount * 4) {
moduleTempClientCap /= 4;
moduleTempClients = zrealloc(moduleTempClients,sizeof(client*)*moduleTempClientCap);
}
}
void moduleLoadQueueEntryFree(struct moduleLoadQueueEntry *loadmod) {
if (!loadmod) return;
sdsfree(loadmod->path);
for (int i = 0; i < loadmod->argc; i++) {
decrRefCount(loadmod->argv[i]);
}
zfree(loadmod->argv);
zfree(loadmod);
}
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
/* Remove Module Configs from standardConfig array in config.c */
void moduleRemoveConfigs(ValkeyModule *module) {
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
listIter li;
listNode *ln;
listRewind(module->module_configs, &li);
while ((ln = listNext(&li))) {
ModuleConfig *config = listNodeValue(ln);
sds module_name = sdsnew(module->name);
sds full_name = sdscat(sdscat(module_name, "."), config->name); /* ModuleName.ModuleConfig */
removeConfig(full_name);
sdsfree(full_name);
}
}
2016-03-06 13:44:24 +01:00
/* Load all the modules in the server.loadmodule_queue list, which is
* populated by `loadmodule` directives in the configuration file.
* We can't load modules directly when processing the configuration file
* because the server must be fully initialized before loading modules.
*
* The function aborts the server on errors, since to start with missing
2018-07-01 13:24:50 +08:00
* modules is not considered sane: clients may rely on the existence of
2016-03-06 13:44:24 +01:00
* given commands, loading AOF also may need some modules to exist, and
* if this instance is a slave, it must understand commands from master. */
void moduleLoadFromQueue(void) {
listIter li;
listNode *ln;
listRewind(server.loadmodule_queue,&li);
while((ln = listNext(&li))) {
struct moduleLoadQueueEntry *loadmod = ln->value;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
if (moduleLoad(loadmod->path,(void **)loadmod->argv,loadmod->argc, 0)
== C_ERR)
{
2016-03-06 13:44:24 +01:00
serverLog(LL_WARNING,
"Can't load module from %s: server aborting",
loadmod->path);
2016-03-06 13:44:24 +01:00
exit(1);
}
moduleLoadQueueEntryFree(loadmod);
listDelNode(server.loadmodule_queue, ln);
2016-03-06 13:44:24 +01:00
}
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
if (dictSize(server.module_configs_queue)) {
serverLog(LL_WARNING, "Module Configuration detected without loadmodule directive or no ApplyConfig call: aborting");
exit(1);
}
2016-03-06 13:44:24 +01:00
}
void moduleFreeModuleStructure(struct ValkeyModule *module) {
listRelease(module->types);
listRelease(module->filters);
listRelease(module->usedby);
listRelease(module->using);
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
listRelease(module->module_configs);
2016-03-06 13:44:24 +01:00
sdsfree(module->name);
moduleLoadQueueEntryFree(module->loadmod);
2016-03-06 13:44:24 +01:00
zfree(module);
}
void moduleFreeArgs(struct redisCommandArg *args, int num_args) {
for (int j = 0; j < num_args; j++) {
zfree((char *)args[j].name);
zfree((char *)args[j].token);
zfree((char *)args[j].summary);
zfree((char *)args[j].since);
zfree((char *)args[j].deprecated_since);
zfree((char *)args[j].display_text);
if (args[j].subargs) {
moduleFreeArgs(args[j].subargs, args[j].num_args);
}
}
zfree(args);
}
/* Free the command registered with the specified module.
* On success C_OK is returned, otherwise C_ERR is returned.
*
* Note that caller needs to handle the deletion of the command table dict,
* and after that needs to free the command->fullname and the command itself.
*/
int moduleFreeCommand(struct ValkeyModule *module, struct redisCommand *cmd) {
if (cmd->proc != ValkeyModuleCommandDispatcher)
return C_ERR;
ValkeyModuleCommand *cp = cmd->module_cmd;
if (cp->module != module)
return C_ERR;
/* Free everything except cmd->fullname and cmd itself. */
for (int j = 0; j < cmd->key_specs_num; j++) {
if (cmd->key_specs[j].notes)
zfree((char *)cmd->key_specs[j].notes);
if (cmd->key_specs[j].begin_search_type == KSPEC_BS_KEYWORD)
zfree((char *)cmd->key_specs[j].bs.keyword.keyword);
}
Reimplement cli hints based on command arg docs (#10515) Now that the command argument specs are available at runtime (#9656), this PR addresses #8084 by implementing a complete solution for command-line hinting in `redis-cli`. It correctly handles nearly every case in Redis's complex command argument definitions, including `BLOCK` and `ONEOF` arguments, reordering of optional arguments, and repeated arguments (even when followed by mandatory arguments). It also validates numerically-typed arguments. It may not correctly handle all possible combinations of those, but overall it is quite robust. Arguments are only matched after the space bar is typed, so partial word matching is not supported - that proved to be more confusing than helpful. When the user's current input cannot be matched against the argument specs, hinting is disabled. Partial support has been implemented for legacy (pre-7.0) servers that do not support `COMMAND DOCS`, by falling back to a statically-compiled command argument table. On startup, if the server does not support `COMMAND DOCS`, `redis-cli` will now issue an `INFO SERVER` command to retrieve the server version (unless `HELLO` has already been sent, in which case the server version will be extracted from the reply to `HELLO`). The server version will be used to filter the commands and arguments in the command table, removing those not supported by that version of the server. However, the static table only includes core Redis commands, so with a legacy server hinting will not be supported for module commands. The auto generated help.h and the scripts that generates it are gone. Command and argument tables for the server and CLI use different structs, due primarily to the need to support different runtime data. In order to generate code for both, macros have been added to `commands.def` (previously `commands.c`) to make it possible to configure the code generation differently for different use cases (one linked with redis-server, and one with redis-cli). Also adding a basic testing framework for the command hints based on new (undocumented) command line options to `redis-cli`: `--test_hint 'INPUT'` prints out the command-line hint for a given input string, and `--test_hint_file <filename>` runs a suite of test cases for the hinting mechanism. The test suite is in `tests/assets/test_cli_hint_suite.txt`, and it is run from `tests/integration/redis-cli.tcl`. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
2023-03-30 19:03:56 +03:00
zfree(cmd->key_specs);
for (int j = 0; cmd->tips && cmd->tips[j]; j++)
zfree((char *)cmd->tips[j]);
zfree(cmd->tips);
for (int j = 0; cmd->history && cmd->history[j].since; j++) {
zfree((char *)cmd->history[j].since);
zfree((char *)cmd->history[j].changes);
}
zfree(cmd->history);
zfree((char *)cmd->summary);
zfree((char *)cmd->since);
zfree((char *)cmd->deprecated_since);
zfree((char *)cmd->complexity);
if (cmd->latency_histogram) {
hdr_close(cmd->latency_histogram);
cmd->latency_histogram = NULL;
}
moduleFreeArgs(cmd->args, cmd->num_args);
zfree(cp);
if (cmd->subcommands_dict) {
dictEntry *de;
dictIterator *di = dictGetSafeIterator(cmd->subcommands_dict);
while ((de = dictNext(di)) != NULL) {
struct redisCommand *sub = dictGetVal(de);
if (moduleFreeCommand(module, sub) != C_OK) continue;
serverAssert(dictDelete(cmd->subcommands_dict, sub->declared_name) == DICT_OK);
sdsfree((sds)sub->declared_name);
sdsfree(sub->fullname);
zfree(sub);
}
dictReleaseIterator(di);
dictRelease(cmd->subcommands_dict);
}
return C_OK;
}
void moduleUnregisterCommands(struct ValkeyModule *module) {
/* Unregister all the commands registered by this module. */
dictIterator *di = dictGetSafeIterator(server.commands);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct redisCommand *cmd = dictGetVal(de);
if (moduleFreeCommand(module, cmd) != C_OK) continue;
serverAssert(dictDelete(server.commands, cmd->fullname) == DICT_OK);
serverAssert(dictDelete(server.orig_commands, cmd->fullname) == DICT_OK);
sdsfree((sds)cmd->declared_name);
sdsfree(cmd->fullname);
zfree(cmd);
}
dictReleaseIterator(di);
}
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
/* We parse argv to add sds "NAME VALUE" pairs to the server.module_configs_queue list of configs.
* We also increment the module_argv pointer to just after ARGS if there are args, otherwise
* we set it to NULL */
int parseLoadexArguments(ValkeyModuleString ***module_argv, int *module_argc) {
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
int args_specified = 0;
ValkeyModuleString **argv = *module_argv;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
int argc = *module_argc;
for (int i = 0; i < argc; i++) {
char *arg_val = argv[i]->ptr;
if (!strcasecmp(arg_val, "CONFIG")) {
if (i + 2 >= argc) {
serverLog(LL_NOTICE, "CONFIG specified without name value pair");
return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
sds name = sdsdup(argv[i + 1]->ptr);
sds value = sdsdup(argv[i + 2]->ptr);
if (!dictReplace(server.module_configs_queue, name, value)) sdsfree(name);
i += 2;
} else if (!strcasecmp(arg_val, "ARGS")) {
args_specified = 1;
i++;
if (i >= argc) {
*module_argv = NULL;
*module_argc = 0;
} else {
*module_argv = argv + i;
*module_argc = argc - i;
}
break;
} else {
serverLog(LL_NOTICE, "Syntax Error from arguments to loadex around %s.", arg_val);
return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
}
if (!args_specified) {
*module_argv = NULL;
*module_argc = 0;
}
return VALKEYMODULE_OK;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
/* Unregister module-related things, called when moduleLoad fails or moduleUnload. */
void moduleUnregisterCleanup(ValkeyModule *module) {
moduleFreeAuthenticatedClients(module);
moduleUnregisterCommands(module);
moduleUnsubscribeNotifications(module);
moduleUnregisterSharedAPI(module);
moduleUnregisterUsedAPI(module);
moduleUnregisterFilters(module);
moduleUnsubscribeAllServerEvents(module);
moduleRemoveConfigs(module);
moduleUnregisterAuthCBs(module);
}
2016-03-06 13:44:24 +01:00
/* Load a module and initialize it. On success C_OK is returned, otherwise
* C_ERR is returned. */
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
int moduleLoad(const char *path, void **module_argv, int module_argc, int is_loadex) {
int (*onload)(void *, void **, int);
2016-03-06 13:44:24 +01:00
void *handle;
struct stat st;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
if (stat(path, &st) == 0) {
/* This check is best effort */
if (!(st.st_mode & (S_IXUSR | S_IXGRP | S_IXOTH))) {
serverLog(LL_WARNING, "Module %s failed to load: It does not have execute permissions.", path);
return C_ERR;
}
}
2016-03-06 13:44:24 +01:00
handle = dlopen(path,RTLD_NOW|RTLD_LOCAL);
2016-03-31 21:18:45 +03:00
if (handle == NULL) {
serverLog(LL_WARNING, "Module %s failed to load: %s", path, dlerror());
return C_ERR;
}
const char *onLoadNames[] = {"ValkeyModule_OnLoad", "RedisModule_OnLoad"};
for (size_t i = 0; i < sizeof(onLoadNames) / sizeof(onLoadNames[0]); i++) {
onload = (int (*)(void *, void **, int))(unsigned long) dlsym(handle, onLoadNames[i]);
if (onload != NULL) {
if (i != 0) {
serverLog(LL_NOTICE, "Legacy Redis Module %s found", path);
}
break;
}
}
2016-03-06 13:44:24 +01:00
if (onload == NULL) {
2017-02-22 14:26:21 +09:00
dlclose(handle);
2016-03-06 13:44:24 +01:00
serverLog(LL_WARNING,
"Module %s does not export ValkeyModule_OnLoad() or RedisModule_OnLoad() "
2016-03-06 13:44:24 +01:00
"symbol. Module not loaded.",path);
return C_ERR;
}
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, NULL, VALKEYMODULE_CTX_TEMP_CLIENT); /* We pass NULL since we don't have a module yet. */
if (onload((void*)&ctx,module_argv,module_argc) == VALKEYMODULE_ERR) {
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
serverLog(LL_WARNING,
"Module %s initialization failed. Module not loaded",path);
if (ctx.module) {
moduleUnregisterCleanup(ctx.module);
moduleFreeModuleStructure(ctx.module);
}
2022-01-11 20:00:56 +03:00
moduleFreeContext(&ctx);
2016-03-06 13:44:24 +01:00
dlclose(handle);
return C_ERR;
}
/* Redis module loaded! Register it. */
dictAdd(modules,ctx.module->name,ctx.module);
ctx.module->blocked_clients = 0;
2016-03-06 13:44:24 +01:00
ctx.module->handle = handle;
ctx.module->loadmod = zmalloc(sizeof(struct moduleLoadQueueEntry));
ctx.module->loadmod->path = sdsnew(path);
ctx.module->loadmod->argv = module_argc ? zmalloc(sizeof(robj*)*module_argc) : NULL;
ctx.module->loadmod->argc = module_argc;
for (int i = 0; i < module_argc; i++) {
ctx.module->loadmod->argv[i] = module_argv[i];
incrRefCount(ctx.module->loadmod->argv[i]);
}
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
/* If module commands have ACL categories, recompute command bits
* for all existing users once the modules has been registered. */
if (ctx.module->num_commands_with_acl_categories) {
ACLRecomputeCommandBitsFromCommandRulesAllUsers();
}
2016-03-06 13:44:24 +01:00
serverLog(LL_NOTICE,"Module '%s' loaded from %s",ctx.module->name,path);
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
ctx.module->onload = 0;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
int post_load_err = 0;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
if (listLength(ctx.module->module_configs) && !ctx.module->configs_initialized) {
serverLogRaw(LL_WARNING, "Module Configurations were not set, likely a missing LoadConfigs call. Unloading the module.");
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
post_load_err = 1;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
if (is_loadex && dictSize(server.module_configs_queue)) {
serverLogRaw(LL_WARNING, "Loadex configurations were not applied, likely due to invalid arguments. Unloading the module.");
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
post_load_err = 1;
}
if (post_load_err) {
moduleUnload(ctx.module->name, NULL);
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
moduleFreeContext(&ctx);
return C_ERR;
}
/* Fire the loaded modules event. */
moduleFireServerEvent(VALKEYMODULE_EVENT_MODULE_CHANGE,
VALKEYMODULE_SUBEVENT_MODULE_LOADED,
ctx.module);
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
moduleFreeContext(&ctx);
2016-03-06 13:44:24 +01:00
return C_OK;
}
/* Unload the module registered with the specified name. On success
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
* C_OK is returned, otherwise C_ERR is returned and errmsg is set
* with an appropriate message. */
int moduleUnload(sds name, const char **errmsg) {
struct ValkeyModule *module = dictFetchValue(modules,name);
if (module == NULL) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
*errmsg = "no such module with that name";
return C_ERR;
} else if (listLength(module->types)) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
*errmsg = "the module exports one or more module-side data "
"types, can't unload";
return C_ERR;
} else if (listLength(module->usedby)) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
*errmsg = "the module exports APIs used by other modules. "
"Please unload them first and try again";
return C_ERR;
} else if (module->blocked_clients) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
*errmsg = "the module has blocked clients. "
"Please wait for them to be unblocked and try again";
return C_ERR;
} else if (moduleHoldsTimer(module)) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
*errmsg = "the module holds timer that is not fired. "
"Please stop the timer or wait until it fires.";
return C_ERR;
2016-03-06 13:44:24 +01:00
}
2019-03-13 16:31:24 +00:00
/* Give module a chance to clean up. */
const char *onUnloadNames[] = {"ValkeyModule_OnUnload", "RedisModule_OnUnload"};
int (*onunload)(void *) = NULL;
for (size_t i = 0; i < sizeof(onUnloadNames) / sizeof(onUnloadNames[0]); i++) {
onunload = (int (*)(void *))(unsigned long)dlsym(module->handle, onUnloadNames[i]);
if (onunload) {
if (i != 0) {
serverLog(LL_NOTICE, "Legacy Redis Module %s found", name);
}
break;
}
}
2019-03-13 16:31:24 +00:00
if (onunload) {
ValkeyModuleCtx ctx;
moduleCreateContext(&ctx, module, VALKEYMODULE_CTX_TEMP_CLIENT);
2019-03-13 16:31:24 +00:00
int unload_status = onunload((void*)&ctx);
moduleFreeContext(&ctx);
if (unload_status == VALKEYMODULE_ERR) {
serverLog(LL_WARNING, "Module %s OnUnload failed. Unload canceled.", name);
2019-03-13 16:31:24 +00:00
errno = ECANCELED;
return C_ERR;
2019-03-13 16:31:24 +00:00
}
2016-03-06 13:44:24 +01:00
}
moduleUnregisterCleanup(module);
2016-03-06 13:44:24 +01:00
/* Unload the dynamic library. */
if (dlclose(module->handle) == -1) {
char *error = dlerror();
if (error == NULL) error = "Unknown error";
serverLog(LL_WARNING,"Error when trying to close the %s module: %s",
module->name, error);
}
/* Fire the unloaded modules event. */
moduleFireServerEvent(VALKEYMODULE_EVENT_MODULE_CHANGE,
VALKEYMODULE_SUBEVENT_MODULE_UNLOADED,
module);
2016-03-06 13:44:24 +01:00
/* Remove from list of modules. */
serverLog(LL_NOTICE,"Module %s unloaded",module->name);
dictDelete(modules,module->name);
module->name = NULL; /* The name was already freed by dictDelete(). */
moduleFreeModuleStructure(module);
2016-03-06 13:44:24 +01:00
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
/* Recompute command bits for all users once the modules has been completely unloaded. */
ACLRecomputeCommandBitsFromCommandRulesAllUsers();
return C_OK;
2016-03-06 13:44:24 +01:00
}
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
void modulePipeReadable(aeEventLoop *el, int fd, void *privdata, int mask) {
UNUSED(el);
UNUSED(fd);
UNUSED(mask);
UNUSED(privdata);
char buf[128];
while (read(fd, buf, sizeof(buf)) == sizeof(buf));
/* Handle event loop events if pipe was written from event loop API */
eventLoopHandleOneShotEvents();
}
/* Helper function for the MODULE and HELLO command: send the list of the
* loaded modules to the client. */
void addReplyLoadedModules(client *c) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
addReplyArrayLen(c,dictSize(modules));
while ((de = dictNext(di)) != NULL) {
sds name = dictGetKey(de);
struct ValkeyModule *module = dictGetVal(de);
sds path = module->loadmod->path;
addReplyMapLen(c,4);
addReplyBulkCString(c,"name");
addReplyBulkCBuffer(c,name,sdslen(name));
addReplyBulkCString(c,"ver");
addReplyLongLong(c,module->ver);
addReplyBulkCString(c,"path");
addReplyBulkCBuffer(c,path,sdslen(path));
addReplyBulkCString(c,"args");
addReplyArrayLen(c,module->loadmod->argc);
for (int i = 0; i < module->loadmod->argc; i++) {
addReplyBulk(c,module->loadmod->argv[i]);
}
}
dictReleaseIterator(di);
}
/* Helper for genModulesInfoString(): given a list of modules, return
* an SDS string in the form "[modulename|modulename2|...]" */
sds genModulesInfoStringRenderModulesList(list *l) {
listIter li;
listNode *ln;
listRewind(l,&li);
sds output = sdsnew("[");
while((ln = listNext(&li))) {
ValkeyModule *module = ln->value;
output = sdscat(output,module->name);
if (ln != listLast(l))
output = sdscat(output,"|");
}
output = sdscat(output,"]");
return output;
}
/* Helper for genModulesInfoString(): render module options as an SDS string. */
sds genModulesInfoStringRenderModuleOptions(struct ValkeyModule *module) {
sds output = sdsnew("[");
if (module->options & VALKEYMODULE_OPTIONS_HANDLE_IO_ERRORS)
output = sdscat(output,"handle-io-errors|");
if (module->options & VALKEYMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD)
Replica keep serving data during repl-diskless-load=swapdb for better availability (#9323) For diskless replication in swapdb mode, considering we already spend replica memory having a backup of current db to restore in case of failure, we can have the following benefits by instead swapping database only in case we succeeded in transferring db from master: - Avoid `LOADING` response during failed and successful synchronization for cases where the replica is already up and running with data. - Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping. - This could be implemented also for disk replication with similar benefits if consumers are willing to spend the extra memory usage. General notes: - The concept of `backupDb` becomes `tempDb` for clarity. - Async loading mode will only kick in if the replica is syncing from a master that has the same repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline. - New property in INFO: `async_loading` to differentiate from the blocking loading - Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db and the tempDb that is passed around. - Because this is affecting replicas only, we assume that if they are not readonly and write commands during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET here anyways to avoid complications. Considerations for review: - We have many cases where server.loading flag is used and even though I tried my best, there may be cases where async_loading should be checked as well and cases where it shouldn't (would require very good understanding of whole code) - Several places that had different behavior depending on the loading flag where actually meant to just handle commands coming from the AOF client differently than ones coming from real clients, changed to check CLIENT_ID_AOF instead. **Additional for Release Notes** - Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't contribute on triggering next database SAVE - New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING - Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event. Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED, ABORTED and COMPLETED. - New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions to allow modules to declare they support the diskless replication with async loading (when absent, we fall back to disk-based loading). Co-authored-by: Eduardo Semprebon <edus@saxobank.com> Co-authored-by: Oran Agra <oran@redislabs.com>
2021-11-04 09:46:50 +01:00
output = sdscat(output,"handle-repl-async-load|");
if (module->options & VALKEYMODULE_OPTION_NO_IMPLICIT_SIGNAL_MODIFIED)
output = sdscat(output,"no-implicit-signal-modified|");
output = sdstrim(output,"|");
output = sdscat(output,"]");
return output;
}
/* Helper function for the INFO command: adds loaded modules as to info's
* output.
*
* After the call, the passed sds info string is no longer valid and all the
*
* references must be substituted with the new pointer returned by the call. */
sds genModulesInfoString(sds info) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
sds name = dictGetKey(de);
struct ValkeyModule *module = dictGetVal(de);
sds usedby = genModulesInfoStringRenderModulesList(module->usedby);
sds using = genModulesInfoStringRenderModulesList(module->using);
sds options = genModulesInfoStringRenderModuleOptions(module);
info = sdscatfmt(info,
"module:name=%S,ver=%i,api=%i,filters=%i,"
"usedby=%S,using=%S,options=%S\r\n",
name, module->ver, module->apiver,
(int)listLength(module->filters), usedby, using, options);
sdsfree(usedby);
sdsfree(using);
sdsfree(options);
}
dictReleaseIterator(di);
return info;
}
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
/* --------------------------------------------------------------------------
* Module Configurations API internals
* -------------------------------------------------------------------------- */
/* Check if the configuration name is already registered */
int isModuleConfigNameRegistered(ValkeyModule *module, sds name) {
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
listNode *match = listSearchKey(module->module_configs, (void *) name);
return match != NULL;
}
/* Assert that the flags passed into the VM_RegisterConfig Suite are valid */
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
int moduleVerifyConfigFlags(unsigned int flags, configType type) {
if ((flags & ~(VALKEYMODULE_CONFIG_DEFAULT
| VALKEYMODULE_CONFIG_IMMUTABLE
| VALKEYMODULE_CONFIG_SENSITIVE
| VALKEYMODULE_CONFIG_HIDDEN
| VALKEYMODULE_CONFIG_PROTECTED
| VALKEYMODULE_CONFIG_DENY_LOADING
| VALKEYMODULE_CONFIG_BITFLAGS
| VALKEYMODULE_CONFIG_MEMORY))) {
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
serverLogRaw(LL_WARNING, "Invalid flag(s) for configuration");
return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
if (type != NUMERIC_CONFIG && flags & VALKEYMODULE_CONFIG_MEMORY) {
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
serverLogRaw(LL_WARNING, "Numeric flag provided for non-numeric configuration.");
return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
if (type != ENUM_CONFIG && flags & VALKEYMODULE_CONFIG_BITFLAGS) {
serverLogRaw(LL_WARNING, "Enum flag provided for non-enum configuration.");
return VALKEYMODULE_ERR;
}
return VALKEYMODULE_OK;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
int moduleVerifyConfigName(sds name) {
if (sdslen(name) == 0) {
serverLogRaw(LL_WARNING, "Module config names cannot be an empty string.");
return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
for (size_t i = 0 ; i < sdslen(name) ; ++i) {
char curr_char = name[i];
if ((curr_char >= 'a' && curr_char <= 'z') ||
(curr_char >= 'A' && curr_char <= 'Z') ||
(curr_char >= '0' && curr_char <= '9') ||
(curr_char == '_') || (curr_char == '-'))
{
continue;
}
serverLog(LL_WARNING, "Invalid character %c in Module Config name %s.", curr_char, name);
return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
return VALKEYMODULE_OK;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
/* This is a series of set functions for each type that act as dispatchers for
* config.c to call module set callbacks. */
#define CONFIG_ERR_SIZE 256
static char configerr[CONFIG_ERR_SIZE];
static void propagateErrorString(ValkeyModuleString *err_in, const char **err) {
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
if (err_in) {
Avoid using unsafe C functions (#10932) replace use of: sprintf --> snprintf strcpy/strncpy --> redis_strlcpy strcat/strncat --> redis_strlcat **why are we making this change?** Much of the code uses some unsafe variants or deprecated buffer handling functions. While most cases are probably not presenting any issue on the known path programming errors and unterminated strings might lead to potential buffer overflows which are not covered by tests. **As part of this PR we change** 1. added implementation for redis_strlcpy and redis_strlcat based on the strl implementation: https://linux.die.net/man/3/strl 2. change all occurrences of use of sprintf with use of snprintf 3. change occurrences of use of strcpy/strncpy with redis_strlcpy 4. change occurrences of use of strcat/strncat with redis_strlcat 5. change the behavior of ll2string/ull2string/ld2string so that it will always place null termination ('\0') on the output buffer in the first index. this was done in order to make the use of these functions more safe in cases were the user will not check the output returned by them (for example in rdbRemoveTempFile) 6. we added a compiler directive to issue a deprecation error in case a use of sprintf/strcpy/strcat is found during compilation which will result in error during compile time. However keep in mind that since the deprecation attribute is not supported on all compilers, this is expected to fail during push workflows. **NOTE:** while this is only an initial milestone. We might also consider using the *_s implementation provided by the C11 Extensions (however not yet widly supported). I would also suggest to start looking at static code analyzers to track unsafe use cases. For example LLVM clang checker supports security.insecureAPI.DeprecatedOrUnsafeBufferHandling which can help locate unsafe function usage. https://clang.llvm.org/docs/analyzer/checkers.html#security-insecureapi-deprecatedorunsafebufferhandling-c The main reason not to onboard it at this stage is that the alternative excepted by clang is to use the C11 extensions which are not always supported by stdlib.
2022-07-18 10:56:26 +03:00
redis_strlcpy(configerr, err_in->ptr, CONFIG_ERR_SIZE);
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
decrRefCount(err_in);
*err = configerr;
}
}
int setModuleBoolConfig(ModuleConfig *config, int val, const char **err) {
ValkeyModuleString *error = NULL;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
int return_code = config->set_fn.set_bool(config->name, val, config->privdata, &error);
propagateErrorString(error, err);
return return_code == VALKEYMODULE_OK ? 1 : 0;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
int setModuleStringConfig(ModuleConfig *config, sds strval, const char **err) {
ValkeyModuleString *error = NULL;
ValkeyModuleString *new = createStringObject(strval, sdslen(strval));
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
int return_code = config->set_fn.set_string(config->name, new, config->privdata, &error);
propagateErrorString(error, err);
decrRefCount(new);
return return_code == VALKEYMODULE_OK ? 1 : 0;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
int setModuleEnumConfig(ModuleConfig *config, int val, const char **err) {
ValkeyModuleString *error = NULL;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
int return_code = config->set_fn.set_enum(config->name, val, config->privdata, &error);
propagateErrorString(error, err);
return return_code == VALKEYMODULE_OK ? 1 : 0;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
int setModuleNumericConfig(ModuleConfig *config, long long val, const char **err) {
ValkeyModuleString *error = NULL;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
int return_code = config->set_fn.set_numeric(config->name, val, config->privdata, &error);
propagateErrorString(error, err);
return return_code == VALKEYMODULE_OK ? 1 : 0;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
/* This is a series of get functions for each type that act as dispatchers for
* config.c to call module set callbacks. */
int getModuleBoolConfig(ModuleConfig *module_config) {
return module_config->get_fn.get_bool(module_config->name, module_config->privdata);
}
sds getModuleStringConfig(ModuleConfig *module_config) {
ValkeyModuleString *val = module_config->get_fn.get_string(module_config->name, module_config->privdata);
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
return val ? sdsdup(val->ptr) : NULL;
}
int getModuleEnumConfig(ModuleConfig *module_config) {
return module_config->get_fn.get_enum(module_config->name, module_config->privdata);
}
long long getModuleNumericConfig(ModuleConfig *module_config) {
return module_config->get_fn.get_numeric(module_config->name, module_config->privdata);
}
/* This function takes a module and a list of configs stored as sds NAME VALUE pairs.
* It attempts to call set on each of these configs. */
int loadModuleConfigs(ValkeyModule *module) {
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
listIter li;
listNode *ln;
const char *err = NULL;
listRewind(module->module_configs, &li);
while ((ln = listNext(&li))) {
ModuleConfig *module_config = listNodeValue(ln);
sds config_name = sdscatfmt(sdsempty(), "%s.%s", module->name, module_config->name);
dictEntry *config_argument = dictFind(server.module_configs_queue, config_name);
if (config_argument) {
if (!performModuleConfigSetFromName(dictGetKey(config_argument), dictGetVal(config_argument), &err)) {
serverLog(LL_WARNING, "Issue during loading of configuration %s : %s", (sds) dictGetKey(config_argument), err);
sdsfree(config_name);
dictEmpty(server.module_configs_queue, NULL);
return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
} else {
if (!performModuleConfigSetDefaultFromName(config_name, &err)) {
serverLog(LL_WARNING, "Issue attempting to set default value of configuration %s : %s", module_config->name, err);
sdsfree(config_name);
dictEmpty(server.module_configs_queue, NULL);
return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
}
dictDelete(server.module_configs_queue, config_name);
sdsfree(config_name);
}
module->configs_initialized = 1;
return VALKEYMODULE_OK;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
/* Add module_config to the list if the apply and privdata do not match one already in it. */
void addModuleConfigApply(list *module_configs, ModuleConfig *module_config) {
if (!module_config->apply_fn) return;
listIter li;
listNode *ln;
ModuleConfig *pending_apply;
listRewind(module_configs, &li);
while ((ln = listNext(&li))) {
pending_apply = listNodeValue(ln);
if (pending_apply->apply_fn == module_config->apply_fn && pending_apply->privdata == module_config->privdata) {
return;
}
}
listAddNodeTail(module_configs, module_config);
}
/* Call apply on all module configs specified in set, if an apply function was specified at registration time. */
int moduleConfigApplyConfig(list *module_configs, const char **err, const char **err_arg_name) {
if (!listLength(module_configs)) return 1;
listIter li;
listNode *ln;
ModuleConfig *module_config;
ValkeyModuleString *error = NULL;
ValkeyModuleCtx ctx;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
listRewind(module_configs, &li);
while ((ln = listNext(&li))) {
module_config = listNodeValue(ln);
moduleCreateContext(&ctx, module_config->module, VALKEYMODULE_CTX_NONE);
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
if (module_config->apply_fn(&ctx, module_config->privdata, &error)) {
if (err_arg_name) *err_arg_name = module_config->name;
propagateErrorString(error, err);
moduleFreeContext(&ctx);
return 0;
}
moduleFreeContext(&ctx);
}
return 1;
}
/* --------------------------------------------------------------------------
* ## Module Configurations API
* -------------------------------------------------------------------------- */
/* Create a module config object. */
ModuleConfig *createModuleConfig(sds name, ValkeyModuleConfigApplyFunc apply_fn, void *privdata, ValkeyModule *module) {
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
ModuleConfig *new_config = zmalloc(sizeof(ModuleConfig));
new_config->name = sdsdup(name);
new_config->apply_fn = apply_fn;
new_config->privdata = privdata;
new_config->module = module;
return new_config;
}
int moduleConfigValidityCheck(ValkeyModule *module, sds name, unsigned int flags, configType type) {
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
if (!module->onload) {
errno = EBUSY;
return VALKEYMODULE_ERR;
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
}
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
if (moduleVerifyConfigFlags(flags, type) || moduleVerifyConfigName(name)) {
errno = EINVAL;
return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
if (isModuleConfigNameRegistered(module, name)) {
serverLog(LL_WARNING, "Configuration by the name: %s already registered", name);
errno = EALREADY;
return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
return VALKEYMODULE_OK;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
unsigned int maskModuleConfigFlags(unsigned int flags) {
unsigned int new_flags = 0;
if (flags & VALKEYMODULE_CONFIG_DEFAULT) new_flags |= MODIFIABLE_CONFIG;
if (flags & VALKEYMODULE_CONFIG_IMMUTABLE) new_flags |= IMMUTABLE_CONFIG;
if (flags & VALKEYMODULE_CONFIG_HIDDEN) new_flags |= HIDDEN_CONFIG;
if (flags & VALKEYMODULE_CONFIG_PROTECTED) new_flags |= PROTECTED_CONFIG;
if (flags & VALKEYMODULE_CONFIG_DENY_LOADING) new_flags |= DENY_LOADING_CONFIG;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
return new_flags;
}
unsigned int maskModuleNumericConfigFlags(unsigned int flags) {
unsigned int new_flags = 0;
if (flags & VALKEYMODULE_CONFIG_MEMORY) new_flags |= MEMORY_CONFIG;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
return new_flags;
}
unsigned int maskModuleEnumConfigFlags(unsigned int flags) {
unsigned int new_flags = 0;
if (flags & VALKEYMODULE_CONFIG_BITFLAGS) new_flags |= MULTI_ARG_CONFIG;
return new_flags;
}
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
/* Create a string config that Redis users can interact with via the Redis config file,
* `CONFIG SET`, `CONFIG GET`, and `CONFIG REWRITE` commands.
*
* The actual config value is owned by the module, and the `getfn`, `setfn` and optional
* `applyfn` callbacks that are provided to Redis in order to access or manipulate the
* value. The `getfn` callback retrieves the value from the module, while the `setfn`
* callback provides a value to be stored into the module config.
* The optional `applyfn` callback is called after a `CONFIG SET` command modified one or
* more configs using the `setfn` callback and can be used to atomically apply a config
* after several configs were changed together.
* If there are multiple configs with `applyfn` callbacks set by a single `CONFIG SET`
* command, they will be deduplicated if their `applyfn` function and `privdata` pointers
* are identical, and the callback will only be run once.
* Both the `setfn` and `applyfn` can return an error if the provided value is invalid or
* cannot be used.
* The config also declares a type for the value that is validated by Redis and
* provided to the module. The config system provides the following types:
*
* * Redis String: Binary safe string data.
* * Enum: One of a finite number of string tokens, provided during registration.
* * Numeric: 64 bit signed integer, which also supports min and max values.
* * Bool: Yes or no value.
*
* The `setfn` callback is expected to return VALKEYMODULE_OK when the value is successfully
* applied. It can also return VALKEYMODULE_ERR if the value can't be applied, and the
* *err pointer can be set with a ValkeyModuleString error message to provide to the client.
* This ValkeyModuleString will be freed by redis after returning from the set callback.
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
*
* All configs are registered with a name, a type, a default value, private data that is made
* available in the callbacks, as well as several flags that modify the behavior of the config.
* The name must only contain alphanumeric characters or dashes. The supported flags are:
*
* * VALKEYMODULE_CONFIG_DEFAULT: The default flags for a config. This creates a config that can be modified after startup.
* * VALKEYMODULE_CONFIG_IMMUTABLE: This config can only be provided loading time.
* * VALKEYMODULE_CONFIG_SENSITIVE: The value stored in this config is redacted from all logging.
* * VALKEYMODULE_CONFIG_HIDDEN: The name is hidden from `CONFIG GET` with pattern matching.
* * VALKEYMODULE_CONFIG_PROTECTED: This config will be only be modifiable based off the value of enable-protected-configs.
* * VALKEYMODULE_CONFIG_DENY_LOADING: This config is not modifiable while the server is loading data.
* * VALKEYMODULE_CONFIG_MEMORY: For numeric configs, this config will convert data unit notations into their byte equivalent.
* * VALKEYMODULE_CONFIG_BITFLAGS: For enum configs, this config will allow multiple entries to be combined as bit flags.
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
*
* Default values are used on startup to set the value if it is not provided via the config file
* or command line. Default values are also used to compare to on a config rewrite.
*
* Notes:
*
* 1. On string config sets that the string passed to the set callback will be freed after execution and the module must retain it.
* 2. On string config gets the string will not be consumed and will be valid after execution.
*
* Example implementation:
*
* ValkeyModuleString *strval;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
* int adjustable = 1;
* ValkeyModuleString *getStringConfigCommand(const char *name, void *privdata) {
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
* return strval;
* }
*
* int setStringConfigCommand(const char *name, ValkeyModuleString *new, void *privdata, ValkeyModuleString **err) {
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
* if (adjustable) {
* ValkeyModule_Free(strval);
* ValkeyModule_RetainString(NULL, new);
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
* strval = new;
* return VALKEYMODULE_OK;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
* }
* *err = ValkeyModule_CreateString(NULL, "Not adjustable.", 15);
* return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
* }
* ...
* ValkeyModule_RegisterStringConfig(ctx, "string", NULL, VALKEYMODULE_CONFIG_DEFAULT, getStringConfigCommand, setStringConfigCommand, NULL, NULL);
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
*
* If the registration fails, VALKEYMODULE_ERR is returned and one of the following
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
* errno is set:
* * EBUSY: Registering the Config outside of ValkeyModule_OnLoad.
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
* * EINVAL: The provided flags are invalid for the registration or the name of the config contains invalid characters.
* * EALREADY: The provided configuration name is already used. */
int VM_RegisterStringConfig(ValkeyModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, ValkeyModuleConfigGetStringFunc getfn, ValkeyModuleConfigSetStringFunc setfn, ValkeyModuleConfigApplyFunc applyfn, void *privdata) {
ValkeyModule *module = ctx->module;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
sds config_name = sdsnew(name);
if (moduleConfigValidityCheck(module, config_name, flags, NUMERIC_CONFIG)) {
sdsfree(config_name);
return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
ModuleConfig *new_config = createModuleConfig(config_name, applyfn, privdata, module);
sdsfree(config_name);
new_config->get_fn.get_string = getfn;
new_config->set_fn.set_string = setfn;
listAddNodeTail(module->module_configs, new_config);
flags = maskModuleConfigFlags(flags);
addModuleStringConfig(module->name, name, flags, new_config, default_val ? sdsnew(default_val) : NULL);
return VALKEYMODULE_OK;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
/* Create a bool config that server clients can interact with via the
* `CONFIG SET`, `CONFIG GET`, and `CONFIG REWRITE` commands. See
* ValkeyModule_RegisterStringConfig for detailed information about configs. */
int VM_RegisterBoolConfig(ValkeyModuleCtx *ctx, const char *name, int default_val, unsigned int flags, ValkeyModuleConfigGetBoolFunc getfn, ValkeyModuleConfigSetBoolFunc setfn, ValkeyModuleConfigApplyFunc applyfn, void *privdata) {
ValkeyModule *module = ctx->module;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
sds config_name = sdsnew(name);
if (moduleConfigValidityCheck(module, config_name, flags, BOOL_CONFIG)) {
sdsfree(config_name);
return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
ModuleConfig *new_config = createModuleConfig(config_name, applyfn, privdata, module);
sdsfree(config_name);
new_config->get_fn.get_bool = getfn;
new_config->set_fn.set_bool = setfn;
listAddNodeTail(module->module_configs, new_config);
flags = maskModuleConfigFlags(flags);
addModuleBoolConfig(module->name, name, flags, new_config, default_val);
return VALKEYMODULE_OK;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
/*
* Create an enum config that server clients can interact with via the
* `CONFIG SET`, `CONFIG GET`, and `CONFIG REWRITE` commands.
* Enum configs are a set of string tokens to corresponding integer values, where
* the string value is exposed to Redis clients but the value passed Redis and the
* module is the integer value. These values are defined in enum_values, an array
* of null-terminated c strings, and int_vals, an array of enum values who has an
* index partner in enum_values.
* Example Implementation:
* const char *enum_vals[3] = {"first", "second", "third"};
* const int int_vals[3] = {0, 2, 4};
* int enum_val = 0;
*
* int getEnumConfigCommand(const char *name, void *privdata) {
* return enum_val;
* }
*
* int setEnumConfigCommand(const char *name, int val, void *privdata, const char **err) {
* enum_val = val;
* return VALKEYMODULE_OK;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
* }
* ...
* ValkeyModule_RegisterEnumConfig(ctx, "enum", 0, VALKEYMODULE_CONFIG_DEFAULT, enum_vals, int_vals, 3, getEnumConfigCommand, setEnumConfigCommand, NULL, NULL);
*
* Note that you can use VALKEYMODULE_CONFIG_BITFLAGS so that multiple enum string
* can be combined into one integer as bit flags, in which case you may want to
* sort your enums so that the preferred combinations are present first.
*
* See ValkeyModule_RegisterStringConfig for detailed general information about configs. */
int VM_RegisterEnumConfig(ValkeyModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, ValkeyModuleConfigGetEnumFunc getfn, ValkeyModuleConfigSetEnumFunc setfn, ValkeyModuleConfigApplyFunc applyfn, void *privdata) {
ValkeyModule *module = ctx->module;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
sds config_name = sdsnew(name);
if (moduleConfigValidityCheck(module, config_name, flags, ENUM_CONFIG)) {
sdsfree(config_name);
return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
ModuleConfig *new_config = createModuleConfig(config_name, applyfn, privdata, module);
sdsfree(config_name);
new_config->get_fn.get_enum = getfn;
new_config->set_fn.set_enum = setfn;
configEnum *enum_vals = zmalloc((num_enum_vals + 1) * sizeof(configEnum));
for (int i = 0; i < num_enum_vals; i++) {
enum_vals[i].name = zstrdup(enum_values[i]);
enum_vals[i].val = int_values[i];
}
enum_vals[num_enum_vals].name = NULL;
enum_vals[num_enum_vals].val = 0;
listAddNodeTail(module->module_configs, new_config);
flags = maskModuleConfigFlags(flags) | maskModuleEnumConfigFlags(flags);
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
addModuleEnumConfig(module->name, name, flags, new_config, default_val, enum_vals);
return VALKEYMODULE_OK;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
/*
* Create an integer config that server clients can interact with via the
* `CONFIG SET`, `CONFIG GET`, and `CONFIG REWRITE` commands. See
* ValkeyModule_RegisterStringConfig for detailed information about configs. */
int VM_RegisterNumericConfig(ValkeyModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, ValkeyModuleConfigGetNumericFunc getfn, ValkeyModuleConfigSetNumericFunc setfn, ValkeyModuleConfigApplyFunc applyfn, void *privdata) {
ValkeyModule *module = ctx->module;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
sds config_name = sdsnew(name);
if (moduleConfigValidityCheck(module, config_name, flags, NUMERIC_CONFIG)) {
sdsfree(config_name);
return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
ModuleConfig *new_config = createModuleConfig(config_name, applyfn, privdata, module);
sdsfree(config_name);
new_config->get_fn.get_numeric = getfn;
new_config->set_fn.set_numeric = setfn;
listAddNodeTail(module->module_configs, new_config);
unsigned int numeric_flags = maskModuleNumericConfigFlags(flags);
flags = maskModuleConfigFlags(flags);
addModuleNumericConfig(module->name, name, flags, new_config, default_val, numeric_flags, min, max);
return VALKEYMODULE_OK;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
/* Applies all pending configurations on the module load. This should be called
* after all of the configurations have been registered for the module inside of ValkeyModule_OnLoad.
* This will return VALKEYMODULE_ERR if it is called outside ValkeyModule_OnLoad.
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
* This API needs to be called when configurations are provided in either `MODULE LOADEX`
* or provided as startup arguments. */
int VM_LoadConfigs(ValkeyModuleCtx *ctx) {
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
if (!ctx || !ctx->module || !ctx->module->onload) {
return VALKEYMODULE_ERR;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
ValkeyModule *module = ctx->module;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
/* Load configs from conf file or arguments from loadex */
if (loadModuleConfigs(module)) return VALKEYMODULE_ERR;
return VALKEYMODULE_OK;
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
}
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
/* --------------------------------------------------------------------------
* ## RDB load/save API
* -------------------------------------------------------------------------- */
#define VALKEYMODULE_RDB_STREAM_FILE 1
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
typedef struct ValkeyModuleRdbStream {
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
int type;
union {
char *filename;
} data;
} ValkeyModuleRdbStream;
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
/* Create a stream object to save/load RDB to/from a file.
*
* This function returns a pointer to ValkeyModuleRdbStream which is owned
* by the caller. It requires a call to VM_RdbStreamFree() to free
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
* the object. */
ValkeyModuleRdbStream *VM_RdbStreamCreateFromFile(const char *filename) {
ValkeyModuleRdbStream *stream = zmalloc(sizeof(*stream));
stream->type = VALKEYMODULE_RDB_STREAM_FILE;
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
stream->data.filename = zstrdup(filename);
return stream;
}
/* Release an RDB stream object. */
void VM_RdbStreamFree(ValkeyModuleRdbStream *stream) {
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
switch (stream->type) {
case VALKEYMODULE_RDB_STREAM_FILE:
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
zfree(stream->data.filename);
break;
default:
serverAssert(0);
break;
}
zfree(stream);
}
/* Load RDB file from the `stream`. Dataset will be cleared first and then RDB
* file will be loaded.
*
* `flags` must be zero. This parameter is for future use.
*
* On success VALKEYMODULE_OK is returned, otherwise VALKEYMODULE_ERR is returned
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
* and errno is set accordingly.
*
* Example:
*
* ValkeyModuleRdbStream *s = ValkeyModule_RdbStreamCreateFromFile("exp.rdb");
* ValkeyModule_RdbLoad(ctx, s, 0);
* ValkeyModule_RdbStreamFree(s);
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
*/
int VM_RdbLoad(ValkeyModuleCtx *ctx, ValkeyModuleRdbStream *stream, int flags) {
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
UNUSED(ctx);
if (!stream || flags != 0) {
errno = EINVAL;
return VALKEYMODULE_ERR;
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
}
/* Not allowed on replicas. */
if (server.masterhost != NULL) {
errno = ENOTSUP;
return VALKEYMODULE_ERR;
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
}
/* Drop replicas if exist. */
disconnectSlaves();
freeReplicationBacklog();
/* Stop and kill existing AOF rewriting fork as it is saving outdated data,
* we will re-enable it after the rdbLoad. Also killing it will prevent COW
* memory issue. */
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
if (server.aof_state != AOF_OFF) stopAppendOnly();
/* Kill existing RDB fork as it is saving outdated data. Also killing it
* will prevent COW memory issue. */
if (server.child_type == CHILD_TYPE_RDB) killRDBChild();
emptyData(-1,EMPTYDB_NO_FLAGS,NULL);
/* rdbLoad() can go back to the networking and process network events. If
* VM_RdbLoad() is called inside a command callback, we don't want to
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
* process the current client. Otherwise, we may free the client or try to
* process next message while we are already in the command callback. */
if (server.current_client) protectClient(server.current_client);
serverAssert(stream->type == VALKEYMODULE_RDB_STREAM_FILE);
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
int ret = rdbLoad(stream->data.filename,NULL,RDBFLAGS_NONE);
if (server.current_client) unprotectClient(server.current_client);
/* Here we need to decide whether to enable the AOF based on the aof_enabled,
* since the previous stopAppendOnly sets aof_state to AOF_OFF. */
if (server.aof_enabled) startAppendOnly();
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
if (ret != RDB_OK) {
errno = (ret == RDB_NOT_EXIST) ? ENOENT : EIO;
return VALKEYMODULE_ERR;
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
}
errno = 0;
return VALKEYMODULE_OK;
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
}
/* Save dataset to the RDB stream.
*
* `flags` must be zero. This parameter is for future use.
*
* On success VALKEYMODULE_OK is returned, otherwise VALKEYMODULE_ERR is returned
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
* and errno is set accordingly.
*
* Example:
*
* ValkeyModuleRdbStream *s = ValkeyModule_RdbStreamCreateFromFile("exp.rdb");
* ValkeyModule_RdbSave(ctx, s, 0);
* ValkeyModule_RdbStreamFree(s);
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
*/
int VM_RdbSave(ValkeyModuleCtx *ctx, ValkeyModuleRdbStream *stream, int flags) {
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
UNUSED(ctx);
if (!stream || flags != 0) {
errno = EINVAL;
return VALKEYMODULE_ERR;
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
}
serverAssert(stream->type == VALKEYMODULE_RDB_STREAM_FILE);
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
if (rdbSaveToFile(stream->data.filename) != C_OK) {
return VALKEYMODULE_ERR;
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
}
errno = 0;
return VALKEYMODULE_OK;
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
}
2016-03-06 13:44:24 +01:00
/* Redis MODULE command.
*
* MODULE LIST
* MODULE LOAD <path> [args...]
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
* MODULE LOADEX <path> [[CONFIG NAME VALUE] [CONFIG NAME VALUE]] [ARGS ...]
* MODULE UNLOAD <name>
*/
2016-03-06 13:44:24 +01:00
void moduleCommand(client *c) {
char *subcmd = c->argv[1]->ptr;
if (c->argc == 2 && !strcasecmp(subcmd,"help")) {
const char *help[] = {
"LIST",
" Return a list of loaded modules.",
"LOAD <path> [<arg> ...]",
" Load a module library from <path>, passing to it any optional arguments.",
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
"LOADEX <path> [[CONFIG NAME VALUE] [CONFIG NAME VALUE]] [ARGS ...]",
" Load a module library from <path>, while passing it module configurations and optional arguments.",
"UNLOAD <name>",
" Unload a module.",
NULL
};
addReplyHelp(c, help);
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
} else if (!strcasecmp(subcmd,"load") && c->argc >= 3) {
2016-06-05 13:18:24 +03:00
robj **argv = NULL;
int argc = 0;
if (c->argc > 3) {
argc = c->argc - 3;
2016-06-05 13:18:24 +03:00
argv = &c->argv[3];
}
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
if (moduleLoad(c->argv[2]->ptr,(void **)argv,argc, 0) == C_OK)
2016-03-06 13:44:24 +01:00
addReply(c,shared.ok);
else
addReplyError(c,
"Error loading the extension. Please check the server logs.");
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
} else if (!strcasecmp(subcmd,"loadex") && c->argc >= 3) {
robj **argv = NULL;
int argc = 0;
if (c->argc > 3) {
argc = c->argc - 3;
argv = &c->argv[3];
}
/* If this is a loadex command we want to populate server.module_configs_queue with
* sds NAME VALUE pairs. We also want to increment argv to just after ARGS, if supplied. */
if (parseLoadexArguments((ValkeyModuleString ***) &argv, &argc) == VALKEYMODULE_OK &&
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
moduleLoad(c->argv[2]->ptr, (void **)argv, argc, 1) == C_OK)
addReply(c,shared.ok);
else {
dictEmpty(server.module_configs_queue, NULL);
addReplyError(c,
"Error loading the extension. Please check the server logs.");
}
2016-03-06 13:44:24 +01:00
} else if (!strcasecmp(subcmd,"unload") && c->argc == 3) {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
const char *errmsg = NULL;
if (moduleUnload(c->argv[2]->ptr, &errmsg) == C_OK)
2016-03-06 13:44:24 +01:00
addReply(c,shared.ok);
else {
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
if (errmsg == NULL) errmsg = "operation not possible.";
addReplyErrorFormat(c, "Error unloading module: %s", errmsg);
serverLog(LL_WARNING, "Error unloading module %s: %s", (sds) c->argv[2]->ptr, errmsg);
2016-03-06 13:44:24 +01:00
}
} else if (!strcasecmp(subcmd,"list") && c->argc == 2) {
addReplyLoadedModules(c);
2016-03-06 13:44:24 +01:00
} else {
addReplySubcommandSyntaxError(c);
return;
2016-03-06 13:44:24 +01:00
}
}
/* Return the number of registered modules. */
size_t moduleCount(void) {
return dictSize(modules);
}
/* --------------------------------------------------------------------------
* ## Key eviction API
* -------------------------------------------------------------------------- */
Squash merging 125 typo/grammar/comment/doc PRs (#7773) List of squashed commits or PRs =============================== commit 66801ea Author: hwware <wen.hui.ware@gmail.com> Date: Mon Jan 13 00:54:31 2020 -0500 typo fix in acl.c commit 46f55db Author: Itamar Haber <itamar@redislabs.com> Date: Sun Sep 6 18:24:11 2020 +0300 Updates a couple of comments Specifically: * RM_AutoMemory completed instead of pointing to docs * Updated link to custom type doc commit 61a2aa0 Author: xindoo <xindoo@qq.com> Date: Tue Sep 1 19:24:59 2020 +0800 Correct errors in code comments commit a5871d1 Author: yz1509 <pro-756@qq.com> Date: Tue Sep 1 18:36:06 2020 +0800 fix typos in module.c commit 41eede7 Author: bookug <bookug@qq.com> Date: Sat Aug 15 01:11:33 2020 +0800 docs: fix typos in comments commit c303c84 Author: lazy-snail <ws.niu@outlook.com> Date: Fri Aug 7 11:15:44 2020 +0800 fix spelling in redis.conf commit 1eb76bf Author: zhujian <zhujianxyz@gmail.com> Date: Thu Aug 6 15:22:10 2020 +0800 add a missing 'n' in comment commit 1530ec2 Author: Daniel Dai <764122422@qq.com> Date: Mon Jul 27 00:46:35 2020 -0400 fix spelling in tracking.c commit e517b31 Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:32 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit c300eff Author: Hunter-Chen <huntcool001@gmail.com> Date: Fri Jul 17 22:33:23 2020 +0800 Update redis.conf Co-authored-by: Itamar Haber <itamar@redislabs.com> commit 4c058a8 Author: 陈浩鹏 <chenhaopeng@heytea.com> Date: Thu Jun 25 19:00:56 2020 +0800 Grammar fix and clarification commit 5fcaa81 Author: bodong.ybd <bodong.ybd@alibaba-inc.com> Date: Fri Jun 19 10:09:00 2020 +0800 Fix typos commit 4caca9a Author: Pruthvi P <pruthvi@ixigo.com> Date: Fri May 22 00:33:22 2020 +0530 Fix typo eviciton => eviction commit b2a25f6 Author: Brad Dunbar <dunbarb2@gmail.com> Date: Sun May 17 12:39:59 2020 -0400 Fix a typo. commit 12842ae Author: hwware <wen.hui.ware@gmail.com> Date: Sun May 3 17:16:59 2020 -0400 fix spelling in redis conf commit ddba07c Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Sat May 2 23:25:34 2020 +0100 Correct a "conflicts" spelling error. commit 8fc7bf2 Author: Nao YONASHIRO <yonashiro@r.recruit.co.jp> Date: Thu Apr 30 10:25:27 2020 +0900 docs: fix EXPIRE_FAST_CYCLE_DURATION to ACTIVE_EXPIRE_CYCLE_FAST_DURATION commit 9b2b67a Author: Brad Dunbar <dunbarb2@gmail.com> Date: Fri Apr 24 11:46:22 2020 -0400 Fix a typo. commit 0746f10 Author: devilinrust <63737265+devilinrust@users.noreply.github.com> Date: Thu Apr 16 00:17:53 2020 +0200 Fix typos in server.c commit 92b588d Author: benjessop12 <56115861+benjessop12@users.noreply.github.com> Date: Mon Apr 13 13:43:55 2020 +0100 Fix spelling mistake in lazyfree.c commit 1da37aa Merge: 2d4ba28 af347a8 Author: hwware <wen.hui.ware@gmail.com> Date: Thu Mar 5 22:41:31 2020 -0500 Merge remote-tracking branch 'upstream/unstable' into expiretypofix commit 2d4ba28 Author: hwware <wen.hui.ware@gmail.com> Date: Mon Mar 2 00:09:40 2020 -0500 fix typo in expire.c commit 1a746f7 Author: SennoYuki <minakami1yuki@gmail.com> Date: Thu Feb 27 16:54:32 2020 +0800 fix typo commit 8599b1a Author: dongheejeong <donghee950403@gmail.com> Date: Sun Feb 16 20:31:43 2020 +0000 Fix typo in server.c commit f38d4e8 Author: hwware <wen.hui.ware@gmail.com> Date: Sun Feb 2 22:58:38 2020 -0500 fix typo in evict.c commit fe143fc Author: Leo Murillo <leonardo.murillo@gmail.com> Date: Sun Feb 2 01:57:22 2020 -0600 Fix a few typos in redis.conf commit 1ab4d21 Author: viraja1 <anchan.viraj@gmail.com> Date: Fri Dec 27 17:15:58 2019 +0530 Fix typo in Latency API docstring commit ca1f70e Author: gosth <danxuedexing@qq.com> Date: Wed Dec 18 15:18:02 2019 +0800 fix typo in sort.c commit a57c06b Author: ZYunH <zyunhjob@163.com> Date: Mon Dec 16 22:28:46 2019 +0800 fix-zset-typo commit b8c92b5 Author: git-hulk <hulk.website@gmail.com> Date: Mon Dec 16 15:51:42 2019 +0800 FIX: typo in cluster.c, onformation->information commit 9dd981c Author: wujm2007 <jim.wujm@gmail.com> Date: Mon Dec 16 09:37:52 2019 +0800 Fix typo commit e132d7a Author: Sebastien Williams-Wynn <s.williamswynn.mail@gmail.com> Date: Fri Nov 15 00:14:07 2019 +0000 Minor typo change commit 47f44d5 Author: happynote3966 <01ssrmikururudevice01@gmail.com> Date: Mon Nov 11 22:08:48 2019 +0900 fix comment typo in redis-cli.c commit b8bdb0d Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 18:00:17 2019 +0800 Fix a spelling mistake of comments in defragDictBucketCallback commit 0def46a Author: fulei <fulei@kuaishou.com> Date: Wed Oct 16 13:09:27 2019 +0800 fix some spelling mistakes of comments in defrag.c commit f3596fd Author: Phil Rajchgot <tophil@outlook.com> Date: Sun Oct 13 02:02:32 2019 -0400 Typo and grammar fixes Redis and its documentation are great -- just wanted to submit a few corrections in the spirit of Hacktoberfest. Thanks for all your work on this project. I use it all the time and it works beautifully. commit 2b928cd Author: KangZhiDong <worldkzd@gmail.com> Date: Sun Sep 1 07:03:11 2019 +0800 fix typos commit 33aea14 Author: Axlgrep <axlgrep@gmail.com> Date: Tue Aug 27 11:02:18 2019 +0800 Fixed eviction spelling issues commit e282a80 Author: Simen Flatby <simen@oms.no> Date: Tue Aug 20 15:25:51 2019 +0200 Update comments to reflect prop name In the comments the prop is referenced as replica-validity-factor, but it is really named cluster-replica-validity-factor. commit 74d1f9a Author: Jim Green <jimgreen2013@qq.com> Date: Tue Aug 20 20:00:31 2019 +0800 fix comment error, the code is ok commit eea1407 Author: Liao Tonglang <liaotonglang@gmail.com> Date: Fri May 31 10:16:18 2019 +0800 typo fix fix cna't to can't commit 0da553c Author: KAWACHI Takashi <tkawachi@gmail.com> Date: Wed Jul 17 00:38:16 2019 +0900 Fix typo commit 7fc8fb6 Author: Michael Prokop <mika@grml.org> Date: Tue May 28 17:58:42 2019 +0200 Typo fixes s/familar/familiar/ s/compatiblity/compatibility/ s/ ot / to / s/itsef/itself/ commit 5f46c9d Author: zhumoing <34539422+zhumoing@users.noreply.github.com> Date: Tue May 21 21:16:50 2019 +0800 typo-fixes typo-fixes commit 321dfe1 Author: wxisme <850885154@qq.com> Date: Sat Mar 16 15:10:55 2019 +0800 typo fix commit b4fb131 Merge: 267e0e6 3df1eb8 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Fri Feb 8 22:55:45 2019 +0200 Merge branch 'unstable' of antirez/redis into unstable commit 267e0e6 Author: Nikitas Bastas <nikitasbst@gmail.com> Date: Wed Jan 30 21:26:04 2019 +0200 Minor typo fix commit 30544e7 Author: inshal96 <39904558+inshal96@users.noreply.github.com> Date: Fri Jan 4 16:54:50 2019 +0500 remove an extra 'a' in the comments commit 337969d Author: BrotherGao <yangdongheng11@gmail.com> Date: Sat Dec 29 12:37:29 2018 +0800 fix typo in redis.conf commit 9f4b121 Merge: 423a030 e504583 Author: BrotherGao <yangdongheng@xiaomi.com> Date: Sat Dec 29 11:41:12 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 423a030 Merge: 42b02b7 46a51cd Author: 杨东衡 <yangdongheng@xiaomi.com> Date: Tue Dec 4 23:56:11 2018 +0800 Merge branch 'unstable' of antirez/redis into unstable commit 42b02b7 Merge: 68c0e6e b8febe6 Author: Dongheng Yang <yangdongheng11@gmail.com> Date: Sun Oct 28 15:54:23 2018 +0800 Merge pull request #1 from antirez/unstable update local data commit 714b589 Author: Christian <crifei93@gmail.com> Date: Fri Dec 28 01:17:26 2018 +0100 fix typo "resulution" commit e23259d Author: garenchan <1412950785@qq.com> Date: Wed Dec 26 09:58:35 2018 +0800 fix typo: segfauls -> segfault commit a9359f8 Author: xjp <jianping_xie@aliyun.com> Date: Tue Dec 18 17:31:44 2018 +0800 Fixed REDISMODULE_H spell bug commit a12c3e4 Author: jdiaz <jrd.palacios@gmail.com> Date: Sat Dec 15 23:39:52 2018 -0600 Fixes hyperloglog hash function comment block description commit 770eb11 Author: 林上耀 <1210tom@163.com> Date: Sun Nov 25 17:16:10 2018 +0800 fix typo commit fd97fbb Author: Chris Lamb <chris@chris-lamb.co.uk> Date: Fri Nov 23 17:14:01 2018 +0100 Correct "unsupported" typo. commit a85522d Author: Jungnam Lee <jungnam.lee@oracle.com> Date: Thu Nov 8 23:01:29 2018 +0900 fix typo in test comments commit ade8007 Author: Arun Kumar <palerdot@users.noreply.github.com> Date: Tue Oct 23 16:56:35 2018 +0530 Fixed grammatical typo Fixed typo for word 'dictionary' commit 869ee39 Author: Hamid Alaei <hamid.a85@gmail.com> Date: Sun Aug 12 16:40:02 2018 +0430 fix documentations: (ThreadSafeContextStart/Stop -> ThreadSafeContextLock/Unlock), minor typo commit f89d158 Author: Mayank Jain <mayankjain255@gmail.com> Date: Tue Jul 31 23:01:21 2018 +0530 Updated README.md with some spelling corrections. Made correction in spelling of some misspelled words. commit 892198e Author: dsomeshwar <someshwar.dhayalan@gmail.com> Date: Sat Jul 21 23:23:04 2018 +0530 typo fix commit 8a4d780 Author: Itamar Haber <itamar@redislabs.com> Date: Mon Apr 30 02:06:52 2018 +0300 Fixes some typos commit e3acef6 Author: Noah Rosamilia <ivoahivoah@gmail.com> Date: Sat Mar 3 23:41:21 2018 -0500 Fix typo in /deps/README.md commit 04442fb Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:32:42 2018 +0800 Fix typo in readSyncBulkPayload() comment. commit 9f36880 Author: WuYunlong <xzsyeb@126.com> Date: Sat Mar 3 10:20:37 2018 +0800 replication.c comment: run_id -> replid. commit f866b4a Author: Francesco 'makevoid' Canessa <makevoid@gmail.com> Date: Thu Feb 22 22:01:56 2018 +0000 fix comment typo in server.c commit 0ebc69b Author: 줍 <jubee0124@gmail.com> Date: Mon Feb 12 16:38:48 2018 +0900 Fix typo in redis.conf Fix `five behaviors` to `eight behaviors` in [this sentence ](antirez/redis@unstable/redis.conf#L564) commit b50a620 Author: martinbroadhurst <martinbroadhurst@users.noreply.github.com> Date: Thu Dec 28 12:07:30 2017 +0000 Fix typo in valgrind.sup commit 7d8f349 Author: Peter Boughton <peter@sorcerersisle.com> Date: Mon Nov 27 19:52:19 2017 +0000 Update CONTRIBUTING; refer doc updates to redis-doc repo. commit 02dec7e Author: Klauswk <klauswk1@hotmail.com> Date: Tue Oct 24 16:18:38 2017 -0200 Fix typo in comment commit e1efbc8 Author: chenshi <baiwfg2@gmail.com> Date: Tue Oct 3 18:26:30 2017 +0800 Correct two spelling errors of comments commit 93327d8 Author: spacewander <spacewanderlzx@gmail.com> Date: Wed Sep 13 16:47:24 2017 +0800 Update the comment for OBJ_ENCODING_EMBSTR_SIZE_LIMIT's value The value of OBJ_ENCODING_EMBSTR_SIZE_LIMIT is 44 now instead of 39. commit 63d361f Author: spacewander <spacewanderlzx@gmail.com> Date: Tue Sep 12 15:06:42 2017 +0800 Fix <prevlen> related doc in ziplist.c According to the definition of ZIP_BIG_PREVLEN and other related code, the guard of single byte <prevlen> should be 254 instead of 255. commit ebe228d Author: hanael80 <hanael80@gmail.com> Date: Tue Aug 15 09:09:40 2017 +0900 Fix typo commit 6b696e6 Author: Matt Robenolt <matt@ydekproductions.com> Date: Mon Aug 14 14:50:47 2017 -0700 Fix typo in LATENCY DOCTOR output commit a2ec6ae Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 15 14:15:16 2017 +0800 Fix a typo: form => from commit 3ab7699 Author: caosiyang <caosiyang@qiyi.com> Date: Thu Aug 10 18:40:33 2017 +0800 Fix a typo: replicationFeedSlavesFromMaster() => replicationFeedSlavesFromMasterStream() commit 72d43ef Author: caosiyang <caosiyang@qiyi.com> Date: Tue Aug 8 15:57:25 2017 +0800 fix a typo: servewr => server commit 707c958 Author: Bo Cai <charpty@gmail.com> Date: Wed Jul 26 21:49:42 2017 +0800 redis-cli.c typo: conut -> count. Signed-off-by: Bo Cai <charpty@gmail.com> commit b9385b2 Author: JackDrogon <jack.xsuperman@gmail.com> Date: Fri Jun 30 14:22:31 2017 +0800 Fix some spell problems commit 20d9230 Author: akosel <aaronjkosel@gmail.com> Date: Sun Jun 4 19:35:13 2017 -0500 Fix typo commit b167bfc Author: Krzysiek Witkowicz <krzysiekwitkowicz@gmail.com> Date: Mon May 22 21:32:27 2017 +0100 Fix #4008 small typo in comment commit 2b78ac8 Author: Jake Clarkson <jacobwclarkson@gmail.com> Date: Wed Apr 26 15:49:50 2017 +0100 Correct typo in tests/unit/hyperloglog.tcl commit b0f1cdb Author: Qi Luo <qiluo-msft@users.noreply.github.com> Date: Wed Apr 19 14:25:18 2017 -0700 Fix typo commit a90b0f9 Author: charsyam <charsyam@naver.com> Date: Thu Mar 16 18:19:53 2017 +0900 fix typos fix typos fix typos commit 8430a79 Author: Richard Hart <richardhart92@gmail.com> Date: Mon Mar 13 22:17:41 2017 -0400 Fixed log message typo in listenToPort. commit 481a1c2 Author: Vinod Kumar <kumar003vinod@gmail.com> Date: Sun Jan 15 23:04:51 2017 +0530 src/db.c: Correct "save" -> "safe" typo commit 586b4d3 Author: wangshaonan <wshn13@gmail.com> Date: Wed Dec 21 20:28:27 2016 +0800 Fix typo they->the in helloworld.c commit c1c4b5e Author: Jenner <hypxm@qq.com> Date: Mon Dec 19 16:39:46 2016 +0800 typo error commit 1ee1a3f Author: tielei <43289893@qq.com> Date: Mon Jul 18 13:52:25 2016 +0800 fix some comments commit 11a41fb Author: Otto Kekäläinen <otto@seravo.fi> Date: Sun Jul 3 10:23:55 2016 +0100 Fix spelling in documentation and comments commit 5fb5d82 Author: francischan <f1ancis621@gmail.com> Date: Tue Jun 28 00:19:33 2016 +0800 Fix outdated comments about redis.c file. It should now refer to server.c file. commit 6b254bc Author: lmatt-bit <lmatt123n@gmail.com> Date: Thu Apr 21 21:45:58 2016 +0800 Refine the comment of dictRehashMilliseconds func SLAVECONF->REPLCONF in comment - by andyli029 commit ee9869f Author: clark.kang <charsyam@naver.com> Date: Tue Mar 22 11:09:51 2016 +0900 fix typos commit f7b3b11 Author: Harisankar H <harisankarh@gmail.com> Date: Wed Mar 9 11:49:42 2016 +0530 Typo correction: "faield" --> "failed" Typo correction: "faield" --> "failed" commit 3fd40fc Author: Itamar Haber <itamar@redislabs.com> Date: Thu Feb 25 10:31:51 2016 +0200 Fixes a typo in comments commit 621c160 Author: Prayag Verma <prayag.verma@gmail.com> Date: Mon Feb 1 12:36:20 2016 +0530 Fix typo in Readme.md Spelling mistakes - `eviciton` > `eviction` `familar` > `familiar` commit d7d07d6 Author: WonCheol Lee <toctoc21c@gmail.com> Date: Wed Dec 30 15:11:34 2015 +0900 Typo fixed commit a4dade7 Author: Felix Bünemann <buenemann@louis.info> Date: Mon Dec 28 11:02:55 2015 +0100 [ci skip] Improve supervised upstart config docs This mentions that "expect stop" is required for supervised upstart to work correctly. See http://upstart.ubuntu.com/cookbook/#expect-stop for an explanation. commit d9caba9 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:30:03 2015 +1100 README: Remove trailing whitespace commit 72d42e5 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:32 2015 +1100 README: Fix typo. th => the commit dd6e957 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:29:20 2015 +1100 README: Fix typo. familar => familiar commit 3a12b23 Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:28:54 2015 +1100 README: Fix typo. eviciton => eviction commit 2d1d03b Author: daurnimator <quae@daurnimator.com> Date: Mon Dec 21 18:21:45 2015 +1100 README: Fix typo. sever => server commit 3973b06 Author: Itamar Haber <itamar@garantiadata.com> Date: Sat Dec 19 17:01:20 2015 +0200 Typo fix commit 4f2e460 Author: Steve Gao <fu@2token.com> Date: Fri Dec 4 10:22:05 2015 +0800 Update README - fix typos commit b21667c Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:48:37 2015 +0800 delete redundancy color judge in sdscatcolor commit 88894c7 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 22:14:42 2015 +0800 the example output shoule be HelloWorld commit 2763470 Author: binyan <binbin.yan@nokia.com> Date: Wed Dec 2 17:41:39 2015 +0800 modify error word keyevente Signed-off-by: binyan <binbin.yan@nokia.com> commit 0847b3d Author: Bruno Martins <bscmartins@gmail.com> Date: Wed Nov 4 11:37:01 2015 +0000 typo commit bbb9e9e Author: dawedawe <dawedawe@gmx.de> Date: Fri Mar 27 00:46:41 2015 +0100 typo: zimap -> zipmap commit 5ed297e Author: Axel Advento <badwolf.bloodseeker.rev@gmail.com> Date: Tue Mar 3 15:58:29 2015 +0800 Fix 'salve' typos to 'slave' commit edec9d6 Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Wed Jun 12 14:12:47 2019 +0200 Update README.md Co-Authored-By: Qix <Qix-@users.noreply.github.com> commit 692a7af Author: LudwikJaniuk <ludvig.janiuk@gmail.com> Date: Tue May 28 14:32:04 2019 +0200 grammar commit d962b0a Author: Nick Frost <nickfrostatx@gmail.com> Date: Wed Jul 20 15:17:12 2016 -0700 Minor grammar fix commit 24fff01aaccaf5956973ada8c50ceb1462e211c6 (typos) Author: Chad Miller <chadm@squareup.com> Date: Tue Sep 8 13:46:11 2020 -0400 Fix faulty comment about operation of unlink() commit 3cd5c1f3326c52aa552ada7ec797c6bb16452355 Author: Kevin <kevin.xgr@gmail.com> Date: Wed Nov 20 00:13:50 2019 +0800 Fix typo in server.c. From a83af59 Mon Sep 17 00:00:00 2001 From: wuwo <wuwo@wacai.com> Date: Fri, 17 Mar 2017 20:37:45 +0800 Subject: [PATCH] falure to failure From c961896 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=B7=A6=E6=87=B6?= <veficos@gmail.com> Date: Sat, 27 May 2017 15:33:04 +0800 Subject: [PATCH] fix typo From e600ef2 Mon Sep 17 00:00:00 2001 From: "rui.zou" <rui.zou@yunify.com> Date: Sat, 30 Sep 2017 12:38:15 +0800 Subject: [PATCH] fix a typo From c7d07fa Mon Sep 17 00:00:00 2001 From: Alexandre Perrin <alex@kaworu.ch> Date: Thu, 16 Aug 2018 10:35:31 +0200 Subject: [PATCH] deps README.md typo From b25cb67 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 10:55:37 +0300 Subject: [PATCH 1/2] fix typos in header From ad28ca6 Mon Sep 17 00:00:00 2001 From: Guy Korland <gkorland@gmail.com> Date: Wed, 26 Sep 2018 11:02:36 +0300 Subject: [PATCH 2/2] fix typos commit 34924cdedd8552466fc22c1168d49236cb7ee915 Author: Adrian Lynch <adi_ady_ade@hotmail.com> Date: Sat Apr 4 21:59:15 2015 +0100 Typos fixed commit fd2a1e7 Author: Jan <jsteemann@users.noreply.github.com> Date: Sat Oct 27 19:13:01 2018 +0200 Fix typos Fix typos commit e14e47c1a234b53b0e103c5f6a1c61481cbcbb02 Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:30:07 2019 -0500 Fix multiple misspellings of "following" commit 79b948ce2dac6b453fe80995abbcaac04c213d5a Author: Andy Lester <andy@petdance.com> Date: Fri Aug 2 22:24:28 2019 -0500 Fix misspelling of create-cluster commit 1fffde52666dc99ab35efbd31071a4c008cb5a71 Author: Andy Lester <andy@petdance.com> Date: Wed Jul 31 17:57:56 2019 -0500 Fix typos commit 204c9ba9651e9e05fd73936b452b9a30be456cfe Author: Xiaobo Zhu <xiaobo.zhu@shopee.com> Date: Tue Aug 13 22:19:25 2019 +0800 fix typos Squashed commit of the following: commit 1d9aaf8 Author: danmedani <danmedani@gmail.com> Date: Sun Aug 2 11:40:26 2015 -0700 README typo fix. Squashed commit of the following: commit 32bfa7c Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Jul 6 21:15:08 2015 +0200 Fixed grammer Squashed commit of the following: commit b24f69c Author: Sisir Koppaka <sisir.koppaka@gmail.com> Date: Mon Mar 2 22:38:45 2015 -0500 utils/hashtable/rehashing.c: Fix typos Squashed commit of the following: commit 4e04082 Author: Erik Dubbelboer <erik@dubbelboer.com> Date: Mon Mar 23 08:22:21 2015 +0000 Small config file documentation improvements Squashed commit of the following: commit acb8773 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:52:48 2015 -0700 Typo and grammar fixes in readme commit 2eb75b6 Author: ctd1500 <ctd1500@gmail.com> Date: Fri May 8 01:36:18 2015 -0700 fixed redis.conf comment Squashed commit of the following: commit a8249a2 Author: Masahiko Sawada <sawada.mshk@gmail.com> Date: Fri Dec 11 11:39:52 2015 +0530 Revise correction of typos. Squashed commit of the following: commit 3c02028 Author: zhaojun11 <zhaojun11@jd.com> Date: Wed Jan 17 19:05:28 2018 +0800 Fix typos include two code typos in cluster.c and latency.c Squashed commit of the following: commit 9dba47c Author: q191201771 <191201771@qq.com> Date: Sat Jan 4 11:31:04 2020 +0800 fix function listCreate comment in adlist.c Update src/server.c commit 2c7c2cb536e78dd211b1ac6f7bda00f0f54faaeb Author: charpty <charpty@gmail.com> Date: Tue May 1 23:16:59 2018 +0800 server.c typo: modules system dictionary type comment Signed-off-by: charpty <charpty@gmail.com> commit a8395323fb63cb59cb3591cb0f0c8edb7c29a680 Author: Itamar Haber <itamar@redislabs.com> Date: Sun May 6 00:25:18 2018 +0300 Updates test_helper.tcl's help with undocumented options Specifically: * Host * Port * Client commit bde6f9ced15755cd6407b4af7d601b030f36d60b Author: wxisme <850885154@qq.com> Date: Wed Aug 8 15:19:19 2018 +0800 fix comments in deps files commit 3172474ba991532ab799ee1873439f3402412331 Author: wxisme <850885154@qq.com> Date: Wed Aug 8 14:33:49 2018 +0800 fix some comments commit 01b6f2b6858b5cf2ce4ad5092d2c746e755f53f0 Author: Thor Juhasz <thor@juhasz.pro> Date: Sun Nov 18 14:37:41 2018 +0100 Minor fixes to comments Found some parts a little unclear on a first read, which prompted me to have a better look at the file and fix some minor things I noticed. Fixing minor typos and grammar. There are no changes to configuration options. These changes are only meant to help the user better understand the explanations to the various configuration options
2020-09-10 13:43:38 +03:00
/* Set the key last access time for LRU based eviction. not relevant if the
* servers's maxmemory policy is LFU based. Value is idle time in milliseconds.
* returns VALKEYMODULE_OK if the LRU was updated, VALKEYMODULE_ERR otherwise. */
int VM_SetLRU(ValkeyModuleKey *key, mstime_t lru_idle) {
if (!key->value)
return VALKEYMODULE_ERR;
if (objectSetLRUOrLFU(key->value, -1, lru_idle, lru_idle>=0 ? LRU_CLOCK() : 0, 1))
return VALKEYMODULE_OK;
return VALKEYMODULE_ERR;
}
/* Gets the key last access time.
* Value is idletime in milliseconds or -1 if the server's eviction policy is
* LFU based.
* returns VALKEYMODULE_OK if when key is valid. */
int VM_GetLRU(ValkeyModuleKey *key, mstime_t *lru_idle) {
*lru_idle = -1;
if (!key->value)
return VALKEYMODULE_ERR;
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU)
return VALKEYMODULE_OK;
*lru_idle = estimateObjectIdleTime(key->value);
return VALKEYMODULE_OK;
}
/* Set the key access frequency. only relevant if the server's maxmemory policy
* is LFU based.
* The frequency is a logarithmic counter that provides an indication of
* the access frequencyonly (must be <= 255).
* returns VALKEYMODULE_OK if the LFU was updated, VALKEYMODULE_ERR otherwise. */
int VM_SetLFU(ValkeyModuleKey *key, long long lfu_freq) {
if (!key->value)
return VALKEYMODULE_ERR;
if (objectSetLRUOrLFU(key->value, lfu_freq, -1, 0, 1))
return VALKEYMODULE_OK;
return VALKEYMODULE_ERR;
}
/* Gets the key access frequency or -1 if the server's eviction policy is not
* LFU based.
* returns VALKEYMODULE_OK if when key is valid. */
int VM_GetLFU(ValkeyModuleKey *key, long long *lfu_freq) {
*lfu_freq = -1;
if (!key->value)
return VALKEYMODULE_ERR;
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU)
*lfu_freq = LFUDecrAndReturn(key->value);
return VALKEYMODULE_OK;
}
/* --------------------------------------------------------------------------
* ## Miscellaneous APIs
* -------------------------------------------------------------------------- */
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
/**
* Returns the full module options flags mask, using the return value
* the module can check if a certain set of module options are supported
* by the redis server version in use.
* Example:
*
* int supportedFlags = VM_GetModuleOptionsAll();
* if (supportedFlags & VALKEYMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS) {
* // VALKEYMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS is supported
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
* } else{
* // VALKEYMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS is not supported
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
* }
*/
int VM_GetModuleOptionsAll(void) {
return _VALKEYMODULE_OPTIONS_FLAGS_NEXT - 1;
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
}
/**
* Returns the full ContextFlags mask, using the return value
* the module can check if a certain set of flags are supported
* by the redis server version in use.
* Example:
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
*
* int supportedFlags = VM_GetContextFlagsAll();
* if (supportedFlags & VALKEYMODULE_CTX_FLAGS_MULTI) {
* // VALKEYMODULE_CTX_FLAGS_MULTI is supported
* } else{
* // VALKEYMODULE_CTX_FLAGS_MULTI is not supported
* }
*/
int VM_GetContextFlagsAll(void) {
return _VALKEYMODULE_CTX_FLAGS_NEXT - 1;
}
/**
* Returns the full KeyspaceNotification mask, using the return value
* the module can check if a certain set of flags are supported
* by the redis server version in use.
* Example:
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
*
* int supportedFlags = VM_GetKeyspaceNotificationFlagsAll();
* if (supportedFlags & VALKEYMODULE_NOTIFY_LOADED) {
* // VALKEYMODULE_NOTIFY_LOADED is supported
* } else{
* // VALKEYMODULE_NOTIFY_LOADED is not supported
* }
*/
int VM_GetKeyspaceNotificationFlagsAll(void) {
return _VALKEYMODULE_NOTIFY_NEXT - 1;
}
/**
* Return the redis version in format of 0x00MMmmpp.
* Example for 6.0.7 the return value will be 0x00060007.
*/
int VM_GetServerVersion(void) {
return VALKEY_VERSION_NUM;
}
/**
* Return the current redis-server runtime value of VALKEYMODULE_TYPE_METHOD_VERSION.
* You can use that when calling VM_CreateDataType to know which fields of
* ValkeyModuleTypeMethods are gonna be supported and which will be ignored.
*/
int VM_GetTypeMethodVersion(void) {
return VALKEYMODULE_TYPE_METHOD_VERSION;
}
/* Replace the value assigned to a module type.
*
* The key must be open for writing, have an existing value, and have a moduleType
* that matches the one specified by the caller.
*
* Unlike VM_ModuleTypeSetValue() which will free the old value, this function
* simply swaps the old value with the new value.
*
* The function returns VALKEYMODULE_OK on success, VALKEYMODULE_ERR on errors
* such as:
*
* 1. Key is not opened for writing.
* 2. Key is not a module data type key.
* 3. Key is a module datatype other than 'mt'.
*
* If old_value is non-NULL, the old value is returned by reference.
*/
int VM_ModuleTypeReplaceValue(ValkeyModuleKey *key, moduleType *mt, void *new_value, void **old_value) {
if (!(key->mode & VALKEYMODULE_WRITE) || key->iter)
return VALKEYMODULE_ERR;
if (!key->value || key->value->type != OBJ_MODULE)
return VALKEYMODULE_ERR;
moduleValue *mv = key->value->ptr;
if (mv->type != mt)
return VALKEYMODULE_ERR;
if (old_value)
*old_value = mv->value;
mv->value = new_value;
return VALKEYMODULE_OK;
}
/* For a specified command, parse its arguments and return an array that
* contains the indexes of all key name arguments. This function is
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
* essentially a more efficient way to do `COMMAND GETKEYS`.
*
* The out_flags argument is optional, and can be set to NULL.
* When provided it is filled with VALKEYMODULE_CMD_KEY_ flags in matching
* indexes with the key indexes of the returned array.
*
* A NULL return value indicates the specified command has no keys, or
* an error condition. Error conditions are indicated by setting errno
* as follows:
*
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* * ENOENT: Specified command does not exist.
* * EINVAL: Invalid command arity specified.
*
* NOTE: The returned array is not a Redis Module object so it does not
* get automatically freed even when auto-memory is used. The caller
* must explicitly call VM_Free() to free it, same as the out_flags pointer if
* used.
*/
int *VM_GetCommandKeysWithFlags(ValkeyModuleCtx *ctx, ValkeyModuleString **argv, int argc, int *num_keys, int **out_flags) {
UNUSED(ctx);
struct redisCommand *cmd;
int *res = NULL;
/* Find command */
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
if ((cmd = lookupCommand(argv,argc)) == NULL) {
errno = ENOENT;
return NULL;
}
/* Bail out if command has no keys */
if (!doesCommandHaveKeys(cmd)) {
errno = 0;
return NULL;
}
if ((cmd->arity > 0 && cmd->arity != argc) || (argc < -cmd->arity)) {
errno = EINVAL;
return NULL;
}
getKeysResult result = GETKEYS_RESULT_INIT;
getKeysFromCommand(cmd, argv, argc, &result);
*num_keys = result.numkeys;
if (!result.numkeys) {
errno = 0;
getKeysFreeResult(&result);
return NULL;
}
/* The return value here expects an array of key positions */
unsigned long int size = sizeof(int) * result.numkeys;
res = zmalloc(size);
if (out_flags)
*out_flags = zmalloc(size);
for (int i = 0; i < result.numkeys; i++) {
res[i] = result.keys[i].pos;
if (out_flags)
(*out_flags)[i] = moduleConvertKeySpecsFlags(result.keys[i].flags, 0);
}
return res;
}
/* Identical to VM_GetCommandKeysWithFlags when flags are not needed. */
int *VM_GetCommandKeys(ValkeyModuleCtx *ctx, ValkeyModuleString **argv, int argc, int *num_keys) {
return VM_GetCommandKeysWithFlags(ctx, argv, argc, num_keys, NULL);
}
/* Return the name of the command currently running */
const char *VM_GetCurrentCommandName(ValkeyModuleCtx *ctx) {
if (!ctx || !ctx->client || !ctx->client->cmd)
return NULL;
return (const char*)ctx->client->cmd->fullname;
}
/* --------------------------------------------------------------------------
* ## Defrag API
* -------------------------------------------------------------------------- */
/* The defrag context, used to manage state during calls to the data type
* defrag callback.
*/
struct ValkeyModuleDefragCtx {
long long int endtime;
unsigned long *cursor;
struct redisObject *key; /* Optional name of key processed, NULL when unknown. */
int dbid; /* The dbid of the key being processed, -1 when unknown. */
Build TLS as a loadable module * Support BUILD_TLS=module to be loaded as a module via config file or command line. e.g. redis-server --loadmodule redis-tls.so * Updates to redismodule.h to allow it to be used side by side with server.h by defining REDISMODULE_CORE_MODULE * Changes to server.h, redismodule.h and module.c to avoid repeated type declarations (gcc 4.8 doesn't like these) * Add a mechanism for non-ABI neutral modules (ones who include server.h) to refuse loading if they detect not being built together with redis (release.c) * Fix wrong signature of RedisModuleDefragFunc, this could break compilation of a module, but not the ABI * Move initialization of listeners in server.c to be after loading the modules * Config TLS after initialization of listeners * Init cluster after initialization of listeners * Add TLS module to CI * Fix a test suite race conditions: Now that the listeners are initialized later, it's not sufficient to wait for the PID message in the log, we need to wait for the "Server Initialized" message. * Fix issues with moduleconfigs test as a result from start_server waiting for "Server Initialized" * Fix issues with modules/infra test as a result of an additional module present Notes about Sentinel: Sentinel can't really rely on the tls module, since it uses hiredis to initiate connections and depends on OpenSSL (won't be able to use any other connection modules for that), so it was decided that when TLS is built as a module, sentinel does not support TLS at all. This means that it keeps using redis_tls_ctx and redis_tls_client_ctx directly. Example code of config in redis-tls.so(may be use in the future): RedisModuleString *tls_cfg = NULL; void tlsInfo(RedisModuleInfoCtx *ctx, int for_crash_report) { UNUSED(for_crash_report); RedisModule_InfoAddSection(ctx, ""); RedisModule_InfoAddFieldLongLong(ctx, "var", 42); } int tlsCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) { if (argc != 2) return RedisModule_WrongArity(ctx); return RedisModule_ReplyWithString(ctx, argv[1]); } RedisModuleString *getStringConfigCommand(const char *name, void *privdata) { REDISMODULE_NOT_USED(name); REDISMODULE_NOT_USED(privdata); return tls_cfg; } int setStringConfigCommand(const char *name, RedisModuleString *new, void *privdata, RedisModuleString **err) { REDISMODULE_NOT_USED(name); REDISMODULE_NOT_USED(err); REDISMODULE_NOT_USED(privdata); if (tls_cfg) RedisModule_FreeString(NULL, tls_cfg); RedisModule_RetainString(NULL, new); tls_cfg = new; return REDISMODULE_OK; } int RedisModule_OnLoad(void *ctx, RedisModuleString **argv, int argc) { .... if (RedisModule_CreateCommand(ctx,"tls",tlsCommand,"",0,0,0) == REDISMODULE_ERR) return REDISMODULE_ERR; if (RedisModule_RegisterStringConfig(ctx, "cfg", "", REDISMODULE_CONFIG_DEFAULT, getStringConfigCommand, setStringConfigCommand, NULL, NULL) == REDISMODULE_ERR) return REDISMODULE_ERR; if (RedisModule_LoadConfigs(ctx) == REDISMODULE_ERR) { if (tls_cfg) { RedisModule_FreeString(ctx, tls_cfg); tls_cfg = NULL; } return REDISMODULE_ERR; } ... } Co-authored-by: zhenwei pi <pizhenwei@bytedance.com> Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
2022-08-22 15:53:56 +08:00
};
/* Register a defrag callback for global data, i.e. anything that the module
* may allocate that is not tied to a specific data type.
*/
int VM_RegisterDefragFunc(ValkeyModuleCtx *ctx, ValkeyModuleDefragFunc cb) {
ctx->module->defrag_cb = cb;
return VALKEYMODULE_OK;
}
/* When the data type defrag callback iterates complex structures, this
* function should be called periodically. A zero (false) return
* indicates the callback may continue its work. A non-zero value (true)
* indicates it should stop.
*
* When stopped, the callback may use VM_DefragCursorSet() to store its
* position so it can later use VM_DefragCursorGet() to resume defragging.
*
* When stopped and more work is left to be done, the callback should
* return 1. Otherwise, it should return 0.
*
* NOTE: Modules should consider the frequency in which this function is called,
* so it generally makes sense to do small batches of work in between calls.
*/
int VM_DefragShouldStop(ValkeyModuleDefragCtx *ctx) {
return (ctx->endtime != 0 && ctx->endtime < ustime());
}
/* Store an arbitrary cursor value for future re-use.
*
* This should only be called if VM_DefragShouldStop() has returned a non-zero
* value and the defrag callback is about to exit without fully iterating its
* data type.
*
* This behavior is reserved to cases where late defrag is performed. Late
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* defrag is selected for keys that implement the `free_effort` callback and
* return a `free_effort` value that is larger than the defrag
* 'active-defrag-max-scan-fields' configuration directive.
*
Modules API reference formatting fixes Fixes markdown formatting errors and some functions not showing up in the generated documentation at all. Ruby script (gendoc.rb) fixes: * Modified automatic instertion of backquotes: * Don't add backquotes around names which are already preceded by a backquote. Fixes for example \`RedisModule_Reply\*\` which turning into \`\`RedisModule_Reply\`\*\` messes up the formatting. * Add backquotes around types such as RedisModuleString (in addition to function names `RedisModule_[A-z()]*` and macro names `REDISMODULE_[A-z]*`). * Require 4 spaces indentation for disabling automatic backquotes, i.e. code blocks. Fixes continuations of list items (indented 2 spaces). * More permissive extraction of doc comments: * Allow doc comments starting with `/**`. * Make space before `*` on each line optional. * Make space after `/*` and `/**` optional (needed when appearing on its own line). Markdown fixes in module.c: * Fix code blocks not indented enough (4 spaces needed). * Add black line before code blocks and lists where missing (needed). * Enclose special markdown characters `_*^<>` in backticks to prevent them from messing up formatting. * Lists with `1)` changed to `1.` for proper markdown lists. * Remove excessive indentation which causes text to be unintentionally rendered as code blocks. * Other minor formatting fixes. Other fixes in module.c: * Remove blank lines between doc comment and function definition. A blank line here makes the Ruby script exclude the function in docs.
2021-01-13 15:14:51 +01:00
* Smaller keys, keys that do not implement `free_effort` or the global
* defrag callback are not called in late-defrag mode. In those cases, a
* call to this function will return VALKEYMODULE_ERR.
*
* The cursor may be used by the module to represent some progress into the
* module's data type. Modules may also store additional cursor-related
* information locally and use the cursor as a flag that indicates when
* traversal of a new key begins. This is possible because the API makes
* a guarantee that concurrent defragmentation of multiple keys will
* not be performed.
*/
int VM_DefragCursorSet(ValkeyModuleDefragCtx *ctx, unsigned long cursor) {
if (!ctx->cursor)
return VALKEYMODULE_ERR;
*ctx->cursor = cursor;
return VALKEYMODULE_OK;
}
/* Fetch a cursor value that has been previously stored using VM_DefragCursorSet().
*
* If not called for a late defrag operation, VALKEYMODULE_ERR will be returned and
* the cursor should be ignored. See VM_DefragCursorSet() for more details on
* defrag cursors.
*/
int VM_DefragCursorGet(ValkeyModuleDefragCtx *ctx, unsigned long *cursor) {
if (!ctx->cursor)
return VALKEYMODULE_ERR;
*cursor = *ctx->cursor;
return VALKEYMODULE_OK;
}
/* Defrag a memory allocation previously allocated by VM_Alloc, VM_Calloc, etc.
* The defragmentation process involves allocating a new memory block and copying
* the contents to it, like realloc().
*
* If defragmentation was not necessary, NULL is returned and the operation has
* no other effect.
*
* If a non-NULL value is returned, the caller should use the new pointer instead
* of the old one and update any reference to the old pointer, which must not
* be used again.
*/
void *VM_DefragAlloc(ValkeyModuleDefragCtx *ctx, void *ptr) {
UNUSED(ctx);
return activeDefragAlloc(ptr);
}
/* Defrag a ValkeyModuleString previously allocated by VM_Alloc, VM_Calloc, etc.
* See VM_DefragAlloc() for more information on how the defragmentation process
* works.
*
* NOTE: It is only possible to defrag strings that have a single reference.
* Typically this means strings retained with VM_RetainString or VM_HoldString
* may not be defragmentable. One exception is command argvs which, if retained
* by the module, will end up with a single reference (because the reference
* on the Redis side is dropped as soon as the command callback returns).
*/
ValkeyModuleString *VM_DefragValkeyModuleString(ValkeyModuleDefragCtx *ctx, ValkeyModuleString *str) {
UNUSED(ctx);
return activeDefragStringOb(str);
}
/* Perform a late defrag of a module datatype key.
*
* Returns a zero value (and initializes the cursor) if no more needs to be done,
* or a non-zero value otherwise.
*/
int moduleLateDefrag(robj *key, robj *value, unsigned long *cursor, long long endtime, int dbid) {
moduleValue *mv = value->ptr;
moduleType *mt = mv->type;
ValkeyModuleDefragCtx defrag_ctx = { endtime, cursor, key, dbid};
/* Invoke callback. Note that the callback may be missing if the key has been
* replaced with a different type since our last visit.
*/
int ret = 0;
if (mt->defrag)
ret = mt->defrag(&defrag_ctx, key, &mv->value);
if (!ret) {
*cursor = 0; /* No more work to do */
return 0;
}
return 1;
}
/* Attempt to defrag a module data type value. Depending on complexity,
* the operation may happen immediately or be scheduled for later.
*
* Returns 1 if the operation has been completed or 0 if it needs to
* be scheduled for late defrag.
*/
int moduleDefragValue(robj *key, robj *value, int dbid) {
moduleValue *mv = value->ptr;
moduleType *mt = mv->type;
/* Try to defrag moduleValue itself regardless of whether or not
* defrag callbacks are provided.
*/
moduleValue *newmv = activeDefragAlloc(mv);
if (newmv) {
value->ptr = mv = newmv;
}
if (!mt->defrag)
return 1;
/* Use free_effort to determine complexity of module value, and if
* necessary schedule it for defragLater instead of quick immediate
* defrag.
*/
size_t effort = moduleGetFreeEffort(key, value, dbid);
if (!effort)
effort = SIZE_MAX;
if (effort > server.active_defrag_max_scan_fields) {
return 0; /* Defrag later */
}
ValkeyModuleDefragCtx defrag_ctx = { 0, NULL, key, dbid };
mt->defrag(&defrag_ctx, key, &mv->value);
return 1;
}
/* Call registered module API defrag functions */
void moduleDefragGlobals(void) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct ValkeyModule *module = dictGetVal(de);
if (!module->defrag_cb)
continue;
ValkeyModuleDefragCtx defrag_ctx = { 0, NULL, NULL, -1};
module->defrag_cb(&defrag_ctx);
}
dictReleaseIterator(di);
}
/* Returns the name of the key currently being processed.
* There is no guarantee that the key name is always available, so this may return NULL.
*/
const ValkeyModuleString *VM_GetKeyNameFromDefragCtx(ValkeyModuleDefragCtx *ctx) {
return ctx->key;
}
/* Returns the database id of the key currently being processed.
* There is no guarantee that this info is always available, so this may return -1.
*/
int VM_GetDbIdFromDefragCtx(ValkeyModuleDefragCtx *ctx) {
return ctx->dbid;
}
/* Register all the APIs we export. Keep this function at the end of the
* file so that's easy to seek it to add new entries. */
void moduleRegisterCoreAPI(void) {
server.moduleapi = dictCreate(&moduleAPIDictType);
server.sharedapi = dictCreate(&moduleAPIDictType);
REGISTER_API(Alloc);
REGISTER_API(TryAlloc);
REGISTER_API(Calloc);
REGISTER_API(Realloc);
REGISTER_API(Free);
REGISTER_API(Strdup);
REGISTER_API(CreateCommand);
Auto-generate the command table from JSON files (#9656) Delete the hardcoded command table and replace it with an auto-generated table, based on a JSON file that describes the commands (each command must have a JSON file). These JSON files are the SSOT of everything there is to know about Redis commands, and it is reflected fully in COMMAND INFO. These JSON files are used to generate commands.c (using a python script), which is then committed to the repo and compiled. The purpose is: * Clients and proxies will be able to get much more info from redis, instead of relying on hard coded logic. * drop the dependency between Redis-user and the commands.json in redis-doc. * delete help.h and have redis-cli learn everything it needs to know just by issuing COMMAND (will be done in a separate PR) * redis.io should stop using commands.json and learn everything from Redis (ultimately one of the release artifacts should be a large JSON, containing all the information about all of the commands, which will be generated from COMMAND's reply) * the byproduct of this is: * module commands will be able to provide that info and possibly be more of a first-class citizens * in theory, one may be able to generate a redis client library for a strictly typed language, by using this info. ### Interface changes #### COMMAND INFO's reply change (and arg-less COMMAND) Before this commit the reply at index 7 contained the key-specs list and reply at index 8 contained the sub-commands list (Both unreleased). Now, reply at index 7 is a map of: - summary - short command description - since - debut version - group - command group - complexity - complexity string - doc-flags - flags used for documentation (e.g. "deprecated") - deprecated-since - if deprecated, from which version? - replaced-by - if deprecated, which command replaced it? - history - a list of (version, what-changed) tuples - hints - a list of strings, meant to provide hints for clients/proxies. see https://github.com/redis/redis/issues/9876 - arguments - an array of arguments. each element is a map, with the possibility of nesting (sub-arguments) - key-specs - an array of keys specs (already in unstable, just changed location) - subcommands - a list of sub-commands (already in unstable, just changed location) - reply-schema - will be added in the future (see https://github.com/redis/redis/issues/9845) more details on these can be found in https://github.com/redis/redis-doc/pull/1697 only the first three fields are mandatory #### API changes (unreleased API obviously) now they take RedisModuleCommand opaque pointer instead of looking up the command by name - RM_CreateSubcommand - RM_AddCommandKeySpec - RM_SetCommandKeySpecBeginSearchIndex - RM_SetCommandKeySpecBeginSearchKeyword - RM_SetCommandKeySpecFindKeysRange - RM_SetCommandKeySpecFindKeysKeynum Currently, we did not add module API to provide additional information about their commands because we couldn't agree on how the API should look like, see https://github.com/redis/redis/issues/9944. ### Somehow related changes 1. Literals should be in uppercase while placeholder in lowercase. Now all the GEO* command will be documented with M|KM|FT|MI and can take both lowercase and uppercase ### Unrelated changes 1. Bugfix: no_madaory_keys was absent in COMMAND's reply 2. expose CMD_MODULE as "module" via COMMAND 3. have a dedicated uint64 for ACL categories (instead of having them in the same uint64 as command flags) Co-authored-by: Itamar Haber <itamar@garantiadata.com>
2021-12-15 20:23:15 +01:00
REGISTER_API(GetCommand);
Treat subcommands as commands (#9504) ## Intro The purpose is to allow having different flags/ACL categories for subcommands (Example: CONFIG GET is ok-loading but CONFIG SET isn't) We create a small command table for every command that has subcommands and each subcommand has its own flags, etc. (same as a "regular" command) This commit also unites the Redis and the Sentinel command tables ## Affected commands CONFIG Used to have "admin ok-loading ok-stale no-script" Changes: 1. Dropped "ok-loading" in all except GET (this doesn't change behavior since there were checks in the code doing that) XINFO Used to have "read-only random" Changes: 1. Dropped "random" in all except CONSUMERS XGROUP Used to have "write use-memory" Changes: 1. Dropped "use-memory" in all except CREATE and CREATECONSUMER COMMAND No changes. MEMORY Used to have "random read-only" Changes: 1. Dropped "random" in PURGE and USAGE ACL Used to have "admin no-script ok-loading ok-stale" Changes: 1. Dropped "admin" in WHOAMI, GENPASS, and CAT LATENCY No changes. MODULE No changes. SLOWLOG Used to have "admin random ok-loading ok-stale" Changes: 1. Dropped "random" in RESET OBJECT Used to have "read-only random" Changes: 1. Dropped "random" in ENCODING and REFCOUNT SCRIPT Used to have "may-replicate no-script" Changes: 1. Dropped "may-replicate" in all except FLUSH and LOAD CLIENT Used to have "admin no-script random ok-loading ok-stale" Changes: 1. Dropped "random" in all except INFO and LIST 2. Dropped "admin" in ID, TRACKING, CACHING, GETREDIR, INFO, SETNAME, GETNAME, and REPLY STRALGO No changes. PUBSUB No changes. CLUSTER Changes: 1. Dropped "admin in countkeysinslots, getkeysinslot, info, nodes, keyslot, myid, and slots SENTINEL No changes. (note that DEBUG also fits, but we decided not to convert it since it's for debugging and anyway undocumented) ## New sub-command This commit adds another element to the per-command output of COMMAND, describing the list of subcommands, if any (in the same structure as "regular" commands) Also, it adds a new subcommand: ``` COMMAND LIST [FILTERBY (MODULE <module-name>|ACLCAT <cat>|PATTERN <pattern>)] ``` which returns a set of all commands (unless filters), but excluding subcommands. ## Module API A new module API, RM_CreateSubcommand, was added, in order to allow module writer to define subcommands ## ACL changes: 1. Now, that each subcommand is actually a command, each has its own ACL id. 2. The old mechanism of allowed_subcommands is redundant (blocking/allowing a subcommand is the same as blocking/allowing a regular command), but we had to keep it, to support the widespread usage of allowed_subcommands to block commands with certain args, that aren't subcommands (e.g. "-select +select|0"). 3. I have renamed allowed_subcommands to allowed_firstargs to emphasize the difference. 4. Because subcommands are commands in ACL too, you can now use "-" to block subcommands (e.g. "+client -client|kill"), which wasn't possible in the past. 5. It is also possible to use the allowed_firstargs mechanism with subcommand. For example: `+config -config|set +config|set|loglevel` will block all CONFIG SET except for setting the log level. 6. All of the ACL changes above required some amount of refactoring. ## Misc 1. There are two approaches: Either each subcommand has its own function or all subcommands use the same function, determining what to do according to argv[0]. For now, I took the former approaches only with CONFIG and COMMAND, while other commands use the latter approach (for smaller blamelog diff). 2. Deleted memoryGetKeys: It is no longer needed because MEMORY USAGE now uses the "range" key spec. 4. Bugfix: GETNAME was missing from CLIENT's help message. 5. Sentinel and Redis now use the same table, with the same function pointer. Some commands have a different implementation in Sentinel, so we redirect them (these are ROLE, PUBLISH, and INFO). 6. Command stats now show the stats per subcommand (e.g. instead of stats just for "config" you will have stats for "config|set", "config|get", etc.) 7. It is now possible to use COMMAND directly on subcommands: COMMAND INFO CONFIG|GET (The pipeline syntax was inspired from ACL, and can be used in functions lookupCommandBySds and lookupCommandByCString) 8. STRALGO is now a container command (has "help") ## Breaking changes: 1. Command stats now show the stats per subcommand (see (5) above)
2021-10-20 10:52:57 +02:00
REGISTER_API(CreateSubcommand);
REGISTER_API(SetCommandInfo);
Module commands to have ACL categories. (#11708) This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
2023-03-21 10:07:11 -07:00
REGISTER_API(SetCommandACLCategories);
REGISTER_API(SetModuleAttribs);
2017-09-28 17:38:40 +08:00
REGISTER_API(IsModuleNameBusy);
REGISTER_API(WrongArity);
REGISTER_API(ReplyWithLongLong);
REGISTER_API(ReplyWithError);
REGISTER_API(ReplyWithErrorFormat);
REGISTER_API(ReplyWithSimpleString);
REGISTER_API(ReplyWithArray);
REGISTER_API(ReplyWithMap);
REGISTER_API(ReplyWithSet);
REGISTER_API(ReplyWithAttribute);
REGISTER_API(ReplyWithNullArray);
REGISTER_API(ReplyWithEmptyArray);
REGISTER_API(ReplySetArrayLength);
REGISTER_API(ReplySetMapLength);
REGISTER_API(ReplySetSetLength);
REGISTER_API(ReplySetAttributeLength);
REGISTER_API(ReplyWithString);
REGISTER_API(ReplyWithEmptyString);
REGISTER_API(ReplyWithVerbatimString);
REGISTER_API(ReplyWithVerbatimStringType);
REGISTER_API(ReplyWithStringBuffer);
REGISTER_API(ReplyWithCString);
REGISTER_API(ReplyWithNull);
REGISTER_API(ReplyWithBool);
REGISTER_API(ReplyWithCallReply);
REGISTER_API(ReplyWithDouble);
REGISTER_API(ReplyWithBigNumber);
REGISTER_API(ReplyWithLongDouble);
REGISTER_API(GetSelectedDb);
REGISTER_API(SelectDb);
REGISTER_API(KeyExists);
REGISTER_API(OpenKey);
REGISTER_API(GetOpenKeyModesAll);
REGISTER_API(CloseKey);
REGISTER_API(KeyType);
REGISTER_API(ValueLength);
REGISTER_API(ListPush);
REGISTER_API(ListPop);
REGISTER_API(ListGet);
REGISTER_API(ListSet);
REGISTER_API(ListInsert);
REGISTER_API(ListDelete);
REGISTER_API(StringToLongLong);
REGISTER_API(StringToULongLong);
REGISTER_API(StringToDouble);
REGISTER_API(StringToLongDouble);
REGISTER_API(StringToStreamID);
REGISTER_API(Call);
REGISTER_API(CallReplyProto);
REGISTER_API(FreeCallReply);
REGISTER_API(CallReplyInteger);
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
REGISTER_API(CallReplyDouble);
REGISTER_API(CallReplyBigNumber);
REGISTER_API(CallReplyVerbatim);
REGISTER_API(CallReplyBool);
REGISTER_API(CallReplySetElement);
REGISTER_API(CallReplyMapElement);
REGISTER_API(CallReplyAttributeElement);
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
REGISTER_API(CallReplyPromiseSetUnblockHandler);
REGISTER_API(CallReplyPromiseAbort);
Unified Lua and modules reply parsing and added RESP3 support to RM_Call (#9202) ## Current state 1. Lua has its own parser that handles parsing `reds.call` replies and translates them to Lua objects that can be used by the user Lua code. The parser partially handles resp3 (missing big number, verbatim, attribute, ...) 2. Modules have their own parser that handles parsing `RM_Call` replies and translates them to RedisModuleCallReply objects. The parser does not support resp3. In addition, in the future, we want to add Redis Function (#8693) that will probably support more languages. At some point maintaining so many parsers will stop scaling (bug fixes and protocol changes will need to be applied on all of them). We will probably end up with different parsers that support different parts of the resp protocol (like we already have today with Lua and modules) ## PR Changes This PR attempt to unified the reply parsing of Lua and modules (and in the future Redis Function) by introducing a new parser unit (`resp_parser.c`). The new parser handles parsing the reply and calls different callbacks to allow the users (another unit that uses the parser, i.e, Lua, modules, or Redis Function) to analyze the reply. ### Lua API Additions The code that handles reply parsing on `scripting.c` was removed. Instead, it uses the resp_parser to parse and create a Lua object out of the reply. As mentioned above the Lua parser did not handle parsing big numbers, verbatim, and attribute. The new parser can handle those and so Lua also gets it for free. Those are translated to Lua objects in the following way: 1. Big Number - Lua table `{'big_number':'<str representation for big number>'}` 2. Verbatim - Lua table `{'verbatim_string':{'format':'<verbatim format>', 'string':'<verbatim string value>'}}` 3. Attribute - currently ignored and not expose to the Lua parser, another issue will be open to decide how to expose it. Tests were added to check resp3 reply parsing on Lua ### Modules API Additions The reply parsing code on `module.c` was also removed and the new resp_parser is used instead. In addition, the RedisModuleCallReply was also extracted to a separate unit located on `call_reply.c` (in the future, this unit will also be used by Redis Function). A nice side effect of unified parsing is that modules now also support resp3. Resp3 can be enabled by giving `3` as a parameter to the fmt argument of `RM_Call`. It is also possible to give `0`, which will indicate an auto mode. i.e, Redis will automatically chose the reply protocol base on the current client set on the RedisModuleCtx (this mode will mostly be used when the module want to pass the reply to the client as is). In addition, the following RedisModuleAPI were added to allow analyzing resp3 replies: * New RedisModuleCallReply types: * `REDISMODULE_REPLY_MAP` * `REDISMODULE_REPLY_SET` * `REDISMODULE_REPLY_BOOL` * `REDISMODULE_REPLY_DOUBLE` * `REDISMODULE_REPLY_BIG_NUMBER` * `REDISMODULE_REPLY_VERBATIM_STRING` * `REDISMODULE_REPLY_ATTRIBUTE` * New RedisModuleAPI: * `RedisModule_CallReplyDouble` - getting double value from resp3 double reply * `RedisModule_CallReplyBool` - getting boolean value from resp3 boolean reply * `RedisModule_CallReplyBigNumber` - getting big number value from resp3 big number reply * `RedisModule_CallReplyVerbatim` - getting format and value from resp3 verbatim reply * `RedisModule_CallReplySetElement` - getting element from resp3 set reply * `RedisModule_CallReplyMapElement` - getting key and value from resp3 map reply * `RedisModule_CallReplyAttribute` - getting a reply attribute * `RedisModule_CallReplyAttributeElement` - getting key and value from resp3 attribute reply * New context flags: * `REDISMODULE_CTX_FLAGS_RESP3` - indicate that the client is using resp3 Tests were added to check the new RedisModuleAPI ### Modules API Changes * RM_ReplyWithCallReply might return REDISMODULE_ERR if the given CallReply is in resp3 but the client expects resp2. This is not a breaking change because in order to get a resp3 CallReply one needs to specifically specify `3` as a parameter to the fmt argument of `RM_Call` (as mentioned above). Tests were added to check this change ### More small Additions * Added `debug set-disable-deny-scripts` that allows to turn on and off the commands no-script flag protection. This is used by the Lua resp3 tests so it will be possible to run `debug protocol` and check the resp3 parsing code. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2021-08-04 16:28:07 +03:00
REGISTER_API(CallReplyAttribute);
REGISTER_API(CallReplyType);
REGISTER_API(CallReplyLength);
REGISTER_API(CallReplyArrayElement);
REGISTER_API(CallReplyStringPtr);
REGISTER_API(CreateStringFromCallReply);
REGISTER_API(CreateString);
REGISTER_API(CreateStringFromLongLong);
REGISTER_API(CreateStringFromULongLong);
2020-02-04 19:28:09 +05:30
REGISTER_API(CreateStringFromDouble);
REGISTER_API(CreateStringFromLongDouble);
REGISTER_API(CreateStringFromString);
REGISTER_API(CreateStringFromStreamID);
2016-09-21 12:30:38 +03:00
REGISTER_API(CreateStringPrintf);
REGISTER_API(FreeString);
REGISTER_API(StringPtrLen);
REGISTER_API(AutoMemory);
REGISTER_API(Replicate);
REGISTER_API(ReplicateVerbatim);
REGISTER_API(DeleteKey);
REGISTER_API(UnlinkKey);
REGISTER_API(StringSet);
REGISTER_API(StringDMA);
REGISTER_API(StringTruncate);
REGISTER_API(SetExpire);
REGISTER_API(GetExpire);
REGISTER_API(SetAbsExpire);
REGISTER_API(GetAbsExpire);
REGISTER_API(ResetDataset);
REGISTER_API(DbSize);
REGISTER_API(RandomKey);
REGISTER_API(ZsetAdd);
REGISTER_API(ZsetIncrby);
REGISTER_API(ZsetScore);
REGISTER_API(ZsetRem);
REGISTER_API(ZsetRangeStop);
REGISTER_API(ZsetFirstInScoreRange);
REGISTER_API(ZsetLastInScoreRange);
REGISTER_API(ZsetFirstInLexRange);
REGISTER_API(ZsetLastInLexRange);
REGISTER_API(ZsetRangeCurrentElement);
REGISTER_API(ZsetRangeNext);
REGISTER_API(ZsetRangePrev);
REGISTER_API(ZsetRangeEndReached);
REGISTER_API(HashSet);
REGISTER_API(HashGet);
REGISTER_API(StreamAdd);
REGISTER_API(StreamDelete);
REGISTER_API(StreamIteratorStart);
REGISTER_API(StreamIteratorStop);
REGISTER_API(StreamIteratorNextID);
REGISTER_API(StreamIteratorNextField);
REGISTER_API(StreamIteratorDelete);
REGISTER_API(StreamTrimByLength);
REGISTER_API(StreamTrimByID);
REGISTER_API(IsKeysPositionRequest);
REGISTER_API(KeyAtPos);
REGISTER_API(KeyAtPosWithFlags);
REGISTER_API(IsChannelsPositionRequest);
REGISTER_API(ChannelAtPosWithFlags);
REGISTER_API(GetClientId);
REGISTER_API(GetClientUserNameById);
2017-09-27 11:56:40 +03:00
REGISTER_API(GetContextFlags);
REGISTER_API(AvoidReplicaTraffic);
REGISTER_API(PoolAlloc);
REGISTER_API(CreateDataType);
REGISTER_API(ModuleTypeSetValue);
REGISTER_API(ModuleTypeReplaceValue);
REGISTER_API(ModuleTypeGetType);
REGISTER_API(ModuleTypeGetValue);
REGISTER_API(IsIOError);
REGISTER_API(SetModuleOptions);
REGISTER_API(SignalModifiedKey);
REGISTER_API(SaveUnsigned);
REGISTER_API(LoadUnsigned);
REGISTER_API(SaveSigned);
REGISTER_API(LoadSigned);
REGISTER_API(SaveString);
REGISTER_API(SaveStringBuffer);
REGISTER_API(LoadString);
REGISTER_API(LoadStringBuffer);
REGISTER_API(SaveDouble);
REGISTER_API(LoadDouble);
REGISTER_API(SaveFloat);
REGISTER_API(LoadFloat);
REGISTER_API(SaveLongDouble);
REGISTER_API(LoadLongDouble);
REGISTER_API(SaveDataTypeToString);
REGISTER_API(LoadDataTypeFromString);
REGISTER_API(LoadDataTypeFromStringEncver);
REGISTER_API(EmitAOF);
REGISTER_API(Log);
REGISTER_API(LogIOError);
2018-06-03 15:37:48 +03:00
REGISTER_API(_Assert);
2019-10-24 14:24:55 +03:00
REGISTER_API(LatencyAddSample);
REGISTER_API(StringAppendBuffer);
REGISTER_API(TrimStringAllocation);
REGISTER_API(RetainString);
REGISTER_API(HoldString);
REGISTER_API(StringCompare);
REGISTER_API(GetContextFromIO);
2016-11-30 21:47:02 +02:00
REGISTER_API(GetKeyNameFromIO);
REGISTER_API(GetKeyNameFromModuleKey);
REGISTER_API(GetDbIdFromModuleKey);
REGISTER_API(GetDbIdFromIO);
REGISTER_API(GetKeyNameFromOptCtx);
REGISTER_API(GetToKeyNameFromOptCtx);
REGISTER_API(GetDbIdFromOptCtx);
REGISTER_API(GetToDbIdFromOptCtx);
REGISTER_API(GetKeyNameFromDefragCtx);
REGISTER_API(GetDbIdFromDefragCtx);
REGISTER_API(GetKeyNameFromDigest);
REGISTER_API(GetDbIdFromDigest);
REGISTER_API(BlockClient);
Support for RM_Call on blocking commands (#11568) Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
2023-03-16 14:04:31 +02:00
REGISTER_API(BlockClientGetPrivateData);
REGISTER_API(BlockClientSetPrivateData);
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
REGISTER_API(BlockClientOnAuth);
REGISTER_API(UnblockClient);
REGISTER_API(IsBlockedReplyRequest);
REGISTER_API(IsBlockedTimeoutRequest);
REGISTER_API(GetBlockedClientPrivateData);
2016-10-13 16:57:40 +02:00
REGISTER_API(AbortBlock);
2016-10-07 16:34:19 +02:00
REGISTER_API(Milliseconds);
REGISTER_API(MonotonicMicroseconds);
REGISTER_API(Microseconds);
REGISTER_API(CachedMicroseconds);
Enabled background and reply time tracking on blocked on keys/blocked on background work clients (#7491) This commit enables tracking time of the background tasks and on replies, opening the door for properly tracking commands that rely on blocking / background work via the slowlog, latency history, and commandstats. Some notes: - The time spent blocked waiting for key changes, or blocked on synchronous replication is not accounted for. - **This commit does not affect latency tracking of commands that are non-blocking or do not have background work.** ( meaning that it all stays the same with exception to `BZPOPMIN`,`BZPOPMAX`,`BRPOP`,`BLPOP`, etc... and module's commands that rely on background threads ). - Specifically for latency history command we've added a new event class named `command-unblocking` that will enable latency monitoring on commands that spawn background threads to do the work. - For blocking commands we're now considering the total time of a command as the time spent on call() + the time spent on replying when unblocked. - For Modules commands that rely on background threads we're now considering the total time of a command as the time spent on call (main thread) + the time spent on the background thread ( if marked within `RedisModule_MeasureTimeStart()` and `RedisModule_MeasureTimeEnd()` ) + the time spent on replying (main thread) To test for this feature we've added a `unit/moduleapi/blockonbackground` test that relies on a module that blocks the client and sleeps on the background for a given time. - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time - check blocked command that uses RedisModule_MeasureTimeStart() is tracking background time even in timeout - check blocked command with multiple calls RedisModule_MeasureTimeStart() is tracking the total background time - check blocked command without calling RedisModule_MeasureTimeStart() is not reporting background time
2021-01-29 13:38:30 +00:00
REGISTER_API(BlockedClientMeasureTimeStart);
REGISTER_API(BlockedClientMeasureTimeEnd);
REGISTER_API(GetThreadSafeContext);
REGISTER_API(GetDetachedThreadSafeContext);
REGISTER_API(FreeThreadSafeContext);
REGISTER_API(ThreadSafeContextLock);
REGISTER_API(ThreadSafeContextTryLock);
REGISTER_API(ThreadSafeContextUnlock);
2017-07-06 10:29:19 +02:00
REGISTER_API(DigestAddStringBuffer);
REGISTER_API(DigestAddLongLong);
REGISTER_API(DigestEndSequence);
REGISTER_API(NotifyKeyspaceEvent);
REGISTER_API(GetNotifyKeyspaceEvents);
REGISTER_API(SubscribeToKeyspaceEvents);
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
REGISTER_API(AddPostNotificationJob);
REGISTER_API(RegisterClusterMessageReceiver);
REGISTER_API(SendClusterMessage);
REGISTER_API(GetClusterNodeInfo);
REGISTER_API(GetClusterNodesList);
REGISTER_API(FreeClusterNodesList);
REGISTER_API(CreateTimer);
REGISTER_API(StopTimer);
REGISTER_API(GetTimerInfo);
REGISTER_API(GetMyClusterID);
REGISTER_API(GetClusterSize);
REGISTER_API(GetRandomBytes);
REGISTER_API(GetRandomHexChars);
REGISTER_API(BlockedClientDisconnected);
REGISTER_API(SetDisconnectCallback);
REGISTER_API(GetBlockedClientHandle);
REGISTER_API(SetClusterFlags);
REGISTER_API(CreateDict);
REGISTER_API(FreeDict);
REGISTER_API(DictSize);
REGISTER_API(DictSetC);
REGISTER_API(DictReplaceC);
REGISTER_API(DictSet);
REGISTER_API(DictReplace);
REGISTER_API(DictGetC);
REGISTER_API(DictGet);
REGISTER_API(DictDelC);
REGISTER_API(DictDel);
REGISTER_API(DictIteratorStartC);
REGISTER_API(DictIteratorStart);
REGISTER_API(DictIteratorStop);
REGISTER_API(DictIteratorReseekC);
REGISTER_API(DictIteratorReseek);
REGISTER_API(DictNextC);
REGISTER_API(DictPrevC);
REGISTER_API(DictNext);
REGISTER_API(DictPrev);
REGISTER_API(DictCompareC);
REGISTER_API(DictCompare);
REGISTER_API(ExportSharedAPI);
REGISTER_API(GetSharedAPI);
2018-02-23 16:19:37 +02:00
REGISTER_API(RegisterCommandFilter);
REGISTER_API(UnregisterCommandFilter);
REGISTER_API(CommandFilterArgsCount);
REGISTER_API(CommandFilterArgGet);
REGISTER_API(CommandFilterArgInsert);
REGISTER_API(CommandFilterArgReplace);
REGISTER_API(CommandFilterArgDelete);
REGISTER_API(CommandFilterGetClientId);
REGISTER_API(Fork);
REGISTER_API(SendChildHeartbeat);
REGISTER_API(ExitFromChild);
REGISTER_API(KillForkChild);
REGISTER_API(RegisterInfoFunc);
REGISTER_API(InfoAddSection);
REGISTER_API(InfoBeginDictField);
REGISTER_API(InfoEndDictField);
REGISTER_API(InfoAddFieldString);
REGISTER_API(InfoAddFieldCString);
REGISTER_API(InfoAddFieldDouble);
REGISTER_API(InfoAddFieldLongLong);
REGISTER_API(InfoAddFieldULongLong);
REGISTER_API(GetServerInfo);
REGISTER_API(FreeServerInfo);
REGISTER_API(ServerInfoGetField);
2019-11-04 07:57:52 +02:00
REGISTER_API(ServerInfoGetFieldC);
REGISTER_API(ServerInfoGetFieldSigned);
REGISTER_API(ServerInfoGetFieldUnsigned);
REGISTER_API(ServerInfoGetFieldDouble);
2019-10-16 10:18:07 +02:00
REGISTER_API(GetClientInfoById);
REGISTER_API(GetClientNameById);
REGISTER_API(SetClientNameById);
REGISTER_API(PublishMessage);
REGISTER_API(PublishMessageShard);
REGISTER_API(SubscribeToServerEvent);
REGISTER_API(SetLRU);
REGISTER_API(GetLRU);
REGISTER_API(SetLFU);
REGISTER_API(GetLFU);
2019-10-30 10:20:28 +01:00
REGISTER_API(BlockClientOnKeys);
Blocked module clients should be aware when a key is deleted (#11310) The use case is a module that wants to implement a blocking command on a key that necessarily exists and wants to unblock the client in case the key is deleted (much like what we implemented for XREADGROUP in #10306) New module API: * RedisModule_BlockClientOnKeysWithFlags Flags: * REDISMODULE_BLOCK_UNBLOCK_NONE * REDISMODULE_BLOCK_UNBLOCK_DELETED ### Detailed description of code changes blocked.c: 1. Both module and stream functions are called whether the key exists or not, regardless of its type. We do that in order to allow modules/stream to unblock the client in case the key is no longer present or has changed type (the behavior for streams didn't change, just code that moved into serveClientsBlockedOnStreamKey) 2. Make sure afterCommand is called in serveClientsBlockedOnKeyByModule, in order to propagate actions from moduleTryServeClientBlockedOnKey. 3. handleClientsBlockedOnKeys: call propagatePendingCommands directly after lookupKeyReadWithFlags to prevent a possible lazy-expire DEL from being mixed with any command propagated by the preceding functions. 4. blockForKeys: Caller can specifiy that it wants to be awakened if key is deleted. Minor optimizations (use dictAddRaw). 5. signalKeyAsReady became signalKeyAsReadyLogic which can take a boolean in case the key is deleted. It will only signal if there's at least one client that awaits key deletion (to save calls to handleClientsBlockedOnKeys). Minor optimizations (use dictAddRaw) db.c: 1. scanDatabaseForDeletedStreams is now scanDatabaseForDeletedKeys and will signalKeyAsReady for any key that was removed from the database or changed type. It is the responsibility of the code in blocked.c to ignore or act on deleted/type-changed keys. 2. Use the new signalDeletedKeyAsReady where needed blockedonkey.c + tcl: 1. Added test of new capabilities (FSL.BPOPGT now requires the key to exist in order to work)
2022-10-18 18:50:02 +02:00
REGISTER_API(BlockClientOnKeysWithFlags);
2019-10-30 10:20:28 +01:00
REGISTER_API(SignalKeyAsReady);
REGISTER_API(GetBlockedClientReadyKey);
REGISTER_API(GetUsedMemoryRatio);
REGISTER_API(MallocSize);
REGISTER_API(MallocUsableSize);
REGISTER_API(MallocSizeString);
REGISTER_API(MallocSizeDict);
REGISTER_API(ScanCursorCreate);
REGISTER_API(ScanCursorDestroy);
REGISTER_API(ScanCursorRestart);
REGISTER_API(Scan);
REGISTER_API(ScanKey);
REGISTER_API(CreateModuleUser);
REGISTER_API(SetContextUser);
REGISTER_API(SetModuleUserACL);
REGISTER_API(SetModuleUserACLString);
REGISTER_API(GetModuleUserACLString);
REGISTER_API(GetCurrentUserName);
REGISTER_API(GetModuleUserFromUserName);
REGISTER_API(ACLCheckCommandPermissions);
REGISTER_API(ACLCheckKeyPermissions);
REGISTER_API(ACLCheckChannelPermissions);
REGISTER_API(ACLAddLogEntry);
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
REGISTER_API(ACLAddLogEntryByUserName);
REGISTER_API(FreeModuleUser);
REGISTER_API(DeauthenticateAndCloseClient);
REGISTER_API(AuthenticateClientWithACLUser);
REGISTER_API(AuthenticateClientWithUser);
REGISTER_API(GetContextFlagsAll);
Module API to allow writes after key space notification hooks (#11199) ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2022-11-24 19:00:04 +02:00
REGISTER_API(GetModuleOptionsAll);
REGISTER_API(GetKeyspaceNotificationFlagsAll);
REGISTER_API(IsSubEventSupported);
REGISTER_API(GetServerVersion);
REGISTER_API(GetClientCertificate);
REGISTER_API(RedactClientCommandArgument);
REGISTER_API(GetCommandKeys);
REGISTER_API(GetCommandKeysWithFlags);
REGISTER_API(GetCurrentCommandName);
REGISTER_API(GetTypeMethodVersion);
REGISTER_API(RegisterDefragFunc);
REGISTER_API(DefragAlloc);
REGISTER_API(DefragValkeyModuleString);
REGISTER_API(DefragShouldStop);
REGISTER_API(DefragCursorSet);
REGISTER_API(DefragCursorGet);
Add event loop support to the module API (#10001) Modules can now register sockets/pipe to the Redis main thread event loop and do network operations asynchronously. Previously, modules had to maintain an event loop and another thread for asynchronous network operations. Also, if a module is calling API functions after doing some network operations, it had to synchronize its event loop thread's access with Redis main thread by locking the GIL, causing contention on the lock. After this commit, no synchronization is needed as module can operate in Redis main thread context. So, this commit may improve the performance for some use cases. Added three functions to the module API: * RedisModule_EventLoopAdd(int fd, int mask, RedisModuleEventLoopFunc func, void *user_data) * RedisModule_EventLoopDel(int fd, int mask) * RedisModule_EventLoopAddOneShot(RedisModuleEventLoopOneShotFunc func, void *user_data) - This function can be called from other threads to trigger callback on Redis main thread. Callback will be triggered only once. If Redis main thread is sleeping, this call will wake up the Redis main thread. Event loop callbacks are called by Redis main thread after locking the GIL. Inside callbacks, modules can operate as if they are holding the GIL. Added REDISMODULE_EVENT_EVENTLOOP event with two subevents: * REDISMODULE_SUBEVENT_EVENTLOOP_BEFORE_SLEEP * REDISMODULE_SUBEVENT_EVENTLOOP_AFTER_SLEEP These events are for modules that want to participate in the before and after sleep action. e.g It might be useful to implement batching : Read data from the network, write all to a file in one go on BEFORE_SLEEP event.
2022-01-18 14:10:07 +03:00
REGISTER_API(EventLoopAdd);
REGISTER_API(EventLoopDel);
REGISTER_API(EventLoopAddOneShot);
REGISTER_API(Yield);
Module Configurations (#10285) This feature adds the ability to add four different types (Bool, Numeric, String, Enum) of configurations to a module to be accessed via the redis config file, and the CONFIG command. **Configuration Names**: We impose a restriction that a module configuration always starts with the module name and contains a '.' followed by the config name. If a module passes "config1" as the name to a register function, it will be registered as MODULENAME.config1. **Configuration Persistence**: Module Configurations exist only as long as a module is loaded. If a module is unloaded, the configurations are removed. There is now also a minimal core API for removal of standardConfig objects from configs by name. **Get and Set Callbacks**: Storage of config values is owned by the module that registers them, and provides callbacks for Redis to access and manipulate the values. This is exposed through a GET and SET callback. The get callback returns a typed value of the config to redis. The callback takes the name of the configuration, and also a privdata pointer. Note that these only take the CONFIGNAME portion of the config, not the entire MODULENAME.CONFIGNAME. ``` typedef RedisModuleString * (*RedisModuleConfigGetStringFunc)(const char *name, void *privdata); typedef long long (*RedisModuleConfigGetNumericFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetBoolFunc)(const char *name, void *privdata); typedef int (*RedisModuleConfigGetEnumFunc)(const char *name, void *privdata); ``` Configs must also must specify a set callback, i.e. what to do on a CONFIG SET XYZ 123 or when loading configurations from cli/.conf file matching these typedefs. *name* is again just the CONFIGNAME portion, *val* is the parsed value from the core, *privdata* is the registration time privdata pointer, and *err* is for providing errors to a client. ``` typedef int (*RedisModuleConfigSetStringFunc)(const char *name, RedisModuleString *val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetNumericFunc)(const char *name, long long val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetBoolFunc)(const char *name, int val, void *privdata, RedisModuleString **err); typedef int (*RedisModuleConfigSetEnumFunc)(const char *name, int val, void *privdata, RedisModuleString **err); ``` Modules can also specify an optional apply callback that will be called after value(s) have been set via CONFIG SET: ``` typedef int (*RedisModuleConfigApplyFunc)(RedisModuleCtx *ctx, void *privdata, RedisModuleString **err); ``` **Flags:** We expose 7 new flags to the module, which are used as part of the config registration. ``` #define REDISMODULE_CONFIG_MODIFIABLE 0 /* This is the default for a module config. */ #define REDISMODULE_CONFIG_IMMUTABLE (1ULL<<0) /* Can this value only be set at startup? */ #define REDISMODULE_CONFIG_SENSITIVE (1ULL<<1) /* Does this value contain sensitive information */ #define REDISMODULE_CONFIG_HIDDEN (1ULL<<4) /* This config is hidden in `config get <pattern>` (used for tests/debugging) */ #define REDISMODULE_CONFIG_PROTECTED (1ULL<<5) /* Becomes immutable if enable-protected-configs is enabled. */ #define REDISMODULE_CONFIG_DENY_LOADING (1ULL<<6) /* This config is forbidden during loading. */ /* Numeric Specific Configs */ #define REDISMODULE_CONFIG_MEMORY (1ULL<<7) /* Indicates if this value can be set as a memory value */ ``` **Module Registration APIs**: ``` int (*RedisModule_RegisterBoolConfig)(RedisModuleCtx *ctx, char *name, int default_val, unsigned int flags, RedisModuleConfigGetBoolFunc getfn, RedisModuleConfigSetBoolFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterNumericConfig)(RedisModuleCtx *ctx, const char *name, long long default_val, unsigned int flags, long long min, long long max, RedisModuleConfigGetNumericFunc getfn, RedisModuleConfigSetNumericFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterStringConfig)(RedisModuleCtx *ctx, const char *name, const char *default_val, unsigned int flags, RedisModuleConfigGetStringFunc getfn, RedisModuleConfigSetStringFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_RegisterEnumConfig)(RedisModuleCtx *ctx, const char *name, int default_val, unsigned int flags, const char **enum_values, const int *int_values, int num_enum_vals, RedisModuleConfigGetEnumFunc getfn, RedisModuleConfigSetEnumFunc setfn, RedisModuleConfigApplyFunc applyfn, void *privdata); int (*RedisModule_LoadConfigs)(RedisModuleCtx *ctx); ``` The module name will be auto appended along with a "." to the front of the name of the config. **What RM_Register[...]Config does**: A RedisModule struct now keeps a list of ModuleConfig objects which look like: ``` typedef struct ModuleConfig { sds name; /* Name of config without the module name appended to the front */ void *privdata; /* Optional data passed into the module config callbacks */ union get_fn { /* The get callback specificed by the module */ RedisModuleConfigGetStringFunc get_string; RedisModuleConfigGetNumericFunc get_numeric; RedisModuleConfigGetBoolFunc get_bool; RedisModuleConfigGetEnumFunc get_enum; } get_fn; union set_fn { /* The set callback specified by the module */ RedisModuleConfigSetStringFunc set_string; RedisModuleConfigSetNumericFunc set_numeric; RedisModuleConfigSetBoolFunc set_bool; RedisModuleConfigSetEnumFunc set_enum; } set_fn; RedisModuleConfigApplyFunc apply_fn; RedisModule *module; } ModuleConfig; ``` It also registers a standardConfig in the configs array, with a pointer to the ModuleConfig object associated with it. **What happens on a CONFIG GET/SET MODULENAME.MODULECONFIG:** For CONFIG SET, we do the same parsing as is done in config.c and pass that as the argument to the module set callback. For CONFIG GET, we call the module get callback and return that value to config.c to return to a client. **CONFIG REWRITE**: Starting up a server with module configurations in a .conf file but no module load directive will fail. The flip side is also true, specifying a module load and a bunch of module configurations will load those configurations in using the module defined set callbacks on a RM_LoadConfigs call. Configs being rewritten works the same way as it does for standard configs, as the module has the ability to specify a default value. If a module is unloaded with configurations specified in the .conf file those configurations will be commented out from the .conf file on the next config rewrite. **RM_LoadConfigs:** `RedisModule_LoadConfigs(RedisModuleCtx *ctx);` This last API is used to make configs available within the onLoad() after they have been registered. The expected usage is that a module will register all of its configs, then call LoadConfigs to trigger all of the set callbacks, and then can error out if any of them were malformed. LoadConfigs will attempt to set all configs registered to either a .conf file argument/loadex argument or their default value if an argument is not specified. **LoadConfigs is a required function if configs are registered. ** Also note that LoadConfigs **does not** call the apply callbacks, but a module can do that directly after the LoadConfigs call. **New Command: MODULE LOADEX [CONFIG NAME VALUE] [ARGS ...]:** This command provides the ability to provide startup context information to a module. LOADEX stands for "load extended" similar to GETEX. Note that provided config names need the full MODULENAME.MODULECONFIG name. Any additional arguments a module might want are intended to be specified after ARGS. Everything after ARGS is passed to onLoad as RedisModuleString **argv. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com> Co-authored-by: Madelyn Olson <matolson@amazon.com> Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
2022-03-30 05:47:06 -07:00
REGISTER_API(RegisterBoolConfig);
REGISTER_API(RegisterNumericConfig);
REGISTER_API(RegisterStringConfig);
REGISTER_API(RegisterEnumConfig);
REGISTER_API(LoadConfigs);
Custom authentication for Modules (#11659) This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
2023-03-15 15:18:42 -07:00
REGISTER_API(RegisterAuthCallback);
Add RM_RdbLoad and RM_RdbSave module API functions (#11852) Add `RM_RdbLoad()` and `RM_RdbSave()` to load/save RDB files from the module API. In our use case, we have our clustering implementation as a module. As part of this implementation, the module needs to trigger RDB save operation at specific points. Also, this module delivers RDB files to other nodes (not using Redis' replication). When a node receives an RDB file, it should be able to load the RDB. Currently, there is no module API to save/load RDB files. This PR adds four new APIs: ```c RedisModuleRdbStream *RM_RdbStreamCreateFromFile(const char *filename); void RM_RdbStreamFree(RedisModuleRdbStream *stream); int RM_RdbLoad(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); int RM_RdbSave(RedisModuleCtx *ctx, RedisModuleRdbStream *stream, int flags); ``` The first step is to create a `RedisModuleRdbStream` object. This PR provides a function to create RedisModuleRdbStream from the filename. (You can load/save RDB with the filename). In the future, this API can be extended if needed: e.g., `RM_RdbStreamCreateFromFd()`, `RM_RdbStreamCreateFromSocket()` to save/load RDB from an `fd` or a `socket`. Usage: ```c /* Save RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbSave(ctx, stream, 0); RedisModule_RdbStreamFree(stream); /* Load RDB */ RedisModuleRdbStream *stream = RedisModule_RdbStreamCreateFromFile("example.rdb"); RedisModule_RdbLoad(ctx, stream, 0); RedisModule_RdbStreamFree(stream); ```
2023-04-09 12:07:32 +03:00
REGISTER_API(RdbStreamCreateFromFile);
REGISTER_API(RdbStreamFree);
REGISTER_API(RdbLoad);
REGISTER_API(RdbSave);
}